1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
4
5 #include "blk-stat.h"
6 #include "blk-mq-tag.h"
7
8 struct blk_mq_tag_set;
9
10 struct blk_mq_ctxs {
11 struct kobject kobj;
12 struct blk_mq_ctx __percpu *queue_ctx;
13 };
14
15 /**
16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17 */
18 struct blk_mq_ctx {
19 struct {
20 spinlock_t lock;
21 struct list_head rq_lists[HCTX_MAX_TYPES];
22 } ____cacheline_aligned_in_smp;
23
24 unsigned int cpu;
25 unsigned short index_hw[HCTX_MAX_TYPES];
26 struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
27
28 /* incremented at dispatch time */
29 unsigned long rq_dispatched[2];
30 unsigned long rq_merged;
31
32 /* incremented at completion time */
33 unsigned long ____cacheline_aligned_in_smp rq_completed[2];
34
35 struct request_queue *queue;
36 struct blk_mq_ctxs *ctxs;
37 struct kobject kobj;
38 } ____cacheline_aligned_in_smp;
39
40 void blk_mq_exit_queue(struct request_queue *q);
41 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
42 void blk_mq_wake_waiters(struct request_queue *q);
43 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
44 unsigned int);
45 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
46 bool kick_requeue_list);
47 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
48 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
49 struct blk_mq_ctx *start);
50
51 /*
52 * Internal helpers for allocating/freeing the request map
53 */
54 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
55 unsigned int hctx_idx);
56 void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags);
57 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
58 unsigned int hctx_idx,
59 unsigned int nr_tags,
60 unsigned int reserved_tags,
61 unsigned int flags);
62 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
63 unsigned int hctx_idx, unsigned int depth);
64
65 /*
66 * Internal helpers for request insertion into sw queues
67 */
68 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
69 bool at_head);
70 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
71 bool run_queue);
72 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
73 struct list_head *list);
74
75 /* Used by blk_insert_cloned_request() to issue request directly */
76 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last);
77 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
78 struct list_head *list);
79
80 /*
81 * CPU -> queue mappings
82 */
83 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
84
85 /*
86 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
87 * @q: request queue
88 * @type: the hctx type index
89 * @cpu: CPU
90 */
blk_mq_map_queue_type(struct request_queue * q,enum hctx_type type,unsigned int cpu)91 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
92 enum hctx_type type,
93 unsigned int cpu)
94 {
95 return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]];
96 }
97
98 /*
99 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
100 * @q: request queue
101 * @flags: request command flags
102 * @cpu: cpu ctx
103 */
blk_mq_map_queue(struct request_queue * q,unsigned int flags,struct blk_mq_ctx * ctx)104 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
105 unsigned int flags,
106 struct blk_mq_ctx *ctx)
107 {
108 enum hctx_type type = HCTX_TYPE_DEFAULT;
109
110 /*
111 * The caller ensure that if REQ_HIPRI, poll must be enabled.
112 */
113 if (flags & REQ_HIPRI)
114 type = HCTX_TYPE_POLL;
115 else if ((flags & REQ_OP_MASK) == REQ_OP_READ)
116 type = HCTX_TYPE_READ;
117
118 return ctx->hctxs[type];
119 }
120
121 /*
122 * sysfs helpers
123 */
124 extern void blk_mq_sysfs_init(struct request_queue *q);
125 extern void blk_mq_sysfs_deinit(struct request_queue *q);
126 extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
127 extern int blk_mq_sysfs_register(struct request_queue *q);
128 extern void blk_mq_sysfs_unregister(struct request_queue *q);
129 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
130
131 void blk_mq_release(struct request_queue *q);
132
__blk_mq_get_ctx(struct request_queue * q,unsigned int cpu)133 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
134 unsigned int cpu)
135 {
136 return per_cpu_ptr(q->queue_ctx, cpu);
137 }
138
139 /*
140 * This assumes per-cpu software queueing queues. They could be per-node
141 * as well, for instance. For now this is hardcoded as-is. Note that we don't
142 * care about preemption, since we know the ctx's are persistent. This does
143 * mean that we can't rely on ctx always matching the currently running CPU.
144 */
blk_mq_get_ctx(struct request_queue * q)145 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
146 {
147 return __blk_mq_get_ctx(q, raw_smp_processor_id());
148 }
149
150 struct blk_mq_alloc_data {
151 /* input parameter */
152 struct request_queue *q;
153 blk_mq_req_flags_t flags;
154 unsigned int shallow_depth;
155 unsigned int cmd_flags;
156
157 /* input & output parameter */
158 struct blk_mq_ctx *ctx;
159 struct blk_mq_hw_ctx *hctx;
160 };
161
blk_mq_is_sbitmap_shared(unsigned int flags)162 static inline bool blk_mq_is_sbitmap_shared(unsigned int flags)
163 {
164 return flags & BLK_MQ_F_TAG_HCTX_SHARED;
165 }
166
blk_mq_tags_from_data(struct blk_mq_alloc_data * data)167 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
168 {
169 if (data->q->elevator)
170 return data->hctx->sched_tags;
171
172 return data->hctx->tags;
173 }
174
blk_mq_hctx_stopped(struct blk_mq_hw_ctx * hctx)175 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
176 {
177 return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
178 }
179
blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx * hctx)180 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
181 {
182 return hctx->nr_ctx && hctx->tags;
183 }
184
185 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part);
186 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
187 unsigned int inflight[2]);
188
blk_mq_put_dispatch_budget(struct request_queue * q)189 static inline void blk_mq_put_dispatch_budget(struct request_queue *q)
190 {
191 if (q->mq_ops->put_budget)
192 q->mq_ops->put_budget(q);
193 }
194
blk_mq_get_dispatch_budget(struct request_queue * q)195 static inline bool blk_mq_get_dispatch_budget(struct request_queue *q)
196 {
197 if (q->mq_ops->get_budget)
198 return q->mq_ops->get_budget(q);
199 return true;
200 }
201
__blk_mq_inc_active_requests(struct blk_mq_hw_ctx * hctx)202 static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
203 {
204 if (blk_mq_is_sbitmap_shared(hctx->flags))
205 atomic_inc(&hctx->queue->nr_active_requests_shared_sbitmap);
206 else
207 atomic_inc(&hctx->nr_active);
208 }
209
__blk_mq_dec_active_requests(struct blk_mq_hw_ctx * hctx)210 static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
211 {
212 if (blk_mq_is_sbitmap_shared(hctx->flags))
213 atomic_dec(&hctx->queue->nr_active_requests_shared_sbitmap);
214 else
215 atomic_dec(&hctx->nr_active);
216 }
217
__blk_mq_active_requests(struct blk_mq_hw_ctx * hctx)218 static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
219 {
220 if (blk_mq_is_sbitmap_shared(hctx->flags))
221 return atomic_read(&hctx->queue->nr_active_requests_shared_sbitmap);
222 return atomic_read(&hctx->nr_active);
223 }
__blk_mq_put_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)224 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
225 struct request *rq)
226 {
227 blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
228 rq->tag = BLK_MQ_NO_TAG;
229
230 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
231 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
232 __blk_mq_dec_active_requests(hctx);
233 }
234 }
235
blk_mq_put_driver_tag(struct request * rq)236 static inline void blk_mq_put_driver_tag(struct request *rq)
237 {
238 if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
239 return;
240
241 __blk_mq_put_driver_tag(rq->mq_hctx, rq);
242 }
243
blk_mq_clear_mq_map(struct blk_mq_queue_map * qmap)244 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
245 {
246 int cpu;
247
248 for_each_possible_cpu(cpu)
249 qmap->mq_map[cpu] = 0;
250 }
251
252 /*
253 * blk_mq_plug() - Get caller context plug
254 * @q: request queue
255 * @bio : the bio being submitted by the caller context
256 *
257 * Plugging, by design, may delay the insertion of BIOs into the elevator in
258 * order to increase BIO merging opportunities. This however can cause BIO
259 * insertion order to change from the order in which submit_bio() is being
260 * executed in the case of multiple contexts concurrently issuing BIOs to a
261 * device, even if these context are synchronized to tightly control BIO issuing
262 * order. While this is not a problem with regular block devices, this ordering
263 * change can cause write BIO failures with zoned block devices as these
264 * require sequential write patterns to zones. Prevent this from happening by
265 * ignoring the plug state of a BIO issuing context if the target request queue
266 * is for a zoned block device and the BIO to plug is a write operation.
267 *
268 * Return current->plug if the bio can be plugged and NULL otherwise
269 */
blk_mq_plug(struct request_queue * q,struct bio * bio)270 static inline struct blk_plug *blk_mq_plug(struct request_queue *q,
271 struct bio *bio)
272 {
273 /*
274 * For regular block devices or read operations, use the context plug
275 * which may be NULL if blk_start_plug() was not executed.
276 */
277 if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio)))
278 return current->plug;
279
280 /* Zoned block device write operation case: do not plug the BIO */
281 return NULL;
282 }
283
284 /*
285 * For shared tag users, we track the number of currently active users
286 * and attempt to provide a fair share of the tag depth for each of them.
287 */
hctx_may_queue(struct blk_mq_hw_ctx * hctx,struct sbitmap_queue * bt)288 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
289 struct sbitmap_queue *bt)
290 {
291 unsigned int depth, users;
292
293 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
294 return true;
295
296 /*
297 * Don't try dividing an ant
298 */
299 if (bt->sb.depth == 1)
300 return true;
301
302 if (blk_mq_is_sbitmap_shared(hctx->flags)) {
303 struct request_queue *q = hctx->queue;
304 struct blk_mq_tag_set *set = q->tag_set;
305
306 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &q->queue_flags))
307 return true;
308 users = atomic_read(&set->active_queues_shared_sbitmap);
309 } else {
310 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
311 return true;
312 users = atomic_read(&hctx->tags->active_queues);
313 }
314
315 if (!users)
316 return true;
317
318 /*
319 * Allow at least some tags
320 */
321 depth = max((bt->sb.depth + users - 1) / users, 4U);
322 return __blk_mq_active_requests(hctx) < depth;
323 }
324
325
326 #endif
327