1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/mm.h>
16 #include <linux/highmem.h>
17 #include <linux/lockdep.h>
18 #include <linux/pci.h>
19 #include <linux/interrupt.h>
20 #include <linux/kmod.h>
21 #include <linux/delay.h>
22 #include <linux/workqueue.h>
23 #include <linux/nmi.h>
24 #include <linux/acpi.h>
25 #include <linux/efi.h>
26 #include <linux/ioport.h>
27 #include <linux/list.h>
28 #include <linux/jiffies.h>
29 #include <linux/semaphore.h>
30 #include <linux/security.h>
31 
32 #include <asm/io.h>
33 #include <linux/uaccess.h>
34 #include <linux/io-64-nonatomic-lo-hi.h>
35 
36 #include "acpica/accommon.h"
37 #include "acpica/acnamesp.h"
38 #include "internal.h"
39 
40 #define _COMPONENT		ACPI_OS_SERVICES
41 ACPI_MODULE_NAME("osl");
42 
43 struct acpi_os_dpc {
44 	acpi_osd_exec_callback function;
45 	void *context;
46 	struct work_struct work;
47 };
48 
49 #ifdef ENABLE_DEBUGGER
50 #include <linux/kdb.h>
51 
52 /* stuff for debugger support */
53 int acpi_in_debugger;
54 EXPORT_SYMBOL(acpi_in_debugger);
55 #endif				/*ENABLE_DEBUGGER */
56 
57 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
58 				      u32 pm1b_ctrl);
59 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
60 				      u32 val_b);
61 
62 static acpi_osd_handler acpi_irq_handler;
63 static void *acpi_irq_context;
64 static struct workqueue_struct *kacpid_wq;
65 static struct workqueue_struct *kacpi_notify_wq;
66 static struct workqueue_struct *kacpi_hotplug_wq;
67 static bool acpi_os_initialized;
68 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
69 bool acpi_permanent_mmap = false;
70 
71 /*
72  * This list of permanent mappings is for memory that may be accessed from
73  * interrupt context, where we can't do the ioremap().
74  */
75 struct acpi_ioremap {
76 	struct list_head list;
77 	void __iomem *virt;
78 	acpi_physical_address phys;
79 	acpi_size size;
80 	union {
81 		unsigned long refcount;
82 		struct rcu_work rwork;
83 	} track;
84 };
85 
86 static LIST_HEAD(acpi_ioremaps);
87 static DEFINE_MUTEX(acpi_ioremap_lock);
88 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
89 
acpi_request_region(struct acpi_generic_address * gas,unsigned int length,char * desc)90 static void __init acpi_request_region (struct acpi_generic_address *gas,
91 	unsigned int length, char *desc)
92 {
93 	u64 addr;
94 
95 	/* Handle possible alignment issues */
96 	memcpy(&addr, &gas->address, sizeof(addr));
97 	if (!addr || !length)
98 		return;
99 
100 	/* Resources are never freed */
101 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
102 		request_region(addr, length, desc);
103 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
104 		request_mem_region(addr, length, desc);
105 }
106 
acpi_reserve_resources(void)107 static int __init acpi_reserve_resources(void)
108 {
109 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
110 		"ACPI PM1a_EVT_BLK");
111 
112 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
113 		"ACPI PM1b_EVT_BLK");
114 
115 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
116 		"ACPI PM1a_CNT_BLK");
117 
118 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
119 		"ACPI PM1b_CNT_BLK");
120 
121 	if (acpi_gbl_FADT.pm_timer_length == 4)
122 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
123 
124 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
125 		"ACPI PM2_CNT_BLK");
126 
127 	/* Length of GPE blocks must be a non-negative multiple of 2 */
128 
129 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
130 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
131 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
132 
133 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
134 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
135 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
136 
137 	return 0;
138 }
139 fs_initcall_sync(acpi_reserve_resources);
140 
acpi_os_printf(const char * fmt,...)141 void acpi_os_printf(const char *fmt, ...)
142 {
143 	va_list args;
144 	va_start(args, fmt);
145 	acpi_os_vprintf(fmt, args);
146 	va_end(args);
147 }
148 EXPORT_SYMBOL(acpi_os_printf);
149 
acpi_os_vprintf(const char * fmt,va_list args)150 void acpi_os_vprintf(const char *fmt, va_list args)
151 {
152 	static char buffer[512];
153 
154 	vsprintf(buffer, fmt, args);
155 
156 #ifdef ENABLE_DEBUGGER
157 	if (acpi_in_debugger) {
158 		kdb_printf("%s", buffer);
159 	} else {
160 		if (printk_get_level(buffer))
161 			printk("%s", buffer);
162 		else
163 			printk(KERN_CONT "%s", buffer);
164 	}
165 #else
166 	if (acpi_debugger_write_log(buffer) < 0) {
167 		if (printk_get_level(buffer))
168 			printk("%s", buffer);
169 		else
170 			printk(KERN_CONT "%s", buffer);
171 	}
172 #endif
173 }
174 
175 #ifdef CONFIG_KEXEC
176 static unsigned long acpi_rsdp;
setup_acpi_rsdp(char * arg)177 static int __init setup_acpi_rsdp(char *arg)
178 {
179 	return kstrtoul(arg, 16, &acpi_rsdp);
180 }
181 early_param("acpi_rsdp", setup_acpi_rsdp);
182 #endif
183 
acpi_os_get_root_pointer(void)184 acpi_physical_address __init acpi_os_get_root_pointer(void)
185 {
186 	acpi_physical_address pa;
187 
188 #ifdef CONFIG_KEXEC
189 	/*
190 	 * We may have been provided with an RSDP on the command line,
191 	 * but if a malicious user has done so they may be pointing us
192 	 * at modified ACPI tables that could alter kernel behaviour -
193 	 * so, we check the lockdown status before making use of
194 	 * it. If we trust it then also stash it in an architecture
195 	 * specific location (if appropriate) so it can be carried
196 	 * over further kexec()s.
197 	 */
198 	if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
199 		acpi_arch_set_root_pointer(acpi_rsdp);
200 		return acpi_rsdp;
201 	}
202 #endif
203 	pa = acpi_arch_get_root_pointer();
204 	if (pa)
205 		return pa;
206 
207 	if (efi_enabled(EFI_CONFIG_TABLES)) {
208 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
209 			return efi.acpi20;
210 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
211 			return efi.acpi;
212 		pr_err(PREFIX "System description tables not found\n");
213 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
214 		acpi_find_root_pointer(&pa);
215 	}
216 
217 	return pa;
218 }
219 
220 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
221 static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys,acpi_size size)222 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
223 {
224 	struct acpi_ioremap *map;
225 
226 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
227 		if (map->phys <= phys &&
228 		    phys + size <= map->phys + map->size)
229 			return map;
230 
231 	return NULL;
232 }
233 
234 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
235 static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys,unsigned int size)236 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
237 {
238 	struct acpi_ioremap *map;
239 
240 	map = acpi_map_lookup(phys, size);
241 	if (map)
242 		return map->virt + (phys - map->phys);
243 
244 	return NULL;
245 }
246 
acpi_os_get_iomem(acpi_physical_address phys,unsigned int size)247 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
248 {
249 	struct acpi_ioremap *map;
250 	void __iomem *virt = NULL;
251 
252 	mutex_lock(&acpi_ioremap_lock);
253 	map = acpi_map_lookup(phys, size);
254 	if (map) {
255 		virt = map->virt + (phys - map->phys);
256 		map->track.refcount++;
257 	}
258 	mutex_unlock(&acpi_ioremap_lock);
259 	return virt;
260 }
261 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
262 
263 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
264 static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem * virt,acpi_size size)265 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
266 {
267 	struct acpi_ioremap *map;
268 
269 	list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
270 		if (map->virt <= virt &&
271 		    virt + size <= map->virt + map->size)
272 			return map;
273 
274 	return NULL;
275 }
276 
277 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
278 /* ioremap will take care of cache attributes */
279 #define should_use_kmap(pfn)   0
280 #else
281 #define should_use_kmap(pfn)   page_is_ram(pfn)
282 #endif
283 
acpi_map(acpi_physical_address pg_off,unsigned long pg_sz)284 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
285 {
286 	unsigned long pfn;
287 
288 	pfn = pg_off >> PAGE_SHIFT;
289 	if (should_use_kmap(pfn)) {
290 		if (pg_sz > PAGE_SIZE)
291 			return NULL;
292 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
293 	} else
294 		return acpi_os_ioremap(pg_off, pg_sz);
295 }
296 
acpi_unmap(acpi_physical_address pg_off,void __iomem * vaddr)297 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
298 {
299 	unsigned long pfn;
300 
301 	pfn = pg_off >> PAGE_SHIFT;
302 	if (should_use_kmap(pfn))
303 		kunmap(pfn_to_page(pfn));
304 	else
305 		iounmap(vaddr);
306 }
307 
308 /**
309  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
310  * @phys: Start of the physical address range to map.
311  * @size: Size of the physical address range to map.
312  *
313  * Look up the given physical address range in the list of existing ACPI memory
314  * mappings.  If found, get a reference to it and return a pointer to it (its
315  * virtual address).  If not found, map it, add it to that list and return a
316  * pointer to it.
317  *
318  * During early init (when acpi_permanent_mmap has not been set yet) this
319  * routine simply calls __acpi_map_table() to get the job done.
320  */
321 void __iomem __ref
acpi_os_map_iomem(acpi_physical_address phys,acpi_size size)322 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
323 {
324 	struct acpi_ioremap *map;
325 	void __iomem *virt;
326 	acpi_physical_address pg_off;
327 	acpi_size pg_sz;
328 
329 	if (phys > ULONG_MAX) {
330 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
331 		return NULL;
332 	}
333 
334 	if (!acpi_permanent_mmap)
335 		return __acpi_map_table((unsigned long)phys, size);
336 
337 	mutex_lock(&acpi_ioremap_lock);
338 	/* Check if there's a suitable mapping already. */
339 	map = acpi_map_lookup(phys, size);
340 	if (map) {
341 		map->track.refcount++;
342 		goto out;
343 	}
344 
345 	map = kzalloc(sizeof(*map), GFP_KERNEL);
346 	if (!map) {
347 		mutex_unlock(&acpi_ioremap_lock);
348 		return NULL;
349 	}
350 
351 	pg_off = round_down(phys, PAGE_SIZE);
352 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
353 	virt = acpi_map(phys, size);
354 	if (!virt) {
355 		mutex_unlock(&acpi_ioremap_lock);
356 		kfree(map);
357 		return NULL;
358 	}
359 
360 	INIT_LIST_HEAD(&map->list);
361 	map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
362 	map->phys = pg_off;
363 	map->size = pg_sz;
364 	map->track.refcount = 1;
365 
366 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
367 
368 out:
369 	mutex_unlock(&acpi_ioremap_lock);
370 	return map->virt + (phys - map->phys);
371 }
372 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
373 
acpi_os_map_memory(acpi_physical_address phys,acpi_size size)374 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
375 {
376 	return (void *)acpi_os_map_iomem(phys, size);
377 }
378 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
379 
acpi_os_map_remove(struct work_struct * work)380 static void acpi_os_map_remove(struct work_struct *work)
381 {
382 	struct acpi_ioremap *map = container_of(to_rcu_work(work),
383 						struct acpi_ioremap,
384 						track.rwork);
385 
386 	acpi_unmap(map->phys, map->virt);
387 	kfree(map);
388 }
389 
390 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
acpi_os_drop_map_ref(struct acpi_ioremap * map)391 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
392 {
393 	if (--map->track.refcount)
394 		return;
395 
396 	list_del_rcu(&map->list);
397 
398 	INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
399 	queue_rcu_work(system_wq, &map->track.rwork);
400 }
401 
402 /**
403  * acpi_os_unmap_iomem - Drop a memory mapping reference.
404  * @virt: Start of the address range to drop a reference to.
405  * @size: Size of the address range to drop a reference to.
406  *
407  * Look up the given virtual address range in the list of existing ACPI memory
408  * mappings, drop a reference to it and if there are no more active references
409  * to it, queue it up for later removal.
410  *
411  * During early init (when acpi_permanent_mmap has not been set yet) this
412  * routine simply calls __acpi_unmap_table() to get the job done.  Since
413  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
414  * here.
415  */
acpi_os_unmap_iomem(void __iomem * virt,acpi_size size)416 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
417 {
418 	struct acpi_ioremap *map;
419 
420 	if (!acpi_permanent_mmap) {
421 		__acpi_unmap_table(virt, size);
422 		return;
423 	}
424 
425 	mutex_lock(&acpi_ioremap_lock);
426 
427 	map = acpi_map_lookup_virt(virt, size);
428 	if (!map) {
429 		mutex_unlock(&acpi_ioremap_lock);
430 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
431 		return;
432 	}
433 	acpi_os_drop_map_ref(map);
434 
435 	mutex_unlock(&acpi_ioremap_lock);
436 }
437 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
438 
439 /**
440  * acpi_os_unmap_memory - Drop a memory mapping reference.
441  * @virt: Start of the address range to drop a reference to.
442  * @size: Size of the address range to drop a reference to.
443  */
acpi_os_unmap_memory(void * virt,acpi_size size)444 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
445 {
446 	acpi_os_unmap_iomem((void __iomem *)virt, size);
447 }
448 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
449 
acpi_os_map_generic_address(struct acpi_generic_address * gas)450 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
451 {
452 	u64 addr;
453 
454 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
455 		return NULL;
456 
457 	/* Handle possible alignment issues */
458 	memcpy(&addr, &gas->address, sizeof(addr));
459 	if (!addr || !gas->bit_width)
460 		return NULL;
461 
462 	return acpi_os_map_iomem(addr, gas->bit_width / 8);
463 }
464 EXPORT_SYMBOL(acpi_os_map_generic_address);
465 
acpi_os_unmap_generic_address(struct acpi_generic_address * gas)466 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
467 {
468 	u64 addr;
469 	struct acpi_ioremap *map;
470 
471 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
472 		return;
473 
474 	/* Handle possible alignment issues */
475 	memcpy(&addr, &gas->address, sizeof(addr));
476 	if (!addr || !gas->bit_width)
477 		return;
478 
479 	mutex_lock(&acpi_ioremap_lock);
480 
481 	map = acpi_map_lookup(addr, gas->bit_width / 8);
482 	if (!map) {
483 		mutex_unlock(&acpi_ioremap_lock);
484 		return;
485 	}
486 	acpi_os_drop_map_ref(map);
487 
488 	mutex_unlock(&acpi_ioremap_lock);
489 }
490 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
491 
492 #ifdef ACPI_FUTURE_USAGE
493 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)494 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
495 {
496 	if (!phys || !virt)
497 		return AE_BAD_PARAMETER;
498 
499 	*phys = virt_to_phys(virt);
500 
501 	return AE_OK;
502 }
503 #endif
504 
505 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
506 static bool acpi_rev_override;
507 
acpi_rev_override_setup(char * str)508 int __init acpi_rev_override_setup(char *str)
509 {
510 	acpi_rev_override = true;
511 	return 1;
512 }
513 __setup("acpi_rev_override", acpi_rev_override_setup);
514 #else
515 #define acpi_rev_override	false
516 #endif
517 
518 #define ACPI_MAX_OVERRIDE_LEN 100
519 
520 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
521 
522 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)523 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
524 			    acpi_string *new_val)
525 {
526 	if (!init_val || !new_val)
527 		return AE_BAD_PARAMETER;
528 
529 	*new_val = NULL;
530 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
531 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
532 		       acpi_os_name);
533 		*new_val = acpi_os_name;
534 	}
535 
536 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
537 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
538 		*new_val = (char *)5;
539 	}
540 
541 	return AE_OK;
542 }
543 
acpi_irq(int irq,void * dev_id)544 static irqreturn_t acpi_irq(int irq, void *dev_id)
545 {
546 	u32 handled;
547 
548 	handled = (*acpi_irq_handler) (acpi_irq_context);
549 
550 	if (handled) {
551 		acpi_irq_handled++;
552 		return IRQ_HANDLED;
553 	} else {
554 		acpi_irq_not_handled++;
555 		return IRQ_NONE;
556 	}
557 }
558 
559 acpi_status
acpi_os_install_interrupt_handler(u32 gsi,acpi_osd_handler handler,void * context)560 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
561 				  void *context)
562 {
563 	unsigned int irq;
564 
565 	acpi_irq_stats_init();
566 
567 	/*
568 	 * ACPI interrupts different from the SCI in our copy of the FADT are
569 	 * not supported.
570 	 */
571 	if (gsi != acpi_gbl_FADT.sci_interrupt)
572 		return AE_BAD_PARAMETER;
573 
574 	if (acpi_irq_handler)
575 		return AE_ALREADY_ACQUIRED;
576 
577 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
578 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
579 		       gsi);
580 		return AE_OK;
581 	}
582 
583 	acpi_irq_handler = handler;
584 	acpi_irq_context = context;
585 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
586 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
587 		acpi_irq_handler = NULL;
588 		return AE_NOT_ACQUIRED;
589 	}
590 	acpi_sci_irq = irq;
591 
592 	return AE_OK;
593 }
594 
acpi_os_remove_interrupt_handler(u32 gsi,acpi_osd_handler handler)595 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
596 {
597 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
598 		return AE_BAD_PARAMETER;
599 
600 	free_irq(acpi_sci_irq, acpi_irq);
601 	acpi_irq_handler = NULL;
602 	acpi_sci_irq = INVALID_ACPI_IRQ;
603 
604 	return AE_OK;
605 }
606 
607 /*
608  * Running in interpreter thread context, safe to sleep
609  */
610 
acpi_os_sleep(u64 ms)611 void acpi_os_sleep(u64 ms)
612 {
613 	msleep(ms);
614 }
615 
acpi_os_stall(u32 us)616 void acpi_os_stall(u32 us)
617 {
618 	while (us) {
619 		u32 delay = 1000;
620 
621 		if (delay > us)
622 			delay = us;
623 		udelay(delay);
624 		touch_nmi_watchdog();
625 		us -= delay;
626 	}
627 }
628 
629 /*
630  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
631  * monotonically increasing timer with 100ns granularity. Do not use
632  * ktime_get() to implement this function because this function may get
633  * called after timekeeping has been suspended. Note: calling this function
634  * after timekeeping has been suspended may lead to unexpected results
635  * because when timekeeping is suspended the jiffies counter is not
636  * incremented. See also timekeeping_suspend().
637  */
acpi_os_get_timer(void)638 u64 acpi_os_get_timer(void)
639 {
640 	return (get_jiffies_64() - INITIAL_JIFFIES) *
641 		(ACPI_100NSEC_PER_SEC / HZ);
642 }
643 
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)644 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
645 {
646 	u32 dummy;
647 
648 	if (!value)
649 		value = &dummy;
650 
651 	*value = 0;
652 	if (width <= 8) {
653 		*(u8 *) value = inb(port);
654 	} else if (width <= 16) {
655 		*(u16 *) value = inw(port);
656 	} else if (width <= 32) {
657 		*(u32 *) value = inl(port);
658 	} else {
659 		BUG();
660 	}
661 
662 	return AE_OK;
663 }
664 
665 EXPORT_SYMBOL(acpi_os_read_port);
666 
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)667 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
668 {
669 	if (width <= 8) {
670 		outb(value, port);
671 	} else if (width <= 16) {
672 		outw(value, port);
673 	} else if (width <= 32) {
674 		outl(value, port);
675 	} else {
676 		BUG();
677 	}
678 
679 	return AE_OK;
680 }
681 
682 EXPORT_SYMBOL(acpi_os_write_port);
683 
acpi_os_read_iomem(void __iomem * virt_addr,u64 * value,u32 width)684 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
685 {
686 
687 	switch (width) {
688 	case 8:
689 		*(u8 *) value = readb(virt_addr);
690 		break;
691 	case 16:
692 		*(u16 *) value = readw(virt_addr);
693 		break;
694 	case 32:
695 		*(u32 *) value = readl(virt_addr);
696 		break;
697 	case 64:
698 		*(u64 *) value = readq(virt_addr);
699 		break;
700 	default:
701 		return -EINVAL;
702 	}
703 
704 	return 0;
705 }
706 
707 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u64 * value,u32 width)708 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
709 {
710 	void __iomem *virt_addr;
711 	unsigned int size = width / 8;
712 	bool unmap = false;
713 	u64 dummy;
714 	int error;
715 
716 	rcu_read_lock();
717 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
718 	if (!virt_addr) {
719 		rcu_read_unlock();
720 		virt_addr = acpi_os_ioremap(phys_addr, size);
721 		if (!virt_addr)
722 			return AE_BAD_ADDRESS;
723 		unmap = true;
724 	}
725 
726 	if (!value)
727 		value = &dummy;
728 
729 	error = acpi_os_read_iomem(virt_addr, value, width);
730 	BUG_ON(error);
731 
732 	if (unmap)
733 		iounmap(virt_addr);
734 	else
735 		rcu_read_unlock();
736 
737 	return AE_OK;
738 }
739 
740 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u64 value,u32 width)741 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
742 {
743 	void __iomem *virt_addr;
744 	unsigned int size = width / 8;
745 	bool unmap = false;
746 
747 	rcu_read_lock();
748 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
749 	if (!virt_addr) {
750 		rcu_read_unlock();
751 		virt_addr = acpi_os_ioremap(phys_addr, size);
752 		if (!virt_addr)
753 			return AE_BAD_ADDRESS;
754 		unmap = true;
755 	}
756 
757 	switch (width) {
758 	case 8:
759 		writeb(value, virt_addr);
760 		break;
761 	case 16:
762 		writew(value, virt_addr);
763 		break;
764 	case 32:
765 		writel(value, virt_addr);
766 		break;
767 	case 64:
768 		writeq(value, virt_addr);
769 		break;
770 	default:
771 		BUG();
772 	}
773 
774 	if (unmap)
775 		iounmap(virt_addr);
776 	else
777 		rcu_read_unlock();
778 
779 	return AE_OK;
780 }
781 
782 #ifdef CONFIG_PCI
783 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 * value,u32 width)784 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
785 			       u64 *value, u32 width)
786 {
787 	int result, size;
788 	u32 value32;
789 
790 	if (!value)
791 		return AE_BAD_PARAMETER;
792 
793 	switch (width) {
794 	case 8:
795 		size = 1;
796 		break;
797 	case 16:
798 		size = 2;
799 		break;
800 	case 32:
801 		size = 4;
802 		break;
803 	default:
804 		return AE_ERROR;
805 	}
806 
807 	result = raw_pci_read(pci_id->segment, pci_id->bus,
808 				PCI_DEVFN(pci_id->device, pci_id->function),
809 				reg, size, &value32);
810 	*value = value32;
811 
812 	return (result ? AE_ERROR : AE_OK);
813 }
814 
815 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 value,u32 width)816 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
817 				u64 value, u32 width)
818 {
819 	int result, size;
820 
821 	switch (width) {
822 	case 8:
823 		size = 1;
824 		break;
825 	case 16:
826 		size = 2;
827 		break;
828 	case 32:
829 		size = 4;
830 		break;
831 	default:
832 		return AE_ERROR;
833 	}
834 
835 	result = raw_pci_write(pci_id->segment, pci_id->bus,
836 				PCI_DEVFN(pci_id->device, pci_id->function),
837 				reg, size, value);
838 
839 	return (result ? AE_ERROR : AE_OK);
840 }
841 #endif
842 
acpi_os_execute_deferred(struct work_struct * work)843 static void acpi_os_execute_deferred(struct work_struct *work)
844 {
845 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
846 
847 	dpc->function(dpc->context);
848 	kfree(dpc);
849 }
850 
851 #ifdef CONFIG_ACPI_DEBUGGER
852 static struct acpi_debugger acpi_debugger;
853 static bool acpi_debugger_initialized;
854 
acpi_register_debugger(struct module * owner,const struct acpi_debugger_ops * ops)855 int acpi_register_debugger(struct module *owner,
856 			   const struct acpi_debugger_ops *ops)
857 {
858 	int ret = 0;
859 
860 	mutex_lock(&acpi_debugger.lock);
861 	if (acpi_debugger.ops) {
862 		ret = -EBUSY;
863 		goto err_lock;
864 	}
865 
866 	acpi_debugger.owner = owner;
867 	acpi_debugger.ops = ops;
868 
869 err_lock:
870 	mutex_unlock(&acpi_debugger.lock);
871 	return ret;
872 }
873 EXPORT_SYMBOL(acpi_register_debugger);
874 
acpi_unregister_debugger(const struct acpi_debugger_ops * ops)875 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
876 {
877 	mutex_lock(&acpi_debugger.lock);
878 	if (ops == acpi_debugger.ops) {
879 		acpi_debugger.ops = NULL;
880 		acpi_debugger.owner = NULL;
881 	}
882 	mutex_unlock(&acpi_debugger.lock);
883 }
884 EXPORT_SYMBOL(acpi_unregister_debugger);
885 
acpi_debugger_create_thread(acpi_osd_exec_callback function,void * context)886 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
887 {
888 	int ret;
889 	int (*func)(acpi_osd_exec_callback, void *);
890 	struct module *owner;
891 
892 	if (!acpi_debugger_initialized)
893 		return -ENODEV;
894 	mutex_lock(&acpi_debugger.lock);
895 	if (!acpi_debugger.ops) {
896 		ret = -ENODEV;
897 		goto err_lock;
898 	}
899 	if (!try_module_get(acpi_debugger.owner)) {
900 		ret = -ENODEV;
901 		goto err_lock;
902 	}
903 	func = acpi_debugger.ops->create_thread;
904 	owner = acpi_debugger.owner;
905 	mutex_unlock(&acpi_debugger.lock);
906 
907 	ret = func(function, context);
908 
909 	mutex_lock(&acpi_debugger.lock);
910 	module_put(owner);
911 err_lock:
912 	mutex_unlock(&acpi_debugger.lock);
913 	return ret;
914 }
915 
acpi_debugger_write_log(const char * msg)916 ssize_t acpi_debugger_write_log(const char *msg)
917 {
918 	ssize_t ret;
919 	ssize_t (*func)(const char *);
920 	struct module *owner;
921 
922 	if (!acpi_debugger_initialized)
923 		return -ENODEV;
924 	mutex_lock(&acpi_debugger.lock);
925 	if (!acpi_debugger.ops) {
926 		ret = -ENODEV;
927 		goto err_lock;
928 	}
929 	if (!try_module_get(acpi_debugger.owner)) {
930 		ret = -ENODEV;
931 		goto err_lock;
932 	}
933 	func = acpi_debugger.ops->write_log;
934 	owner = acpi_debugger.owner;
935 	mutex_unlock(&acpi_debugger.lock);
936 
937 	ret = func(msg);
938 
939 	mutex_lock(&acpi_debugger.lock);
940 	module_put(owner);
941 err_lock:
942 	mutex_unlock(&acpi_debugger.lock);
943 	return ret;
944 }
945 
acpi_debugger_read_cmd(char * buffer,size_t buffer_length)946 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
947 {
948 	ssize_t ret;
949 	ssize_t (*func)(char *, size_t);
950 	struct module *owner;
951 
952 	if (!acpi_debugger_initialized)
953 		return -ENODEV;
954 	mutex_lock(&acpi_debugger.lock);
955 	if (!acpi_debugger.ops) {
956 		ret = -ENODEV;
957 		goto err_lock;
958 	}
959 	if (!try_module_get(acpi_debugger.owner)) {
960 		ret = -ENODEV;
961 		goto err_lock;
962 	}
963 	func = acpi_debugger.ops->read_cmd;
964 	owner = acpi_debugger.owner;
965 	mutex_unlock(&acpi_debugger.lock);
966 
967 	ret = func(buffer, buffer_length);
968 
969 	mutex_lock(&acpi_debugger.lock);
970 	module_put(owner);
971 err_lock:
972 	mutex_unlock(&acpi_debugger.lock);
973 	return ret;
974 }
975 
acpi_debugger_wait_command_ready(void)976 int acpi_debugger_wait_command_ready(void)
977 {
978 	int ret;
979 	int (*func)(bool, char *, size_t);
980 	struct module *owner;
981 
982 	if (!acpi_debugger_initialized)
983 		return -ENODEV;
984 	mutex_lock(&acpi_debugger.lock);
985 	if (!acpi_debugger.ops) {
986 		ret = -ENODEV;
987 		goto err_lock;
988 	}
989 	if (!try_module_get(acpi_debugger.owner)) {
990 		ret = -ENODEV;
991 		goto err_lock;
992 	}
993 	func = acpi_debugger.ops->wait_command_ready;
994 	owner = acpi_debugger.owner;
995 	mutex_unlock(&acpi_debugger.lock);
996 
997 	ret = func(acpi_gbl_method_executing,
998 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
999 
1000 	mutex_lock(&acpi_debugger.lock);
1001 	module_put(owner);
1002 err_lock:
1003 	mutex_unlock(&acpi_debugger.lock);
1004 	return ret;
1005 }
1006 
acpi_debugger_notify_command_complete(void)1007 int acpi_debugger_notify_command_complete(void)
1008 {
1009 	int ret;
1010 	int (*func)(void);
1011 	struct module *owner;
1012 
1013 	if (!acpi_debugger_initialized)
1014 		return -ENODEV;
1015 	mutex_lock(&acpi_debugger.lock);
1016 	if (!acpi_debugger.ops) {
1017 		ret = -ENODEV;
1018 		goto err_lock;
1019 	}
1020 	if (!try_module_get(acpi_debugger.owner)) {
1021 		ret = -ENODEV;
1022 		goto err_lock;
1023 	}
1024 	func = acpi_debugger.ops->notify_command_complete;
1025 	owner = acpi_debugger.owner;
1026 	mutex_unlock(&acpi_debugger.lock);
1027 
1028 	ret = func();
1029 
1030 	mutex_lock(&acpi_debugger.lock);
1031 	module_put(owner);
1032 err_lock:
1033 	mutex_unlock(&acpi_debugger.lock);
1034 	return ret;
1035 }
1036 
acpi_debugger_init(void)1037 int __init acpi_debugger_init(void)
1038 {
1039 	mutex_init(&acpi_debugger.lock);
1040 	acpi_debugger_initialized = true;
1041 	return 0;
1042 }
1043 #endif
1044 
1045 /*******************************************************************************
1046  *
1047  * FUNCTION:    acpi_os_execute
1048  *
1049  * PARAMETERS:  Type               - Type of the callback
1050  *              Function           - Function to be executed
1051  *              Context            - Function parameters
1052  *
1053  * RETURN:      Status
1054  *
1055  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1056  *              immediately executes function on a separate thread.
1057  *
1058  ******************************************************************************/
1059 
acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context)1060 acpi_status acpi_os_execute(acpi_execute_type type,
1061 			    acpi_osd_exec_callback function, void *context)
1062 {
1063 	acpi_status status = AE_OK;
1064 	struct acpi_os_dpc *dpc;
1065 	struct workqueue_struct *queue;
1066 	int ret;
1067 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1068 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1069 			  function, context));
1070 
1071 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1072 		ret = acpi_debugger_create_thread(function, context);
1073 		if (ret) {
1074 			pr_err("Call to kthread_create() failed.\n");
1075 			status = AE_ERROR;
1076 		}
1077 		goto out_thread;
1078 	}
1079 
1080 	/*
1081 	 * Allocate/initialize DPC structure.  Note that this memory will be
1082 	 * freed by the callee.  The kernel handles the work_struct list  in a
1083 	 * way that allows us to also free its memory inside the callee.
1084 	 * Because we may want to schedule several tasks with different
1085 	 * parameters we can't use the approach some kernel code uses of
1086 	 * having a static work_struct.
1087 	 */
1088 
1089 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1090 	if (!dpc)
1091 		return AE_NO_MEMORY;
1092 
1093 	dpc->function = function;
1094 	dpc->context = context;
1095 
1096 	/*
1097 	 * To prevent lockdep from complaining unnecessarily, make sure that
1098 	 * there is a different static lockdep key for each workqueue by using
1099 	 * INIT_WORK() for each of them separately.
1100 	 */
1101 	if (type == OSL_NOTIFY_HANDLER) {
1102 		queue = kacpi_notify_wq;
1103 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1104 	} else if (type == OSL_GPE_HANDLER) {
1105 		queue = kacpid_wq;
1106 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1107 	} else {
1108 		pr_err("Unsupported os_execute type %d.\n", type);
1109 		status = AE_ERROR;
1110 	}
1111 
1112 	if (ACPI_FAILURE(status))
1113 		goto err_workqueue;
1114 
1115 	/*
1116 	 * On some machines, a software-initiated SMI causes corruption unless
1117 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1118 	 * typically it's done in GPE-related methods that are run via
1119 	 * workqueues, so we can avoid the known corruption cases by always
1120 	 * queueing on CPU 0.
1121 	 */
1122 	ret = queue_work_on(0, queue, &dpc->work);
1123 	if (!ret) {
1124 		printk(KERN_ERR PREFIX
1125 			  "Call to queue_work() failed.\n");
1126 		status = AE_ERROR;
1127 	}
1128 err_workqueue:
1129 	if (ACPI_FAILURE(status))
1130 		kfree(dpc);
1131 out_thread:
1132 	return status;
1133 }
1134 EXPORT_SYMBOL(acpi_os_execute);
1135 
acpi_os_wait_events_complete(void)1136 void acpi_os_wait_events_complete(void)
1137 {
1138 	/*
1139 	 * Make sure the GPE handler or the fixed event handler is not used
1140 	 * on another CPU after removal.
1141 	 */
1142 	if (acpi_sci_irq_valid())
1143 		synchronize_hardirq(acpi_sci_irq);
1144 	flush_workqueue(kacpid_wq);
1145 	flush_workqueue(kacpi_notify_wq);
1146 }
1147 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1148 
1149 struct acpi_hp_work {
1150 	struct work_struct work;
1151 	struct acpi_device *adev;
1152 	u32 src;
1153 };
1154 
acpi_hotplug_work_fn(struct work_struct * work)1155 static void acpi_hotplug_work_fn(struct work_struct *work)
1156 {
1157 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1158 
1159 	acpi_os_wait_events_complete();
1160 	acpi_device_hotplug(hpw->adev, hpw->src);
1161 	kfree(hpw);
1162 }
1163 
acpi_hotplug_schedule(struct acpi_device * adev,u32 src)1164 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1165 {
1166 	struct acpi_hp_work *hpw;
1167 
1168 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1169 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1170 		  adev, src));
1171 
1172 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1173 	if (!hpw)
1174 		return AE_NO_MEMORY;
1175 
1176 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1177 	hpw->adev = adev;
1178 	hpw->src = src;
1179 	/*
1180 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1181 	 * the hotplug code may call driver .remove() functions, which may
1182 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1183 	 * these workqueues.
1184 	 */
1185 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1186 		kfree(hpw);
1187 		return AE_ERROR;
1188 	}
1189 	return AE_OK;
1190 }
1191 
acpi_queue_hotplug_work(struct work_struct * work)1192 bool acpi_queue_hotplug_work(struct work_struct *work)
1193 {
1194 	return queue_work(kacpi_hotplug_wq, work);
1195 }
1196 
1197 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)1198 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1199 {
1200 	struct semaphore *sem = NULL;
1201 
1202 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1203 	if (!sem)
1204 		return AE_NO_MEMORY;
1205 
1206 	sema_init(sem, initial_units);
1207 
1208 	*handle = (acpi_handle *) sem;
1209 
1210 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1211 			  *handle, initial_units));
1212 
1213 	return AE_OK;
1214 }
1215 
1216 /*
1217  * TODO: A better way to delete semaphores?  Linux doesn't have a
1218  * 'delete_semaphore()' function -- may result in an invalid
1219  * pointer dereference for non-synchronized consumers.	Should
1220  * we at least check for blocked threads and signal/cancel them?
1221  */
1222 
acpi_os_delete_semaphore(acpi_handle handle)1223 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1224 {
1225 	struct semaphore *sem = (struct semaphore *)handle;
1226 
1227 	if (!sem)
1228 		return AE_BAD_PARAMETER;
1229 
1230 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1231 
1232 	BUG_ON(!list_empty(&sem->wait_list));
1233 	kfree(sem);
1234 	sem = NULL;
1235 
1236 	return AE_OK;
1237 }
1238 
1239 /*
1240  * TODO: Support for units > 1?
1241  */
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)1242 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1243 {
1244 	acpi_status status = AE_OK;
1245 	struct semaphore *sem = (struct semaphore *)handle;
1246 	long jiffies;
1247 	int ret = 0;
1248 
1249 	if (!acpi_os_initialized)
1250 		return AE_OK;
1251 
1252 	if (!sem || (units < 1))
1253 		return AE_BAD_PARAMETER;
1254 
1255 	if (units > 1)
1256 		return AE_SUPPORT;
1257 
1258 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1259 			  handle, units, timeout));
1260 
1261 	if (timeout == ACPI_WAIT_FOREVER)
1262 		jiffies = MAX_SCHEDULE_TIMEOUT;
1263 	else
1264 		jiffies = msecs_to_jiffies(timeout);
1265 
1266 	ret = down_timeout(sem, jiffies);
1267 	if (ret)
1268 		status = AE_TIME;
1269 
1270 	if (ACPI_FAILURE(status)) {
1271 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1272 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1273 				  handle, units, timeout,
1274 				  acpi_format_exception(status)));
1275 	} else {
1276 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277 				  "Acquired semaphore[%p|%d|%d]", handle,
1278 				  units, timeout));
1279 	}
1280 
1281 	return status;
1282 }
1283 
1284 /*
1285  * TODO: Support for units > 1?
1286  */
acpi_os_signal_semaphore(acpi_handle handle,u32 units)1287 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1288 {
1289 	struct semaphore *sem = (struct semaphore *)handle;
1290 
1291 	if (!acpi_os_initialized)
1292 		return AE_OK;
1293 
1294 	if (!sem || (units < 1))
1295 		return AE_BAD_PARAMETER;
1296 
1297 	if (units > 1)
1298 		return AE_SUPPORT;
1299 
1300 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1301 			  units));
1302 
1303 	up(sem);
1304 
1305 	return AE_OK;
1306 }
1307 
acpi_os_get_line(char * buffer,u32 buffer_length,u32 * bytes_read)1308 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1309 {
1310 #ifdef ENABLE_DEBUGGER
1311 	if (acpi_in_debugger) {
1312 		u32 chars;
1313 
1314 		kdb_read(buffer, buffer_length);
1315 
1316 		/* remove the CR kdb includes */
1317 		chars = strlen(buffer) - 1;
1318 		buffer[chars] = '\0';
1319 	}
1320 #else
1321 	int ret;
1322 
1323 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1324 	if (ret < 0)
1325 		return AE_ERROR;
1326 	if (bytes_read)
1327 		*bytes_read = ret;
1328 #endif
1329 
1330 	return AE_OK;
1331 }
1332 EXPORT_SYMBOL(acpi_os_get_line);
1333 
acpi_os_wait_command_ready(void)1334 acpi_status acpi_os_wait_command_ready(void)
1335 {
1336 	int ret;
1337 
1338 	ret = acpi_debugger_wait_command_ready();
1339 	if (ret < 0)
1340 		return AE_ERROR;
1341 	return AE_OK;
1342 }
1343 
acpi_os_notify_command_complete(void)1344 acpi_status acpi_os_notify_command_complete(void)
1345 {
1346 	int ret;
1347 
1348 	ret = acpi_debugger_notify_command_complete();
1349 	if (ret < 0)
1350 		return AE_ERROR;
1351 	return AE_OK;
1352 }
1353 
acpi_os_signal(u32 function,void * info)1354 acpi_status acpi_os_signal(u32 function, void *info)
1355 {
1356 	switch (function) {
1357 	case ACPI_SIGNAL_FATAL:
1358 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1359 		break;
1360 	case ACPI_SIGNAL_BREAKPOINT:
1361 		/*
1362 		 * AML Breakpoint
1363 		 * ACPI spec. says to treat it as a NOP unless
1364 		 * you are debugging.  So if/when we integrate
1365 		 * AML debugger into the kernel debugger its
1366 		 * hook will go here.  But until then it is
1367 		 * not useful to print anything on breakpoints.
1368 		 */
1369 		break;
1370 	default:
1371 		break;
1372 	}
1373 
1374 	return AE_OK;
1375 }
1376 
acpi_os_name_setup(char * str)1377 static int __init acpi_os_name_setup(char *str)
1378 {
1379 	char *p = acpi_os_name;
1380 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1381 
1382 	if (!str || !*str)
1383 		return 0;
1384 
1385 	for (; count-- && *str; str++) {
1386 		if (isalnum(*str) || *str == ' ' || *str == ':')
1387 			*p++ = *str;
1388 		else if (*str == '\'' || *str == '"')
1389 			continue;
1390 		else
1391 			break;
1392 	}
1393 	*p = 0;
1394 
1395 	return 1;
1396 
1397 }
1398 
1399 __setup("acpi_os_name=", acpi_os_name_setup);
1400 
1401 /*
1402  * Disable the auto-serialization of named objects creation methods.
1403  *
1404  * This feature is enabled by default.  It marks the AML control methods
1405  * that contain the opcodes to create named objects as "Serialized".
1406  */
acpi_no_auto_serialize_setup(char * str)1407 static int __init acpi_no_auto_serialize_setup(char *str)
1408 {
1409 	acpi_gbl_auto_serialize_methods = FALSE;
1410 	pr_info("ACPI: auto-serialization disabled\n");
1411 
1412 	return 1;
1413 }
1414 
1415 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1416 
1417 /* Check of resource interference between native drivers and ACPI
1418  * OperationRegions (SystemIO and System Memory only).
1419  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1420  * in arbitrary AML code and can interfere with legacy drivers.
1421  * acpi_enforce_resources= can be set to:
1422  *
1423  *   - strict (default) (2)
1424  *     -> further driver trying to access the resources will not load
1425  *   - lax              (1)
1426  *     -> further driver trying to access the resources will load, but you
1427  *     get a system message that something might go wrong...
1428  *
1429  *   - no               (0)
1430  *     -> ACPI Operation Region resources will not be registered
1431  *
1432  */
1433 #define ENFORCE_RESOURCES_STRICT 2
1434 #define ENFORCE_RESOURCES_LAX    1
1435 #define ENFORCE_RESOURCES_NO     0
1436 
1437 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1438 
acpi_enforce_resources_setup(char * str)1439 static int __init acpi_enforce_resources_setup(char *str)
1440 {
1441 	if (str == NULL || *str == '\0')
1442 		return 0;
1443 
1444 	if (!strcmp("strict", str))
1445 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446 	else if (!strcmp("lax", str))
1447 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1448 	else if (!strcmp("no", str))
1449 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1450 
1451 	return 1;
1452 }
1453 
1454 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1455 
1456 /* Check for resource conflicts between ACPI OperationRegions and native
1457  * drivers */
acpi_check_resource_conflict(const struct resource * res)1458 int acpi_check_resource_conflict(const struct resource *res)
1459 {
1460 	acpi_adr_space_type space_id;
1461 	acpi_size length;
1462 	u8 warn = 0;
1463 	int clash = 0;
1464 
1465 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1466 		return 0;
1467 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1468 		return 0;
1469 
1470 	if (res->flags & IORESOURCE_IO)
1471 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1472 	else
1473 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1474 
1475 	length = resource_size(res);
1476 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1477 		warn = 1;
1478 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1479 
1480 	if (clash) {
1481 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1482 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1483 				printk(KERN_NOTICE "ACPI: This conflict may"
1484 				       " cause random problems and system"
1485 				       " instability\n");
1486 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1487 			       " for this device, you should use it instead of"
1488 			       " the native driver\n");
1489 		}
1490 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1491 			return -EBUSY;
1492 	}
1493 	return 0;
1494 }
1495 EXPORT_SYMBOL(acpi_check_resource_conflict);
1496 
acpi_check_region(resource_size_t start,resource_size_t n,const char * name)1497 int acpi_check_region(resource_size_t start, resource_size_t n,
1498 		      const char *name)
1499 {
1500 	struct resource res = {
1501 		.start = start,
1502 		.end   = start + n - 1,
1503 		.name  = name,
1504 		.flags = IORESOURCE_IO,
1505 	};
1506 
1507 	return acpi_check_resource_conflict(&res);
1508 }
1509 EXPORT_SYMBOL(acpi_check_region);
1510 
acpi_deactivate_mem_region(acpi_handle handle,u32 level,void * _res,void ** return_value)1511 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1512 					      void *_res, void **return_value)
1513 {
1514 	struct acpi_mem_space_context **mem_ctx;
1515 	union acpi_operand_object *handler_obj;
1516 	union acpi_operand_object *region_obj2;
1517 	union acpi_operand_object *region_obj;
1518 	struct resource *res = _res;
1519 	acpi_status status;
1520 
1521 	region_obj = acpi_ns_get_attached_object(handle);
1522 	if (!region_obj)
1523 		return AE_OK;
1524 
1525 	handler_obj = region_obj->region.handler;
1526 	if (!handler_obj)
1527 		return AE_OK;
1528 
1529 	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1530 		return AE_OK;
1531 
1532 	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1533 		return AE_OK;
1534 
1535 	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1536 	if (!region_obj2)
1537 		return AE_OK;
1538 
1539 	mem_ctx = (void *)&region_obj2->extra.region_context;
1540 
1541 	if (!(mem_ctx[0]->address >= res->start &&
1542 	      mem_ctx[0]->address < res->end))
1543 		return AE_OK;
1544 
1545 	status = handler_obj->address_space.setup(region_obj,
1546 						  ACPI_REGION_DEACTIVATE,
1547 						  NULL, (void **)mem_ctx);
1548 	if (ACPI_SUCCESS(status))
1549 		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1550 
1551 	return status;
1552 }
1553 
1554 /**
1555  * acpi_release_memory - Release any mappings done to a memory region
1556  * @handle: Handle to namespace node
1557  * @res: Memory resource
1558  * @level: A level that terminates the search
1559  *
1560  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1561  * overlap with @res and that have already been activated (mapped).
1562  *
1563  * This is a helper that allows drivers to place special requirements on memory
1564  * region that may overlap with operation regions, primarily allowing them to
1565  * safely map the region as non-cached memory.
1566  *
1567  * The unmapped Operation Regions will be automatically remapped next time they
1568  * are called, so the drivers do not need to do anything else.
1569  */
acpi_release_memory(acpi_handle handle,struct resource * res,u32 level)1570 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1571 				u32 level)
1572 {
1573 	acpi_status status;
1574 
1575 	if (!(res->flags & IORESOURCE_MEM))
1576 		return AE_TYPE;
1577 
1578 	status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1579 				     acpi_deactivate_mem_region, NULL,
1580 				     res, NULL);
1581 	if (ACPI_FAILURE(status))
1582 		return status;
1583 
1584 	/*
1585 	 * Wait for all of the mappings queued up for removal by
1586 	 * acpi_deactivate_mem_region() to actually go away.
1587 	 */
1588 	synchronize_rcu();
1589 	rcu_barrier();
1590 	flush_scheduled_work();
1591 
1592 	return AE_OK;
1593 }
1594 EXPORT_SYMBOL_GPL(acpi_release_memory);
1595 
1596 /*
1597  * Let drivers know whether the resource checks are effective
1598  */
acpi_resources_are_enforced(void)1599 int acpi_resources_are_enforced(void)
1600 {
1601 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1602 }
1603 EXPORT_SYMBOL(acpi_resources_are_enforced);
1604 
1605 /*
1606  * Deallocate the memory for a spinlock.
1607  */
acpi_os_delete_lock(acpi_spinlock handle)1608 void acpi_os_delete_lock(acpi_spinlock handle)
1609 {
1610 	ACPI_FREE(handle);
1611 }
1612 
1613 /*
1614  * Acquire a spinlock.
1615  *
1616  * handle is a pointer to the spinlock_t.
1617  */
1618 
acpi_os_acquire_lock(acpi_spinlock lockp)1619 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1620 	__acquires(lockp)
1621 {
1622 	acpi_cpu_flags flags;
1623 	spin_lock_irqsave(lockp, flags);
1624 	return flags;
1625 }
1626 
1627 /*
1628  * Release a spinlock. See above.
1629  */
1630 
acpi_os_release_lock(acpi_spinlock lockp,acpi_cpu_flags flags)1631 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1632 	__releases(lockp)
1633 {
1634 	spin_unlock_irqrestore(lockp, flags);
1635 }
1636 
1637 #ifndef ACPI_USE_LOCAL_CACHE
1638 
1639 /*******************************************************************************
1640  *
1641  * FUNCTION:    acpi_os_create_cache
1642  *
1643  * PARAMETERS:  name      - Ascii name for the cache
1644  *              size      - Size of each cached object
1645  *              depth     - Maximum depth of the cache (in objects) <ignored>
1646  *              cache     - Where the new cache object is returned
1647  *
1648  * RETURN:      status
1649  *
1650  * DESCRIPTION: Create a cache object
1651  *
1652  ******************************************************************************/
1653 
1654 acpi_status
acpi_os_create_cache(char * name,u16 size,u16 depth,acpi_cache_t ** cache)1655 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1656 {
1657 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1658 	if (*cache == NULL)
1659 		return AE_ERROR;
1660 	else
1661 		return AE_OK;
1662 }
1663 
1664 /*******************************************************************************
1665  *
1666  * FUNCTION:    acpi_os_purge_cache
1667  *
1668  * PARAMETERS:  Cache           - Handle to cache object
1669  *
1670  * RETURN:      Status
1671  *
1672  * DESCRIPTION: Free all objects within the requested cache.
1673  *
1674  ******************************************************************************/
1675 
acpi_os_purge_cache(acpi_cache_t * cache)1676 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1677 {
1678 	kmem_cache_shrink(cache);
1679 	return (AE_OK);
1680 }
1681 
1682 /*******************************************************************************
1683  *
1684  * FUNCTION:    acpi_os_delete_cache
1685  *
1686  * PARAMETERS:  Cache           - Handle to cache object
1687  *
1688  * RETURN:      Status
1689  *
1690  * DESCRIPTION: Free all objects within the requested cache and delete the
1691  *              cache object.
1692  *
1693  ******************************************************************************/
1694 
acpi_os_delete_cache(acpi_cache_t * cache)1695 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1696 {
1697 	kmem_cache_destroy(cache);
1698 	return (AE_OK);
1699 }
1700 
1701 /*******************************************************************************
1702  *
1703  * FUNCTION:    acpi_os_release_object
1704  *
1705  * PARAMETERS:  Cache       - Handle to cache object
1706  *              Object      - The object to be released
1707  *
1708  * RETURN:      None
1709  *
1710  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1711  *              the object is deleted.
1712  *
1713  ******************************************************************************/
1714 
acpi_os_release_object(acpi_cache_t * cache,void * object)1715 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1716 {
1717 	kmem_cache_free(cache, object);
1718 	return (AE_OK);
1719 }
1720 #endif
1721 
acpi_no_static_ssdt_setup(char * s)1722 static int __init acpi_no_static_ssdt_setup(char *s)
1723 {
1724 	acpi_gbl_disable_ssdt_table_install = TRUE;
1725 	pr_info("ACPI: static SSDT installation disabled\n");
1726 
1727 	return 0;
1728 }
1729 
1730 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1731 
acpi_disable_return_repair(char * s)1732 static int __init acpi_disable_return_repair(char *s)
1733 {
1734 	printk(KERN_NOTICE PREFIX
1735 	       "ACPI: Predefined validation mechanism disabled\n");
1736 	acpi_gbl_disable_auto_repair = TRUE;
1737 
1738 	return 1;
1739 }
1740 
1741 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1742 
acpi_os_initialize(void)1743 acpi_status __init acpi_os_initialize(void)
1744 {
1745 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1746 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1747 
1748 	acpi_gbl_xgpe0_block_logical_address =
1749 		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1750 	acpi_gbl_xgpe1_block_logical_address =
1751 		(unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1752 
1753 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1754 		/*
1755 		 * Use acpi_os_map_generic_address to pre-map the reset
1756 		 * register if it's in system memory.
1757 		 */
1758 		void *rv;
1759 
1760 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1761 		pr_debug(PREFIX "%s: map reset_reg %s\n", __func__,
1762 			 rv ? "successful" : "failed");
1763 	}
1764 	acpi_os_initialized = true;
1765 
1766 	return AE_OK;
1767 }
1768 
acpi_os_initialize1(void)1769 acpi_status __init acpi_os_initialize1(void)
1770 {
1771 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1772 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1773 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1774 	BUG_ON(!kacpid_wq);
1775 	BUG_ON(!kacpi_notify_wq);
1776 	BUG_ON(!kacpi_hotplug_wq);
1777 	acpi_osi_init();
1778 	return AE_OK;
1779 }
1780 
acpi_os_terminate(void)1781 acpi_status acpi_os_terminate(void)
1782 {
1783 	if (acpi_irq_handler) {
1784 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1785 						 acpi_irq_handler);
1786 	}
1787 
1788 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1789 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1790 	acpi_gbl_xgpe0_block_logical_address = 0UL;
1791 	acpi_gbl_xgpe1_block_logical_address = 0UL;
1792 
1793 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1794 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1795 
1796 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1797 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1798 
1799 	destroy_workqueue(kacpid_wq);
1800 	destroy_workqueue(kacpi_notify_wq);
1801 	destroy_workqueue(kacpi_hotplug_wq);
1802 
1803 	return AE_OK;
1804 }
1805 
acpi_os_prepare_sleep(u8 sleep_state,u32 pm1a_control,u32 pm1b_control)1806 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1807 				  u32 pm1b_control)
1808 {
1809 	int rc = 0;
1810 	if (__acpi_os_prepare_sleep)
1811 		rc = __acpi_os_prepare_sleep(sleep_state,
1812 					     pm1a_control, pm1b_control);
1813 	if (rc < 0)
1814 		return AE_ERROR;
1815 	else if (rc > 0)
1816 		return AE_CTRL_TERMINATE;
1817 
1818 	return AE_OK;
1819 }
1820 
acpi_os_set_prepare_sleep(int (* func)(u8 sleep_state,u32 pm1a_ctrl,u32 pm1b_ctrl))1821 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1822 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1823 {
1824 	__acpi_os_prepare_sleep = func;
1825 }
1826 
1827 #if (ACPI_REDUCED_HARDWARE)
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1828 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1829 				  u32 val_b)
1830 {
1831 	int rc = 0;
1832 	if (__acpi_os_prepare_extended_sleep)
1833 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1834 					     val_a, val_b);
1835 	if (rc < 0)
1836 		return AE_ERROR;
1837 	else if (rc > 0)
1838 		return AE_CTRL_TERMINATE;
1839 
1840 	return AE_OK;
1841 }
1842 #else
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1843 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1844 				  u32 val_b)
1845 {
1846 	return AE_OK;
1847 }
1848 #endif
1849 
acpi_os_set_prepare_extended_sleep(int (* func)(u8 sleep_state,u32 val_a,u32 val_b))1850 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1851 			       u32 val_a, u32 val_b))
1852 {
1853 	__acpi_os_prepare_extended_sleep = func;
1854 }
1855 
acpi_os_enter_sleep(u8 sleep_state,u32 reg_a_value,u32 reg_b_value)1856 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1857 				u32 reg_a_value, u32 reg_b_value)
1858 {
1859 	acpi_status status;
1860 
1861 	if (acpi_gbl_reduced_hardware)
1862 		status = acpi_os_prepare_extended_sleep(sleep_state,
1863 							reg_a_value,
1864 							reg_b_value);
1865 	else
1866 		status = acpi_os_prepare_sleep(sleep_state,
1867 					       reg_a_value, reg_b_value);
1868 	return status;
1869 }
1870