1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3   Madge Ambassador ATM Adapter driver.
4   Copyright (C) 1995-1999  Madge Networks Ltd.
5 
6 */
7 
8 /* * dedicated to the memory of Graham Gordon 1971-1998 * */
9 
10 #include <linux/module.h>
11 #include <linux/types.h>
12 #include <linux/pci.h>
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/ioport.h>
16 #include <linux/atmdev.h>
17 #include <linux/delay.h>
18 #include <linux/interrupt.h>
19 #include <linux/poison.h>
20 #include <linux/bitrev.h>
21 #include <linux/mutex.h>
22 #include <linux/firmware.h>
23 #include <linux/ihex.h>
24 #include <linux/slab.h>
25 
26 #include <linux/atomic.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29 
30 #include "ambassador.h"
31 
32 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
33 #define description_string "Madge ATM Ambassador driver"
34 #define version_string "1.2.4"
35 
show_version(void)36 static inline void __init show_version (void) {
37   printk ("%s version %s\n", description_string, version_string);
38 }
39 
40 /*
41 
42   Theory of Operation
43 
44   I Hardware, detection, initialisation and shutdown.
45 
46   1. Supported Hardware
47 
48   This driver is for the PCI ATMizer-based Ambassador card (except
49   very early versions). It is not suitable for the similar EISA "TR7"
50   card. Commercially, both cards are known as Collage Server ATM
51   adapters.
52 
53   The loader supports image transfer to the card, image start and few
54   other miscellaneous commands.
55 
56   Only AAL5 is supported with vpi = 0 and vci in the range 0 to 1023.
57 
58   The cards are big-endian.
59 
60   2. Detection
61 
62   Standard PCI stuff, the early cards are detected and rejected.
63 
64   3. Initialisation
65 
66   The cards are reset and the self-test results are checked. The
67   microcode image is then transferred and started. This waits for a
68   pointer to a descriptor containing details of the host-based queues
69   and buffers and various parameters etc. Once they are processed
70   normal operations may begin. The BIA is read using a microcode
71   command.
72 
73   4. Shutdown
74 
75   This may be accomplished either by a card reset or via the microcode
76   shutdown command. Further investigation required.
77 
78   5. Persistent state
79 
80   The card reset does not affect PCI configuration (good) or the
81   contents of several other "shared run-time registers" (bad) which
82   include doorbell and interrupt control as well as EEPROM and PCI
83   control. The driver must be careful when modifying these registers
84   not to touch bits it does not use and to undo any changes at exit.
85 
86   II Driver software
87 
88   0. Generalities
89 
90   The adapter is quite intelligent (fast) and has a simple interface
91   (few features). VPI is always zero, 1024 VCIs are supported. There
92   is limited cell rate support. UBR channels can be capped and ABR
93   (explicit rate, but not EFCI) is supported. There is no CBR or VBR
94   support.
95 
96   1. Driver <-> Adapter Communication
97 
98   Apart from the basic loader commands, the driver communicates
99   through three entities: the command queue (CQ), the transmit queue
100   pair (TXQ) and the receive queue pairs (RXQ). These three entities
101   are set up by the host and passed to the microcode just after it has
102   been started.
103 
104   All queues are host-based circular queues. They are contiguous and
105   (due to hardware limitations) have some restrictions as to their
106   locations in (bus) memory. They are of the "full means the same as
107   empty so don't do that" variety since the adapter uses pointers
108   internally.
109 
110   The queue pairs work as follows: one queue is for supply to the
111   adapter, items in it are pending and are owned by the adapter; the
112   other is the queue for return from the adapter, items in it have
113   been dealt with by the adapter. The host adds items to the supply
114   (TX descriptors and free RX buffer descriptors) and removes items
115   from the return (TX and RX completions). The adapter deals with out
116   of order completions.
117 
118   Interrupts (card to host) and the doorbell (host to card) are used
119   for signalling.
120 
121   1. CQ
122 
123   This is to communicate "open VC", "close VC", "get stats" etc. to
124   the adapter. At most one command is retired every millisecond by the
125   card. There is no out of order completion or notification. The
126   driver needs to check the return code of the command, waiting as
127   appropriate.
128 
129   2. TXQ
130 
131   TX supply items are of variable length (scatter gather support) and
132   so the queue items are (more or less) pointers to the real thing.
133   Each TX supply item contains a unique, host-supplied handle (the skb
134   bus address seems most sensible as this works for Alphas as well,
135   there is no need to do any endian conversions on the handles).
136 
137   TX return items consist of just the handles above.
138 
139   3. RXQ (up to 4 of these with different lengths and buffer sizes)
140 
141   RX supply items consist of a unique, host-supplied handle (the skb
142   bus address again) and a pointer to the buffer data area.
143 
144   RX return items consist of the handle above, the VC, length and a
145   status word. This just screams "oh so easy" doesn't it?
146 
147   Note on RX pool sizes:
148 
149   Each pool should have enough buffers to handle a back-to-back stream
150   of minimum sized frames on a single VC. For example:
151 
152     frame spacing = 3us (about right)
153 
154     delay = IRQ lat + RX handling + RX buffer replenish = 20 (us)  (a guess)
155 
156     min number of buffers for one VC = 1 + delay/spacing (buffers)
157 
158     delay/spacing = latency = (20+2)/3 = 7 (buffers)  (rounding up)
159 
160   The 20us delay assumes that there is no need to sleep; if we need to
161   sleep to get buffers we are going to drop frames anyway.
162 
163   In fact, each pool should have enough buffers to support the
164   simultaneous reassembly of a separate frame on each VC and cope with
165   the case in which frames complete in round robin cell fashion on
166   each VC.
167 
168   Only one frame can complete at each cell arrival, so if "n" VCs are
169   open, the worst case is to have them all complete frames together
170   followed by all starting new frames together.
171 
172     desired number of buffers = n + delay/spacing
173 
174   These are the extreme requirements, however, they are "n+k" for some
175   "k" so we have only the constant to choose. This is the argument
176   rx_lats which current defaults to 7.
177 
178   Actually, "n ? n+k : 0" is better and this is what is implemented,
179   subject to the limit given by the pool size.
180 
181   4. Driver locking
182 
183   Simple spinlocks are used around the TX and RX queue mechanisms.
184   Anyone with a faster, working method is welcome to implement it.
185 
186   The adapter command queue is protected with a spinlock. We always
187   wait for commands to complete.
188 
189   A more complex form of locking is used around parts of the VC open
190   and close functions. There are three reasons for a lock: 1. we need
191   to do atomic rate reservation and release (not used yet), 2. Opening
192   sometimes involves two adapter commands which must not be separated
193   by another command on the same VC, 3. the changes to RX pool size
194   must be atomic. The lock needs to work over context switches, so we
195   use a semaphore.
196 
197   III Hardware Features and Microcode Bugs
198 
199   1. Byte Ordering
200 
201   *%^"$&%^$*&^"$(%^$#&^%$(&#%$*(&^#%!"!"!*!
202 
203   2. Memory access
204 
205   All structures that are not accessed using DMA must be 4-byte
206   aligned (not a problem) and must not cross 4MB boundaries.
207 
208   There is a DMA memory hole at E0000000-E00000FF (groan).
209 
210   TX fragments (DMA read) must not cross 4MB boundaries (would be 16MB
211   but for a hardware bug).
212 
213   RX buffers (DMA write) must not cross 16MB boundaries and must
214   include spare trailing bytes up to the next 4-byte boundary; they
215   will be written with rubbish.
216 
217   The PLX likes to prefetch; if reading up to 4 u32 past the end of
218   each TX fragment is not a problem, then TX can be made to go a
219   little faster by passing a flag at init that disables a prefetch
220   workaround. We do not pass this flag. (new microcode only)
221 
222   Now we:
223   . Note that alloc_skb rounds up size to a 16byte boundary.
224   . Ensure all areas do not traverse 4MB boundaries.
225   . Ensure all areas do not start at a E00000xx bus address.
226   (I cannot be certain, but this may always hold with Linux)
227   . Make all failures cause a loud message.
228   . Discard non-conforming SKBs (causes TX failure or RX fill delay).
229   . Discard non-conforming TX fragment descriptors (the TX fails).
230   In the future we could:
231   . Allow RX areas that traverse 4MB (but not 16MB) boundaries.
232   . Segment TX areas into some/more fragments, when necessary.
233   . Relax checks for non-DMA items (ignore hole).
234   . Give scatter-gather (iovec) requirements using ???. (?)
235 
236   3. VC close is broken (only for new microcode)
237 
238   The VC close adapter microcode command fails to do anything if any
239   frames have been received on the VC but none have been transmitted.
240   Frames continue to be reassembled and passed (with IRQ) to the
241   driver.
242 
243   IV To Do List
244 
245   . Fix bugs!
246 
247   . Timer code may be broken.
248 
249   . Deal with buggy VC close (somehow) in microcode 12.
250 
251   . Handle interrupted and/or non-blocking writes - is this a job for
252     the protocol layer?
253 
254   . Add code to break up TX fragments when they span 4MB boundaries.
255 
256   . Add SUNI phy layer (need to know where SUNI lives on card).
257 
258   . Implement a tx_alloc fn to (a) satisfy TX alignment etc. and (b)
259     leave extra headroom space for Ambassador TX descriptors.
260 
261   . Understand these elements of struct atm_vcc: recvq (proto?),
262     sleep, callback, listenq, backlog_quota, reply and user_back.
263 
264   . Adjust TX/RX skb allocation to favour IP with LANE/CLIP (configurable).
265 
266   . Impose a TX-pending limit (2?) on each VC, help avoid TX q overflow.
267 
268   . Decide whether RX buffer recycling is or can be made completely safe;
269     turn it back on. It looks like Werner is going to axe this.
270 
271   . Implement QoS changes on open VCs (involves extracting parts of VC open
272     and close into separate functions and using them to make changes).
273 
274   . Hack on command queue so that someone can issue multiple commands and wait
275     on the last one (OR only "no-op" or "wait" commands are waited for).
276 
277   . Eliminate need for while-schedule around do_command.
278 
279 */
280 
281 static void do_housekeeping (struct timer_list *t);
282 /********** globals **********/
283 
284 static unsigned short debug = 0;
285 static unsigned int cmds = 8;
286 static unsigned int txs = 32;
287 static unsigned int rxs[NUM_RX_POOLS] = { 64, 64, 64, 64 };
288 static unsigned int rxs_bs[NUM_RX_POOLS] = { 4080, 12240, 36720, 65535 };
289 static unsigned int rx_lats = 7;
290 static unsigned char pci_lat = 0;
291 
292 static const unsigned long onegigmask = -1 << 30;
293 
294 /********** access to adapter **********/
295 
wr_plain(const amb_dev * dev,size_t addr,u32 data)296 static inline void wr_plain (const amb_dev * dev, size_t addr, u32 data) {
297   PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x", addr, data);
298 #ifdef AMB_MMIO
299   dev->membase[addr / sizeof(u32)] = data;
300 #else
301   outl (data, dev->iobase + addr);
302 #endif
303 }
304 
rd_plain(const amb_dev * dev,size_t addr)305 static inline u32 rd_plain (const amb_dev * dev, size_t addr) {
306 #ifdef AMB_MMIO
307   u32 data = dev->membase[addr / sizeof(u32)];
308 #else
309   u32 data = inl (dev->iobase + addr);
310 #endif
311   PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x", addr, data);
312   return data;
313 }
314 
wr_mem(const amb_dev * dev,size_t addr,u32 data)315 static inline void wr_mem (const amb_dev * dev, size_t addr, u32 data) {
316   __be32 be = cpu_to_be32 (data);
317   PRINTD (DBG_FLOW|DBG_REGS, "wr: %08zx <- %08x b[%08x]", addr, data, be);
318 #ifdef AMB_MMIO
319   dev->membase[addr / sizeof(u32)] = be;
320 #else
321   outl (be, dev->iobase + addr);
322 #endif
323 }
324 
rd_mem(const amb_dev * dev,size_t addr)325 static inline u32 rd_mem (const amb_dev * dev, size_t addr) {
326 #ifdef AMB_MMIO
327   __be32 be = dev->membase[addr / sizeof(u32)];
328 #else
329   __be32 be = inl (dev->iobase + addr);
330 #endif
331   u32 data = be32_to_cpu (be);
332   PRINTD (DBG_FLOW|DBG_REGS, "rd: %08zx -> %08x b[%08x]", addr, data, be);
333   return data;
334 }
335 
336 /********** dump routines **********/
337 
dump_registers(const amb_dev * dev)338 static inline void dump_registers (const amb_dev * dev) {
339 #ifdef DEBUG_AMBASSADOR
340   if (debug & DBG_REGS) {
341     size_t i;
342     PRINTD (DBG_REGS, "reading PLX control: ");
343     for (i = 0x00; i < 0x30; i += sizeof(u32))
344       rd_mem (dev, i);
345     PRINTD (DBG_REGS, "reading mailboxes: ");
346     for (i = 0x40; i < 0x60; i += sizeof(u32))
347       rd_mem (dev, i);
348     PRINTD (DBG_REGS, "reading doorb irqev irqen reset:");
349     for (i = 0x60; i < 0x70; i += sizeof(u32))
350       rd_mem (dev, i);
351   }
352 #else
353   (void) dev;
354 #endif
355   return;
356 }
357 
dump_loader_block(volatile loader_block * lb)358 static inline void dump_loader_block (volatile loader_block * lb) {
359 #ifdef DEBUG_AMBASSADOR
360   unsigned int i;
361   PRINTDB (DBG_LOAD, "lb @ %p; res: %d, cmd: %d, pay:",
362 	   lb, be32_to_cpu (lb->result), be32_to_cpu (lb->command));
363   for (i = 0; i < MAX_COMMAND_DATA; ++i)
364     PRINTDM (DBG_LOAD, " %08x", be32_to_cpu (lb->payload.data[i]));
365   PRINTDE (DBG_LOAD, ", vld: %08x", be32_to_cpu (lb->valid));
366 #else
367   (void) lb;
368 #endif
369   return;
370 }
371 
dump_command(command * cmd)372 static inline void dump_command (command * cmd) {
373 #ifdef DEBUG_AMBASSADOR
374   unsigned int i;
375   PRINTDB (DBG_CMD, "cmd @ %p, req: %08x, pars:",
376 	   cmd, /*be32_to_cpu*/ (cmd->request));
377   for (i = 0; i < 3; ++i)
378     PRINTDM (DBG_CMD, " %08x", /*be32_to_cpu*/ (cmd->args.par[i]));
379   PRINTDE (DBG_CMD, "");
380 #else
381   (void) cmd;
382 #endif
383   return;
384 }
385 
dump_skb(char * prefix,unsigned int vc,struct sk_buff * skb)386 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
387 #ifdef DEBUG_AMBASSADOR
388   unsigned int i;
389   unsigned char * data = skb->data;
390   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
391   for (i=0; i<skb->len && i < 256;i++)
392     PRINTDM (DBG_DATA, "%02x ", data[i]);
393   PRINTDE (DBG_DATA,"");
394 #else
395   (void) prefix;
396   (void) vc;
397   (void) skb;
398 #endif
399   return;
400 }
401 
402 /********** check memory areas for use by Ambassador **********/
403 
404 /* see limitations under Hardware Features */
405 
check_area(void * start,size_t length)406 static int check_area (void * start, size_t length) {
407   // assumes length > 0
408   const u32 fourmegmask = -1 << 22;
409   const u32 twofivesixmask = -1 << 8;
410   const u32 starthole = 0xE0000000;
411   u32 startaddress = virt_to_bus (start);
412   u32 lastaddress = startaddress+length-1;
413   if ((startaddress ^ lastaddress) & fourmegmask ||
414       (startaddress & twofivesixmask) == starthole) {
415     PRINTK (KERN_ERR, "check_area failure: [%x,%x] - mail maintainer!",
416 	    startaddress, lastaddress);
417     return -1;
418   } else {
419     return 0;
420   }
421 }
422 
423 /********** free an skb (as per ATM device driver documentation) **********/
424 
amb_kfree_skb(struct sk_buff * skb)425 static void amb_kfree_skb (struct sk_buff * skb) {
426   if (ATM_SKB(skb)->vcc->pop) {
427     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
428   } else {
429     dev_kfree_skb_any (skb);
430   }
431 }
432 
433 /********** TX completion **********/
434 
tx_complete(amb_dev * dev,tx_out * tx)435 static void tx_complete (amb_dev * dev, tx_out * tx) {
436   tx_simple * tx_descr = bus_to_virt (tx->handle);
437   struct sk_buff * skb = tx_descr->skb;
438 
439   PRINTD (DBG_FLOW|DBG_TX, "tx_complete %p %p", dev, tx);
440 
441   // VC layer stats
442   atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
443 
444   // free the descriptor
445   kfree (tx_descr);
446 
447   // free the skb
448   amb_kfree_skb (skb);
449 
450   dev->stats.tx_ok++;
451   return;
452 }
453 
454 /********** RX completion **********/
455 
rx_complete(amb_dev * dev,rx_out * rx)456 static void rx_complete (amb_dev * dev, rx_out * rx) {
457   struct sk_buff * skb = bus_to_virt (rx->handle);
458   u16 vc = be16_to_cpu (rx->vc);
459   // unused: u16 lec_id = be16_to_cpu (rx->lec_id);
460   u16 status = be16_to_cpu (rx->status);
461   u16 rx_len = be16_to_cpu (rx->length);
462 
463   PRINTD (DBG_FLOW|DBG_RX, "rx_complete %p %p (len=%hu)", dev, rx, rx_len);
464 
465   // XXX move this in and add to VC stats ???
466   if (!status) {
467     struct atm_vcc * atm_vcc = dev->rxer[vc];
468     dev->stats.rx.ok++;
469 
470     if (atm_vcc) {
471 
472       if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
473 
474 	if (atm_charge (atm_vcc, skb->truesize)) {
475 
476 	  // prepare socket buffer
477 	  ATM_SKB(skb)->vcc = atm_vcc;
478 	  skb_put (skb, rx_len);
479 
480 	  dump_skb ("<<<", vc, skb);
481 
482 	  // VC layer stats
483 	  atomic_inc(&atm_vcc->stats->rx);
484 	  __net_timestamp(skb);
485 	  // end of our responsibility
486 	  atm_vcc->push (atm_vcc, skb);
487 	  return;
488 
489 	} else {
490 	  // someone fix this (message), please!
491 	  PRINTD (DBG_INFO|DBG_RX, "dropped thanks to atm_charge (vc %hu, truesize %u)", vc, skb->truesize);
492 	  // drop stats incremented in atm_charge
493 	}
494 
495       } else {
496       	PRINTK (KERN_INFO, "dropped over-size frame");
497 	// should we count this?
498 	atomic_inc(&atm_vcc->stats->rx_drop);
499       }
500 
501     } else {
502       PRINTD (DBG_WARN|DBG_RX, "got frame but RX closed for channel %hu", vc);
503       // this is an adapter bug, only in new version of microcode
504     }
505 
506   } else {
507     dev->stats.rx.error++;
508     if (status & CRC_ERR)
509       dev->stats.rx.badcrc++;
510     if (status & LEN_ERR)
511       dev->stats.rx.toolong++;
512     if (status & ABORT_ERR)
513       dev->stats.rx.aborted++;
514     if (status & UNUSED_ERR)
515       dev->stats.rx.unused++;
516   }
517 
518   dev_kfree_skb_any (skb);
519   return;
520 }
521 
522 /*
523 
524   Note on queue handling.
525 
526   Here "give" and "take" refer to queue entries and a queue (pair)
527   rather than frames to or from the host or adapter. Empty frame
528   buffers are given to the RX queue pair and returned unused or
529   containing RX frames. TX frames (well, pointers to TX fragment
530   lists) are given to the TX queue pair, completions are returned.
531 
532 */
533 
534 /********** command queue **********/
535 
536 // I really don't like this, but it's the best I can do at the moment
537 
538 // also, the callers are responsible for byte order as the microcode
539 // sometimes does 16-bit accesses (yuk yuk yuk)
540 
command_do(amb_dev * dev,command * cmd)541 static int command_do (amb_dev * dev, command * cmd) {
542   amb_cq * cq = &dev->cq;
543   volatile amb_cq_ptrs * ptrs = &cq->ptrs;
544   command * my_slot;
545 
546   PRINTD (DBG_FLOW|DBG_CMD, "command_do %p", dev);
547 
548   if (test_bit (dead, &dev->flags))
549     return 0;
550 
551   spin_lock (&cq->lock);
552 
553   // if not full...
554   if (cq->pending < cq->maximum) {
555     // remember my slot for later
556     my_slot = ptrs->in;
557     PRINTD (DBG_CMD, "command in slot %p", my_slot);
558 
559     dump_command (cmd);
560 
561     // copy command in
562     *ptrs->in = *cmd;
563     cq->pending++;
564     ptrs->in = NEXTQ (ptrs->in, ptrs->start, ptrs->limit);
565 
566     // mail the command
567     wr_mem (dev, offsetof(amb_mem, mb.adapter.cmd_address), virt_to_bus (ptrs->in));
568 
569     if (cq->pending > cq->high)
570       cq->high = cq->pending;
571     spin_unlock (&cq->lock);
572 
573     // these comments were in a while-loop before, msleep removes the loop
574     // go to sleep
575     // PRINTD (DBG_CMD, "wait: sleeping %lu for command", timeout);
576     msleep(cq->pending);
577 
578     // wait for my slot to be reached (all waiters are here or above, until...)
579     while (ptrs->out != my_slot) {
580       PRINTD (DBG_CMD, "wait: command slot (now at %p)", ptrs->out);
581       set_current_state(TASK_UNINTERRUPTIBLE);
582       schedule();
583     }
584 
585     // wait on my slot (... one gets to its slot, and... )
586     while (ptrs->out->request != cpu_to_be32 (SRB_COMPLETE)) {
587       PRINTD (DBG_CMD, "wait: command slot completion");
588       set_current_state(TASK_UNINTERRUPTIBLE);
589       schedule();
590     }
591 
592     PRINTD (DBG_CMD, "command complete");
593     // update queue (... moves the queue along to the next slot)
594     spin_lock (&cq->lock);
595     cq->pending--;
596     // copy command out
597     *cmd = *ptrs->out;
598     ptrs->out = NEXTQ (ptrs->out, ptrs->start, ptrs->limit);
599     spin_unlock (&cq->lock);
600 
601     return 0;
602   } else {
603     cq->filled++;
604     spin_unlock (&cq->lock);
605     return -EAGAIN;
606   }
607 
608 }
609 
610 /********** TX queue pair **********/
611 
tx_give(amb_dev * dev,tx_in * tx)612 static int tx_give (amb_dev * dev, tx_in * tx) {
613   amb_txq * txq = &dev->txq;
614   unsigned long flags;
615 
616   PRINTD (DBG_FLOW|DBG_TX, "tx_give %p", dev);
617 
618   if (test_bit (dead, &dev->flags))
619     return 0;
620 
621   spin_lock_irqsave (&txq->lock, flags);
622 
623   if (txq->pending < txq->maximum) {
624     PRINTD (DBG_TX, "TX in slot %p", txq->in.ptr);
625 
626     *txq->in.ptr = *tx;
627     txq->pending++;
628     txq->in.ptr = NEXTQ (txq->in.ptr, txq->in.start, txq->in.limit);
629     // hand over the TX and ring the bell
630     wr_mem (dev, offsetof(amb_mem, mb.adapter.tx_address), virt_to_bus (txq->in.ptr));
631     wr_mem (dev, offsetof(amb_mem, doorbell), TX_FRAME);
632 
633     if (txq->pending > txq->high)
634       txq->high = txq->pending;
635     spin_unlock_irqrestore (&txq->lock, flags);
636     return 0;
637   } else {
638     txq->filled++;
639     spin_unlock_irqrestore (&txq->lock, flags);
640     return -EAGAIN;
641   }
642 }
643 
tx_take(amb_dev * dev)644 static int tx_take (amb_dev * dev) {
645   amb_txq * txq = &dev->txq;
646   unsigned long flags;
647 
648   PRINTD (DBG_FLOW|DBG_TX, "tx_take %p", dev);
649 
650   spin_lock_irqsave (&txq->lock, flags);
651 
652   if (txq->pending && txq->out.ptr->handle) {
653     // deal with TX completion
654     tx_complete (dev, txq->out.ptr);
655     // mark unused again
656     txq->out.ptr->handle = 0;
657     // remove item
658     txq->pending--;
659     txq->out.ptr = NEXTQ (txq->out.ptr, txq->out.start, txq->out.limit);
660 
661     spin_unlock_irqrestore (&txq->lock, flags);
662     return 0;
663   } else {
664 
665     spin_unlock_irqrestore (&txq->lock, flags);
666     return -1;
667   }
668 }
669 
670 /********** RX queue pairs **********/
671 
rx_give(amb_dev * dev,rx_in * rx,unsigned char pool)672 static int rx_give (amb_dev * dev, rx_in * rx, unsigned char pool) {
673   amb_rxq * rxq = &dev->rxq[pool];
674   unsigned long flags;
675 
676   PRINTD (DBG_FLOW|DBG_RX, "rx_give %p[%hu]", dev, pool);
677 
678   spin_lock_irqsave (&rxq->lock, flags);
679 
680   if (rxq->pending < rxq->maximum) {
681     PRINTD (DBG_RX, "RX in slot %p", rxq->in.ptr);
682 
683     *rxq->in.ptr = *rx;
684     rxq->pending++;
685     rxq->in.ptr = NEXTQ (rxq->in.ptr, rxq->in.start, rxq->in.limit);
686     // hand over the RX buffer
687     wr_mem (dev, offsetof(amb_mem, mb.adapter.rx_address[pool]), virt_to_bus (rxq->in.ptr));
688 
689     spin_unlock_irqrestore (&rxq->lock, flags);
690     return 0;
691   } else {
692     spin_unlock_irqrestore (&rxq->lock, flags);
693     return -1;
694   }
695 }
696 
rx_take(amb_dev * dev,unsigned char pool)697 static int rx_take (amb_dev * dev, unsigned char pool) {
698   amb_rxq * rxq = &dev->rxq[pool];
699   unsigned long flags;
700 
701   PRINTD (DBG_FLOW|DBG_RX, "rx_take %p[%hu]", dev, pool);
702 
703   spin_lock_irqsave (&rxq->lock, flags);
704 
705   if (rxq->pending && (rxq->out.ptr->status || rxq->out.ptr->length)) {
706     // deal with RX completion
707     rx_complete (dev, rxq->out.ptr);
708     // mark unused again
709     rxq->out.ptr->status = 0;
710     rxq->out.ptr->length = 0;
711     // remove item
712     rxq->pending--;
713     rxq->out.ptr = NEXTQ (rxq->out.ptr, rxq->out.start, rxq->out.limit);
714 
715     if (rxq->pending < rxq->low)
716       rxq->low = rxq->pending;
717     spin_unlock_irqrestore (&rxq->lock, flags);
718     return 0;
719   } else {
720     if (!rxq->pending && rxq->buffers_wanted)
721       rxq->emptied++;
722     spin_unlock_irqrestore (&rxq->lock, flags);
723     return -1;
724   }
725 }
726 
727 /********** RX Pool handling **********/
728 
729 /* pre: buffers_wanted = 0, post: pending = 0 */
drain_rx_pool(amb_dev * dev,unsigned char pool)730 static void drain_rx_pool (amb_dev * dev, unsigned char pool) {
731   amb_rxq * rxq = &dev->rxq[pool];
732 
733   PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pool %p %hu", dev, pool);
734 
735   if (test_bit (dead, &dev->flags))
736     return;
737 
738   /* we are not quite like the fill pool routines as we cannot just
739      remove one buffer, we have to remove all of them, but we might as
740      well pretend... */
741   if (rxq->pending > rxq->buffers_wanted) {
742     command cmd;
743     cmd.request = cpu_to_be32 (SRB_FLUSH_BUFFER_Q);
744     cmd.args.flush.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
745     while (command_do (dev, &cmd))
746       schedule();
747     /* the pool may also be emptied via the interrupt handler */
748     while (rxq->pending > rxq->buffers_wanted)
749       if (rx_take (dev, pool))
750 	schedule();
751   }
752 
753   return;
754 }
755 
drain_rx_pools(amb_dev * dev)756 static void drain_rx_pools (amb_dev * dev) {
757   unsigned char pool;
758 
759   PRINTD (DBG_FLOW|DBG_POOL, "drain_rx_pools %p", dev);
760 
761   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
762     drain_rx_pool (dev, pool);
763 }
764 
fill_rx_pool(amb_dev * dev,unsigned char pool,gfp_t priority)765 static void fill_rx_pool (amb_dev * dev, unsigned char pool,
766                                  gfp_t priority)
767 {
768   rx_in rx;
769   amb_rxq * rxq;
770 
771   PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pool %p %hu %x", dev, pool, priority);
772 
773   if (test_bit (dead, &dev->flags))
774     return;
775 
776   rxq = &dev->rxq[pool];
777   while (rxq->pending < rxq->maximum && rxq->pending < rxq->buffers_wanted) {
778 
779     struct sk_buff * skb = alloc_skb (rxq->buffer_size, priority);
780     if (!skb) {
781       PRINTD (DBG_SKB|DBG_POOL, "failed to allocate skb for RX pool %hu", pool);
782       return;
783     }
784     if (check_area (skb->data, skb->truesize)) {
785       dev_kfree_skb_any (skb);
786       return;
787     }
788     // cast needed as there is no %? for pointer differences
789     PRINTD (DBG_SKB, "allocated skb at %p, head %p, area %li",
790 	    skb, skb->head, (long) skb_end_offset(skb));
791     rx.handle = virt_to_bus (skb);
792     rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
793     if (rx_give (dev, &rx, pool))
794       dev_kfree_skb_any (skb);
795 
796   }
797 
798   return;
799 }
800 
801 // top up all RX pools
fill_rx_pools(amb_dev * dev)802 static void fill_rx_pools (amb_dev * dev) {
803   unsigned char pool;
804 
805   PRINTD (DBG_FLOW|DBG_POOL, "fill_rx_pools %p", dev);
806 
807   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
808     fill_rx_pool (dev, pool, GFP_ATOMIC);
809 
810   return;
811 }
812 
813 /********** enable host interrupts **********/
814 
interrupts_on(amb_dev * dev)815 static void interrupts_on (amb_dev * dev) {
816   wr_plain (dev, offsetof(amb_mem, interrupt_control),
817 	    rd_plain (dev, offsetof(amb_mem, interrupt_control))
818 	    | AMB_INTERRUPT_BITS);
819 }
820 
821 /********** disable host interrupts **********/
822 
interrupts_off(amb_dev * dev)823 static void interrupts_off (amb_dev * dev) {
824   wr_plain (dev, offsetof(amb_mem, interrupt_control),
825 	    rd_plain (dev, offsetof(amb_mem, interrupt_control))
826 	    &~ AMB_INTERRUPT_BITS);
827 }
828 
829 /********** interrupt handling **********/
830 
interrupt_handler(int irq,void * dev_id)831 static irqreturn_t interrupt_handler(int irq, void *dev_id) {
832   amb_dev * dev = dev_id;
833 
834   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler: %p", dev_id);
835 
836   {
837     u32 interrupt = rd_plain (dev, offsetof(amb_mem, interrupt));
838 
839     // for us or someone else sharing the same interrupt
840     if (!interrupt) {
841       PRINTD (DBG_IRQ, "irq not for me: %d", irq);
842       return IRQ_NONE;
843     }
844 
845     // definitely for us
846     PRINTD (DBG_IRQ, "FYI: interrupt was %08x", interrupt);
847     wr_plain (dev, offsetof(amb_mem, interrupt), -1);
848   }
849 
850   {
851     unsigned int irq_work = 0;
852     unsigned char pool;
853     for (pool = 0; pool < NUM_RX_POOLS; ++pool)
854       while (!rx_take (dev, pool))
855 	++irq_work;
856     while (!tx_take (dev))
857       ++irq_work;
858 
859     if (irq_work) {
860       fill_rx_pools (dev);
861 
862       PRINTD (DBG_IRQ, "work done: %u", irq_work);
863     } else {
864       PRINTD (DBG_IRQ|DBG_WARN, "no work done");
865     }
866   }
867 
868   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
869   return IRQ_HANDLED;
870 }
871 
872 /********** make rate (not quite as much fun as Horizon) **********/
873 
make_rate(unsigned int rate,rounding r,u16 * bits,unsigned int * actual)874 static int make_rate (unsigned int rate, rounding r,
875 		      u16 * bits, unsigned int * actual) {
876   unsigned char exp = -1; // hush gcc
877   unsigned int man = -1;  // hush gcc
878 
879   PRINTD (DBG_FLOW|DBG_QOS, "make_rate %u", rate);
880 
881   // rates in cells per second, ITU format (nasty 16-bit floating-point)
882   // given 5-bit e and 9-bit m:
883   // rate = EITHER (1+m/2^9)*2^e    OR 0
884   // bits = EITHER 1<<14 | e<<9 | m OR 0
885   // (bit 15 is "reserved", bit 14 "non-zero")
886   // smallest rate is 0 (special representation)
887   // largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
888   // smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
889   // simple algorithm:
890   // find position of top bit, this gives e
891   // remove top bit and shift (rounding if feeling clever) by 9-e
892 
893   // ucode bug: please don't set bit 14! so 0 rate not representable
894 
895   if (rate > 0xffc00000U) {
896     // larger than largest representable rate
897 
898     if (r == round_up) {
899 	return -EINVAL;
900     } else {
901       exp = 31;
902       man = 511;
903     }
904 
905   } else if (rate) {
906     // representable rate
907 
908     exp = 31;
909     man = rate;
910 
911     // invariant: rate = man*2^(exp-31)
912     while (!(man & (1<<31))) {
913       exp = exp - 1;
914       man = man<<1;
915     }
916 
917     // man has top bit set
918     // rate = (2^31+(man-2^31))*2^(exp-31)
919     // rate = (1+(man-2^31)/2^31)*2^exp
920     man = man<<1;
921     man &= 0xffffffffU; // a nop on 32-bit systems
922     // rate = (1+man/2^32)*2^exp
923 
924     // exp is in the range 0 to 31, man is in the range 0 to 2^32-1
925     // time to lose significance... we want m in the range 0 to 2^9-1
926     // rounding presents a minor problem... we first decide which way
927     // we are rounding (based on given rounding direction and possibly
928     // the bits of the mantissa that are to be discarded).
929 
930     switch (r) {
931       case round_down: {
932 	// just truncate
933 	man = man>>(32-9);
934 	break;
935       }
936       case round_up: {
937 	// check all bits that we are discarding
938 	if (man & (~0U>>9)) {
939 	  man = (man>>(32-9)) + 1;
940 	  if (man == (1<<9)) {
941 	    // no need to check for round up outside of range
942 	    man = 0;
943 	    exp += 1;
944 	  }
945 	} else {
946 	  man = (man>>(32-9));
947 	}
948 	break;
949       }
950       case round_nearest: {
951 	// check msb that we are discarding
952 	if (man & (1<<(32-9-1))) {
953 	  man = (man>>(32-9)) + 1;
954 	  if (man == (1<<9)) {
955 	    // no need to check for round up outside of range
956 	    man = 0;
957 	    exp += 1;
958 	  }
959 	} else {
960 	  man = (man>>(32-9));
961 	}
962 	break;
963       }
964     }
965 
966   } else {
967     // zero rate - not representable
968 
969     if (r == round_down) {
970       return -EINVAL;
971     } else {
972       exp = 0;
973       man = 0;
974     }
975 
976   }
977 
978   PRINTD (DBG_QOS, "rate: man=%u, exp=%hu", man, exp);
979 
980   if (bits)
981     *bits = /* (1<<14) | */ (exp<<9) | man;
982 
983   if (actual)
984     *actual = (exp >= 9)
985       ? (1 << exp) + (man << (exp-9))
986       : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
987 
988   return 0;
989 }
990 
991 /********** Linux ATM Operations **********/
992 
993 // some are not yet implemented while others do not make sense for
994 // this device
995 
996 /********** Open a VC **********/
997 
amb_open(struct atm_vcc * atm_vcc)998 static int amb_open (struct atm_vcc * atm_vcc)
999 {
1000   int error;
1001 
1002   struct atm_qos * qos;
1003   struct atm_trafprm * txtp;
1004   struct atm_trafprm * rxtp;
1005   u16 tx_rate_bits = -1; // hush gcc
1006   u16 tx_vc_bits = -1; // hush gcc
1007   u16 tx_frame_bits = -1; // hush gcc
1008 
1009   amb_dev * dev = AMB_DEV(atm_vcc->dev);
1010   amb_vcc * vcc;
1011   unsigned char pool = -1; // hush gcc
1012   short vpi = atm_vcc->vpi;
1013   int vci = atm_vcc->vci;
1014 
1015   PRINTD (DBG_FLOW|DBG_VCC, "amb_open %x %x", vpi, vci);
1016 
1017 #ifdef ATM_VPI_UNSPEC
1018   // UNSPEC is deprecated, remove this code eventually
1019   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
1020     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
1021     return -EINVAL;
1022   }
1023 #endif
1024 
1025   if (!(0 <= vpi && vpi < (1<<NUM_VPI_BITS) &&
1026 	0 <= vci && vci < (1<<NUM_VCI_BITS))) {
1027     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
1028     return -EINVAL;
1029   }
1030 
1031   qos = &atm_vcc->qos;
1032 
1033   if (qos->aal != ATM_AAL5) {
1034     PRINTD (DBG_QOS, "AAL not supported");
1035     return -EINVAL;
1036   }
1037 
1038   // traffic parameters
1039 
1040   PRINTD (DBG_QOS, "TX:");
1041   txtp = &qos->txtp;
1042   if (txtp->traffic_class != ATM_NONE) {
1043     switch (txtp->traffic_class) {
1044       case ATM_UBR: {
1045 	// we take "the PCR" as a rate-cap
1046 	int pcr = atm_pcr_goal (txtp);
1047 	if (!pcr) {
1048 	  // no rate cap
1049 	  tx_rate_bits = 0;
1050 	  tx_vc_bits = TX_UBR;
1051 	  tx_frame_bits = TX_FRAME_NOTCAP;
1052 	} else {
1053 	  rounding r;
1054 	  if (pcr < 0) {
1055 	    r = round_down;
1056 	    pcr = -pcr;
1057 	  } else {
1058 	    r = round_up;
1059 	  }
1060 	  error = make_rate (pcr, r, &tx_rate_bits, NULL);
1061 	  if (error)
1062 	    return error;
1063 	  tx_vc_bits = TX_UBR_CAPPED;
1064 	  tx_frame_bits = TX_FRAME_CAPPED;
1065 	}
1066 	break;
1067       }
1068 #if 0
1069       case ATM_ABR: {
1070 	pcr = atm_pcr_goal (txtp);
1071 	PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1072 	break;
1073       }
1074 #endif
1075       default: {
1076 	// PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1077 	PRINTD (DBG_QOS, "request for non-UBR denied");
1078 	return -EINVAL;
1079       }
1080     }
1081     PRINTD (DBG_QOS, "tx_rate_bits=%hx, tx_vc_bits=%hx",
1082 	    tx_rate_bits, tx_vc_bits);
1083   }
1084 
1085   PRINTD (DBG_QOS, "RX:");
1086   rxtp = &qos->rxtp;
1087   if (rxtp->traffic_class == ATM_NONE) {
1088     // do nothing
1089   } else {
1090     // choose an RX pool (arranged in increasing size)
1091     for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1092       if ((unsigned int) rxtp->max_sdu <= dev->rxq[pool].buffer_size) {
1093 	PRINTD (DBG_VCC|DBG_QOS|DBG_POOL, "chose pool %hu (max_sdu %u <= %u)",
1094 		pool, rxtp->max_sdu, dev->rxq[pool].buffer_size);
1095 	break;
1096       }
1097     if (pool == NUM_RX_POOLS) {
1098       PRINTD (DBG_WARN|DBG_VCC|DBG_QOS|DBG_POOL,
1099 	      "no pool suitable for VC (RX max_sdu %d is too large)",
1100 	      rxtp->max_sdu);
1101       return -EINVAL;
1102     }
1103 
1104     switch (rxtp->traffic_class) {
1105       case ATM_UBR: {
1106 	break;
1107       }
1108 #if 0
1109       case ATM_ABR: {
1110 	pcr = atm_pcr_goal (rxtp);
1111 	PRINTD (DBG_QOS, "pcr goal = %d", pcr);
1112 	break;
1113       }
1114 #endif
1115       default: {
1116 	// PRINTD (DBG_QOS, "request for non-UBR/ABR denied");
1117 	PRINTD (DBG_QOS, "request for non-UBR denied");
1118 	return -EINVAL;
1119       }
1120     }
1121   }
1122 
1123   // get space for our vcc stuff
1124   vcc = kmalloc (sizeof(amb_vcc), GFP_KERNEL);
1125   if (!vcc) {
1126     PRINTK (KERN_ERR, "out of memory!");
1127     return -ENOMEM;
1128   }
1129   atm_vcc->dev_data = (void *) vcc;
1130 
1131   // no failures beyond this point
1132 
1133   // we are not really "immediately before allocating the connection
1134   // identifier in hardware", but it will just have to do!
1135   set_bit(ATM_VF_ADDR,&atm_vcc->flags);
1136 
1137   if (txtp->traffic_class != ATM_NONE) {
1138     command cmd;
1139 
1140     vcc->tx_frame_bits = tx_frame_bits;
1141 
1142     mutex_lock(&dev->vcc_sf);
1143     if (dev->rxer[vci]) {
1144       // RXer on the channel already, just modify rate...
1145       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1146       cmd.args.modify_rate.vc = cpu_to_be32 (vci);  // vpi 0
1147       cmd.args.modify_rate.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1148       while (command_do (dev, &cmd))
1149 	schedule();
1150       // ... and TX flags, preserving the RX pool
1151       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1152       cmd.args.modify_flags.vc = cpu_to_be32 (vci);  // vpi 0
1153       cmd.args.modify_flags.flags = cpu_to_be32
1154 	( (AMB_VCC(dev->rxer[vci])->rx_info.pool << SRB_POOL_SHIFT)
1155 	  | (tx_vc_bits << SRB_FLAGS_SHIFT) );
1156       while (command_do (dev, &cmd))
1157 	schedule();
1158     } else {
1159       // no RXer on the channel, just open (with pool zero)
1160       cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1161       cmd.args.open.vc = cpu_to_be32 (vci);  // vpi 0
1162       cmd.args.open.flags = cpu_to_be32 (tx_vc_bits << SRB_FLAGS_SHIFT);
1163       cmd.args.open.rate = cpu_to_be32 (tx_rate_bits << SRB_RATE_SHIFT);
1164       while (command_do (dev, &cmd))
1165 	schedule();
1166     }
1167     dev->txer[vci].tx_present = 1;
1168     mutex_unlock(&dev->vcc_sf);
1169   }
1170 
1171   if (rxtp->traffic_class != ATM_NONE) {
1172     command cmd;
1173 
1174     vcc->rx_info.pool = pool;
1175 
1176     mutex_lock(&dev->vcc_sf);
1177     /* grow RX buffer pool */
1178     if (!dev->rxq[pool].buffers_wanted)
1179       dev->rxq[pool].buffers_wanted = rx_lats;
1180     dev->rxq[pool].buffers_wanted += 1;
1181     fill_rx_pool (dev, pool, GFP_KERNEL);
1182 
1183     if (dev->txer[vci].tx_present) {
1184       // TXer on the channel already
1185       // switch (from pool zero) to this pool, preserving the TX bits
1186       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1187       cmd.args.modify_flags.vc = cpu_to_be32 (vci);  // vpi 0
1188       cmd.args.modify_flags.flags = cpu_to_be32
1189 	( (pool << SRB_POOL_SHIFT)
1190 	  | (dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT) );
1191     } else {
1192       // no TXer on the channel, open the VC (with no rate info)
1193       cmd.request = cpu_to_be32 (SRB_OPEN_VC);
1194       cmd.args.open.vc = cpu_to_be32 (vci);  // vpi 0
1195       cmd.args.open.flags = cpu_to_be32 (pool << SRB_POOL_SHIFT);
1196       cmd.args.open.rate = cpu_to_be32 (0);
1197     }
1198     while (command_do (dev, &cmd))
1199       schedule();
1200     // this link allows RX frames through
1201     dev->rxer[vci] = atm_vcc;
1202     mutex_unlock(&dev->vcc_sf);
1203   }
1204 
1205   // indicate readiness
1206   set_bit(ATM_VF_READY,&atm_vcc->flags);
1207 
1208   return 0;
1209 }
1210 
1211 /********** Close a VC **********/
1212 
amb_close(struct atm_vcc * atm_vcc)1213 static void amb_close (struct atm_vcc * atm_vcc) {
1214   amb_dev * dev = AMB_DEV (atm_vcc->dev);
1215   amb_vcc * vcc = AMB_VCC (atm_vcc);
1216   u16 vci = atm_vcc->vci;
1217 
1218   PRINTD (DBG_VCC|DBG_FLOW, "amb_close");
1219 
1220   // indicate unreadiness
1221   clear_bit(ATM_VF_READY,&atm_vcc->flags);
1222 
1223   // disable TXing
1224   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
1225     command cmd;
1226 
1227     mutex_lock(&dev->vcc_sf);
1228     if (dev->rxer[vci]) {
1229       // RXer still on the channel, just modify rate... XXX not really needed
1230       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_RATE);
1231       cmd.args.modify_rate.vc = cpu_to_be32 (vci);  // vpi 0
1232       cmd.args.modify_rate.rate = cpu_to_be32 (0);
1233       // ... and clear TX rate flags (XXX to stop RM cell output?), preserving RX pool
1234     } else {
1235       // no RXer on the channel, close channel
1236       cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1237       cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1238     }
1239     dev->txer[vci].tx_present = 0;
1240     while (command_do (dev, &cmd))
1241       schedule();
1242     mutex_unlock(&dev->vcc_sf);
1243   }
1244 
1245   // disable RXing
1246   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1247     command cmd;
1248 
1249     // this is (the?) one reason why we need the amb_vcc struct
1250     unsigned char pool = vcc->rx_info.pool;
1251 
1252     mutex_lock(&dev->vcc_sf);
1253     if (dev->txer[vci].tx_present) {
1254       // TXer still on the channel, just go to pool zero XXX not really needed
1255       cmd.request = cpu_to_be32 (SRB_MODIFY_VC_FLAGS);
1256       cmd.args.modify_flags.vc = cpu_to_be32 (vci);  // vpi 0
1257       cmd.args.modify_flags.flags = cpu_to_be32
1258 	(dev->txer[vci].tx_vc_bits << SRB_FLAGS_SHIFT);
1259     } else {
1260       // no TXer on the channel, close the VC
1261       cmd.request = cpu_to_be32 (SRB_CLOSE_VC);
1262       cmd.args.close.vc = cpu_to_be32 (vci); // vpi 0
1263     }
1264     // forget the rxer - no more skbs will be pushed
1265     if (atm_vcc != dev->rxer[vci])
1266       PRINTK (KERN_ERR, "%s vcc=%p rxer[vci]=%p",
1267 	      "arghhh! we're going to die!",
1268 	      vcc, dev->rxer[vci]);
1269     dev->rxer[vci] = NULL;
1270     while (command_do (dev, &cmd))
1271       schedule();
1272 
1273     /* shrink RX buffer pool */
1274     dev->rxq[pool].buffers_wanted -= 1;
1275     if (dev->rxq[pool].buffers_wanted == rx_lats) {
1276       dev->rxq[pool].buffers_wanted = 0;
1277       drain_rx_pool (dev, pool);
1278     }
1279     mutex_unlock(&dev->vcc_sf);
1280   }
1281 
1282   // free our structure
1283   kfree (vcc);
1284 
1285   // say the VPI/VCI is free again
1286   clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
1287 
1288   return;
1289 }
1290 
1291 /********** Send **********/
1292 
amb_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1293 static int amb_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1294   amb_dev * dev = AMB_DEV(atm_vcc->dev);
1295   amb_vcc * vcc = AMB_VCC(atm_vcc);
1296   u16 vc = atm_vcc->vci;
1297   unsigned int tx_len = skb->len;
1298   unsigned char * tx_data = skb->data;
1299   tx_simple * tx_descr;
1300   tx_in tx;
1301 
1302   if (test_bit (dead, &dev->flags))
1303     return -EIO;
1304 
1305   PRINTD (DBG_FLOW|DBG_TX, "amb_send vc %x data %p len %u",
1306 	  vc, tx_data, tx_len);
1307 
1308   dump_skb (">>>", vc, skb);
1309 
1310   if (!dev->txer[vc].tx_present) {
1311     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", vc);
1312     return -EBADFD;
1313   }
1314 
1315   // this is a driver private field so we have to set it ourselves,
1316   // despite the fact that we are _required_ to use it to check for a
1317   // pop function
1318   ATM_SKB(skb)->vcc = atm_vcc;
1319 
1320   if (skb->len > (size_t) atm_vcc->qos.txtp.max_sdu) {
1321     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1322     return -EIO;
1323   }
1324 
1325   if (check_area (skb->data, skb->len)) {
1326     atomic_inc(&atm_vcc->stats->tx_err);
1327     return -ENOMEM; // ?
1328   }
1329 
1330   // allocate memory for fragments
1331   tx_descr = kmalloc (sizeof(tx_simple), GFP_KERNEL);
1332   if (!tx_descr) {
1333     PRINTK (KERN_ERR, "could not allocate TX descriptor");
1334     return -ENOMEM;
1335   }
1336   if (check_area (tx_descr, sizeof(tx_simple))) {
1337     kfree (tx_descr);
1338     return -ENOMEM;
1339   }
1340   PRINTD (DBG_TX, "fragment list allocated at %p", tx_descr);
1341 
1342   tx_descr->skb = skb;
1343 
1344   tx_descr->tx_frag.bytes = cpu_to_be32 (tx_len);
1345   tx_descr->tx_frag.address = cpu_to_be32 (virt_to_bus (tx_data));
1346 
1347   tx_descr->tx_frag_end.handle = virt_to_bus (tx_descr);
1348   tx_descr->tx_frag_end.vc = 0;
1349   tx_descr->tx_frag_end.next_descriptor_length = 0;
1350   tx_descr->tx_frag_end.next_descriptor = 0;
1351 #ifdef AMB_NEW_MICROCODE
1352   tx_descr->tx_frag_end.cpcs_uu = 0;
1353   tx_descr->tx_frag_end.cpi = 0;
1354   tx_descr->tx_frag_end.pad = 0;
1355 #endif
1356 
1357   tx.vc = cpu_to_be16 (vcc->tx_frame_bits | vc);
1358   tx.tx_descr_length = cpu_to_be16 (sizeof(tx_frag)+sizeof(tx_frag_end));
1359   tx.tx_descr_addr = cpu_to_be32 (virt_to_bus (&tx_descr->tx_frag));
1360 
1361   while (tx_give (dev, &tx))
1362     schedule();
1363   return 0;
1364 }
1365 
1366 /********** Change QoS on a VC **********/
1367 
1368 // int amb_change_qos (struct atm_vcc * atm_vcc, struct atm_qos * qos, int flags);
1369 
1370 /********** Free RX Socket Buffer **********/
1371 
1372 #if 0
1373 static void amb_free_rx_skb (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1374   amb_dev * dev = AMB_DEV (atm_vcc->dev);
1375   amb_vcc * vcc = AMB_VCC (atm_vcc);
1376   unsigned char pool = vcc->rx_info.pool;
1377   rx_in rx;
1378 
1379   // This may be unsafe for various reasons that I cannot really guess
1380   // at. However, I note that the ATM layer calls kfree_skb rather
1381   // than dev_kfree_skb at this point so we are least covered as far
1382   // as buffer locking goes. There may be bugs if pcap clones RX skbs.
1383 
1384   PRINTD (DBG_FLOW|DBG_SKB, "amb_rx_free skb %p (atm_vcc %p, vcc %p)",
1385 	  skb, atm_vcc, vcc);
1386 
1387   rx.handle = virt_to_bus (skb);
1388   rx.host_address = cpu_to_be32 (virt_to_bus (skb->data));
1389 
1390   skb->data = skb->head;
1391   skb_reset_tail_pointer(skb);
1392   skb->len = 0;
1393 
1394   if (!rx_give (dev, &rx, pool)) {
1395     // success
1396     PRINTD (DBG_SKB|DBG_POOL, "recycled skb for pool %hu", pool);
1397     return;
1398   }
1399 
1400   // just do what the ATM layer would have done
1401   dev_kfree_skb_any (skb);
1402 
1403   return;
1404 }
1405 #endif
1406 
1407 /********** Proc File Output **********/
1408 
amb_proc_read(struct atm_dev * atm_dev,loff_t * pos,char * page)1409 static int amb_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
1410   amb_dev * dev = AMB_DEV (atm_dev);
1411   int left = *pos;
1412   unsigned char pool;
1413 
1414   PRINTD (DBG_FLOW, "amb_proc_read");
1415 
1416   /* more diagnostics here? */
1417 
1418   if (!left--) {
1419     amb_stats * s = &dev->stats;
1420     return sprintf (page,
1421 		    "frames: TX OK %lu, RX OK %lu, RX bad %lu "
1422 		    "(CRC %lu, long %lu, aborted %lu, unused %lu).\n",
1423 		    s->tx_ok, s->rx.ok, s->rx.error,
1424 		    s->rx.badcrc, s->rx.toolong,
1425 		    s->rx.aborted, s->rx.unused);
1426   }
1427 
1428   if (!left--) {
1429     amb_cq * c = &dev->cq;
1430     return sprintf (page, "cmd queue [cur/hi/max]: %u/%u/%u. ",
1431 		    c->pending, c->high, c->maximum);
1432   }
1433 
1434   if (!left--) {
1435     amb_txq * t = &dev->txq;
1436     return sprintf (page, "TX queue [cur/max high full]: %u/%u %u %u.\n",
1437 		    t->pending, t->maximum, t->high, t->filled);
1438   }
1439 
1440   if (!left--) {
1441     unsigned int count = sprintf (page, "RX queues [cur/max/req low empty]:");
1442     for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1443       amb_rxq * r = &dev->rxq[pool];
1444       count += sprintf (page+count, " %u/%u/%u %u %u",
1445 			r->pending, r->maximum, r->buffers_wanted, r->low, r->emptied);
1446     }
1447     count += sprintf (page+count, ".\n");
1448     return count;
1449   }
1450 
1451   if (!left--) {
1452     unsigned int count = sprintf (page, "RX buffer sizes:");
1453     for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1454       amb_rxq * r = &dev->rxq[pool];
1455       count += sprintf (page+count, " %u", r->buffer_size);
1456     }
1457     count += sprintf (page+count, ".\n");
1458     return count;
1459   }
1460 
1461 #if 0
1462   if (!left--) {
1463     // suni block etc?
1464   }
1465 #endif
1466 
1467   return 0;
1468 }
1469 
1470 /********** Operation Structure **********/
1471 
1472 static const struct atmdev_ops amb_ops = {
1473   .open         = amb_open,
1474   .close	= amb_close,
1475   .send         = amb_send,
1476   .proc_read	= amb_proc_read,
1477   .owner	= THIS_MODULE,
1478 };
1479 
1480 /********** housekeeping **********/
do_housekeeping(struct timer_list * t)1481 static void do_housekeeping (struct timer_list *t) {
1482   amb_dev * dev = from_timer(dev, t, housekeeping);
1483 
1484   // could collect device-specific (not driver/atm-linux) stats here
1485 
1486   // last resort refill once every ten seconds
1487   fill_rx_pools (dev);
1488   mod_timer(&dev->housekeeping, jiffies + 10*HZ);
1489 
1490   return;
1491 }
1492 
1493 /********** creation of communication queues **********/
1494 
create_queues(amb_dev * dev,unsigned int cmds,unsigned int txs,unsigned int * rxs,unsigned int * rx_buffer_sizes)1495 static int create_queues(amb_dev *dev, unsigned int cmds, unsigned int txs,
1496 			 unsigned int *rxs, unsigned int *rx_buffer_sizes)
1497 {
1498   unsigned char pool;
1499   size_t total = 0;
1500   void * memory;
1501   void * limit;
1502 
1503   PRINTD (DBG_FLOW, "create_queues %p", dev);
1504 
1505   total += cmds * sizeof(command);
1506 
1507   total += txs * (sizeof(tx_in) + sizeof(tx_out));
1508 
1509   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
1510     total += rxs[pool] * (sizeof(rx_in) + sizeof(rx_out));
1511 
1512   memory = kmalloc (total, GFP_KERNEL);
1513   if (!memory) {
1514     PRINTK (KERN_ERR, "could not allocate queues");
1515     return -ENOMEM;
1516   }
1517   if (check_area (memory, total)) {
1518     PRINTK (KERN_ERR, "queues allocated in nasty area");
1519     kfree (memory);
1520     return -ENOMEM;
1521   }
1522 
1523   limit = memory + total;
1524   PRINTD (DBG_INIT, "queues from %p to %p", memory, limit);
1525 
1526   PRINTD (DBG_CMD, "command queue at %p", memory);
1527 
1528   {
1529     command * cmd = memory;
1530     amb_cq * cq = &dev->cq;
1531 
1532     cq->pending = 0;
1533     cq->high = 0;
1534     cq->maximum = cmds - 1;
1535 
1536     cq->ptrs.start = cmd;
1537     cq->ptrs.in = cmd;
1538     cq->ptrs.out = cmd;
1539     cq->ptrs.limit = cmd + cmds;
1540 
1541     memory = cq->ptrs.limit;
1542   }
1543 
1544   PRINTD (DBG_TX, "TX queue pair at %p", memory);
1545 
1546   {
1547     tx_in * in = memory;
1548     tx_out * out;
1549     amb_txq * txq = &dev->txq;
1550 
1551     txq->pending = 0;
1552     txq->high = 0;
1553     txq->filled = 0;
1554     txq->maximum = txs - 1;
1555 
1556     txq->in.start = in;
1557     txq->in.ptr = in;
1558     txq->in.limit = in + txs;
1559 
1560     memory = txq->in.limit;
1561     out = memory;
1562 
1563     txq->out.start = out;
1564     txq->out.ptr = out;
1565     txq->out.limit = out + txs;
1566 
1567     memory = txq->out.limit;
1568   }
1569 
1570   PRINTD (DBG_RX, "RX queue pairs at %p", memory);
1571 
1572   for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1573     rx_in * in = memory;
1574     rx_out * out;
1575     amb_rxq * rxq = &dev->rxq[pool];
1576 
1577     rxq->buffer_size = rx_buffer_sizes[pool];
1578     rxq->buffers_wanted = 0;
1579 
1580     rxq->pending = 0;
1581     rxq->low = rxs[pool] - 1;
1582     rxq->emptied = 0;
1583     rxq->maximum = rxs[pool] - 1;
1584 
1585     rxq->in.start = in;
1586     rxq->in.ptr = in;
1587     rxq->in.limit = in + rxs[pool];
1588 
1589     memory = rxq->in.limit;
1590     out = memory;
1591 
1592     rxq->out.start = out;
1593     rxq->out.ptr = out;
1594     rxq->out.limit = out + rxs[pool];
1595 
1596     memory = rxq->out.limit;
1597   }
1598 
1599   if (memory == limit) {
1600     return 0;
1601   } else {
1602     PRINTK (KERN_ERR, "bad queue alloc %p != %p (tell maintainer)", memory, limit);
1603     kfree (limit - total);
1604     return -ENOMEM;
1605   }
1606 
1607 }
1608 
1609 /********** destruction of communication queues **********/
1610 
destroy_queues(amb_dev * dev)1611 static void destroy_queues (amb_dev * dev) {
1612   // all queues assumed empty
1613   void * memory = dev->cq.ptrs.start;
1614   // includes txq.in, txq.out, rxq[].in and rxq[].out
1615 
1616   PRINTD (DBG_FLOW, "destroy_queues %p", dev);
1617 
1618   PRINTD (DBG_INIT, "freeing queues at %p", memory);
1619   kfree (memory);
1620 
1621   return;
1622 }
1623 
1624 /********** basic loader commands and error handling **********/
1625 // centisecond timeouts - guessing away here
1626 static unsigned int command_timeouts [] = {
1627 	[host_memory_test]     = 15,
1628 	[read_adapter_memory]  = 2,
1629 	[write_adapter_memory] = 2,
1630 	[adapter_start]        = 50,
1631 	[get_version_number]   = 10,
1632 	[interrupt_host]       = 1,
1633 	[flash_erase_sector]   = 1,
1634 	[adap_download_block]  = 1,
1635 	[adap_erase_flash]     = 1,
1636 	[adap_run_in_iram]     = 1,
1637 	[adap_end_download]    = 1
1638 };
1639 
1640 
1641 static unsigned int command_successes [] = {
1642 	[host_memory_test]     = COMMAND_PASSED_TEST,
1643 	[read_adapter_memory]  = COMMAND_READ_DATA_OK,
1644 	[write_adapter_memory] = COMMAND_WRITE_DATA_OK,
1645 	[adapter_start]        = COMMAND_COMPLETE,
1646 	[get_version_number]   = COMMAND_COMPLETE,
1647 	[interrupt_host]       = COMMAND_COMPLETE,
1648 	[flash_erase_sector]   = COMMAND_COMPLETE,
1649 	[adap_download_block]  = COMMAND_COMPLETE,
1650 	[adap_erase_flash]     = COMMAND_COMPLETE,
1651 	[adap_run_in_iram]     = COMMAND_COMPLETE,
1652 	[adap_end_download]    = COMMAND_COMPLETE
1653 };
1654 
decode_loader_result(loader_command cmd,u32 result)1655 static  int decode_loader_result (loader_command cmd, u32 result)
1656 {
1657 	int res;
1658 	const char *msg;
1659 
1660 	if (result == command_successes[cmd])
1661 		return 0;
1662 
1663 	switch (result) {
1664 		case BAD_COMMAND:
1665 			res = -EINVAL;
1666 			msg = "bad command";
1667 			break;
1668 		case COMMAND_IN_PROGRESS:
1669 			res = -ETIMEDOUT;
1670 			msg = "command in progress";
1671 			break;
1672 		case COMMAND_PASSED_TEST:
1673 			res = 0;
1674 			msg = "command passed test";
1675 			break;
1676 		case COMMAND_FAILED_TEST:
1677 			res = -EIO;
1678 			msg = "command failed test";
1679 			break;
1680 		case COMMAND_READ_DATA_OK:
1681 			res = 0;
1682 			msg = "command read data ok";
1683 			break;
1684 		case COMMAND_READ_BAD_ADDRESS:
1685 			res = -EINVAL;
1686 			msg = "command read bad address";
1687 			break;
1688 		case COMMAND_WRITE_DATA_OK:
1689 			res = 0;
1690 			msg = "command write data ok";
1691 			break;
1692 		case COMMAND_WRITE_BAD_ADDRESS:
1693 			res = -EINVAL;
1694 			msg = "command write bad address";
1695 			break;
1696 		case COMMAND_WRITE_FLASH_FAILURE:
1697 			res = -EIO;
1698 			msg = "command write flash failure";
1699 			break;
1700 		case COMMAND_COMPLETE:
1701 			res = 0;
1702 			msg = "command complete";
1703 			break;
1704 		case COMMAND_FLASH_ERASE_FAILURE:
1705 			res = -EIO;
1706 			msg = "command flash erase failure";
1707 			break;
1708 		case COMMAND_WRITE_BAD_DATA:
1709 			res = -EINVAL;
1710 			msg = "command write bad data";
1711 			break;
1712 		default:
1713 			res = -EINVAL;
1714 			msg = "unknown error";
1715 			PRINTD (DBG_LOAD|DBG_ERR,
1716 				"decode_loader_result got %d=%x !",
1717 				result, result);
1718 			break;
1719 	}
1720 
1721 	PRINTK (KERN_ERR, "%s", msg);
1722 	return res;
1723 }
1724 
do_loader_command(volatile loader_block * lb,const amb_dev * dev,loader_command cmd)1725 static int do_loader_command(volatile loader_block *lb, const amb_dev *dev,
1726 			     loader_command cmd)
1727 {
1728 
1729   unsigned long timeout;
1730 
1731   PRINTD (DBG_FLOW|DBG_LOAD, "do_loader_command");
1732 
1733   /* do a command
1734 
1735      Set the return value to zero, set the command type and set the
1736      valid entry to the right magic value. The payload is already
1737      correctly byte-ordered so we leave it alone. Hit the doorbell
1738      with the bus address of this structure.
1739 
1740   */
1741 
1742   lb->result = 0;
1743   lb->command = cpu_to_be32 (cmd);
1744   lb->valid = cpu_to_be32 (DMA_VALID);
1745   // dump_registers (dev);
1746   // dump_loader_block (lb);
1747   wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (lb) & ~onegigmask);
1748 
1749   timeout = command_timeouts[cmd] * 10;
1750 
1751   while (!lb->result || lb->result == cpu_to_be32 (COMMAND_IN_PROGRESS))
1752     if (timeout) {
1753       timeout = msleep_interruptible(timeout);
1754     } else {
1755       PRINTD (DBG_LOAD|DBG_ERR, "command %d timed out", cmd);
1756       dump_registers (dev);
1757       dump_loader_block (lb);
1758       return -ETIMEDOUT;
1759     }
1760 
1761   if (cmd == adapter_start) {
1762     // wait for start command to acknowledge...
1763     timeout = 100;
1764     while (rd_plain (dev, offsetof(amb_mem, doorbell)))
1765       if (timeout) {
1766 	timeout = msleep_interruptible(timeout);
1767       } else {
1768 	PRINTD (DBG_LOAD|DBG_ERR, "start command did not clear doorbell, res=%08x",
1769 		be32_to_cpu (lb->result));
1770 	dump_registers (dev);
1771 	return -ETIMEDOUT;
1772       }
1773     return 0;
1774   } else {
1775     return decode_loader_result (cmd, be32_to_cpu (lb->result));
1776   }
1777 
1778 }
1779 
1780 /* loader: determine loader version */
1781 
get_loader_version(loader_block * lb,const amb_dev * dev,u32 * version)1782 static int get_loader_version(loader_block *lb, const amb_dev *dev,
1783 			      u32 *version)
1784 {
1785   int res;
1786 
1787   PRINTD (DBG_FLOW|DBG_LOAD, "get_loader_version");
1788 
1789   res = do_loader_command (lb, dev, get_version_number);
1790   if (res)
1791     return res;
1792   if (version)
1793     *version = be32_to_cpu (lb->payload.version);
1794   return 0;
1795 }
1796 
1797 /* loader: write memory data blocks */
1798 
loader_write(loader_block * lb,const amb_dev * dev,const struct ihex_binrec * rec)1799 static int loader_write(loader_block *lb, const amb_dev *dev,
1800 			const struct ihex_binrec *rec)
1801 {
1802   transfer_block * tb = &lb->payload.transfer;
1803 
1804   PRINTD (DBG_FLOW|DBG_LOAD, "loader_write");
1805 
1806   tb->address = rec->addr;
1807   tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1808   memcpy(tb->data, rec->data, be16_to_cpu(rec->len));
1809   return do_loader_command (lb, dev, write_adapter_memory);
1810 }
1811 
1812 /* loader: verify memory data blocks */
1813 
loader_verify(loader_block * lb,const amb_dev * dev,const struct ihex_binrec * rec)1814 static int loader_verify(loader_block *lb, const amb_dev *dev,
1815 			 const struct ihex_binrec *rec)
1816 {
1817   transfer_block * tb = &lb->payload.transfer;
1818   int res;
1819 
1820   PRINTD (DBG_FLOW|DBG_LOAD, "loader_verify");
1821 
1822   tb->address = rec->addr;
1823   tb->count = cpu_to_be32(be16_to_cpu(rec->len) / 4);
1824   res = do_loader_command (lb, dev, read_adapter_memory);
1825   if (!res && memcmp(tb->data, rec->data, be16_to_cpu(rec->len)))
1826     res = -EINVAL;
1827   return res;
1828 }
1829 
1830 /* loader: start microcode */
1831 
loader_start(loader_block * lb,const amb_dev * dev,u32 address)1832 static int loader_start(loader_block *lb, const amb_dev *dev, u32 address)
1833 {
1834   PRINTD (DBG_FLOW|DBG_LOAD, "loader_start");
1835 
1836   lb->payload.start = cpu_to_be32 (address);
1837   return do_loader_command (lb, dev, adapter_start);
1838 }
1839 
1840 /********** reset card **********/
1841 
sf(const char * msg)1842 static inline void sf (const char * msg)
1843 {
1844 	PRINTK (KERN_ERR, "self-test failed: %s", msg);
1845 }
1846 
amb_reset(amb_dev * dev,int diags)1847 static int amb_reset (amb_dev * dev, int diags) {
1848   u32 word;
1849 
1850   PRINTD (DBG_FLOW|DBG_LOAD, "amb_reset");
1851 
1852   word = rd_plain (dev, offsetof(amb_mem, reset_control));
1853   // put card into reset state
1854   wr_plain (dev, offsetof(amb_mem, reset_control), word | AMB_RESET_BITS);
1855   // wait a short while
1856   udelay (10);
1857 #if 1
1858   // put card into known good state
1859   wr_plain (dev, offsetof(amb_mem, interrupt_control), AMB_DOORBELL_BITS);
1860   // clear all interrupts just in case
1861   wr_plain (dev, offsetof(amb_mem, interrupt), -1);
1862 #endif
1863   // clear self-test done flag
1864   wr_plain (dev, offsetof(amb_mem, mb.loader.ready), 0);
1865   // take card out of reset state
1866   wr_plain (dev, offsetof(amb_mem, reset_control), word &~ AMB_RESET_BITS);
1867 
1868   if (diags) {
1869     unsigned long timeout;
1870     // 4.2 second wait
1871     msleep(4200);
1872     // half second time-out
1873     timeout = 500;
1874     while (!rd_plain (dev, offsetof(amb_mem, mb.loader.ready)))
1875       if (timeout) {
1876 	timeout = msleep_interruptible(timeout);
1877       } else {
1878 	PRINTD (DBG_LOAD|DBG_ERR, "reset timed out");
1879 	return -ETIMEDOUT;
1880       }
1881 
1882     // get results of self-test
1883     // XXX double check byte-order
1884     word = rd_mem (dev, offsetof(amb_mem, mb.loader.result));
1885     if (word & SELF_TEST_FAILURE) {
1886       if (word & GPINT_TST_FAILURE)
1887 	sf ("interrupt");
1888       if (word & SUNI_DATA_PATTERN_FAILURE)
1889 	sf ("SUNI data pattern");
1890       if (word & SUNI_DATA_BITS_FAILURE)
1891 	sf ("SUNI data bits");
1892       if (word & SUNI_UTOPIA_FAILURE)
1893 	sf ("SUNI UTOPIA interface");
1894       if (word & SUNI_FIFO_FAILURE)
1895 	sf ("SUNI cell buffer FIFO");
1896       if (word & SRAM_FAILURE)
1897 	sf ("bad SRAM");
1898       // better return value?
1899       return -EIO;
1900     }
1901 
1902   }
1903   return 0;
1904 }
1905 
1906 /********** transfer and start the microcode **********/
1907 
ucode_init(loader_block * lb,amb_dev * dev)1908 static int ucode_init(loader_block *lb, amb_dev *dev)
1909 {
1910   const struct firmware *fw;
1911   unsigned long start_address;
1912   const struct ihex_binrec *rec;
1913   const char *errmsg = NULL;
1914   int res;
1915 
1916   res = request_ihex_firmware(&fw, "atmsar11.fw", &dev->pci_dev->dev);
1917   if (res) {
1918     PRINTK (KERN_ERR, "Cannot load microcode data");
1919     return res;
1920   }
1921 
1922   /* First record contains just the start address */
1923   rec = (const struct ihex_binrec *)fw->data;
1924   if (be16_to_cpu(rec->len) != sizeof(__be32) || be32_to_cpu(rec->addr)) {
1925     errmsg = "no start record";
1926     goto fail;
1927   }
1928   start_address = be32_to_cpup((__be32 *)rec->data);
1929 
1930   rec = ihex_next_binrec(rec);
1931 
1932   PRINTD (DBG_FLOW|DBG_LOAD, "ucode_init");
1933 
1934   while (rec) {
1935     PRINTD (DBG_LOAD, "starting region (%x, %u)", be32_to_cpu(rec->addr),
1936 	    be16_to_cpu(rec->len));
1937     if (be16_to_cpu(rec->len) > 4 * MAX_TRANSFER_DATA) {
1938 	    errmsg = "record too long";
1939 	    goto fail;
1940     }
1941     if (be16_to_cpu(rec->len) & 3) {
1942 	    errmsg = "odd number of bytes";
1943 	    goto fail;
1944     }
1945     res = loader_write(lb, dev, rec);
1946     if (res)
1947       break;
1948 
1949     res = loader_verify(lb, dev, rec);
1950     if (res)
1951       break;
1952     rec = ihex_next_binrec(rec);
1953   }
1954   release_firmware(fw);
1955   if (!res)
1956     res = loader_start(lb, dev, start_address);
1957 
1958   return res;
1959 fail:
1960   release_firmware(fw);
1961   PRINTK(KERN_ERR, "Bad microcode data (%s)", errmsg);
1962   return -EINVAL;
1963 }
1964 
1965 /********** give adapter parameters **********/
1966 
bus_addr(void * addr)1967 static inline __be32 bus_addr(void * addr) {
1968     return cpu_to_be32 (virt_to_bus (addr));
1969 }
1970 
amb_talk(amb_dev * dev)1971 static int amb_talk(amb_dev *dev)
1972 {
1973   adap_talk_block a;
1974   unsigned char pool;
1975   unsigned long timeout;
1976 
1977   PRINTD (DBG_FLOW, "amb_talk %p", dev);
1978 
1979   a.command_start = bus_addr (dev->cq.ptrs.start);
1980   a.command_end   = bus_addr (dev->cq.ptrs.limit);
1981   a.tx_start      = bus_addr (dev->txq.in.start);
1982   a.tx_end        = bus_addr (dev->txq.in.limit);
1983   a.txcom_start   = bus_addr (dev->txq.out.start);
1984   a.txcom_end     = bus_addr (dev->txq.out.limit);
1985 
1986   for (pool = 0; pool < NUM_RX_POOLS; ++pool) {
1987     // the other "a" items are set up by the adapter
1988     a.rec_struct[pool].buffer_start = bus_addr (dev->rxq[pool].in.start);
1989     a.rec_struct[pool].buffer_end   = bus_addr (dev->rxq[pool].in.limit);
1990     a.rec_struct[pool].rx_start     = bus_addr (dev->rxq[pool].out.start);
1991     a.rec_struct[pool].rx_end       = bus_addr (dev->rxq[pool].out.limit);
1992     a.rec_struct[pool].buffer_size = cpu_to_be32 (dev->rxq[pool].buffer_size);
1993   }
1994 
1995 #ifdef AMB_NEW_MICROCODE
1996   // disable fast PLX prefetching
1997   a.init_flags = 0;
1998 #endif
1999 
2000   // pass the structure
2001   wr_mem (dev, offsetof(amb_mem, doorbell), virt_to_bus (&a));
2002 
2003   // 2.2 second wait (must not touch doorbell during 2 second DMA test)
2004   msleep(2200);
2005   // give the adapter another half second?
2006   timeout = 500;
2007   while (rd_plain (dev, offsetof(amb_mem, doorbell)))
2008     if (timeout) {
2009       timeout = msleep_interruptible(timeout);
2010     } else {
2011       PRINTD (DBG_INIT|DBG_ERR, "adapter init timed out");
2012       return -ETIMEDOUT;
2013     }
2014 
2015   return 0;
2016 }
2017 
2018 // get microcode version
amb_ucode_version(amb_dev * dev)2019 static void amb_ucode_version(amb_dev *dev)
2020 {
2021   u32 major;
2022   u32 minor;
2023   command cmd;
2024   cmd.request = cpu_to_be32 (SRB_GET_VERSION);
2025   while (command_do (dev, &cmd)) {
2026     set_current_state(TASK_UNINTERRUPTIBLE);
2027     schedule();
2028   }
2029   major = be32_to_cpu (cmd.args.version.major);
2030   minor = be32_to_cpu (cmd.args.version.minor);
2031   PRINTK (KERN_INFO, "microcode version is %u.%u", major, minor);
2032 }
2033 
2034 // get end station address
amb_esi(amb_dev * dev,u8 * esi)2035 static void amb_esi(amb_dev *dev, u8 *esi)
2036 {
2037   u32 lower4;
2038   u16 upper2;
2039   command cmd;
2040 
2041   cmd.request = cpu_to_be32 (SRB_GET_BIA);
2042   while (command_do (dev, &cmd)) {
2043     set_current_state(TASK_UNINTERRUPTIBLE);
2044     schedule();
2045   }
2046   lower4 = be32_to_cpu (cmd.args.bia.lower4);
2047   upper2 = be32_to_cpu (cmd.args.bia.upper2);
2048   PRINTD (DBG_LOAD, "BIA: lower4: %08x, upper2 %04x", lower4, upper2);
2049 
2050   if (esi) {
2051     unsigned int i;
2052 
2053     PRINTDB (DBG_INIT, "ESI:");
2054     for (i = 0; i < ESI_LEN; ++i) {
2055       if (i < 4)
2056 	  esi[i] = bitrev8(lower4>>(8*i));
2057       else
2058 	  esi[i] = bitrev8(upper2>>(8*(i-4)));
2059       PRINTDM (DBG_INIT, " %02x", esi[i]);
2060     }
2061 
2062     PRINTDE (DBG_INIT, "");
2063   }
2064 
2065   return;
2066 }
2067 
fixup_plx_window(amb_dev * dev,loader_block * lb)2068 static void fixup_plx_window (amb_dev *dev, loader_block *lb)
2069 {
2070 	// fix up the PLX-mapped window base address to match the block
2071 	unsigned long blb;
2072 	u32 mapreg;
2073 	blb = virt_to_bus(lb);
2074 	// the kernel stack had better not ever cross a 1Gb boundary!
2075 	mapreg = rd_plain (dev, offsetof(amb_mem, stuff[10]));
2076 	mapreg &= ~onegigmask;
2077 	mapreg |= blb & onegigmask;
2078 	wr_plain (dev, offsetof(amb_mem, stuff[10]), mapreg);
2079 	return;
2080 }
2081 
amb_init(amb_dev * dev)2082 static int amb_init(amb_dev *dev)
2083 {
2084   loader_block lb;
2085 
2086   u32 version;
2087 
2088   if (amb_reset (dev, 1)) {
2089     PRINTK (KERN_ERR, "card reset failed!");
2090   } else {
2091     fixup_plx_window (dev, &lb);
2092 
2093     if (get_loader_version (&lb, dev, &version)) {
2094       PRINTK (KERN_INFO, "failed to get loader version");
2095     } else {
2096       PRINTK (KERN_INFO, "loader version is %08x", version);
2097 
2098       if (ucode_init (&lb, dev)) {
2099 	PRINTK (KERN_ERR, "microcode failure");
2100       } else if (create_queues (dev, cmds, txs, rxs, rxs_bs)) {
2101 	PRINTK (KERN_ERR, "failed to get memory for queues");
2102       } else {
2103 
2104 	if (amb_talk (dev)) {
2105 	  PRINTK (KERN_ERR, "adapter did not accept queues");
2106 	} else {
2107 
2108 	  amb_ucode_version (dev);
2109 	  return 0;
2110 
2111 	} /* amb_talk */
2112 
2113 	destroy_queues (dev);
2114       } /* create_queues, ucode_init */
2115 
2116       amb_reset (dev, 0);
2117     } /* get_loader_version */
2118 
2119   } /* amb_reset */
2120 
2121   return -EINVAL;
2122 }
2123 
setup_dev(amb_dev * dev,struct pci_dev * pci_dev)2124 static void setup_dev(amb_dev *dev, struct pci_dev *pci_dev)
2125 {
2126       unsigned char pool;
2127 
2128       // set up known dev items straight away
2129       dev->pci_dev = pci_dev;
2130       pci_set_drvdata(pci_dev, dev);
2131 
2132       dev->iobase = pci_resource_start (pci_dev, 1);
2133       dev->irq = pci_dev->irq;
2134       dev->membase = bus_to_virt(pci_resource_start(pci_dev, 0));
2135 
2136       // flags (currently only dead)
2137       dev->flags = 0;
2138 
2139       // Allocate cell rates (fibre)
2140       // ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2141       // to be really pedantic, this should be ATM_OC3c_PCR
2142       dev->tx_avail = ATM_OC3_PCR;
2143       dev->rx_avail = ATM_OC3_PCR;
2144 
2145       // semaphore for txer/rxer modifications - we cannot use a
2146       // spinlock as the critical region needs to switch processes
2147       mutex_init(&dev->vcc_sf);
2148       // queue manipulation spinlocks; we want atomic reads and
2149       // writes to the queue descriptors (handles IRQ and SMP)
2150       // consider replacing "int pending" -> "atomic_t available"
2151       // => problem related to who gets to move queue pointers
2152       spin_lock_init (&dev->cq.lock);
2153       spin_lock_init (&dev->txq.lock);
2154       for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2155 	spin_lock_init (&dev->rxq[pool].lock);
2156 }
2157 
setup_pci_dev(struct pci_dev * pci_dev)2158 static void setup_pci_dev(struct pci_dev *pci_dev)
2159 {
2160 	unsigned char lat;
2161 
2162 	// enable bus master accesses
2163 	pci_set_master(pci_dev);
2164 
2165 	// frobnicate latency (upwards, usually)
2166 	pci_read_config_byte (pci_dev, PCI_LATENCY_TIMER, &lat);
2167 
2168 	if (!pci_lat)
2169 		pci_lat = (lat < MIN_PCI_LATENCY) ? MIN_PCI_LATENCY : lat;
2170 
2171 	if (lat != pci_lat) {
2172 		PRINTK (KERN_INFO, "Changing PCI latency timer from %hu to %hu",
2173 			lat, pci_lat);
2174 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2175 	}
2176 }
2177 
amb_probe(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)2178 static int amb_probe(struct pci_dev *pci_dev,
2179 		     const struct pci_device_id *pci_ent)
2180 {
2181 	amb_dev * dev;
2182 	int err;
2183 	unsigned int irq;
2184 
2185 	err = pci_enable_device(pci_dev);
2186 	if (err < 0) {
2187 		PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2188 		goto out;
2189 	}
2190 
2191 	// read resources from PCI configuration space
2192 	irq = pci_dev->irq;
2193 
2194 	if (pci_dev->device == PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD) {
2195 		PRINTK (KERN_ERR, "skipped broken (PLX rev 2) card");
2196 		err = -EINVAL;
2197 		goto out_disable;
2198 	}
2199 
2200 	PRINTD (DBG_INFO, "found Madge ATM adapter (amb) at"
2201 		" IO %llx, IRQ %u, MEM %p",
2202 		(unsigned long long)pci_resource_start(pci_dev, 1),
2203 		irq, bus_to_virt(pci_resource_start(pci_dev, 0)));
2204 
2205 	// check IO region
2206 	err = pci_request_region(pci_dev, 1, DEV_LABEL);
2207 	if (err < 0) {
2208 		PRINTK (KERN_ERR, "IO range already in use!");
2209 		goto out_disable;
2210 	}
2211 
2212 	dev = kzalloc(sizeof(amb_dev), GFP_KERNEL);
2213 	if (!dev) {
2214 		PRINTK (KERN_ERR, "out of memory!");
2215 		err = -ENOMEM;
2216 		goto out_release;
2217 	}
2218 
2219 	setup_dev(dev, pci_dev);
2220 
2221 	err = amb_init(dev);
2222 	if (err < 0) {
2223 		PRINTK (KERN_ERR, "adapter initialisation failure");
2224 		goto out_free;
2225 	}
2226 
2227 	setup_pci_dev(pci_dev);
2228 
2229 	// grab (but share) IRQ and install handler
2230 	err = request_irq(irq, interrupt_handler, IRQF_SHARED, DEV_LABEL, dev);
2231 	if (err < 0) {
2232 		PRINTK (KERN_ERR, "request IRQ failed!");
2233 		goto out_reset;
2234 	}
2235 
2236 	dev->atm_dev = atm_dev_register (DEV_LABEL, &pci_dev->dev, &amb_ops, -1,
2237 					 NULL);
2238 	if (!dev->atm_dev) {
2239 		PRINTD (DBG_ERR, "failed to register Madge ATM adapter");
2240 		err = -EINVAL;
2241 		goto out_free_irq;
2242 	}
2243 
2244 	PRINTD (DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2245 		dev->atm_dev->number, dev, dev->atm_dev);
2246 	dev->atm_dev->dev_data = (void *) dev;
2247 
2248 	// register our address
2249 	amb_esi (dev, dev->atm_dev->esi);
2250 
2251 	// 0 bits for vpi, 10 bits for vci
2252 	dev->atm_dev->ci_range.vpi_bits = NUM_VPI_BITS;
2253 	dev->atm_dev->ci_range.vci_bits = NUM_VCI_BITS;
2254 
2255 	timer_setup(&dev->housekeeping, do_housekeeping, 0);
2256 	mod_timer(&dev->housekeeping, jiffies);
2257 
2258 	// enable host interrupts
2259 	interrupts_on (dev);
2260 
2261 out:
2262 	return err;
2263 
2264 out_free_irq:
2265 	free_irq(irq, dev);
2266 out_reset:
2267 	amb_reset(dev, 0);
2268 out_free:
2269 	kfree(dev);
2270 out_release:
2271 	pci_release_region(pci_dev, 1);
2272 out_disable:
2273 	pci_disable_device(pci_dev);
2274 	goto out;
2275 }
2276 
2277 
amb_remove_one(struct pci_dev * pci_dev)2278 static void amb_remove_one(struct pci_dev *pci_dev)
2279 {
2280 	struct amb_dev *dev;
2281 
2282 	dev = pci_get_drvdata(pci_dev);
2283 
2284 	PRINTD(DBG_INFO|DBG_INIT, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2285 	del_timer_sync(&dev->housekeeping);
2286 	// the drain should not be necessary
2287 	drain_rx_pools(dev);
2288 	interrupts_off(dev);
2289 	amb_reset(dev, 0);
2290 	free_irq(dev->irq, dev);
2291 	pci_disable_device(pci_dev);
2292 	destroy_queues(dev);
2293 	atm_dev_deregister(dev->atm_dev);
2294 	kfree(dev);
2295 	pci_release_region(pci_dev, 1);
2296 }
2297 
amb_check_args(void)2298 static void __init amb_check_args (void) {
2299   unsigned char pool;
2300   unsigned int max_rx_size;
2301 
2302 #ifdef DEBUG_AMBASSADOR
2303   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2304 #else
2305   if (debug)
2306     PRINTK (KERN_NOTICE, "no debugging support");
2307 #endif
2308 
2309   if (cmds < MIN_QUEUE_SIZE)
2310     PRINTK (KERN_NOTICE, "cmds has been raised to %u",
2311 	    cmds = MIN_QUEUE_SIZE);
2312 
2313   if (txs < MIN_QUEUE_SIZE)
2314     PRINTK (KERN_NOTICE, "txs has been raised to %u",
2315 	    txs = MIN_QUEUE_SIZE);
2316 
2317   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2318     if (rxs[pool] < MIN_QUEUE_SIZE)
2319       PRINTK (KERN_NOTICE, "rxs[%hu] has been raised to %u",
2320 	      pool, rxs[pool] = MIN_QUEUE_SIZE);
2321 
2322   // buffers sizes should be greater than zero and strictly increasing
2323   max_rx_size = 0;
2324   for (pool = 0; pool < NUM_RX_POOLS; ++pool)
2325     if (rxs_bs[pool] <= max_rx_size)
2326       PRINTK (KERN_NOTICE, "useless pool (rxs_bs[%hu] = %u)",
2327 	      pool, rxs_bs[pool]);
2328     else
2329       max_rx_size = rxs_bs[pool];
2330 
2331   if (rx_lats < MIN_RX_BUFFERS)
2332     PRINTK (KERN_NOTICE, "rx_lats has been raised to %u",
2333 	    rx_lats = MIN_RX_BUFFERS);
2334 
2335   return;
2336 }
2337 
2338 /********** module stuff **********/
2339 
2340 MODULE_AUTHOR(maintainer_string);
2341 MODULE_DESCRIPTION(description_string);
2342 MODULE_LICENSE("GPL");
2343 MODULE_FIRMWARE("atmsar11.fw");
2344 module_param(debug,   ushort, 0644);
2345 module_param(cmds,    uint, 0);
2346 module_param(txs,     uint, 0);
2347 module_param_array(rxs,     uint, NULL, 0);
2348 module_param_array(rxs_bs,  uint, NULL, 0);
2349 module_param(rx_lats, uint, 0);
2350 module_param(pci_lat, byte, 0);
2351 MODULE_PARM_DESC(debug,   "debug bitmap, see .h file");
2352 MODULE_PARM_DESC(cmds,    "number of command queue entries");
2353 MODULE_PARM_DESC(txs,     "number of TX queue entries");
2354 MODULE_PARM_DESC(rxs,     "number of RX queue entries [" __MODULE_STRING(NUM_RX_POOLS) "]");
2355 MODULE_PARM_DESC(rxs_bs,  "size of RX buffers [" __MODULE_STRING(NUM_RX_POOLS) "]");
2356 MODULE_PARM_DESC(rx_lats, "number of extra buffers to cope with RX latencies");
2357 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2358 
2359 /********** module entry **********/
2360 
2361 static const struct pci_device_id amb_pci_tbl[] = {
2362 	{ PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR), 0 },
2363 	{ PCI_VDEVICE(MADGE, PCI_DEVICE_ID_MADGE_AMBASSADOR_BAD), 0 },
2364 	{ 0, }
2365 };
2366 
2367 MODULE_DEVICE_TABLE(pci, amb_pci_tbl);
2368 
2369 static struct pci_driver amb_driver = {
2370 	.name =		"amb",
2371 	.probe =	amb_probe,
2372 	.remove =	amb_remove_one,
2373 	.id_table =	amb_pci_tbl,
2374 };
2375 
amb_module_init(void)2376 static int __init amb_module_init (void)
2377 {
2378   PRINTD (DBG_FLOW|DBG_INIT, "init_module");
2379 
2380   BUILD_BUG_ON(sizeof(amb_mem) != 4*16 + 4*12);
2381 
2382   show_version();
2383 
2384   amb_check_args();
2385 
2386   // get the juice
2387   return pci_register_driver(&amb_driver);
2388 }
2389 
2390 /********** module exit **********/
2391 
amb_module_exit(void)2392 static void __exit amb_module_exit (void)
2393 {
2394   PRINTD (DBG_FLOW|DBG_INIT, "cleanup_module");
2395 
2396   pci_unregister_driver(&amb_driver);
2397 }
2398 
2399 module_init(amb_module_init);
2400 module_exit(amb_module_exit);
2401