1 /*
2  * Non-physical true random number generator based on timing jitter --
3  * Jitter RNG standalone code.
4  *
5  * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2020
6  *
7  * Design
8  * ======
9  *
10  * See https://www.chronox.de/jent.html
11  *
12  * License
13  * =======
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, and the entire permission notice in its entirety,
20  *    including the disclaimer of warranties.
21  * 2. Redistributions in binary form must reproduce the above copyright
22  *    notice, this list of conditions and the following disclaimer in the
23  *    documentation and/or other materials provided with the distribution.
24  * 3. The name of the author may not be used to endorse or promote
25  *    products derived from this software without specific prior
26  *    written permission.
27  *
28  * ALTERNATIVELY, this product may be distributed under the terms of
29  * the GNU General Public License, in which case the provisions of the GPL2 are
30  * required INSTEAD OF the above restrictions.  (This clause is
31  * necessary due to a potential bad interaction between the GPL and
32  * the restrictions contained in a BSD-style copyright.)
33  *
34  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
35  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
36  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
37  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
38  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
39  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
40  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
41  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
42  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
44  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
45  * DAMAGE.
46  */
47 
48 /*
49  * This Jitterentropy RNG is based on the jitterentropy library
50  * version 2.2.0 provided at https://www.chronox.de/jent.html
51  */
52 
53 #ifdef __OPTIMIZE__
54  #error "The CPU Jitter random number generator must not be compiled with optimizations. See documentation. Use the compiler switch -O0 for compiling jitterentropy.c."
55 #endif
56 
57 typedef	unsigned long long	__u64;
58 typedef	long long		__s64;
59 typedef	unsigned int		__u32;
60 #define NULL    ((void *) 0)
61 
62 /* The entropy pool */
63 struct rand_data {
64 	/* all data values that are vital to maintain the security
65 	 * of the RNG are marked as SENSITIVE. A user must not
66 	 * access that information while the RNG executes its loops to
67 	 * calculate the next random value. */
68 	__u64 data;		/* SENSITIVE Actual random number */
69 	__u64 old_data;		/* SENSITIVE Previous random number */
70 	__u64 prev_time;	/* SENSITIVE Previous time stamp */
71 #define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
72 	__u64 last_delta;	/* SENSITIVE stuck test */
73 	__s64 last_delta2;	/* SENSITIVE stuck test */
74 	unsigned int osr;	/* Oversample rate */
75 #define JENT_MEMORY_BLOCKS 64
76 #define JENT_MEMORY_BLOCKSIZE 32
77 #define JENT_MEMORY_ACCESSLOOPS 128
78 #define JENT_MEMORY_SIZE (JENT_MEMORY_BLOCKS*JENT_MEMORY_BLOCKSIZE)
79 	unsigned char *mem;	/* Memory access location with size of
80 				 * memblocks * memblocksize */
81 	unsigned int memlocation; /* Pointer to byte in *mem */
82 	unsigned int memblocks;	/* Number of memory blocks in *mem */
83 	unsigned int memblocksize; /* Size of one memory block in bytes */
84 	unsigned int memaccessloops; /* Number of memory accesses per random
85 				      * bit generation */
86 
87 	/* Repetition Count Test */
88 	int rct_count;			/* Number of stuck values */
89 
90 	/* Adaptive Proportion Test for a significance level of 2^-30 */
91 #define JENT_APT_CUTOFF		325	/* Taken from SP800-90B sec 4.4.2 */
92 #define JENT_APT_WINDOW_SIZE	512	/* Data window size */
93 	/* LSB of time stamp to process */
94 #define JENT_APT_LSB		16
95 #define JENT_APT_WORD_MASK	(JENT_APT_LSB - 1)
96 	unsigned int apt_observations;	/* Number of collected observations */
97 	unsigned int apt_count;		/* APT counter */
98 	unsigned int apt_base;		/* APT base reference */
99 	unsigned int apt_base_set:1;	/* APT base reference set? */
100 
101 	unsigned int health_failure:1;	/* Permanent health failure */
102 };
103 
104 /* Flags that can be used to initialize the RNG */
105 #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
106 					   * entropy, saves MEMORY_SIZE RAM for
107 					   * entropy collector */
108 
109 /* -- error codes for init function -- */
110 #define JENT_ENOTIME		1 /* Timer service not available */
111 #define JENT_ECOARSETIME	2 /* Timer too coarse for RNG */
112 #define JENT_ENOMONOTONIC	3 /* Timer is not monotonic increasing */
113 #define JENT_EVARVAR		5 /* Timer does not produce variations of
114 				   * variations (2nd derivation of time is
115 				   * zero). */
116 #define JENT_ESTUCK		8 /* Too many stuck results during init. */
117 #define JENT_EHEALTH		9 /* Health test failed during initialization */
118 #define JENT_ERCT		10 /* RCT failed during initialization */
119 
120 #include "jitterentropy.h"
121 
122 /***************************************************************************
123  * Adaptive Proportion Test
124  *
125  * This test complies with SP800-90B section 4.4.2.
126  ***************************************************************************/
127 
128 /**
129  * Reset the APT counter
130  *
131  * @ec [in] Reference to entropy collector
132  */
jent_apt_reset(struct rand_data * ec,unsigned int delta_masked)133 static void jent_apt_reset(struct rand_data *ec, unsigned int delta_masked)
134 {
135 	/* Reset APT counter */
136 	ec->apt_count = 0;
137 	ec->apt_base = delta_masked;
138 	ec->apt_observations = 0;
139 }
140 
141 /**
142  * Insert a new entropy event into APT
143  *
144  * @ec [in] Reference to entropy collector
145  * @delta_masked [in] Masked time delta to process
146  */
jent_apt_insert(struct rand_data * ec,unsigned int delta_masked)147 static void jent_apt_insert(struct rand_data *ec, unsigned int delta_masked)
148 {
149 	/* Initialize the base reference */
150 	if (!ec->apt_base_set) {
151 		ec->apt_base = delta_masked;
152 		ec->apt_base_set = 1;
153 		return;
154 	}
155 
156 	if (delta_masked == ec->apt_base) {
157 		ec->apt_count++;
158 
159 		if (ec->apt_count >= JENT_APT_CUTOFF)
160 			ec->health_failure = 1;
161 	}
162 
163 	ec->apt_observations++;
164 
165 	if (ec->apt_observations >= JENT_APT_WINDOW_SIZE)
166 		jent_apt_reset(ec, delta_masked);
167 }
168 
169 /***************************************************************************
170  * Stuck Test and its use as Repetition Count Test
171  *
172  * The Jitter RNG uses an enhanced version of the Repetition Count Test
173  * (RCT) specified in SP800-90B section 4.4.1. Instead of counting identical
174  * back-to-back values, the input to the RCT is the counting of the stuck
175  * values during the generation of one Jitter RNG output block.
176  *
177  * The RCT is applied with an alpha of 2^{-30} compliant to FIPS 140-2 IG 9.8.
178  *
179  * During the counting operation, the Jitter RNG always calculates the RCT
180  * cut-off value of C. If that value exceeds the allowed cut-off value,
181  * the Jitter RNG output block will be calculated completely but discarded at
182  * the end. The caller of the Jitter RNG is informed with an error code.
183  ***************************************************************************/
184 
185 /**
186  * Repetition Count Test as defined in SP800-90B section 4.4.1
187  *
188  * @ec [in] Reference to entropy collector
189  * @stuck [in] Indicator whether the value is stuck
190  */
jent_rct_insert(struct rand_data * ec,int stuck)191 static void jent_rct_insert(struct rand_data *ec, int stuck)
192 {
193 	/*
194 	 * If we have a count less than zero, a previous RCT round identified
195 	 * a failure. We will not overwrite it.
196 	 */
197 	if (ec->rct_count < 0)
198 		return;
199 
200 	if (stuck) {
201 		ec->rct_count++;
202 
203 		/*
204 		 * The cutoff value is based on the following consideration:
205 		 * alpha = 2^-30 as recommended in FIPS 140-2 IG 9.8.
206 		 * In addition, we require an entropy value H of 1/OSR as this
207 		 * is the minimum entropy required to provide full entropy.
208 		 * Note, we collect 64 * OSR deltas for inserting them into
209 		 * the entropy pool which should then have (close to) 64 bits
210 		 * of entropy.
211 		 *
212 		 * Note, ec->rct_count (which equals to value B in the pseudo
213 		 * code of SP800-90B section 4.4.1) starts with zero. Hence
214 		 * we need to subtract one from the cutoff value as calculated
215 		 * following SP800-90B.
216 		 */
217 		if ((unsigned int)ec->rct_count >= (31 * ec->osr)) {
218 			ec->rct_count = -1;
219 			ec->health_failure = 1;
220 		}
221 	} else {
222 		ec->rct_count = 0;
223 	}
224 }
225 
226 /**
227  * Is there an RCT health test failure?
228  *
229  * @ec [in] Reference to entropy collector
230  *
231  * @return
232  * 	0 No health test failure
233  * 	1 Permanent health test failure
234  */
jent_rct_failure(struct rand_data * ec)235 static int jent_rct_failure(struct rand_data *ec)
236 {
237 	if (ec->rct_count < 0)
238 		return 1;
239 	return 0;
240 }
241 
jent_delta(__u64 prev,__u64 next)242 static inline __u64 jent_delta(__u64 prev, __u64 next)
243 {
244 #define JENT_UINT64_MAX		(__u64)(~((__u64) 0))
245 	return (prev < next) ? (next - prev) :
246 			       (JENT_UINT64_MAX - prev + 1 + next);
247 }
248 
249 /**
250  * Stuck test by checking the:
251  * 	1st derivative of the jitter measurement (time delta)
252  * 	2nd derivative of the jitter measurement (delta of time deltas)
253  * 	3rd derivative of the jitter measurement (delta of delta of time deltas)
254  *
255  * All values must always be non-zero.
256  *
257  * @ec [in] Reference to entropy collector
258  * @current_delta [in] Jitter time delta
259  *
260  * @return
261  * 	0 jitter measurement not stuck (good bit)
262  * 	1 jitter measurement stuck (reject bit)
263  */
jent_stuck(struct rand_data * ec,__u64 current_delta)264 static int jent_stuck(struct rand_data *ec, __u64 current_delta)
265 {
266 	__u64 delta2 = jent_delta(ec->last_delta, current_delta);
267 	__u64 delta3 = jent_delta(ec->last_delta2, delta2);
268 	unsigned int delta_masked = current_delta & JENT_APT_WORD_MASK;
269 
270 	ec->last_delta = current_delta;
271 	ec->last_delta2 = delta2;
272 
273 	/*
274 	 * Insert the result of the comparison of two back-to-back time
275 	 * deltas.
276 	 */
277 	jent_apt_insert(ec, delta_masked);
278 
279 	if (!current_delta || !delta2 || !delta3) {
280 		/* RCT with a stuck bit */
281 		jent_rct_insert(ec, 1);
282 		return 1;
283 	}
284 
285 	/* RCT with a non-stuck bit */
286 	jent_rct_insert(ec, 0);
287 
288 	return 0;
289 }
290 
291 /**
292  * Report any health test failures
293  *
294  * @ec [in] Reference to entropy collector
295  *
296  * @return
297  * 	0 No health test failure
298  * 	1 Permanent health test failure
299  */
jent_health_failure(struct rand_data * ec)300 static int jent_health_failure(struct rand_data *ec)
301 {
302 	/* Test is only enabled in FIPS mode */
303 	if (!jent_fips_enabled())
304 		return 0;
305 
306 	return ec->health_failure;
307 }
308 
309 /***************************************************************************
310  * Noise sources
311  ***************************************************************************/
312 
313 /**
314  * Update of the loop count used for the next round of
315  * an entropy collection.
316  *
317  * Input:
318  * @ec entropy collector struct -- may be NULL
319  * @bits is the number of low bits of the timer to consider
320  * @min is the number of bits we shift the timer value to the right at
321  *	the end to make sure we have a guaranteed minimum value
322  *
323  * @return Newly calculated loop counter
324  */
jent_loop_shuffle(struct rand_data * ec,unsigned int bits,unsigned int min)325 static __u64 jent_loop_shuffle(struct rand_data *ec,
326 			       unsigned int bits, unsigned int min)
327 {
328 	__u64 time = 0;
329 	__u64 shuffle = 0;
330 	unsigned int i = 0;
331 	unsigned int mask = (1<<bits) - 1;
332 
333 	jent_get_nstime(&time);
334 	/*
335 	 * Mix the current state of the random number into the shuffle
336 	 * calculation to balance that shuffle a bit more.
337 	 */
338 	if (ec)
339 		time ^= ec->data;
340 	/*
341 	 * We fold the time value as much as possible to ensure that as many
342 	 * bits of the time stamp are included as possible.
343 	 */
344 	for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
345 		shuffle ^= time & mask;
346 		time = time >> bits;
347 	}
348 
349 	/*
350 	 * We add a lower boundary value to ensure we have a minimum
351 	 * RNG loop count.
352 	 */
353 	return (shuffle + (1<<min));
354 }
355 
356 /**
357  * CPU Jitter noise source -- this is the noise source based on the CPU
358  *			      execution time jitter
359  *
360  * This function injects the individual bits of the time value into the
361  * entropy pool using an LFSR.
362  *
363  * The code is deliberately inefficient with respect to the bit shifting
364  * and shall stay that way. This function is the root cause why the code
365  * shall be compiled without optimization. This function not only acts as
366  * folding operation, but this function's execution is used to measure
367  * the CPU execution time jitter. Any change to the loop in this function
368  * implies that careful retesting must be done.
369  *
370  * @ec [in] entropy collector struct
371  * @time [in] time stamp to be injected
372  * @loop_cnt [in] if a value not equal to 0 is set, use the given value as
373  *		  number of loops to perform the folding
374  * @stuck [in] Is the time stamp identified as stuck?
375  *
376  * Output:
377  * updated ec->data
378  *
379  * @return Number of loops the folding operation is performed
380  */
jent_lfsr_time(struct rand_data * ec,__u64 time,__u64 loop_cnt,int stuck)381 static void jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt,
382 			   int stuck)
383 {
384 	unsigned int i;
385 	__u64 j = 0;
386 	__u64 new = 0;
387 #define MAX_FOLD_LOOP_BIT 4
388 #define MIN_FOLD_LOOP_BIT 0
389 	__u64 fold_loop_cnt =
390 		jent_loop_shuffle(ec, MAX_FOLD_LOOP_BIT, MIN_FOLD_LOOP_BIT);
391 
392 	/*
393 	 * testing purposes -- allow test app to set the counter, not
394 	 * needed during runtime
395 	 */
396 	if (loop_cnt)
397 		fold_loop_cnt = loop_cnt;
398 	for (j = 0; j < fold_loop_cnt; j++) {
399 		new = ec->data;
400 		for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
401 			__u64 tmp = time << (DATA_SIZE_BITS - i);
402 
403 			tmp = tmp >> (DATA_SIZE_BITS - 1);
404 
405 			/*
406 			* Fibonacci LSFR with polynomial of
407 			*  x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
408 			*  primitive according to
409 			*   http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
410 			* (the shift values are the polynomial values minus one
411 			* due to counting bits from 0 to 63). As the current
412 			* position is always the LSB, the polynomial only needs
413 			* to shift data in from the left without wrap.
414 			*/
415 			tmp ^= ((new >> 63) & 1);
416 			tmp ^= ((new >> 60) & 1);
417 			tmp ^= ((new >> 55) & 1);
418 			tmp ^= ((new >> 30) & 1);
419 			tmp ^= ((new >> 27) & 1);
420 			tmp ^= ((new >> 22) & 1);
421 			new <<= 1;
422 			new ^= tmp;
423 		}
424 	}
425 
426 	/*
427 	 * If the time stamp is stuck, do not finally insert the value into
428 	 * the entropy pool. Although this operation should not do any harm
429 	 * even when the time stamp has no entropy, SP800-90B requires that
430 	 * any conditioning operation (SP800-90B considers the LFSR to be a
431 	 * conditioning operation) to have an identical amount of input
432 	 * data according to section 3.1.5.
433 	 */
434 	if (!stuck)
435 		ec->data = new;
436 }
437 
438 /**
439  * Memory Access noise source -- this is a noise source based on variations in
440  *				 memory access times
441  *
442  * This function performs memory accesses which will add to the timing
443  * variations due to an unknown amount of CPU wait states that need to be
444  * added when accessing memory. The memory size should be larger than the L1
445  * caches as outlined in the documentation and the associated testing.
446  *
447  * The L1 cache has a very high bandwidth, albeit its access rate is  usually
448  * slower than accessing CPU registers. Therefore, L1 accesses only add minimal
449  * variations as the CPU has hardly to wait. Starting with L2, significant
450  * variations are added because L2 typically does not belong to the CPU any more
451  * and therefore a wider range of CPU wait states is necessary for accesses.
452  * L3 and real memory accesses have even a wider range of wait states. However,
453  * to reliably access either L3 or memory, the ec->mem memory must be quite
454  * large which is usually not desirable.
455  *
456  * @ec [in] Reference to the entropy collector with the memory access data -- if
457  *	    the reference to the memory block to be accessed is NULL, this noise
458  *	    source is disabled
459  * @loop_cnt [in] if a value not equal to 0 is set, use the given value
460  *		  number of loops to perform the LFSR
461  */
jent_memaccess(struct rand_data * ec,__u64 loop_cnt)462 static void jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
463 {
464 	unsigned int wrap = 0;
465 	__u64 i = 0;
466 #define MAX_ACC_LOOP_BIT 7
467 #define MIN_ACC_LOOP_BIT 0
468 	__u64 acc_loop_cnt =
469 		jent_loop_shuffle(ec, MAX_ACC_LOOP_BIT, MIN_ACC_LOOP_BIT);
470 
471 	if (NULL == ec || NULL == ec->mem)
472 		return;
473 	wrap = ec->memblocksize * ec->memblocks;
474 
475 	/*
476 	 * testing purposes -- allow test app to set the counter, not
477 	 * needed during runtime
478 	 */
479 	if (loop_cnt)
480 		acc_loop_cnt = loop_cnt;
481 
482 	for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
483 		unsigned char *tmpval = ec->mem + ec->memlocation;
484 		/*
485 		 * memory access: just add 1 to one byte,
486 		 * wrap at 255 -- memory access implies read
487 		 * from and write to memory location
488 		 */
489 		*tmpval = (*tmpval + 1) & 0xff;
490 		/*
491 		 * Addition of memblocksize - 1 to pointer
492 		 * with wrap around logic to ensure that every
493 		 * memory location is hit evenly
494 		 */
495 		ec->memlocation = ec->memlocation + ec->memblocksize - 1;
496 		ec->memlocation = ec->memlocation % wrap;
497 	}
498 }
499 
500 /***************************************************************************
501  * Start of entropy processing logic
502  ***************************************************************************/
503 /**
504  * This is the heart of the entropy generation: calculate time deltas and
505  * use the CPU jitter in the time deltas. The jitter is injected into the
506  * entropy pool.
507  *
508  * WARNING: ensure that ->prev_time is primed before using the output
509  *	    of this function! This can be done by calling this function
510  *	    and not using its result.
511  *
512  * @ec [in] Reference to entropy collector
513  *
514  * @return result of stuck test
515  */
jent_measure_jitter(struct rand_data * ec)516 static int jent_measure_jitter(struct rand_data *ec)
517 {
518 	__u64 time = 0;
519 	__u64 current_delta = 0;
520 	int stuck;
521 
522 	/* Invoke one noise source before time measurement to add variations */
523 	jent_memaccess(ec, 0);
524 
525 	/*
526 	 * Get time stamp and calculate time delta to previous
527 	 * invocation to measure the timing variations
528 	 */
529 	jent_get_nstime(&time);
530 	current_delta = jent_delta(ec->prev_time, time);
531 	ec->prev_time = time;
532 
533 	/* Check whether we have a stuck measurement. */
534 	stuck = jent_stuck(ec, current_delta);
535 
536 	/* Now call the next noise sources which also injects the data */
537 	jent_lfsr_time(ec, current_delta, 0, stuck);
538 
539 	return stuck;
540 }
541 
542 /**
543  * Generator of one 64 bit random number
544  * Function fills rand_data->data
545  *
546  * @ec [in] Reference to entropy collector
547  */
jent_gen_entropy(struct rand_data * ec)548 static void jent_gen_entropy(struct rand_data *ec)
549 {
550 	unsigned int k = 0;
551 
552 	/* priming of the ->prev_time value */
553 	jent_measure_jitter(ec);
554 
555 	while (1) {
556 		/* If a stuck measurement is received, repeat measurement */
557 		if (jent_measure_jitter(ec))
558 			continue;
559 
560 		/*
561 		 * We multiply the loop value with ->osr to obtain the
562 		 * oversampling rate requested by the caller
563 		 */
564 		if (++k >= (DATA_SIZE_BITS * ec->osr))
565 			break;
566 	}
567 }
568 
569 /**
570  * Entry function: Obtain entropy for the caller.
571  *
572  * This function invokes the entropy gathering logic as often to generate
573  * as many bytes as requested by the caller. The entropy gathering logic
574  * creates 64 bit per invocation.
575  *
576  * This function truncates the last 64 bit entropy value output to the exact
577  * size specified by the caller.
578  *
579  * @ec [in] Reference to entropy collector
580  * @data [in] pointer to buffer for storing random data -- buffer must already
581  *	      exist
582  * @len [in] size of the buffer, specifying also the requested number of random
583  *	     in bytes
584  *
585  * @return 0 when request is fulfilled or an error
586  *
587  * The following error codes can occur:
588  *	-1	entropy_collector is NULL
589  *	-2	RCT failed
590  *	-3	APT test failed
591  */
jent_read_entropy(struct rand_data * ec,unsigned char * data,unsigned int len)592 int jent_read_entropy(struct rand_data *ec, unsigned char *data,
593 		      unsigned int len)
594 {
595 	unsigned char *p = data;
596 
597 	if (!ec)
598 		return -1;
599 
600 	while (0 < len) {
601 		unsigned int tocopy;
602 
603 		jent_gen_entropy(ec);
604 
605 		if (jent_health_failure(ec)) {
606 			int ret;
607 
608 			if (jent_rct_failure(ec))
609 				ret = -2;
610 			else
611 				ret = -3;
612 
613 			/*
614 			 * Re-initialize the noise source
615 			 *
616 			 * If the health test fails, the Jitter RNG remains
617 			 * in failure state and will return a health failure
618 			 * during next invocation.
619 			 */
620 			if (jent_entropy_init())
621 				return ret;
622 
623 			/* Set APT to initial state */
624 			jent_apt_reset(ec, 0);
625 			ec->apt_base_set = 0;
626 
627 			/* Set RCT to initial state */
628 			ec->rct_count = 0;
629 
630 			/* Re-enable Jitter RNG */
631 			ec->health_failure = 0;
632 
633 			/*
634 			 * Return the health test failure status to the
635 			 * caller as the generated value is not appropriate.
636 			 */
637 			return ret;
638 		}
639 
640 		if ((DATA_SIZE_BITS / 8) < len)
641 			tocopy = (DATA_SIZE_BITS / 8);
642 		else
643 			tocopy = len;
644 		jent_memcpy(p, &ec->data, tocopy);
645 
646 		len -= tocopy;
647 		p += tocopy;
648 	}
649 
650 	return 0;
651 }
652 
653 /***************************************************************************
654  * Initialization logic
655  ***************************************************************************/
656 
jent_entropy_collector_alloc(unsigned int osr,unsigned int flags)657 struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
658 					       unsigned int flags)
659 {
660 	struct rand_data *entropy_collector;
661 
662 	entropy_collector = jent_zalloc(sizeof(struct rand_data));
663 	if (!entropy_collector)
664 		return NULL;
665 
666 	if (!(flags & JENT_DISABLE_MEMORY_ACCESS)) {
667 		/* Allocate memory for adding variations based on memory
668 		 * access
669 		 */
670 		entropy_collector->mem = jent_zalloc(JENT_MEMORY_SIZE);
671 		if (!entropy_collector->mem) {
672 			jent_zfree(entropy_collector);
673 			return NULL;
674 		}
675 		entropy_collector->memblocksize = JENT_MEMORY_BLOCKSIZE;
676 		entropy_collector->memblocks = JENT_MEMORY_BLOCKS;
677 		entropy_collector->memaccessloops = JENT_MEMORY_ACCESSLOOPS;
678 	}
679 
680 	/* verify and set the oversampling rate */
681 	if (0 == osr)
682 		osr = 1; /* minimum sampling rate is 1 */
683 	entropy_collector->osr = osr;
684 
685 	/* fill the data pad with non-zero values */
686 	jent_gen_entropy(entropy_collector);
687 
688 	return entropy_collector;
689 }
690 
jent_entropy_collector_free(struct rand_data * entropy_collector)691 void jent_entropy_collector_free(struct rand_data *entropy_collector)
692 {
693 	jent_zfree(entropy_collector->mem);
694 	entropy_collector->mem = NULL;
695 	jent_zfree(entropy_collector);
696 }
697 
jent_entropy_init(void)698 int jent_entropy_init(void)
699 {
700 	int i;
701 	__u64 delta_sum = 0;
702 	__u64 old_delta = 0;
703 	unsigned int nonstuck = 0;
704 	int time_backwards = 0;
705 	int count_mod = 0;
706 	int count_stuck = 0;
707 	struct rand_data ec = { 0 };
708 
709 	/* Required for RCT */
710 	ec.osr = 1;
711 
712 	/* We could perform statistical tests here, but the problem is
713 	 * that we only have a few loop counts to do testing. These
714 	 * loop counts may show some slight skew and we produce
715 	 * false positives.
716 	 *
717 	 * Moreover, only old systems show potentially problematic
718 	 * jitter entropy that could potentially be caught here. But
719 	 * the RNG is intended for hardware that is available or widely
720 	 * used, but not old systems that are long out of favor. Thus,
721 	 * no statistical tests.
722 	 */
723 
724 	/*
725 	 * We could add a check for system capabilities such as clock_getres or
726 	 * check for CONFIG_X86_TSC, but it does not make much sense as the
727 	 * following sanity checks verify that we have a high-resolution
728 	 * timer.
729 	 */
730 	/*
731 	 * TESTLOOPCOUNT needs some loops to identify edge systems. 100 is
732 	 * definitely too little.
733 	 *
734 	 * SP800-90B requires at least 1024 initial test cycles.
735 	 */
736 #define TESTLOOPCOUNT 1024
737 #define CLEARCACHE 100
738 	for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
739 		__u64 time = 0;
740 		__u64 time2 = 0;
741 		__u64 delta = 0;
742 		unsigned int lowdelta = 0;
743 		int stuck;
744 
745 		/* Invoke core entropy collection logic */
746 		jent_get_nstime(&time);
747 		ec.prev_time = time;
748 		jent_lfsr_time(&ec, time, 0, 0);
749 		jent_get_nstime(&time2);
750 
751 		/* test whether timer works */
752 		if (!time || !time2)
753 			return JENT_ENOTIME;
754 		delta = jent_delta(time, time2);
755 		/*
756 		 * test whether timer is fine grained enough to provide
757 		 * delta even when called shortly after each other -- this
758 		 * implies that we also have a high resolution timer
759 		 */
760 		if (!delta)
761 			return JENT_ECOARSETIME;
762 
763 		stuck = jent_stuck(&ec, delta);
764 
765 		/*
766 		 * up to here we did not modify any variable that will be
767 		 * evaluated later, but we already performed some work. Thus we
768 		 * already have had an impact on the caches, branch prediction,
769 		 * etc. with the goal to clear it to get the worst case
770 		 * measurements.
771 		 */
772 		if (CLEARCACHE > i)
773 			continue;
774 
775 		if (stuck)
776 			count_stuck++;
777 		else {
778 			nonstuck++;
779 
780 			/*
781 			 * Ensure that the APT succeeded.
782 			 *
783 			 * With the check below that count_stuck must be less
784 			 * than 10% of the overall generated raw entropy values
785 			 * it is guaranteed that the APT is invoked at
786 			 * floor((TESTLOOPCOUNT * 0.9) / 64) == 14 times.
787 			 */
788 			if ((nonstuck % JENT_APT_WINDOW_SIZE) == 0) {
789 				jent_apt_reset(&ec,
790 					       delta & JENT_APT_WORD_MASK);
791 				if (jent_health_failure(&ec))
792 					return JENT_EHEALTH;
793 			}
794 		}
795 
796 		/* Validate RCT */
797 		if (jent_rct_failure(&ec))
798 			return JENT_ERCT;
799 
800 		/* test whether we have an increasing timer */
801 		if (!(time2 > time))
802 			time_backwards++;
803 
804 		/* use 32 bit value to ensure compilation on 32 bit arches */
805 		lowdelta = time2 - time;
806 		if (!(lowdelta % 100))
807 			count_mod++;
808 
809 		/*
810 		 * ensure that we have a varying delta timer which is necessary
811 		 * for the calculation of entropy -- perform this check
812 		 * only after the first loop is executed as we need to prime
813 		 * the old_data value
814 		 */
815 		if (delta > old_delta)
816 			delta_sum += (delta - old_delta);
817 		else
818 			delta_sum += (old_delta - delta);
819 		old_delta = delta;
820 	}
821 
822 	/*
823 	 * we allow up to three times the time running backwards.
824 	 * CLOCK_REALTIME is affected by adjtime and NTP operations. Thus,
825 	 * if such an operation just happens to interfere with our test, it
826 	 * should not fail. The value of 3 should cover the NTP case being
827 	 * performed during our test run.
828 	 */
829 	if (3 < time_backwards)
830 		return JENT_ENOMONOTONIC;
831 
832 	/*
833 	 * Variations of deltas of time must on average be larger
834 	 * than 1 to ensure the entropy estimation
835 	 * implied with 1 is preserved
836 	 */
837 	if ((delta_sum) <= 1)
838 		return JENT_EVARVAR;
839 
840 	/*
841 	 * Ensure that we have variations in the time stamp below 10 for at
842 	 * least 10% of all checks -- on some platforms, the counter increments
843 	 * in multiples of 100, but not always
844 	 */
845 	if ((TESTLOOPCOUNT/10 * 9) < count_mod)
846 		return JENT_ECOARSETIME;
847 
848 	/*
849 	 * If we have more than 90% stuck results, then this Jitter RNG is
850 	 * likely to not work well.
851 	 */
852 	if ((TESTLOOPCOUNT/10 * 9) < count_stuck)
853 		return JENT_ESTUCK;
854 
855 	return 0;
856 }
857