1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * acpi_pad.c ACPI Processor Aggregator Driver
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <asm/mwait.h>
21 #include <xen/xen.h>
22
23 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
24 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
25 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
26 static DEFINE_MUTEX(isolated_cpus_lock);
27 static DEFINE_MUTEX(round_robin_lock);
28
29 static unsigned long power_saving_mwait_eax;
30
31 static unsigned char tsc_detected_unstable;
32 static unsigned char tsc_marked_unstable;
33
power_saving_mwait_init(void)34 static void power_saving_mwait_init(void)
35 {
36 unsigned int eax, ebx, ecx, edx;
37 unsigned int highest_cstate = 0;
38 unsigned int highest_subcstate = 0;
39 int i;
40
41 if (!boot_cpu_has(X86_FEATURE_MWAIT))
42 return;
43 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
44 return;
45
46 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
47
48 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
49 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
50 return;
51
52 edx >>= MWAIT_SUBSTATE_SIZE;
53 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
54 if (edx & MWAIT_SUBSTATE_MASK) {
55 highest_cstate = i;
56 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
57 }
58 }
59 power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
60 (highest_subcstate - 1);
61
62 #if defined(CONFIG_X86)
63 switch (boot_cpu_data.x86_vendor) {
64 case X86_VENDOR_HYGON:
65 case X86_VENDOR_AMD:
66 case X86_VENDOR_INTEL:
67 case X86_VENDOR_ZHAOXIN:
68 /*
69 * AMD Fam10h TSC will tick in all
70 * C/P/S0/S1 states when this bit is set.
71 */
72 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
73 tsc_detected_unstable = 1;
74 break;
75 default:
76 /* TSC could halt in idle */
77 tsc_detected_unstable = 1;
78 }
79 #endif
80 }
81
82 static unsigned long cpu_weight[NR_CPUS];
83 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
84 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
round_robin_cpu(unsigned int tsk_index)85 static void round_robin_cpu(unsigned int tsk_index)
86 {
87 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
88 cpumask_var_t tmp;
89 int cpu;
90 unsigned long min_weight = -1;
91 unsigned long preferred_cpu;
92
93 if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
94 return;
95
96 mutex_lock(&round_robin_lock);
97 cpumask_clear(tmp);
98 for_each_cpu(cpu, pad_busy_cpus)
99 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
100 cpumask_andnot(tmp, cpu_online_mask, tmp);
101 /* avoid HT sibilings if possible */
102 if (cpumask_empty(tmp))
103 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
104 if (cpumask_empty(tmp)) {
105 mutex_unlock(&round_robin_lock);
106 free_cpumask_var(tmp);
107 return;
108 }
109 for_each_cpu(cpu, tmp) {
110 if (cpu_weight[cpu] < min_weight) {
111 min_weight = cpu_weight[cpu];
112 preferred_cpu = cpu;
113 }
114 }
115
116 if (tsk_in_cpu[tsk_index] != -1)
117 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
118 tsk_in_cpu[tsk_index] = preferred_cpu;
119 cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
120 cpu_weight[preferred_cpu]++;
121 mutex_unlock(&round_robin_lock);
122
123 set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
124
125 free_cpumask_var(tmp);
126 }
127
exit_round_robin(unsigned int tsk_index)128 static void exit_round_robin(unsigned int tsk_index)
129 {
130 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
131 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
132 tsk_in_cpu[tsk_index] = -1;
133 }
134
135 static unsigned int idle_pct = 5; /* percentage */
136 static unsigned int round_robin_time = 1; /* second */
power_saving_thread(void * data)137 static int power_saving_thread(void *data)
138 {
139 int do_sleep;
140 unsigned int tsk_index = (unsigned long)data;
141 u64 last_jiffies = 0;
142
143 sched_set_fifo_low(current);
144
145 while (!kthread_should_stop()) {
146 unsigned long expire_time;
147
148 /* round robin to cpus */
149 expire_time = last_jiffies + round_robin_time * HZ;
150 if (time_before(expire_time, jiffies)) {
151 last_jiffies = jiffies;
152 round_robin_cpu(tsk_index);
153 }
154
155 do_sleep = 0;
156
157 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
158
159 while (!need_resched()) {
160 if (tsc_detected_unstable && !tsc_marked_unstable) {
161 /* TSC could halt in idle, so notify users */
162 mark_tsc_unstable("TSC halts in idle");
163 tsc_marked_unstable = 1;
164 }
165 local_irq_disable();
166 tick_broadcast_enable();
167 tick_broadcast_enter();
168 stop_critical_timings();
169
170 mwait_idle_with_hints(power_saving_mwait_eax, 1);
171
172 start_critical_timings();
173 tick_broadcast_exit();
174 local_irq_enable();
175
176 if (time_before(expire_time, jiffies)) {
177 do_sleep = 1;
178 break;
179 }
180 }
181
182 /*
183 * current sched_rt has threshold for rt task running time.
184 * When a rt task uses 95% CPU time, the rt thread will be
185 * scheduled out for 5% CPU time to not starve other tasks. But
186 * the mechanism only works when all CPUs have RT task running,
187 * as if one CPU hasn't RT task, RT task from other CPUs will
188 * borrow CPU time from this CPU and cause RT task use > 95%
189 * CPU time. To make 'avoid starvation' work, takes a nap here.
190 */
191 if (unlikely(do_sleep))
192 schedule_timeout_killable(HZ * idle_pct / 100);
193
194 /* If an external event has set the need_resched flag, then
195 * we need to deal with it, or this loop will continue to
196 * spin without calling __mwait().
197 */
198 if (unlikely(need_resched()))
199 schedule();
200 }
201
202 exit_round_robin(tsk_index);
203 return 0;
204 }
205
206 static struct task_struct *ps_tsks[NR_CPUS];
207 static unsigned int ps_tsk_num;
create_power_saving_task(void)208 static int create_power_saving_task(void)
209 {
210 int rc;
211
212 ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
213 (void *)(unsigned long)ps_tsk_num,
214 "acpi_pad/%d", ps_tsk_num);
215
216 if (IS_ERR(ps_tsks[ps_tsk_num])) {
217 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
218 ps_tsks[ps_tsk_num] = NULL;
219 } else {
220 rc = 0;
221 ps_tsk_num++;
222 }
223
224 return rc;
225 }
226
destroy_power_saving_task(void)227 static void destroy_power_saving_task(void)
228 {
229 if (ps_tsk_num > 0) {
230 ps_tsk_num--;
231 kthread_stop(ps_tsks[ps_tsk_num]);
232 ps_tsks[ps_tsk_num] = NULL;
233 }
234 }
235
set_power_saving_task_num(unsigned int num)236 static void set_power_saving_task_num(unsigned int num)
237 {
238 if (num > ps_tsk_num) {
239 while (ps_tsk_num < num) {
240 if (create_power_saving_task())
241 return;
242 }
243 } else if (num < ps_tsk_num) {
244 while (ps_tsk_num > num)
245 destroy_power_saving_task();
246 }
247 }
248
acpi_pad_idle_cpus(unsigned int num_cpus)249 static void acpi_pad_idle_cpus(unsigned int num_cpus)
250 {
251 get_online_cpus();
252
253 num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
254 set_power_saving_task_num(num_cpus);
255
256 put_online_cpus();
257 }
258
acpi_pad_idle_cpus_num(void)259 static uint32_t acpi_pad_idle_cpus_num(void)
260 {
261 return ps_tsk_num;
262 }
263
acpi_pad_rrtime_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)264 static ssize_t acpi_pad_rrtime_store(struct device *dev,
265 struct device_attribute *attr, const char *buf, size_t count)
266 {
267 unsigned long num;
268 if (kstrtoul(buf, 0, &num))
269 return -EINVAL;
270 if (num < 1 || num >= 100)
271 return -EINVAL;
272 mutex_lock(&isolated_cpus_lock);
273 round_robin_time = num;
274 mutex_unlock(&isolated_cpus_lock);
275 return count;
276 }
277
acpi_pad_rrtime_show(struct device * dev,struct device_attribute * attr,char * buf)278 static ssize_t acpi_pad_rrtime_show(struct device *dev,
279 struct device_attribute *attr, char *buf)
280 {
281 return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
282 }
283 static DEVICE_ATTR(rrtime, S_IRUGO|S_IWUSR,
284 acpi_pad_rrtime_show,
285 acpi_pad_rrtime_store);
286
acpi_pad_idlepct_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)287 static ssize_t acpi_pad_idlepct_store(struct device *dev,
288 struct device_attribute *attr, const char *buf, size_t count)
289 {
290 unsigned long num;
291 if (kstrtoul(buf, 0, &num))
292 return -EINVAL;
293 if (num < 1 || num >= 100)
294 return -EINVAL;
295 mutex_lock(&isolated_cpus_lock);
296 idle_pct = num;
297 mutex_unlock(&isolated_cpus_lock);
298 return count;
299 }
300
acpi_pad_idlepct_show(struct device * dev,struct device_attribute * attr,char * buf)301 static ssize_t acpi_pad_idlepct_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
305 }
306 static DEVICE_ATTR(idlepct, S_IRUGO|S_IWUSR,
307 acpi_pad_idlepct_show,
308 acpi_pad_idlepct_store);
309
acpi_pad_idlecpus_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)310 static ssize_t acpi_pad_idlecpus_store(struct device *dev,
311 struct device_attribute *attr, const char *buf, size_t count)
312 {
313 unsigned long num;
314 if (kstrtoul(buf, 0, &num))
315 return -EINVAL;
316 mutex_lock(&isolated_cpus_lock);
317 acpi_pad_idle_cpus(num);
318 mutex_unlock(&isolated_cpus_lock);
319 return count;
320 }
321
acpi_pad_idlecpus_show(struct device * dev,struct device_attribute * attr,char * buf)322 static ssize_t acpi_pad_idlecpus_show(struct device *dev,
323 struct device_attribute *attr, char *buf)
324 {
325 return cpumap_print_to_pagebuf(false, buf,
326 to_cpumask(pad_busy_cpus_bits));
327 }
328
329 static DEVICE_ATTR(idlecpus, S_IRUGO|S_IWUSR,
330 acpi_pad_idlecpus_show,
331 acpi_pad_idlecpus_store);
332
acpi_pad_add_sysfs(struct acpi_device * device)333 static int acpi_pad_add_sysfs(struct acpi_device *device)
334 {
335 int result;
336
337 result = device_create_file(&device->dev, &dev_attr_idlecpus);
338 if (result)
339 return -ENODEV;
340 result = device_create_file(&device->dev, &dev_attr_idlepct);
341 if (result) {
342 device_remove_file(&device->dev, &dev_attr_idlecpus);
343 return -ENODEV;
344 }
345 result = device_create_file(&device->dev, &dev_attr_rrtime);
346 if (result) {
347 device_remove_file(&device->dev, &dev_attr_idlecpus);
348 device_remove_file(&device->dev, &dev_attr_idlepct);
349 return -ENODEV;
350 }
351 return 0;
352 }
353
acpi_pad_remove_sysfs(struct acpi_device * device)354 static void acpi_pad_remove_sysfs(struct acpi_device *device)
355 {
356 device_remove_file(&device->dev, &dev_attr_idlecpus);
357 device_remove_file(&device->dev, &dev_attr_idlepct);
358 device_remove_file(&device->dev, &dev_attr_rrtime);
359 }
360
361 /*
362 * Query firmware how many CPUs should be idle
363 * return -1 on failure
364 */
acpi_pad_pur(acpi_handle handle)365 static int acpi_pad_pur(acpi_handle handle)
366 {
367 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
368 union acpi_object *package;
369 int num = -1;
370
371 if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
372 return num;
373
374 if (!buffer.length || !buffer.pointer)
375 return num;
376
377 package = buffer.pointer;
378
379 if (package->type == ACPI_TYPE_PACKAGE &&
380 package->package.count == 2 &&
381 package->package.elements[0].integer.value == 1) /* rev 1 */
382
383 num = package->package.elements[1].integer.value;
384
385 kfree(buffer.pointer);
386 return num;
387 }
388
acpi_pad_handle_notify(acpi_handle handle)389 static void acpi_pad_handle_notify(acpi_handle handle)
390 {
391 int num_cpus;
392 uint32_t idle_cpus;
393 struct acpi_buffer param = {
394 .length = 4,
395 .pointer = (void *)&idle_cpus,
396 };
397
398 mutex_lock(&isolated_cpus_lock);
399 num_cpus = acpi_pad_pur(handle);
400 if (num_cpus < 0) {
401 mutex_unlock(&isolated_cpus_lock);
402 return;
403 }
404 acpi_pad_idle_cpus(num_cpus);
405 idle_cpus = acpi_pad_idle_cpus_num();
406 acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, ¶m);
407 mutex_unlock(&isolated_cpus_lock);
408 }
409
acpi_pad_notify(acpi_handle handle,u32 event,void * data)410 static void acpi_pad_notify(acpi_handle handle, u32 event,
411 void *data)
412 {
413 struct acpi_device *device = data;
414
415 switch (event) {
416 case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
417 acpi_pad_handle_notify(handle);
418 acpi_bus_generate_netlink_event(device->pnp.device_class,
419 dev_name(&device->dev), event, 0);
420 break;
421 default:
422 pr_warn("Unsupported event [0x%x]\n", event);
423 break;
424 }
425 }
426
acpi_pad_add(struct acpi_device * device)427 static int acpi_pad_add(struct acpi_device *device)
428 {
429 acpi_status status;
430
431 strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
432 strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
433
434 if (acpi_pad_add_sysfs(device))
435 return -ENODEV;
436
437 status = acpi_install_notify_handler(device->handle,
438 ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
439 if (ACPI_FAILURE(status)) {
440 acpi_pad_remove_sysfs(device);
441 return -ENODEV;
442 }
443
444 return 0;
445 }
446
acpi_pad_remove(struct acpi_device * device)447 static int acpi_pad_remove(struct acpi_device *device)
448 {
449 mutex_lock(&isolated_cpus_lock);
450 acpi_pad_idle_cpus(0);
451 mutex_unlock(&isolated_cpus_lock);
452
453 acpi_remove_notify_handler(device->handle,
454 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
455 acpi_pad_remove_sysfs(device);
456 return 0;
457 }
458
459 static const struct acpi_device_id pad_device_ids[] = {
460 {"ACPI000C", 0},
461 {"", 0},
462 };
463 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
464
465 static struct acpi_driver acpi_pad_driver = {
466 .name = "processor_aggregator",
467 .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
468 .ids = pad_device_ids,
469 .ops = {
470 .add = acpi_pad_add,
471 .remove = acpi_pad_remove,
472 },
473 };
474
acpi_pad_init(void)475 static int __init acpi_pad_init(void)
476 {
477 /* Xen ACPI PAD is used when running as Xen Dom0. */
478 if (xen_initial_domain())
479 return -ENODEV;
480
481 power_saving_mwait_init();
482 if (power_saving_mwait_eax == 0)
483 return -EINVAL;
484
485 return acpi_bus_register_driver(&acpi_pad_driver);
486 }
487
acpi_pad_exit(void)488 static void __exit acpi_pad_exit(void)
489 {
490 acpi_bus_unregister_driver(&acpi_pad_driver);
491 }
492
493 module_init(acpi_pad_init);
494 module_exit(acpi_pad_exit);
495 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
496 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
497 MODULE_LICENSE("GPL");
498