1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * gendisk handling
4 */
5
6 #include <linux/module.h>
7 #include <linux/ctype.h>
8 #include <linux/fs.h>
9 #include <linux/genhd.h>
10 #include <linux/kdev_t.h>
11 #include <linux/kernel.h>
12 #include <linux/blkdev.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/spinlock.h>
16 #include <linux/proc_fs.h>
17 #include <linux/seq_file.h>
18 #include <linux/slab.h>
19 #include <linux/kmod.h>
20 #include <linux/kobj_map.h>
21 #include <linux/mutex.h>
22 #include <linux/idr.h>
23 #include <linux/log2.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/badblocks.h>
26
27 #include "blk.h"
28
29 static DEFINE_MUTEX(block_class_lock);
30 static struct kobject *block_depr;
31
32 /* for extended dynamic devt allocation, currently only one major is used */
33 #define NR_EXT_DEVT (1 << MINORBITS)
34
35 /* For extended devt allocation. ext_devt_lock prevents look up
36 * results from going away underneath its user.
37 */
38 static DEFINE_SPINLOCK(ext_devt_lock);
39 static DEFINE_IDR(ext_devt_idr);
40
41 static void disk_check_events(struct disk_events *ev,
42 unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47
48 /*
49 * Set disk capacity and notify if the size is not currently
50 * zero and will not be set to zero
51 */
set_capacity_revalidate_and_notify(struct gendisk * disk,sector_t size,bool update_bdev)52 bool set_capacity_revalidate_and_notify(struct gendisk *disk, sector_t size,
53 bool update_bdev)
54 {
55 sector_t capacity = get_capacity(disk);
56
57 set_capacity(disk, size);
58 if (update_bdev)
59 revalidate_disk_size(disk, true);
60
61 if (capacity != size && capacity != 0 && size != 0) {
62 char *envp[] = { "RESIZE=1", NULL };
63
64 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
65 return true;
66 }
67
68 return false;
69 }
70
71 EXPORT_SYMBOL_GPL(set_capacity_revalidate_and_notify);
72
73 /*
74 * Format the device name of the indicated disk into the supplied buffer and
75 * return a pointer to that same buffer for convenience.
76 */
disk_name(struct gendisk * hd,int partno,char * buf)77 char *disk_name(struct gendisk *hd, int partno, char *buf)
78 {
79 if (!partno)
80 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
81 else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
82 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
83 else
84 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
85
86 return buf;
87 }
88
bdevname(struct block_device * bdev,char * buf)89 const char *bdevname(struct block_device *bdev, char *buf)
90 {
91 return disk_name(bdev->bd_disk, bdev->bd_partno, buf);
92 }
93 EXPORT_SYMBOL(bdevname);
94
part_stat_read_all(struct hd_struct * part,struct disk_stats * stat)95 static void part_stat_read_all(struct hd_struct *part, struct disk_stats *stat)
96 {
97 int cpu;
98
99 memset(stat, 0, sizeof(struct disk_stats));
100 for_each_possible_cpu(cpu) {
101 struct disk_stats *ptr = per_cpu_ptr(part->dkstats, cpu);
102 int group;
103
104 for (group = 0; group < NR_STAT_GROUPS; group++) {
105 stat->nsecs[group] += ptr->nsecs[group];
106 stat->sectors[group] += ptr->sectors[group];
107 stat->ios[group] += ptr->ios[group];
108 stat->merges[group] += ptr->merges[group];
109 }
110
111 stat->io_ticks += ptr->io_ticks;
112 }
113 }
114
part_in_flight(struct hd_struct * part)115 static unsigned int part_in_flight(struct hd_struct *part)
116 {
117 unsigned int inflight = 0;
118 int cpu;
119
120 for_each_possible_cpu(cpu) {
121 inflight += part_stat_local_read_cpu(part, in_flight[0], cpu) +
122 part_stat_local_read_cpu(part, in_flight[1], cpu);
123 }
124 if ((int)inflight < 0)
125 inflight = 0;
126
127 return inflight;
128 }
129
part_in_flight_rw(struct hd_struct * part,unsigned int inflight[2])130 static void part_in_flight_rw(struct hd_struct *part, unsigned int inflight[2])
131 {
132 int cpu;
133
134 inflight[0] = 0;
135 inflight[1] = 0;
136 for_each_possible_cpu(cpu) {
137 inflight[0] += part_stat_local_read_cpu(part, in_flight[0], cpu);
138 inflight[1] += part_stat_local_read_cpu(part, in_flight[1], cpu);
139 }
140 if ((int)inflight[0] < 0)
141 inflight[0] = 0;
142 if ((int)inflight[1] < 0)
143 inflight[1] = 0;
144 }
145
__disk_get_part(struct gendisk * disk,int partno)146 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
147 {
148 struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
149
150 if (unlikely(partno < 0 || partno >= ptbl->len))
151 return NULL;
152 return rcu_dereference(ptbl->part[partno]);
153 }
154
155 /**
156 * disk_get_part - get partition
157 * @disk: disk to look partition from
158 * @partno: partition number
159 *
160 * Look for partition @partno from @disk. If found, increment
161 * reference count and return it.
162 *
163 * CONTEXT:
164 * Don't care.
165 *
166 * RETURNS:
167 * Pointer to the found partition on success, NULL if not found.
168 */
disk_get_part(struct gendisk * disk,int partno)169 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
170 {
171 struct hd_struct *part;
172
173 rcu_read_lock();
174 part = __disk_get_part(disk, partno);
175 if (part)
176 get_device(part_to_dev(part));
177 rcu_read_unlock();
178
179 return part;
180 }
181
182 /**
183 * disk_part_iter_init - initialize partition iterator
184 * @piter: iterator to initialize
185 * @disk: disk to iterate over
186 * @flags: DISK_PITER_* flags
187 *
188 * Initialize @piter so that it iterates over partitions of @disk.
189 *
190 * CONTEXT:
191 * Don't care.
192 */
disk_part_iter_init(struct disk_part_iter * piter,struct gendisk * disk,unsigned int flags)193 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
194 unsigned int flags)
195 {
196 struct disk_part_tbl *ptbl;
197
198 rcu_read_lock();
199 ptbl = rcu_dereference(disk->part_tbl);
200
201 piter->disk = disk;
202 piter->part = NULL;
203
204 if (flags & DISK_PITER_REVERSE)
205 piter->idx = ptbl->len - 1;
206 else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
207 piter->idx = 0;
208 else
209 piter->idx = 1;
210
211 piter->flags = flags;
212
213 rcu_read_unlock();
214 }
215 EXPORT_SYMBOL_GPL(disk_part_iter_init);
216
217 /**
218 * disk_part_iter_next - proceed iterator to the next partition and return it
219 * @piter: iterator of interest
220 *
221 * Proceed @piter to the next partition and return it.
222 *
223 * CONTEXT:
224 * Don't care.
225 */
disk_part_iter_next(struct disk_part_iter * piter)226 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
227 {
228 struct disk_part_tbl *ptbl;
229 int inc, end;
230
231 /* put the last partition */
232 disk_put_part(piter->part);
233 piter->part = NULL;
234
235 /* get part_tbl */
236 rcu_read_lock();
237 ptbl = rcu_dereference(piter->disk->part_tbl);
238
239 /* determine iteration parameters */
240 if (piter->flags & DISK_PITER_REVERSE) {
241 inc = -1;
242 if (piter->flags & (DISK_PITER_INCL_PART0 |
243 DISK_PITER_INCL_EMPTY_PART0))
244 end = -1;
245 else
246 end = 0;
247 } else {
248 inc = 1;
249 end = ptbl->len;
250 }
251
252 /* iterate to the next partition */
253 for (; piter->idx != end; piter->idx += inc) {
254 struct hd_struct *part;
255
256 part = rcu_dereference(ptbl->part[piter->idx]);
257 if (!part)
258 continue;
259 if (!part_nr_sects_read(part) &&
260 !(piter->flags & DISK_PITER_INCL_EMPTY) &&
261 !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
262 piter->idx == 0))
263 continue;
264
265 get_device(part_to_dev(part));
266 piter->part = part;
267 piter->idx += inc;
268 break;
269 }
270
271 rcu_read_unlock();
272
273 return piter->part;
274 }
275 EXPORT_SYMBOL_GPL(disk_part_iter_next);
276
277 /**
278 * disk_part_iter_exit - finish up partition iteration
279 * @piter: iter of interest
280 *
281 * Called when iteration is over. Cleans up @piter.
282 *
283 * CONTEXT:
284 * Don't care.
285 */
disk_part_iter_exit(struct disk_part_iter * piter)286 void disk_part_iter_exit(struct disk_part_iter *piter)
287 {
288 disk_put_part(piter->part);
289 piter->part = NULL;
290 }
291 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
292
sector_in_part(struct hd_struct * part,sector_t sector)293 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
294 {
295 return part->start_sect <= sector &&
296 sector < part->start_sect + part_nr_sects_read(part);
297 }
298
299 /**
300 * disk_map_sector_rcu - map sector to partition
301 * @disk: gendisk of interest
302 * @sector: sector to map
303 *
304 * Find out which partition @sector maps to on @disk. This is
305 * primarily used for stats accounting.
306 *
307 * CONTEXT:
308 * RCU read locked. The returned partition pointer is always valid
309 * because its refcount is grabbed except for part0, which lifetime
310 * is same with the disk.
311 *
312 * RETURNS:
313 * Found partition on success, part0 is returned if no partition matches
314 * or the matched partition is being deleted.
315 */
disk_map_sector_rcu(struct gendisk * disk,sector_t sector)316 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
317 {
318 struct disk_part_tbl *ptbl;
319 struct hd_struct *part;
320 int i;
321
322 rcu_read_lock();
323 ptbl = rcu_dereference(disk->part_tbl);
324
325 part = rcu_dereference(ptbl->last_lookup);
326 if (part && sector_in_part(part, sector) && hd_struct_try_get(part))
327 goto out_unlock;
328
329 for (i = 1; i < ptbl->len; i++) {
330 part = rcu_dereference(ptbl->part[i]);
331
332 if (part && sector_in_part(part, sector)) {
333 /*
334 * only live partition can be cached for lookup,
335 * so use-after-free on cached & deleting partition
336 * can be avoided
337 */
338 if (!hd_struct_try_get(part))
339 break;
340 rcu_assign_pointer(ptbl->last_lookup, part);
341 goto out_unlock;
342 }
343 }
344
345 part = &disk->part0;
346 out_unlock:
347 rcu_read_unlock();
348 return part;
349 }
350
351 /**
352 * disk_has_partitions
353 * @disk: gendisk of interest
354 *
355 * Walk through the partition table and check if valid partition exists.
356 *
357 * CONTEXT:
358 * Don't care.
359 *
360 * RETURNS:
361 * True if the gendisk has at least one valid non-zero size partition.
362 * Otherwise false.
363 */
disk_has_partitions(struct gendisk * disk)364 bool disk_has_partitions(struct gendisk *disk)
365 {
366 struct disk_part_tbl *ptbl;
367 int i;
368 bool ret = false;
369
370 rcu_read_lock();
371 ptbl = rcu_dereference(disk->part_tbl);
372
373 /* Iterate partitions skipping the whole device at index 0 */
374 for (i = 1; i < ptbl->len; i++) {
375 if (rcu_dereference(ptbl->part[i])) {
376 ret = true;
377 break;
378 }
379 }
380
381 rcu_read_unlock();
382
383 return ret;
384 }
385 EXPORT_SYMBOL_GPL(disk_has_partitions);
386
387 /*
388 * Can be deleted altogether. Later.
389 *
390 */
391 #define BLKDEV_MAJOR_HASH_SIZE 255
392 static struct blk_major_name {
393 struct blk_major_name *next;
394 int major;
395 char name[16];
396 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
397
398 /* index in the above - for now: assume no multimajor ranges */
major_to_index(unsigned major)399 static inline int major_to_index(unsigned major)
400 {
401 return major % BLKDEV_MAJOR_HASH_SIZE;
402 }
403
404 #ifdef CONFIG_PROC_FS
blkdev_show(struct seq_file * seqf,off_t offset)405 void blkdev_show(struct seq_file *seqf, off_t offset)
406 {
407 struct blk_major_name *dp;
408
409 mutex_lock(&block_class_lock);
410 for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
411 if (dp->major == offset)
412 seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
413 mutex_unlock(&block_class_lock);
414 }
415 #endif /* CONFIG_PROC_FS */
416
417 /**
418 * register_blkdev - register a new block device
419 *
420 * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
421 * @major = 0, try to allocate any unused major number.
422 * @name: the name of the new block device as a zero terminated string
423 *
424 * The @name must be unique within the system.
425 *
426 * The return value depends on the @major input parameter:
427 *
428 * - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
429 * then the function returns zero on success, or a negative error code
430 * - if any unused major number was requested with @major = 0 parameter
431 * then the return value is the allocated major number in range
432 * [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
433 *
434 * See Documentation/admin-guide/devices.txt for the list of allocated
435 * major numbers.
436 */
register_blkdev(unsigned int major,const char * name)437 int register_blkdev(unsigned int major, const char *name)
438 {
439 struct blk_major_name **n, *p;
440 int index, ret = 0;
441
442 mutex_lock(&block_class_lock);
443
444 /* temporary */
445 if (major == 0) {
446 for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
447 if (major_names[index] == NULL)
448 break;
449 }
450
451 if (index == 0) {
452 printk("%s: failed to get major for %s\n",
453 __func__, name);
454 ret = -EBUSY;
455 goto out;
456 }
457 major = index;
458 ret = major;
459 }
460
461 if (major >= BLKDEV_MAJOR_MAX) {
462 pr_err("%s: major requested (%u) is greater than the maximum (%u) for %s\n",
463 __func__, major, BLKDEV_MAJOR_MAX-1, name);
464
465 ret = -EINVAL;
466 goto out;
467 }
468
469 p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
470 if (p == NULL) {
471 ret = -ENOMEM;
472 goto out;
473 }
474
475 p->major = major;
476 strlcpy(p->name, name, sizeof(p->name));
477 p->next = NULL;
478 index = major_to_index(major);
479
480 for (n = &major_names[index]; *n; n = &(*n)->next) {
481 if ((*n)->major == major)
482 break;
483 }
484 if (!*n)
485 *n = p;
486 else
487 ret = -EBUSY;
488
489 if (ret < 0) {
490 printk("register_blkdev: cannot get major %u for %s\n",
491 major, name);
492 kfree(p);
493 }
494 out:
495 mutex_unlock(&block_class_lock);
496 return ret;
497 }
498
499 EXPORT_SYMBOL(register_blkdev);
500
unregister_blkdev(unsigned int major,const char * name)501 void unregister_blkdev(unsigned int major, const char *name)
502 {
503 struct blk_major_name **n;
504 struct blk_major_name *p = NULL;
505 int index = major_to_index(major);
506
507 mutex_lock(&block_class_lock);
508 for (n = &major_names[index]; *n; n = &(*n)->next)
509 if ((*n)->major == major)
510 break;
511 if (!*n || strcmp((*n)->name, name)) {
512 WARN_ON(1);
513 } else {
514 p = *n;
515 *n = p->next;
516 }
517 mutex_unlock(&block_class_lock);
518 kfree(p);
519 }
520
521 EXPORT_SYMBOL(unregister_blkdev);
522
523 static struct kobj_map *bdev_map;
524
525 /**
526 * blk_mangle_minor - scatter minor numbers apart
527 * @minor: minor number to mangle
528 *
529 * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
530 * is enabled. Mangling twice gives the original value.
531 *
532 * RETURNS:
533 * Mangled value.
534 *
535 * CONTEXT:
536 * Don't care.
537 */
blk_mangle_minor(int minor)538 static int blk_mangle_minor(int minor)
539 {
540 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
541 int i;
542
543 for (i = 0; i < MINORBITS / 2; i++) {
544 int low = minor & (1 << i);
545 int high = minor & (1 << (MINORBITS - 1 - i));
546 int distance = MINORBITS - 1 - 2 * i;
547
548 minor ^= low | high; /* clear both bits */
549 low <<= distance; /* swap the positions */
550 high >>= distance;
551 minor |= low | high; /* and set */
552 }
553 #endif
554 return minor;
555 }
556
557 /**
558 * blk_alloc_devt - allocate a dev_t for a partition
559 * @part: partition to allocate dev_t for
560 * @devt: out parameter for resulting dev_t
561 *
562 * Allocate a dev_t for block device.
563 *
564 * RETURNS:
565 * 0 on success, allocated dev_t is returned in *@devt. -errno on
566 * failure.
567 *
568 * CONTEXT:
569 * Might sleep.
570 */
blk_alloc_devt(struct hd_struct * part,dev_t * devt)571 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
572 {
573 struct gendisk *disk = part_to_disk(part);
574 int idx;
575
576 /* in consecutive minor range? */
577 if (part->partno < disk->minors) {
578 *devt = MKDEV(disk->major, disk->first_minor + part->partno);
579 return 0;
580 }
581
582 /* allocate ext devt */
583 idr_preload(GFP_KERNEL);
584
585 spin_lock_bh(&ext_devt_lock);
586 idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
587 spin_unlock_bh(&ext_devt_lock);
588
589 idr_preload_end();
590 if (idx < 0)
591 return idx == -ENOSPC ? -EBUSY : idx;
592
593 *devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
594 return 0;
595 }
596
597 /**
598 * blk_free_devt - free a dev_t
599 * @devt: dev_t to free
600 *
601 * Free @devt which was allocated using blk_alloc_devt().
602 *
603 * CONTEXT:
604 * Might sleep.
605 */
blk_free_devt(dev_t devt)606 void blk_free_devt(dev_t devt)
607 {
608 if (devt == MKDEV(0, 0))
609 return;
610
611 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
612 spin_lock_bh(&ext_devt_lock);
613 idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
614 spin_unlock_bh(&ext_devt_lock);
615 }
616 }
617
618 /*
619 * We invalidate devt by assigning NULL pointer for devt in idr.
620 */
blk_invalidate_devt(dev_t devt)621 void blk_invalidate_devt(dev_t devt)
622 {
623 if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
624 spin_lock_bh(&ext_devt_lock);
625 idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
626 spin_unlock_bh(&ext_devt_lock);
627 }
628 }
629
bdevt_str(dev_t devt,char * buf)630 static char *bdevt_str(dev_t devt, char *buf)
631 {
632 if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
633 char tbuf[BDEVT_SIZE];
634 snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
635 snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
636 } else
637 snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
638
639 return buf;
640 }
641
642 /*
643 * Register device numbers dev..(dev+range-1)
644 * range must be nonzero
645 * The hash chain is sorted on range, so that subranges can override.
646 */
blk_register_region(dev_t devt,unsigned long range,struct module * module,struct kobject * (* probe)(dev_t,int *,void *),int (* lock)(dev_t,void *),void * data)647 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
648 struct kobject *(*probe)(dev_t, int *, void *),
649 int (*lock)(dev_t, void *), void *data)
650 {
651 kobj_map(bdev_map, devt, range, module, probe, lock, data);
652 }
653
654 EXPORT_SYMBOL(blk_register_region);
655
blk_unregister_region(dev_t devt,unsigned long range)656 void blk_unregister_region(dev_t devt, unsigned long range)
657 {
658 kobj_unmap(bdev_map, devt, range);
659 }
660
661 EXPORT_SYMBOL(blk_unregister_region);
662
exact_match(dev_t devt,int * partno,void * data)663 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
664 {
665 struct gendisk *p = data;
666
667 return &disk_to_dev(p)->kobj;
668 }
669
exact_lock(dev_t devt,void * data)670 static int exact_lock(dev_t devt, void *data)
671 {
672 struct gendisk *p = data;
673
674 if (!get_disk_and_module(p))
675 return -1;
676 return 0;
677 }
678
disk_scan_partitions(struct gendisk * disk)679 static void disk_scan_partitions(struct gendisk *disk)
680 {
681 struct block_device *bdev;
682
683 if (!get_capacity(disk) || !disk_part_scan_enabled(disk))
684 return;
685
686 set_bit(GD_NEED_PART_SCAN, &disk->state);
687 bdev = blkdev_get_by_dev(disk_devt(disk), FMODE_READ, NULL);
688 if (!IS_ERR(bdev))
689 blkdev_put(bdev, FMODE_READ);
690 }
691
register_disk(struct device * parent,struct gendisk * disk,const struct attribute_group ** groups)692 static void register_disk(struct device *parent, struct gendisk *disk,
693 const struct attribute_group **groups)
694 {
695 struct device *ddev = disk_to_dev(disk);
696 struct disk_part_iter piter;
697 struct hd_struct *part;
698 int err;
699
700 ddev->parent = parent;
701
702 dev_set_name(ddev, "%s", disk->disk_name);
703
704 /* delay uevents, until we scanned partition table */
705 dev_set_uevent_suppress(ddev, 1);
706
707 if (groups) {
708 WARN_ON(ddev->groups);
709 ddev->groups = groups;
710 }
711 if (device_add(ddev))
712 return;
713 if (!sysfs_deprecated) {
714 err = sysfs_create_link(block_depr, &ddev->kobj,
715 kobject_name(&ddev->kobj));
716 if (err) {
717 device_del(ddev);
718 return;
719 }
720 }
721
722 /*
723 * avoid probable deadlock caused by allocating memory with
724 * GFP_KERNEL in runtime_resume callback of its all ancestor
725 * devices
726 */
727 pm_runtime_set_memalloc_noio(ddev, true);
728
729 disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
730 disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
731
732 if (disk->flags & GENHD_FL_HIDDEN) {
733 dev_set_uevent_suppress(ddev, 0);
734 return;
735 }
736
737 disk_scan_partitions(disk);
738
739 /* announce disk after possible partitions are created */
740 dev_set_uevent_suppress(ddev, 0);
741 kobject_uevent(&ddev->kobj, KOBJ_ADD);
742
743 /* announce possible partitions */
744 disk_part_iter_init(&piter, disk, 0);
745 while ((part = disk_part_iter_next(&piter)))
746 kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
747 disk_part_iter_exit(&piter);
748
749 if (disk->queue->backing_dev_info->dev) {
750 err = sysfs_create_link(&ddev->kobj,
751 &disk->queue->backing_dev_info->dev->kobj,
752 "bdi");
753 WARN_ON(err);
754 }
755 }
756
757 /**
758 * __device_add_disk - add disk information to kernel list
759 * @parent: parent device for the disk
760 * @disk: per-device partitioning information
761 * @groups: Additional per-device sysfs groups
762 * @register_queue: register the queue if set to true
763 *
764 * This function registers the partitioning information in @disk
765 * with the kernel.
766 *
767 * FIXME: error handling
768 */
__device_add_disk(struct device * parent,struct gendisk * disk,const struct attribute_group ** groups,bool register_queue)769 static void __device_add_disk(struct device *parent, struct gendisk *disk,
770 const struct attribute_group **groups,
771 bool register_queue)
772 {
773 dev_t devt;
774 int retval;
775
776 /*
777 * The disk queue should now be all set with enough information about
778 * the device for the elevator code to pick an adequate default
779 * elevator if one is needed, that is, for devices requesting queue
780 * registration.
781 */
782 if (register_queue)
783 elevator_init_mq(disk->queue);
784
785 /* minors == 0 indicates to use ext devt from part0 and should
786 * be accompanied with EXT_DEVT flag. Make sure all
787 * parameters make sense.
788 */
789 WARN_ON(disk->minors && !(disk->major || disk->first_minor));
790 WARN_ON(!disk->minors &&
791 !(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
792
793 disk->flags |= GENHD_FL_UP;
794
795 retval = blk_alloc_devt(&disk->part0, &devt);
796 if (retval) {
797 WARN_ON(1);
798 return;
799 }
800 disk->major = MAJOR(devt);
801 disk->first_minor = MINOR(devt);
802
803 disk_alloc_events(disk);
804
805 if (disk->flags & GENHD_FL_HIDDEN) {
806 /*
807 * Don't let hidden disks show up in /proc/partitions,
808 * and don't bother scanning for partitions either.
809 */
810 disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
811 disk->flags |= GENHD_FL_NO_PART_SCAN;
812 } else {
813 struct backing_dev_info *bdi = disk->queue->backing_dev_info;
814 struct device *dev = disk_to_dev(disk);
815 int ret;
816
817 /* Register BDI before referencing it from bdev */
818 dev->devt = devt;
819 ret = bdi_register(bdi, "%u:%u", MAJOR(devt), MINOR(devt));
820 WARN_ON(ret);
821 bdi_set_owner(bdi, dev);
822 blk_register_region(disk_devt(disk), disk->minors, NULL,
823 exact_match, exact_lock, disk);
824 }
825 register_disk(parent, disk, groups);
826 if (register_queue)
827 blk_register_queue(disk);
828
829 /*
830 * Take an extra ref on queue which will be put on disk_release()
831 * so that it sticks around as long as @disk is there.
832 */
833 WARN_ON_ONCE(!blk_get_queue(disk->queue));
834
835 disk_add_events(disk);
836 blk_integrity_add(disk);
837 }
838
device_add_disk(struct device * parent,struct gendisk * disk,const struct attribute_group ** groups)839 void device_add_disk(struct device *parent, struct gendisk *disk,
840 const struct attribute_group **groups)
841
842 {
843 __device_add_disk(parent, disk, groups, true);
844 }
845 EXPORT_SYMBOL(device_add_disk);
846
device_add_disk_no_queue_reg(struct device * parent,struct gendisk * disk)847 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
848 {
849 __device_add_disk(parent, disk, NULL, false);
850 }
851 EXPORT_SYMBOL(device_add_disk_no_queue_reg);
852
invalidate_partition(struct gendisk * disk,int partno)853 static void invalidate_partition(struct gendisk *disk, int partno)
854 {
855 struct block_device *bdev;
856
857 bdev = bdget_disk(disk, partno);
858 if (!bdev)
859 return;
860
861 fsync_bdev(bdev);
862 __invalidate_device(bdev, true);
863
864 /*
865 * Unhash the bdev inode for this device so that it gets evicted as soon
866 * as last inode reference is dropped.
867 */
868 remove_inode_hash(bdev->bd_inode);
869 bdput(bdev);
870 }
871
872 /**
873 * del_gendisk - remove the gendisk
874 * @disk: the struct gendisk to remove
875 *
876 * Removes the gendisk and all its associated resources. This deletes the
877 * partitions associated with the gendisk, and unregisters the associated
878 * request_queue.
879 *
880 * This is the counter to the respective __device_add_disk() call.
881 *
882 * The final removal of the struct gendisk happens when its refcount reaches 0
883 * with put_disk(), which should be called after del_gendisk(), if
884 * __device_add_disk() was used.
885 *
886 * Drivers exist which depend on the release of the gendisk to be synchronous,
887 * it should not be deferred.
888 *
889 * Context: can sleep
890 */
del_gendisk(struct gendisk * disk)891 void del_gendisk(struct gendisk *disk)
892 {
893 struct disk_part_iter piter;
894 struct hd_struct *part;
895
896 might_sleep();
897
898 blk_integrity_del(disk);
899 disk_del_events(disk);
900
901 /*
902 * Block lookups of the disk until all bdevs are unhashed and the
903 * disk is marked as dead (GENHD_FL_UP cleared).
904 */
905 down_write(&disk->lookup_sem);
906 /* invalidate stuff */
907 disk_part_iter_init(&piter, disk,
908 DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
909 while ((part = disk_part_iter_next(&piter))) {
910 invalidate_partition(disk, part->partno);
911 delete_partition(part);
912 }
913 disk_part_iter_exit(&piter);
914
915 invalidate_partition(disk, 0);
916 set_capacity(disk, 0);
917 disk->flags &= ~GENHD_FL_UP;
918 up_write(&disk->lookup_sem);
919
920 if (!(disk->flags & GENHD_FL_HIDDEN))
921 sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
922 if (disk->queue) {
923 /*
924 * Unregister bdi before releasing device numbers (as they can
925 * get reused and we'd get clashes in sysfs).
926 */
927 if (!(disk->flags & GENHD_FL_HIDDEN))
928 bdi_unregister(disk->queue->backing_dev_info);
929 blk_unregister_queue(disk);
930 } else {
931 WARN_ON(1);
932 }
933
934 if (!(disk->flags & GENHD_FL_HIDDEN))
935 blk_unregister_region(disk_devt(disk), disk->minors);
936 /*
937 * Remove gendisk pointer from idr so that it cannot be looked up
938 * while RCU period before freeing gendisk is running to prevent
939 * use-after-free issues. Note that the device number stays
940 * "in-use" until we really free the gendisk.
941 */
942 blk_invalidate_devt(disk_devt(disk));
943
944 kobject_put(disk->part0.holder_dir);
945 kobject_put(disk->slave_dir);
946
947 part_stat_set_all(&disk->part0, 0);
948 disk->part0.stamp = 0;
949 if (!sysfs_deprecated)
950 sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
951 pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
952 device_del(disk_to_dev(disk));
953 }
954 EXPORT_SYMBOL(del_gendisk);
955
956 /* sysfs access to bad-blocks list. */
disk_badblocks_show(struct device * dev,struct device_attribute * attr,char * page)957 static ssize_t disk_badblocks_show(struct device *dev,
958 struct device_attribute *attr,
959 char *page)
960 {
961 struct gendisk *disk = dev_to_disk(dev);
962
963 if (!disk->bb)
964 return sprintf(page, "\n");
965
966 return badblocks_show(disk->bb, page, 0);
967 }
968
disk_badblocks_store(struct device * dev,struct device_attribute * attr,const char * page,size_t len)969 static ssize_t disk_badblocks_store(struct device *dev,
970 struct device_attribute *attr,
971 const char *page, size_t len)
972 {
973 struct gendisk *disk = dev_to_disk(dev);
974
975 if (!disk->bb)
976 return -ENXIO;
977
978 return badblocks_store(disk->bb, page, len, 0);
979 }
980
981 /**
982 * get_gendisk - get partitioning information for a given device
983 * @devt: device to get partitioning information for
984 * @partno: returned partition index
985 *
986 * This function gets the structure containing partitioning
987 * information for the given device @devt.
988 *
989 * Context: can sleep
990 */
get_gendisk(dev_t devt,int * partno)991 struct gendisk *get_gendisk(dev_t devt, int *partno)
992 {
993 struct gendisk *disk = NULL;
994
995 might_sleep();
996
997 if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
998 struct kobject *kobj;
999
1000 kobj = kobj_lookup(bdev_map, devt, partno);
1001 if (kobj)
1002 disk = dev_to_disk(kobj_to_dev(kobj));
1003 } else {
1004 struct hd_struct *part;
1005
1006 spin_lock_bh(&ext_devt_lock);
1007 part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
1008 if (part && get_disk_and_module(part_to_disk(part))) {
1009 *partno = part->partno;
1010 disk = part_to_disk(part);
1011 }
1012 spin_unlock_bh(&ext_devt_lock);
1013 }
1014
1015 if (!disk)
1016 return NULL;
1017
1018 /*
1019 * Synchronize with del_gendisk() to not return disk that is being
1020 * destroyed.
1021 */
1022 down_read(&disk->lookup_sem);
1023 if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
1024 !(disk->flags & GENHD_FL_UP))) {
1025 up_read(&disk->lookup_sem);
1026 put_disk_and_module(disk);
1027 disk = NULL;
1028 } else {
1029 up_read(&disk->lookup_sem);
1030 }
1031 return disk;
1032 }
1033
1034 /**
1035 * bdget_disk - do bdget() by gendisk and partition number
1036 * @disk: gendisk of interest
1037 * @partno: partition number
1038 *
1039 * Find partition @partno from @disk, do bdget() on it.
1040 *
1041 * CONTEXT:
1042 * Don't care.
1043 *
1044 * RETURNS:
1045 * Resulting block_device on success, NULL on failure.
1046 */
bdget_disk(struct gendisk * disk,int partno)1047 struct block_device *bdget_disk(struct gendisk *disk, int partno)
1048 {
1049 struct hd_struct *part;
1050 struct block_device *bdev = NULL;
1051
1052 part = disk_get_part(disk, partno);
1053 if (part)
1054 bdev = bdget_part(part);
1055 disk_put_part(part);
1056
1057 return bdev;
1058 }
1059 EXPORT_SYMBOL(bdget_disk);
1060
1061 /*
1062 * print a full list of all partitions - intended for places where the root
1063 * filesystem can't be mounted and thus to give the victim some idea of what
1064 * went wrong
1065 */
printk_all_partitions(void)1066 void __init printk_all_partitions(void)
1067 {
1068 struct class_dev_iter iter;
1069 struct device *dev;
1070
1071 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1072 while ((dev = class_dev_iter_next(&iter))) {
1073 struct gendisk *disk = dev_to_disk(dev);
1074 struct disk_part_iter piter;
1075 struct hd_struct *part;
1076 char name_buf[BDEVNAME_SIZE];
1077 char devt_buf[BDEVT_SIZE];
1078
1079 /*
1080 * Don't show empty devices or things that have been
1081 * suppressed
1082 */
1083 if (get_capacity(disk) == 0 ||
1084 (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
1085 continue;
1086
1087 /*
1088 * Note, unlike /proc/partitions, I am showing the
1089 * numbers in hex - the same format as the root=
1090 * option takes.
1091 */
1092 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
1093 while ((part = disk_part_iter_next(&piter))) {
1094 bool is_part0 = part == &disk->part0;
1095
1096 printk("%s%s %10llu %s %s", is_part0 ? "" : " ",
1097 bdevt_str(part_devt(part), devt_buf),
1098 (unsigned long long)part_nr_sects_read(part) >> 1
1099 , disk_name(disk, part->partno, name_buf),
1100 part->info ? part->info->uuid : "");
1101 if (is_part0) {
1102 if (dev->parent && dev->parent->driver)
1103 printk(" driver: %s\n",
1104 dev->parent->driver->name);
1105 else
1106 printk(" (driver?)\n");
1107 } else
1108 printk("\n");
1109 }
1110 disk_part_iter_exit(&piter);
1111 }
1112 class_dev_iter_exit(&iter);
1113 }
1114
1115 #ifdef CONFIG_PROC_FS
1116 /* iterator */
disk_seqf_start(struct seq_file * seqf,loff_t * pos)1117 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
1118 {
1119 loff_t skip = *pos;
1120 struct class_dev_iter *iter;
1121 struct device *dev;
1122
1123 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
1124 if (!iter)
1125 return ERR_PTR(-ENOMEM);
1126
1127 seqf->private = iter;
1128 class_dev_iter_init(iter, &block_class, NULL, &disk_type);
1129 do {
1130 dev = class_dev_iter_next(iter);
1131 if (!dev)
1132 return NULL;
1133 } while (skip--);
1134
1135 return dev_to_disk(dev);
1136 }
1137
disk_seqf_next(struct seq_file * seqf,void * v,loff_t * pos)1138 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
1139 {
1140 struct device *dev;
1141
1142 (*pos)++;
1143 dev = class_dev_iter_next(seqf->private);
1144 if (dev)
1145 return dev_to_disk(dev);
1146
1147 return NULL;
1148 }
1149
disk_seqf_stop(struct seq_file * seqf,void * v)1150 static void disk_seqf_stop(struct seq_file *seqf, void *v)
1151 {
1152 struct class_dev_iter *iter = seqf->private;
1153
1154 /* stop is called even after start failed :-( */
1155 if (iter) {
1156 class_dev_iter_exit(iter);
1157 kfree(iter);
1158 seqf->private = NULL;
1159 }
1160 }
1161
show_partition_start(struct seq_file * seqf,loff_t * pos)1162 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1163 {
1164 void *p;
1165
1166 p = disk_seqf_start(seqf, pos);
1167 if (!IS_ERR_OR_NULL(p) && !*pos)
1168 seq_puts(seqf, "major minor #blocks name\n\n");
1169 return p;
1170 }
1171
show_partition(struct seq_file * seqf,void * v)1172 static int show_partition(struct seq_file *seqf, void *v)
1173 {
1174 struct gendisk *sgp = v;
1175 struct disk_part_iter piter;
1176 struct hd_struct *part;
1177 char buf[BDEVNAME_SIZE];
1178
1179 /* Don't show non-partitionable removeable devices or empty devices */
1180 if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1181 (sgp->flags & GENHD_FL_REMOVABLE)))
1182 return 0;
1183 if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1184 return 0;
1185
1186 /* show the full disk and all non-0 size partitions of it */
1187 disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1188 while ((part = disk_part_iter_next(&piter)))
1189 seq_printf(seqf, "%4d %7d %10llu %s\n",
1190 MAJOR(part_devt(part)), MINOR(part_devt(part)),
1191 (unsigned long long)part_nr_sects_read(part) >> 1,
1192 disk_name(sgp, part->partno, buf));
1193 disk_part_iter_exit(&piter);
1194
1195 return 0;
1196 }
1197
1198 static const struct seq_operations partitions_op = {
1199 .start = show_partition_start,
1200 .next = disk_seqf_next,
1201 .stop = disk_seqf_stop,
1202 .show = show_partition
1203 };
1204 #endif
1205
1206
base_probe(dev_t devt,int * partno,void * data)1207 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1208 {
1209 if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1210 /* Make old-style 2.4 aliases work */
1211 request_module("block-major-%d", MAJOR(devt));
1212 return NULL;
1213 }
1214
genhd_device_init(void)1215 static int __init genhd_device_init(void)
1216 {
1217 int error;
1218
1219 block_class.dev_kobj = sysfs_dev_block_kobj;
1220 error = class_register(&block_class);
1221 if (unlikely(error))
1222 return error;
1223 bdev_map = kobj_map_init(base_probe, &block_class_lock);
1224 blk_dev_init();
1225
1226 register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1227
1228 /* create top-level block dir */
1229 if (!sysfs_deprecated)
1230 block_depr = kobject_create_and_add("block", NULL);
1231 return 0;
1232 }
1233
1234 subsys_initcall(genhd_device_init);
1235
disk_range_show(struct device * dev,struct device_attribute * attr,char * buf)1236 static ssize_t disk_range_show(struct device *dev,
1237 struct device_attribute *attr, char *buf)
1238 {
1239 struct gendisk *disk = dev_to_disk(dev);
1240
1241 return sprintf(buf, "%d\n", disk->minors);
1242 }
1243
disk_ext_range_show(struct device * dev,struct device_attribute * attr,char * buf)1244 static ssize_t disk_ext_range_show(struct device *dev,
1245 struct device_attribute *attr, char *buf)
1246 {
1247 struct gendisk *disk = dev_to_disk(dev);
1248
1249 return sprintf(buf, "%d\n", disk_max_parts(disk));
1250 }
1251
disk_removable_show(struct device * dev,struct device_attribute * attr,char * buf)1252 static ssize_t disk_removable_show(struct device *dev,
1253 struct device_attribute *attr, char *buf)
1254 {
1255 struct gendisk *disk = dev_to_disk(dev);
1256
1257 return sprintf(buf, "%d\n",
1258 (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1259 }
1260
disk_hidden_show(struct device * dev,struct device_attribute * attr,char * buf)1261 static ssize_t disk_hidden_show(struct device *dev,
1262 struct device_attribute *attr, char *buf)
1263 {
1264 struct gendisk *disk = dev_to_disk(dev);
1265
1266 return sprintf(buf, "%d\n",
1267 (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1268 }
1269
disk_ro_show(struct device * dev,struct device_attribute * attr,char * buf)1270 static ssize_t disk_ro_show(struct device *dev,
1271 struct device_attribute *attr, char *buf)
1272 {
1273 struct gendisk *disk = dev_to_disk(dev);
1274
1275 return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1276 }
1277
part_size_show(struct device * dev,struct device_attribute * attr,char * buf)1278 ssize_t part_size_show(struct device *dev,
1279 struct device_attribute *attr, char *buf)
1280 {
1281 struct hd_struct *p = dev_to_part(dev);
1282
1283 return sprintf(buf, "%llu\n",
1284 (unsigned long long)part_nr_sects_read(p));
1285 }
1286
part_stat_show(struct device * dev,struct device_attribute * attr,char * buf)1287 ssize_t part_stat_show(struct device *dev,
1288 struct device_attribute *attr, char *buf)
1289 {
1290 struct hd_struct *p = dev_to_part(dev);
1291 struct request_queue *q = part_to_disk(p)->queue;
1292 struct disk_stats stat;
1293 unsigned int inflight;
1294
1295 part_stat_read_all(p, &stat);
1296 if (queue_is_mq(q))
1297 inflight = blk_mq_in_flight(q, p);
1298 else
1299 inflight = part_in_flight(p);
1300
1301 return sprintf(buf,
1302 "%8lu %8lu %8llu %8u "
1303 "%8lu %8lu %8llu %8u "
1304 "%8u %8u %8u "
1305 "%8lu %8lu %8llu %8u "
1306 "%8lu %8u"
1307 "\n",
1308 stat.ios[STAT_READ],
1309 stat.merges[STAT_READ],
1310 (unsigned long long)stat.sectors[STAT_READ],
1311 (unsigned int)div_u64(stat.nsecs[STAT_READ], NSEC_PER_MSEC),
1312 stat.ios[STAT_WRITE],
1313 stat.merges[STAT_WRITE],
1314 (unsigned long long)stat.sectors[STAT_WRITE],
1315 (unsigned int)div_u64(stat.nsecs[STAT_WRITE], NSEC_PER_MSEC),
1316 inflight,
1317 jiffies_to_msecs(stat.io_ticks),
1318 (unsigned int)div_u64(stat.nsecs[STAT_READ] +
1319 stat.nsecs[STAT_WRITE] +
1320 stat.nsecs[STAT_DISCARD] +
1321 stat.nsecs[STAT_FLUSH],
1322 NSEC_PER_MSEC),
1323 stat.ios[STAT_DISCARD],
1324 stat.merges[STAT_DISCARD],
1325 (unsigned long long)stat.sectors[STAT_DISCARD],
1326 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD], NSEC_PER_MSEC),
1327 stat.ios[STAT_FLUSH],
1328 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH], NSEC_PER_MSEC));
1329 }
1330
part_inflight_show(struct device * dev,struct device_attribute * attr,char * buf)1331 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
1332 char *buf)
1333 {
1334 struct hd_struct *p = dev_to_part(dev);
1335 struct request_queue *q = part_to_disk(p)->queue;
1336 unsigned int inflight[2];
1337
1338 if (queue_is_mq(q))
1339 blk_mq_in_flight_rw(q, p, inflight);
1340 else
1341 part_in_flight_rw(p, inflight);
1342
1343 return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
1344 }
1345
disk_capability_show(struct device * dev,struct device_attribute * attr,char * buf)1346 static ssize_t disk_capability_show(struct device *dev,
1347 struct device_attribute *attr, char *buf)
1348 {
1349 struct gendisk *disk = dev_to_disk(dev);
1350
1351 return sprintf(buf, "%x\n", disk->flags);
1352 }
1353
disk_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1354 static ssize_t disk_alignment_offset_show(struct device *dev,
1355 struct device_attribute *attr,
1356 char *buf)
1357 {
1358 struct gendisk *disk = dev_to_disk(dev);
1359
1360 return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1361 }
1362
disk_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)1363 static ssize_t disk_discard_alignment_show(struct device *dev,
1364 struct device_attribute *attr,
1365 char *buf)
1366 {
1367 struct gendisk *disk = dev_to_disk(dev);
1368
1369 return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1370 }
1371
1372 static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1373 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1374 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1375 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1376 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1377 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1378 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1379 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1380 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1381 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1382 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1383 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1384
1385 #ifdef CONFIG_FAIL_MAKE_REQUEST
part_fail_show(struct device * dev,struct device_attribute * attr,char * buf)1386 ssize_t part_fail_show(struct device *dev,
1387 struct device_attribute *attr, char *buf)
1388 {
1389 struct hd_struct *p = dev_to_part(dev);
1390
1391 return sprintf(buf, "%d\n", p->make_it_fail);
1392 }
1393
part_fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1394 ssize_t part_fail_store(struct device *dev,
1395 struct device_attribute *attr,
1396 const char *buf, size_t count)
1397 {
1398 struct hd_struct *p = dev_to_part(dev);
1399 int i;
1400
1401 if (count > 0 && sscanf(buf, "%d", &i) > 0)
1402 p->make_it_fail = (i == 0) ? 0 : 1;
1403
1404 return count;
1405 }
1406
1407 static struct device_attribute dev_attr_fail =
1408 __ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1409 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1410
1411 #ifdef CONFIG_FAIL_IO_TIMEOUT
1412 static struct device_attribute dev_attr_fail_timeout =
1413 __ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
1414 #endif
1415
1416 static struct attribute *disk_attrs[] = {
1417 &dev_attr_range.attr,
1418 &dev_attr_ext_range.attr,
1419 &dev_attr_removable.attr,
1420 &dev_attr_hidden.attr,
1421 &dev_attr_ro.attr,
1422 &dev_attr_size.attr,
1423 &dev_attr_alignment_offset.attr,
1424 &dev_attr_discard_alignment.attr,
1425 &dev_attr_capability.attr,
1426 &dev_attr_stat.attr,
1427 &dev_attr_inflight.attr,
1428 &dev_attr_badblocks.attr,
1429 #ifdef CONFIG_FAIL_MAKE_REQUEST
1430 &dev_attr_fail.attr,
1431 #endif
1432 #ifdef CONFIG_FAIL_IO_TIMEOUT
1433 &dev_attr_fail_timeout.attr,
1434 #endif
1435 NULL
1436 };
1437
disk_visible(struct kobject * kobj,struct attribute * a,int n)1438 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1439 {
1440 struct device *dev = container_of(kobj, typeof(*dev), kobj);
1441 struct gendisk *disk = dev_to_disk(dev);
1442
1443 if (a == &dev_attr_badblocks.attr && !disk->bb)
1444 return 0;
1445 return a->mode;
1446 }
1447
1448 static struct attribute_group disk_attr_group = {
1449 .attrs = disk_attrs,
1450 .is_visible = disk_visible,
1451 };
1452
1453 static const struct attribute_group *disk_attr_groups[] = {
1454 &disk_attr_group,
1455 NULL
1456 };
1457
1458 /**
1459 * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1460 * @disk: disk to replace part_tbl for
1461 * @new_ptbl: new part_tbl to install
1462 *
1463 * Replace disk->part_tbl with @new_ptbl in RCU-safe way. The
1464 * original ptbl is freed using RCU callback.
1465 *
1466 * LOCKING:
1467 * Matching bd_mutex locked or the caller is the only user of @disk.
1468 */
disk_replace_part_tbl(struct gendisk * disk,struct disk_part_tbl * new_ptbl)1469 static void disk_replace_part_tbl(struct gendisk *disk,
1470 struct disk_part_tbl *new_ptbl)
1471 {
1472 struct disk_part_tbl *old_ptbl =
1473 rcu_dereference_protected(disk->part_tbl, 1);
1474
1475 rcu_assign_pointer(disk->part_tbl, new_ptbl);
1476
1477 if (old_ptbl) {
1478 rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1479 kfree_rcu(old_ptbl, rcu_head);
1480 }
1481 }
1482
1483 /**
1484 * disk_expand_part_tbl - expand disk->part_tbl
1485 * @disk: disk to expand part_tbl for
1486 * @partno: expand such that this partno can fit in
1487 *
1488 * Expand disk->part_tbl such that @partno can fit in. disk->part_tbl
1489 * uses RCU to allow unlocked dereferencing for stats and other stuff.
1490 *
1491 * LOCKING:
1492 * Matching bd_mutex locked or the caller is the only user of @disk.
1493 * Might sleep.
1494 *
1495 * RETURNS:
1496 * 0 on success, -errno on failure.
1497 */
disk_expand_part_tbl(struct gendisk * disk,int partno)1498 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1499 {
1500 struct disk_part_tbl *old_ptbl =
1501 rcu_dereference_protected(disk->part_tbl, 1);
1502 struct disk_part_tbl *new_ptbl;
1503 int len = old_ptbl ? old_ptbl->len : 0;
1504 int i, target;
1505
1506 /*
1507 * check for int overflow, since we can get here from blkpg_ioctl()
1508 * with a user passed 'partno'.
1509 */
1510 target = partno + 1;
1511 if (target < 0)
1512 return -EINVAL;
1513
1514 /* disk_max_parts() is zero during initialization, ignore if so */
1515 if (disk_max_parts(disk) && target > disk_max_parts(disk))
1516 return -EINVAL;
1517
1518 if (target <= len)
1519 return 0;
1520
1521 new_ptbl = kzalloc_node(struct_size(new_ptbl, part, target), GFP_KERNEL,
1522 disk->node_id);
1523 if (!new_ptbl)
1524 return -ENOMEM;
1525
1526 new_ptbl->len = target;
1527
1528 for (i = 0; i < len; i++)
1529 rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1530
1531 disk_replace_part_tbl(disk, new_ptbl);
1532 return 0;
1533 }
1534
1535 /**
1536 * disk_release - releases all allocated resources of the gendisk
1537 * @dev: the device representing this disk
1538 *
1539 * This function releases all allocated resources of the gendisk.
1540 *
1541 * The struct gendisk refcount is incremented with get_gendisk() or
1542 * get_disk_and_module(), and its refcount is decremented with
1543 * put_disk_and_module() or put_disk(). Once the refcount reaches 0 this
1544 * function is called.
1545 *
1546 * Drivers which used __device_add_disk() have a gendisk with a request_queue
1547 * assigned. Since the request_queue sits on top of the gendisk for these
1548 * drivers we also call blk_put_queue() for them, and we expect the
1549 * request_queue refcount to reach 0 at this point, and so the request_queue
1550 * will also be freed prior to the disk.
1551 *
1552 * Context: can sleep
1553 */
disk_release(struct device * dev)1554 static void disk_release(struct device *dev)
1555 {
1556 struct gendisk *disk = dev_to_disk(dev);
1557
1558 might_sleep();
1559
1560 blk_free_devt(dev->devt);
1561 disk_release_events(disk);
1562 kfree(disk->random);
1563 disk_replace_part_tbl(disk, NULL);
1564 hd_free_part(&disk->part0);
1565 if (disk->queue)
1566 blk_put_queue(disk->queue);
1567 kfree(disk);
1568 }
1569 struct class block_class = {
1570 .name = "block",
1571 };
1572
block_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)1573 static char *block_devnode(struct device *dev, umode_t *mode,
1574 kuid_t *uid, kgid_t *gid)
1575 {
1576 struct gendisk *disk = dev_to_disk(dev);
1577
1578 if (disk->fops->devnode)
1579 return disk->fops->devnode(disk, mode);
1580 return NULL;
1581 }
1582
1583 const struct device_type disk_type = {
1584 .name = "disk",
1585 .groups = disk_attr_groups,
1586 .release = disk_release,
1587 .devnode = block_devnode,
1588 };
1589
1590 #ifdef CONFIG_PROC_FS
1591 /*
1592 * aggregate disk stat collector. Uses the same stats that the sysfs
1593 * entries do, above, but makes them available through one seq_file.
1594 *
1595 * The output looks suspiciously like /proc/partitions with a bunch of
1596 * extra fields.
1597 */
diskstats_show(struct seq_file * seqf,void * v)1598 static int diskstats_show(struct seq_file *seqf, void *v)
1599 {
1600 struct gendisk *gp = v;
1601 struct disk_part_iter piter;
1602 struct hd_struct *hd;
1603 char buf[BDEVNAME_SIZE];
1604 unsigned int inflight;
1605 struct disk_stats stat;
1606
1607 /*
1608 if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1609 seq_puts(seqf, "major minor name"
1610 " rio rmerge rsect ruse wio wmerge "
1611 "wsect wuse running use aveq"
1612 "\n\n");
1613 */
1614
1615 disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1616 while ((hd = disk_part_iter_next(&piter))) {
1617 part_stat_read_all(hd, &stat);
1618 if (queue_is_mq(gp->queue))
1619 inflight = blk_mq_in_flight(gp->queue, hd);
1620 else
1621 inflight = part_in_flight(hd);
1622
1623 seq_printf(seqf, "%4d %7d %s "
1624 "%lu %lu %lu %u "
1625 "%lu %lu %lu %u "
1626 "%u %u %u "
1627 "%lu %lu %lu %u "
1628 "%lu %u"
1629 "\n",
1630 MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1631 disk_name(gp, hd->partno, buf),
1632 stat.ios[STAT_READ],
1633 stat.merges[STAT_READ],
1634 stat.sectors[STAT_READ],
1635 (unsigned int)div_u64(stat.nsecs[STAT_READ],
1636 NSEC_PER_MSEC),
1637 stat.ios[STAT_WRITE],
1638 stat.merges[STAT_WRITE],
1639 stat.sectors[STAT_WRITE],
1640 (unsigned int)div_u64(stat.nsecs[STAT_WRITE],
1641 NSEC_PER_MSEC),
1642 inflight,
1643 jiffies_to_msecs(stat.io_ticks),
1644 (unsigned int)div_u64(stat.nsecs[STAT_READ] +
1645 stat.nsecs[STAT_WRITE] +
1646 stat.nsecs[STAT_DISCARD] +
1647 stat.nsecs[STAT_FLUSH],
1648 NSEC_PER_MSEC),
1649 stat.ios[STAT_DISCARD],
1650 stat.merges[STAT_DISCARD],
1651 stat.sectors[STAT_DISCARD],
1652 (unsigned int)div_u64(stat.nsecs[STAT_DISCARD],
1653 NSEC_PER_MSEC),
1654 stat.ios[STAT_FLUSH],
1655 (unsigned int)div_u64(stat.nsecs[STAT_FLUSH],
1656 NSEC_PER_MSEC)
1657 );
1658 }
1659 disk_part_iter_exit(&piter);
1660
1661 return 0;
1662 }
1663
1664 static const struct seq_operations diskstats_op = {
1665 .start = disk_seqf_start,
1666 .next = disk_seqf_next,
1667 .stop = disk_seqf_stop,
1668 .show = diskstats_show
1669 };
1670
proc_genhd_init(void)1671 static int __init proc_genhd_init(void)
1672 {
1673 proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1674 proc_create_seq("partitions", 0, NULL, &partitions_op);
1675 return 0;
1676 }
1677 module_init(proc_genhd_init);
1678 #endif /* CONFIG_PROC_FS */
1679
blk_lookup_devt(const char * name,int partno)1680 dev_t blk_lookup_devt(const char *name, int partno)
1681 {
1682 dev_t devt = MKDEV(0, 0);
1683 struct class_dev_iter iter;
1684 struct device *dev;
1685
1686 class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1687 while ((dev = class_dev_iter_next(&iter))) {
1688 struct gendisk *disk = dev_to_disk(dev);
1689 struct hd_struct *part;
1690
1691 if (strcmp(dev_name(dev), name))
1692 continue;
1693
1694 if (partno < disk->minors) {
1695 /* We need to return the right devno, even
1696 * if the partition doesn't exist yet.
1697 */
1698 devt = MKDEV(MAJOR(dev->devt),
1699 MINOR(dev->devt) + partno);
1700 break;
1701 }
1702 part = disk_get_part(disk, partno);
1703 if (part) {
1704 devt = part_devt(part);
1705 disk_put_part(part);
1706 break;
1707 }
1708 disk_put_part(part);
1709 }
1710 class_dev_iter_exit(&iter);
1711 return devt;
1712 }
1713
__alloc_disk_node(int minors,int node_id)1714 struct gendisk *__alloc_disk_node(int minors, int node_id)
1715 {
1716 struct gendisk *disk;
1717 struct disk_part_tbl *ptbl;
1718
1719 if (minors > DISK_MAX_PARTS) {
1720 printk(KERN_ERR
1721 "block: can't allocate more than %d partitions\n",
1722 DISK_MAX_PARTS);
1723 minors = DISK_MAX_PARTS;
1724 }
1725
1726 disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1727 if (!disk)
1728 return NULL;
1729
1730 disk->part0.dkstats = alloc_percpu(struct disk_stats);
1731 if (!disk->part0.dkstats)
1732 goto out_free_disk;
1733
1734 init_rwsem(&disk->lookup_sem);
1735 disk->node_id = node_id;
1736 if (disk_expand_part_tbl(disk, 0)) {
1737 free_percpu(disk->part0.dkstats);
1738 goto out_free_disk;
1739 }
1740
1741 ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1742 rcu_assign_pointer(ptbl->part[0], &disk->part0);
1743
1744 /*
1745 * set_capacity() and get_capacity() currently don't use
1746 * seqcounter to read/update the part0->nr_sects. Still init
1747 * the counter as we can read the sectors in IO submission
1748 * patch using seqence counters.
1749 *
1750 * TODO: Ideally set_capacity() and get_capacity() should be
1751 * converted to make use of bd_mutex and sequence counters.
1752 */
1753 hd_sects_seq_init(&disk->part0);
1754 if (hd_ref_init(&disk->part0))
1755 goto out_free_part0;
1756
1757 disk->minors = minors;
1758 rand_initialize_disk(disk);
1759 disk_to_dev(disk)->class = &block_class;
1760 disk_to_dev(disk)->type = &disk_type;
1761 device_initialize(disk_to_dev(disk));
1762 return disk;
1763
1764 out_free_part0:
1765 hd_free_part(&disk->part0);
1766 out_free_disk:
1767 kfree(disk);
1768 return NULL;
1769 }
1770 EXPORT_SYMBOL(__alloc_disk_node);
1771
1772 /**
1773 * get_disk_and_module - increments the gendisk and gendisk fops module refcount
1774 * @disk: the struct gendisk to increment the refcount for
1775 *
1776 * This increments the refcount for the struct gendisk, and the gendisk's
1777 * fops module owner.
1778 *
1779 * Context: Any context.
1780 */
get_disk_and_module(struct gendisk * disk)1781 struct kobject *get_disk_and_module(struct gendisk *disk)
1782 {
1783 struct module *owner;
1784 struct kobject *kobj;
1785
1786 if (!disk->fops)
1787 return NULL;
1788 owner = disk->fops->owner;
1789 if (owner && !try_module_get(owner))
1790 return NULL;
1791 kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1792 if (kobj == NULL) {
1793 module_put(owner);
1794 return NULL;
1795 }
1796 return kobj;
1797
1798 }
1799 EXPORT_SYMBOL(get_disk_and_module);
1800
1801 /**
1802 * put_disk - decrements the gendisk refcount
1803 * @disk: the struct gendisk to decrement the refcount for
1804 *
1805 * This decrements the refcount for the struct gendisk. When this reaches 0
1806 * we'll have disk_release() called.
1807 *
1808 * Context: Any context, but the last reference must not be dropped from
1809 * atomic context.
1810 */
put_disk(struct gendisk * disk)1811 void put_disk(struct gendisk *disk)
1812 {
1813 if (disk)
1814 kobject_put(&disk_to_dev(disk)->kobj);
1815 }
1816 EXPORT_SYMBOL(put_disk);
1817
1818 /**
1819 * put_disk_and_module - decrements the module and gendisk refcount
1820 * @disk: the struct gendisk to decrement the refcount for
1821 *
1822 * This is a counterpart of get_disk_and_module() and thus also of
1823 * get_gendisk().
1824 *
1825 * Context: Any context, but the last reference must not be dropped from
1826 * atomic context.
1827 */
put_disk_and_module(struct gendisk * disk)1828 void put_disk_and_module(struct gendisk *disk)
1829 {
1830 if (disk) {
1831 struct module *owner = disk->fops->owner;
1832
1833 put_disk(disk);
1834 module_put(owner);
1835 }
1836 }
1837 EXPORT_SYMBOL(put_disk_and_module);
1838
set_disk_ro_uevent(struct gendisk * gd,int ro)1839 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1840 {
1841 char event[] = "DISK_RO=1";
1842 char *envp[] = { event, NULL };
1843
1844 if (!ro)
1845 event[8] = '0';
1846 kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1847 }
1848
set_device_ro(struct block_device * bdev,int flag)1849 void set_device_ro(struct block_device *bdev, int flag)
1850 {
1851 bdev->bd_part->policy = flag;
1852 }
1853
1854 EXPORT_SYMBOL(set_device_ro);
1855
set_disk_ro(struct gendisk * disk,int flag)1856 void set_disk_ro(struct gendisk *disk, int flag)
1857 {
1858 struct disk_part_iter piter;
1859 struct hd_struct *part;
1860
1861 if (disk->part0.policy != flag) {
1862 set_disk_ro_uevent(disk, flag);
1863 disk->part0.policy = flag;
1864 }
1865
1866 disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1867 while ((part = disk_part_iter_next(&piter)))
1868 part->policy = flag;
1869 disk_part_iter_exit(&piter);
1870 }
1871
1872 EXPORT_SYMBOL(set_disk_ro);
1873
bdev_read_only(struct block_device * bdev)1874 int bdev_read_only(struct block_device *bdev)
1875 {
1876 if (!bdev)
1877 return 0;
1878 return bdev->bd_part->policy;
1879 }
1880
1881 EXPORT_SYMBOL(bdev_read_only);
1882
1883 /*
1884 * Disk events - monitor disk events like media change and eject request.
1885 */
1886 struct disk_events {
1887 struct list_head node; /* all disk_event's */
1888 struct gendisk *disk; /* the associated disk */
1889 spinlock_t lock;
1890
1891 struct mutex block_mutex; /* protects blocking */
1892 int block; /* event blocking depth */
1893 unsigned int pending; /* events already sent out */
1894 unsigned int clearing; /* events being cleared */
1895
1896 long poll_msecs; /* interval, -1 for default */
1897 struct delayed_work dwork;
1898 };
1899
1900 static const char *disk_events_strs[] = {
1901 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "media_change",
1902 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "eject_request",
1903 };
1904
1905 static char *disk_uevents[] = {
1906 [ilog2(DISK_EVENT_MEDIA_CHANGE)] = "DISK_MEDIA_CHANGE=1",
1907 [ilog2(DISK_EVENT_EJECT_REQUEST)] = "DISK_EJECT_REQUEST=1",
1908 };
1909
1910 /* list of all disk_events */
1911 static DEFINE_MUTEX(disk_events_mutex);
1912 static LIST_HEAD(disk_events);
1913
1914 /* disable in-kernel polling by default */
1915 static unsigned long disk_events_dfl_poll_msecs;
1916
disk_events_poll_jiffies(struct gendisk * disk)1917 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1918 {
1919 struct disk_events *ev = disk->ev;
1920 long intv_msecs = 0;
1921
1922 /*
1923 * If device-specific poll interval is set, always use it. If
1924 * the default is being used, poll if the POLL flag is set.
1925 */
1926 if (ev->poll_msecs >= 0)
1927 intv_msecs = ev->poll_msecs;
1928 else if (disk->event_flags & DISK_EVENT_FLAG_POLL)
1929 intv_msecs = disk_events_dfl_poll_msecs;
1930
1931 return msecs_to_jiffies(intv_msecs);
1932 }
1933
1934 /**
1935 * disk_block_events - block and flush disk event checking
1936 * @disk: disk to block events for
1937 *
1938 * On return from this function, it is guaranteed that event checking
1939 * isn't in progress and won't happen until unblocked by
1940 * disk_unblock_events(). Events blocking is counted and the actual
1941 * unblocking happens after the matching number of unblocks are done.
1942 *
1943 * Note that this intentionally does not block event checking from
1944 * disk_clear_events().
1945 *
1946 * CONTEXT:
1947 * Might sleep.
1948 */
disk_block_events(struct gendisk * disk)1949 void disk_block_events(struct gendisk *disk)
1950 {
1951 struct disk_events *ev = disk->ev;
1952 unsigned long flags;
1953 bool cancel;
1954
1955 if (!ev)
1956 return;
1957
1958 /*
1959 * Outer mutex ensures that the first blocker completes canceling
1960 * the event work before further blockers are allowed to finish.
1961 */
1962 mutex_lock(&ev->block_mutex);
1963
1964 spin_lock_irqsave(&ev->lock, flags);
1965 cancel = !ev->block++;
1966 spin_unlock_irqrestore(&ev->lock, flags);
1967
1968 if (cancel)
1969 cancel_delayed_work_sync(&disk->ev->dwork);
1970
1971 mutex_unlock(&ev->block_mutex);
1972 }
1973
__disk_unblock_events(struct gendisk * disk,bool check_now)1974 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1975 {
1976 struct disk_events *ev = disk->ev;
1977 unsigned long intv;
1978 unsigned long flags;
1979
1980 spin_lock_irqsave(&ev->lock, flags);
1981
1982 if (WARN_ON_ONCE(ev->block <= 0))
1983 goto out_unlock;
1984
1985 if (--ev->block)
1986 goto out_unlock;
1987
1988 intv = disk_events_poll_jiffies(disk);
1989 if (check_now)
1990 queue_delayed_work(system_freezable_power_efficient_wq,
1991 &ev->dwork, 0);
1992 else if (intv)
1993 queue_delayed_work(system_freezable_power_efficient_wq,
1994 &ev->dwork, intv);
1995 out_unlock:
1996 spin_unlock_irqrestore(&ev->lock, flags);
1997 }
1998
1999 /**
2000 * disk_unblock_events - unblock disk event checking
2001 * @disk: disk to unblock events for
2002 *
2003 * Undo disk_block_events(). When the block count reaches zero, it
2004 * starts events polling if configured.
2005 *
2006 * CONTEXT:
2007 * Don't care. Safe to call from irq context.
2008 */
disk_unblock_events(struct gendisk * disk)2009 void disk_unblock_events(struct gendisk *disk)
2010 {
2011 if (disk->ev)
2012 __disk_unblock_events(disk, false);
2013 }
2014
2015 /**
2016 * disk_flush_events - schedule immediate event checking and flushing
2017 * @disk: disk to check and flush events for
2018 * @mask: events to flush
2019 *
2020 * Schedule immediate event checking on @disk if not blocked. Events in
2021 * @mask are scheduled to be cleared from the driver. Note that this
2022 * doesn't clear the events from @disk->ev.
2023 *
2024 * CONTEXT:
2025 * If @mask is non-zero must be called with bdev->bd_mutex held.
2026 */
disk_flush_events(struct gendisk * disk,unsigned int mask)2027 void disk_flush_events(struct gendisk *disk, unsigned int mask)
2028 {
2029 struct disk_events *ev = disk->ev;
2030
2031 if (!ev)
2032 return;
2033
2034 spin_lock_irq(&ev->lock);
2035 ev->clearing |= mask;
2036 if (!ev->block)
2037 mod_delayed_work(system_freezable_power_efficient_wq,
2038 &ev->dwork, 0);
2039 spin_unlock_irq(&ev->lock);
2040 }
2041
2042 /**
2043 * disk_clear_events - synchronously check, clear and return pending events
2044 * @disk: disk to fetch and clear events from
2045 * @mask: mask of events to be fetched and cleared
2046 *
2047 * Disk events are synchronously checked and pending events in @mask
2048 * are cleared and returned. This ignores the block count.
2049 *
2050 * CONTEXT:
2051 * Might sleep.
2052 */
disk_clear_events(struct gendisk * disk,unsigned int mask)2053 static unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
2054 {
2055 struct disk_events *ev = disk->ev;
2056 unsigned int pending;
2057 unsigned int clearing = mask;
2058
2059 if (!ev)
2060 return 0;
2061
2062 disk_block_events(disk);
2063
2064 /*
2065 * store the union of mask and ev->clearing on the stack so that the
2066 * race with disk_flush_events does not cause ambiguity (ev->clearing
2067 * can still be modified even if events are blocked).
2068 */
2069 spin_lock_irq(&ev->lock);
2070 clearing |= ev->clearing;
2071 ev->clearing = 0;
2072 spin_unlock_irq(&ev->lock);
2073
2074 disk_check_events(ev, &clearing);
2075 /*
2076 * if ev->clearing is not 0, the disk_flush_events got called in the
2077 * middle of this function, so we want to run the workfn without delay.
2078 */
2079 __disk_unblock_events(disk, ev->clearing ? true : false);
2080
2081 /* then, fetch and clear pending events */
2082 spin_lock_irq(&ev->lock);
2083 pending = ev->pending & mask;
2084 ev->pending &= ~mask;
2085 spin_unlock_irq(&ev->lock);
2086 WARN_ON_ONCE(clearing & mask);
2087
2088 return pending;
2089 }
2090
2091 /**
2092 * bdev_check_media_change - check if a removable media has been changed
2093 * @bdev: block device to check
2094 *
2095 * Check whether a removable media has been changed, and attempt to free all
2096 * dentries and inodes and invalidates all block device page cache entries in
2097 * that case.
2098 *
2099 * Returns %true if the block device changed, or %false if not.
2100 */
bdev_check_media_change(struct block_device * bdev)2101 bool bdev_check_media_change(struct block_device *bdev)
2102 {
2103 unsigned int events;
2104
2105 events = disk_clear_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE |
2106 DISK_EVENT_EJECT_REQUEST);
2107 if (!(events & DISK_EVENT_MEDIA_CHANGE))
2108 return false;
2109
2110 if (__invalidate_device(bdev, true))
2111 pr_warn("VFS: busy inodes on changed media %s\n",
2112 bdev->bd_disk->disk_name);
2113 set_bit(GD_NEED_PART_SCAN, &bdev->bd_disk->state);
2114 return true;
2115 }
2116 EXPORT_SYMBOL(bdev_check_media_change);
2117
2118 /*
2119 * Separate this part out so that a different pointer for clearing_ptr can be
2120 * passed in for disk_clear_events.
2121 */
disk_events_workfn(struct work_struct * work)2122 static void disk_events_workfn(struct work_struct *work)
2123 {
2124 struct delayed_work *dwork = to_delayed_work(work);
2125 struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
2126
2127 disk_check_events(ev, &ev->clearing);
2128 }
2129
disk_check_events(struct disk_events * ev,unsigned int * clearing_ptr)2130 static void disk_check_events(struct disk_events *ev,
2131 unsigned int *clearing_ptr)
2132 {
2133 struct gendisk *disk = ev->disk;
2134 char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
2135 unsigned int clearing = *clearing_ptr;
2136 unsigned int events;
2137 unsigned long intv;
2138 int nr_events = 0, i;
2139
2140 /* check events */
2141 events = disk->fops->check_events(disk, clearing);
2142
2143 /* accumulate pending events and schedule next poll if necessary */
2144 spin_lock_irq(&ev->lock);
2145
2146 events &= ~ev->pending;
2147 ev->pending |= events;
2148 *clearing_ptr &= ~clearing;
2149
2150 intv = disk_events_poll_jiffies(disk);
2151 if (!ev->block && intv)
2152 queue_delayed_work(system_freezable_power_efficient_wq,
2153 &ev->dwork, intv);
2154
2155 spin_unlock_irq(&ev->lock);
2156
2157 /*
2158 * Tell userland about new events. Only the events listed in
2159 * @disk->events are reported, and only if DISK_EVENT_FLAG_UEVENT
2160 * is set. Otherwise, events are processed internally but never
2161 * get reported to userland.
2162 */
2163 for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
2164 if ((events & disk->events & (1 << i)) &&
2165 (disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2166 envp[nr_events++] = disk_uevents[i];
2167
2168 if (nr_events)
2169 kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
2170 }
2171
2172 /*
2173 * A disk events enabled device has the following sysfs nodes under
2174 * its /sys/block/X/ directory.
2175 *
2176 * events : list of all supported events
2177 * events_async : list of events which can be detected w/o polling
2178 * (always empty, only for backwards compatibility)
2179 * events_poll_msecs : polling interval, 0: disable, -1: system default
2180 */
__disk_events_show(unsigned int events,char * buf)2181 static ssize_t __disk_events_show(unsigned int events, char *buf)
2182 {
2183 const char *delim = "";
2184 ssize_t pos = 0;
2185 int i;
2186
2187 for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
2188 if (events & (1 << i)) {
2189 pos += sprintf(buf + pos, "%s%s",
2190 delim, disk_events_strs[i]);
2191 delim = " ";
2192 }
2193 if (pos)
2194 pos += sprintf(buf + pos, "\n");
2195 return pos;
2196 }
2197
disk_events_show(struct device * dev,struct device_attribute * attr,char * buf)2198 static ssize_t disk_events_show(struct device *dev,
2199 struct device_attribute *attr, char *buf)
2200 {
2201 struct gendisk *disk = dev_to_disk(dev);
2202
2203 if (!(disk->event_flags & DISK_EVENT_FLAG_UEVENT))
2204 return 0;
2205
2206 return __disk_events_show(disk->events, buf);
2207 }
2208
disk_events_async_show(struct device * dev,struct device_attribute * attr,char * buf)2209 static ssize_t disk_events_async_show(struct device *dev,
2210 struct device_attribute *attr, char *buf)
2211 {
2212 return 0;
2213 }
2214
disk_events_poll_msecs_show(struct device * dev,struct device_attribute * attr,char * buf)2215 static ssize_t disk_events_poll_msecs_show(struct device *dev,
2216 struct device_attribute *attr,
2217 char *buf)
2218 {
2219 struct gendisk *disk = dev_to_disk(dev);
2220
2221 if (!disk->ev)
2222 return sprintf(buf, "-1\n");
2223
2224 return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
2225 }
2226
disk_events_poll_msecs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2227 static ssize_t disk_events_poll_msecs_store(struct device *dev,
2228 struct device_attribute *attr,
2229 const char *buf, size_t count)
2230 {
2231 struct gendisk *disk = dev_to_disk(dev);
2232 long intv;
2233
2234 if (!count || !sscanf(buf, "%ld", &intv))
2235 return -EINVAL;
2236
2237 if (intv < 0 && intv != -1)
2238 return -EINVAL;
2239
2240 if (!disk->ev)
2241 return -ENODEV;
2242
2243 disk_block_events(disk);
2244 disk->ev->poll_msecs = intv;
2245 __disk_unblock_events(disk, true);
2246
2247 return count;
2248 }
2249
2250 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
2251 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
2252 static const DEVICE_ATTR(events_poll_msecs, 0644,
2253 disk_events_poll_msecs_show,
2254 disk_events_poll_msecs_store);
2255
2256 static const struct attribute *disk_events_attrs[] = {
2257 &dev_attr_events.attr,
2258 &dev_attr_events_async.attr,
2259 &dev_attr_events_poll_msecs.attr,
2260 NULL,
2261 };
2262
2263 /*
2264 * The default polling interval can be specified by the kernel
2265 * parameter block.events_dfl_poll_msecs which defaults to 0
2266 * (disable). This can also be modified runtime by writing to
2267 * /sys/module/block/parameters/events_dfl_poll_msecs.
2268 */
disk_events_set_dfl_poll_msecs(const char * val,const struct kernel_param * kp)2269 static int disk_events_set_dfl_poll_msecs(const char *val,
2270 const struct kernel_param *kp)
2271 {
2272 struct disk_events *ev;
2273 int ret;
2274
2275 ret = param_set_ulong(val, kp);
2276 if (ret < 0)
2277 return ret;
2278
2279 mutex_lock(&disk_events_mutex);
2280
2281 list_for_each_entry(ev, &disk_events, node)
2282 disk_flush_events(ev->disk, 0);
2283
2284 mutex_unlock(&disk_events_mutex);
2285
2286 return 0;
2287 }
2288
2289 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
2290 .set = disk_events_set_dfl_poll_msecs,
2291 .get = param_get_ulong,
2292 };
2293
2294 #undef MODULE_PARAM_PREFIX
2295 #define MODULE_PARAM_PREFIX "block."
2296
2297 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
2298 &disk_events_dfl_poll_msecs, 0644);
2299
2300 /*
2301 * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
2302 */
disk_alloc_events(struct gendisk * disk)2303 static void disk_alloc_events(struct gendisk *disk)
2304 {
2305 struct disk_events *ev;
2306
2307 if (!disk->fops->check_events || !disk->events)
2308 return;
2309
2310 ev = kzalloc(sizeof(*ev), GFP_KERNEL);
2311 if (!ev) {
2312 pr_warn("%s: failed to initialize events\n", disk->disk_name);
2313 return;
2314 }
2315
2316 INIT_LIST_HEAD(&ev->node);
2317 ev->disk = disk;
2318 spin_lock_init(&ev->lock);
2319 mutex_init(&ev->block_mutex);
2320 ev->block = 1;
2321 ev->poll_msecs = -1;
2322 INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
2323
2324 disk->ev = ev;
2325 }
2326
disk_add_events(struct gendisk * disk)2327 static void disk_add_events(struct gendisk *disk)
2328 {
2329 /* FIXME: error handling */
2330 if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2331 pr_warn("%s: failed to create sysfs files for events\n",
2332 disk->disk_name);
2333
2334 if (!disk->ev)
2335 return;
2336
2337 mutex_lock(&disk_events_mutex);
2338 list_add_tail(&disk->ev->node, &disk_events);
2339 mutex_unlock(&disk_events_mutex);
2340
2341 /*
2342 * Block count is initialized to 1 and the following initial
2343 * unblock kicks it into action.
2344 */
2345 __disk_unblock_events(disk, true);
2346 }
2347
disk_del_events(struct gendisk * disk)2348 static void disk_del_events(struct gendisk *disk)
2349 {
2350 if (disk->ev) {
2351 disk_block_events(disk);
2352
2353 mutex_lock(&disk_events_mutex);
2354 list_del_init(&disk->ev->node);
2355 mutex_unlock(&disk_events_mutex);
2356 }
2357
2358 sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2359 }
2360
disk_release_events(struct gendisk * disk)2361 static void disk_release_events(struct gendisk *disk)
2362 {
2363 /* the block count should be 1 from disk_del_events() */
2364 WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2365 kfree(disk->ev);
2366 }
2367