1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to mapping data to requests
4  */
5 #include <linux/kernel.h>
6 #include <linux/sched/task_stack.h>
7 #include <linux/module.h>
8 #include <linux/bio.h>
9 #include <linux/blkdev.h>
10 #include <linux/uio.h>
11 
12 #include "blk.h"
13 
14 struct bio_map_data {
15 	bool is_our_pages : 1;
16 	bool is_null_mapped : 1;
17 	struct iov_iter iter;
18 	struct iovec iov[];
19 };
20 
bio_alloc_map_data(struct iov_iter * data,gfp_t gfp_mask)21 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
22 					       gfp_t gfp_mask)
23 {
24 	struct bio_map_data *bmd;
25 
26 	if (data->nr_segs > UIO_MAXIOV)
27 		return NULL;
28 
29 	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
30 	if (!bmd)
31 		return NULL;
32 	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
33 	bmd->iter = *data;
34 	bmd->iter.iov = bmd->iov;
35 	return bmd;
36 }
37 
38 /**
39  * bio_copy_from_iter - copy all pages from iov_iter to bio
40  * @bio: The &struct bio which describes the I/O as destination
41  * @iter: iov_iter as source
42  *
43  * Copy all pages from iov_iter to bio.
44  * Returns 0 on success, or error on failure.
45  */
bio_copy_from_iter(struct bio * bio,struct iov_iter * iter)46 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
47 {
48 	struct bio_vec *bvec;
49 	struct bvec_iter_all iter_all;
50 
51 	bio_for_each_segment_all(bvec, bio, iter_all) {
52 		ssize_t ret;
53 
54 		ret = copy_page_from_iter(bvec->bv_page,
55 					  bvec->bv_offset,
56 					  bvec->bv_len,
57 					  iter);
58 
59 		if (!iov_iter_count(iter))
60 			break;
61 
62 		if (ret < bvec->bv_len)
63 			return -EFAULT;
64 	}
65 
66 	return 0;
67 }
68 
69 /**
70  * bio_copy_to_iter - copy all pages from bio to iov_iter
71  * @bio: The &struct bio which describes the I/O as source
72  * @iter: iov_iter as destination
73  *
74  * Copy all pages from bio to iov_iter.
75  * Returns 0 on success, or error on failure.
76  */
bio_copy_to_iter(struct bio * bio,struct iov_iter iter)77 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
78 {
79 	struct bio_vec *bvec;
80 	struct bvec_iter_all iter_all;
81 
82 	bio_for_each_segment_all(bvec, bio, iter_all) {
83 		ssize_t ret;
84 
85 		ret = copy_page_to_iter(bvec->bv_page,
86 					bvec->bv_offset,
87 					bvec->bv_len,
88 					&iter);
89 
90 		if (!iov_iter_count(&iter))
91 			break;
92 
93 		if (ret < bvec->bv_len)
94 			return -EFAULT;
95 	}
96 
97 	return 0;
98 }
99 
100 /**
101  *	bio_uncopy_user	-	finish previously mapped bio
102  *	@bio: bio being terminated
103  *
104  *	Free pages allocated from bio_copy_user_iov() and write back data
105  *	to user space in case of a read.
106  */
bio_uncopy_user(struct bio * bio)107 static int bio_uncopy_user(struct bio *bio)
108 {
109 	struct bio_map_data *bmd = bio->bi_private;
110 	int ret = 0;
111 
112 	if (!bmd->is_null_mapped) {
113 		/*
114 		 * if we're in a workqueue, the request is orphaned, so
115 		 * don't copy into a random user address space, just free
116 		 * and return -EINTR so user space doesn't expect any data.
117 		 */
118 		if (!current->mm)
119 			ret = -EINTR;
120 		else if (bio_data_dir(bio) == READ)
121 			ret = bio_copy_to_iter(bio, bmd->iter);
122 		if (bmd->is_our_pages)
123 			bio_free_pages(bio);
124 	}
125 	kfree(bmd);
126 	bio_put(bio);
127 	return ret;
128 }
129 
bio_copy_user_iov(struct request * rq,struct rq_map_data * map_data,struct iov_iter * iter,gfp_t gfp_mask)130 static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
131 		struct iov_iter *iter, gfp_t gfp_mask)
132 {
133 	struct bio_map_data *bmd;
134 	struct page *page;
135 	struct bio *bio, *bounce_bio;
136 	int i = 0, ret;
137 	int nr_pages;
138 	unsigned int len = iter->count;
139 	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
140 
141 	bmd = bio_alloc_map_data(iter, gfp_mask);
142 	if (!bmd)
143 		return -ENOMEM;
144 
145 	/*
146 	 * We need to do a deep copy of the iov_iter including the iovecs.
147 	 * The caller provided iov might point to an on-stack or otherwise
148 	 * shortlived one.
149 	 */
150 	bmd->is_our_pages = !map_data;
151 	bmd->is_null_mapped = (map_data && map_data->null_mapped);
152 
153 	nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
154 	if (nr_pages > BIO_MAX_PAGES)
155 		nr_pages = BIO_MAX_PAGES;
156 
157 	ret = -ENOMEM;
158 	bio = bio_kmalloc(gfp_mask, nr_pages);
159 	if (!bio)
160 		goto out_bmd;
161 	bio->bi_opf |= req_op(rq);
162 
163 	if (map_data) {
164 		nr_pages = 1 << map_data->page_order;
165 		i = map_data->offset / PAGE_SIZE;
166 	}
167 	while (len) {
168 		unsigned int bytes = PAGE_SIZE;
169 
170 		bytes -= offset;
171 
172 		if (bytes > len)
173 			bytes = len;
174 
175 		if (map_data) {
176 			if (i == map_data->nr_entries * nr_pages) {
177 				ret = -ENOMEM;
178 				goto cleanup;
179 			}
180 
181 			page = map_data->pages[i / nr_pages];
182 			page += (i % nr_pages);
183 
184 			i++;
185 		} else {
186 			page = alloc_page(rq->q->bounce_gfp | gfp_mask);
187 			if (!page) {
188 				ret = -ENOMEM;
189 				goto cleanup;
190 			}
191 		}
192 
193 		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
194 			if (!map_data)
195 				__free_page(page);
196 			break;
197 		}
198 
199 		len -= bytes;
200 		offset = 0;
201 	}
202 
203 	if (map_data)
204 		map_data->offset += bio->bi_iter.bi_size;
205 
206 	/*
207 	 * success
208 	 */
209 	if ((iov_iter_rw(iter) == WRITE &&
210 	     (!map_data || !map_data->null_mapped)) ||
211 	    (map_data && map_data->from_user)) {
212 		ret = bio_copy_from_iter(bio, iter);
213 		if (ret)
214 			goto cleanup;
215 	} else {
216 		if (bmd->is_our_pages)
217 			zero_fill_bio(bio);
218 		iov_iter_advance(iter, bio->bi_iter.bi_size);
219 	}
220 
221 	bio->bi_private = bmd;
222 
223 	bounce_bio = bio;
224 	ret = blk_rq_append_bio(rq, &bounce_bio);
225 	if (ret)
226 		goto cleanup;
227 
228 	/*
229 	 * We link the bounce buffer in and could have to traverse it later, so
230 	 * we have to get a ref to prevent it from being freed
231 	 */
232 	bio_get(bounce_bio);
233 	return 0;
234 cleanup:
235 	if (!map_data)
236 		bio_free_pages(bio);
237 	bio_put(bio);
238 out_bmd:
239 	kfree(bmd);
240 	return ret;
241 }
242 
bio_map_user_iov(struct request * rq,struct iov_iter * iter,gfp_t gfp_mask)243 static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
244 		gfp_t gfp_mask)
245 {
246 	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
247 	struct bio *bio, *bounce_bio;
248 	int ret;
249 	int j;
250 
251 	if (!iov_iter_count(iter))
252 		return -EINVAL;
253 
254 	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
255 	if (!bio)
256 		return -ENOMEM;
257 	bio->bi_opf |= req_op(rq);
258 
259 	while (iov_iter_count(iter)) {
260 		struct page **pages;
261 		ssize_t bytes;
262 		size_t offs, added = 0;
263 		int npages;
264 
265 		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
266 		if (unlikely(bytes <= 0)) {
267 			ret = bytes ? bytes : -EFAULT;
268 			goto out_unmap;
269 		}
270 
271 		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
272 
273 		if (unlikely(offs & queue_dma_alignment(rq->q))) {
274 			ret = -EINVAL;
275 			j = 0;
276 		} else {
277 			for (j = 0; j < npages; j++) {
278 				struct page *page = pages[j];
279 				unsigned int n = PAGE_SIZE - offs;
280 				bool same_page = false;
281 
282 				if (n > bytes)
283 					n = bytes;
284 
285 				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
286 						     max_sectors, &same_page)) {
287 					if (same_page)
288 						put_page(page);
289 					break;
290 				}
291 
292 				added += n;
293 				bytes -= n;
294 				offs = 0;
295 			}
296 			iov_iter_advance(iter, added);
297 		}
298 		/*
299 		 * release the pages we didn't map into the bio, if any
300 		 */
301 		while (j < npages)
302 			put_page(pages[j++]);
303 		kvfree(pages);
304 		/* couldn't stuff something into bio? */
305 		if (bytes)
306 			break;
307 	}
308 
309 	/*
310 	 * Subtle: if we end up needing to bounce a bio, it would normally
311 	 * disappear when its bi_end_io is run.  However, we need the original
312 	 * bio for the unmap, so grab an extra reference to it
313 	 */
314 	bio_get(bio);
315 
316 	bounce_bio = bio;
317 	ret = blk_rq_append_bio(rq, &bounce_bio);
318 	if (ret)
319 		goto out_put_orig;
320 
321 	/*
322 	 * We link the bounce buffer in and could have to traverse it
323 	 * later, so we have to get a ref to prevent it from being freed
324 	 */
325 	bio_get(bounce_bio);
326 	return 0;
327 
328  out_put_orig:
329 	bio_put(bio);
330  out_unmap:
331 	bio_release_pages(bio, false);
332 	bio_put(bio);
333 	return ret;
334 }
335 
336 /**
337  *	bio_unmap_user	-	unmap a bio
338  *	@bio:		the bio being unmapped
339  *
340  *	Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
341  *	process context.
342  *
343  *	bio_unmap_user() may sleep.
344  */
bio_unmap_user(struct bio * bio)345 static void bio_unmap_user(struct bio *bio)
346 {
347 	bio_release_pages(bio, bio_data_dir(bio) == READ);
348 	bio_put(bio);
349 	bio_put(bio);
350 }
351 
bio_invalidate_vmalloc_pages(struct bio * bio)352 static void bio_invalidate_vmalloc_pages(struct bio *bio)
353 {
354 #ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
355 	if (bio->bi_private && !op_is_write(bio_op(bio))) {
356 		unsigned long i, len = 0;
357 
358 		for (i = 0; i < bio->bi_vcnt; i++)
359 			len += bio->bi_io_vec[i].bv_len;
360 		invalidate_kernel_vmap_range(bio->bi_private, len);
361 	}
362 #endif
363 }
364 
bio_map_kern_endio(struct bio * bio)365 static void bio_map_kern_endio(struct bio *bio)
366 {
367 	bio_invalidate_vmalloc_pages(bio);
368 	bio_put(bio);
369 }
370 
371 /**
372  *	bio_map_kern	-	map kernel address into bio
373  *	@q: the struct request_queue for the bio
374  *	@data: pointer to buffer to map
375  *	@len: length in bytes
376  *	@gfp_mask: allocation flags for bio allocation
377  *
378  *	Map the kernel address into a bio suitable for io to a block
379  *	device. Returns an error pointer in case of error.
380  */
bio_map_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask)381 static struct bio *bio_map_kern(struct request_queue *q, void *data,
382 		unsigned int len, gfp_t gfp_mask)
383 {
384 	unsigned long kaddr = (unsigned long)data;
385 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
386 	unsigned long start = kaddr >> PAGE_SHIFT;
387 	const int nr_pages = end - start;
388 	bool is_vmalloc = is_vmalloc_addr(data);
389 	struct page *page;
390 	int offset, i;
391 	struct bio *bio;
392 
393 	bio = bio_kmalloc(gfp_mask, nr_pages);
394 	if (!bio)
395 		return ERR_PTR(-ENOMEM);
396 
397 	if (is_vmalloc) {
398 		flush_kernel_vmap_range(data, len);
399 		bio->bi_private = data;
400 	}
401 
402 	offset = offset_in_page(kaddr);
403 	for (i = 0; i < nr_pages; i++) {
404 		unsigned int bytes = PAGE_SIZE - offset;
405 
406 		if (len <= 0)
407 			break;
408 
409 		if (bytes > len)
410 			bytes = len;
411 
412 		if (!is_vmalloc)
413 			page = virt_to_page(data);
414 		else
415 			page = vmalloc_to_page(data);
416 		if (bio_add_pc_page(q, bio, page, bytes,
417 				    offset) < bytes) {
418 			/* we don't support partial mappings */
419 			bio_put(bio);
420 			return ERR_PTR(-EINVAL);
421 		}
422 
423 		data += bytes;
424 		len -= bytes;
425 		offset = 0;
426 	}
427 
428 	bio->bi_end_io = bio_map_kern_endio;
429 	return bio;
430 }
431 
bio_copy_kern_endio(struct bio * bio)432 static void bio_copy_kern_endio(struct bio *bio)
433 {
434 	bio_free_pages(bio);
435 	bio_put(bio);
436 }
437 
bio_copy_kern_endio_read(struct bio * bio)438 static void bio_copy_kern_endio_read(struct bio *bio)
439 {
440 	char *p = bio->bi_private;
441 	struct bio_vec *bvec;
442 	struct bvec_iter_all iter_all;
443 
444 	bio_for_each_segment_all(bvec, bio, iter_all) {
445 		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
446 		p += bvec->bv_len;
447 	}
448 
449 	bio_copy_kern_endio(bio);
450 }
451 
452 /**
453  *	bio_copy_kern	-	copy kernel address into bio
454  *	@q: the struct request_queue for the bio
455  *	@data: pointer to buffer to copy
456  *	@len: length in bytes
457  *	@gfp_mask: allocation flags for bio and page allocation
458  *	@reading: data direction is READ
459  *
460  *	copy the kernel address into a bio suitable for io to a block
461  *	device. Returns an error pointer in case of error.
462  */
bio_copy_kern(struct request_queue * q,void * data,unsigned int len,gfp_t gfp_mask,int reading)463 static struct bio *bio_copy_kern(struct request_queue *q, void *data,
464 		unsigned int len, gfp_t gfp_mask, int reading)
465 {
466 	unsigned long kaddr = (unsigned long)data;
467 	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
468 	unsigned long start = kaddr >> PAGE_SHIFT;
469 	struct bio *bio;
470 	void *p = data;
471 	int nr_pages = 0;
472 
473 	/*
474 	 * Overflow, abort
475 	 */
476 	if (end < start)
477 		return ERR_PTR(-EINVAL);
478 
479 	nr_pages = end - start;
480 	bio = bio_kmalloc(gfp_mask, nr_pages);
481 	if (!bio)
482 		return ERR_PTR(-ENOMEM);
483 
484 	while (len) {
485 		struct page *page;
486 		unsigned int bytes = PAGE_SIZE;
487 
488 		if (bytes > len)
489 			bytes = len;
490 
491 		page = alloc_page(q->bounce_gfp | gfp_mask);
492 		if (!page)
493 			goto cleanup;
494 
495 		if (!reading)
496 			memcpy(page_address(page), p, bytes);
497 
498 		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
499 			break;
500 
501 		len -= bytes;
502 		p += bytes;
503 	}
504 
505 	if (reading) {
506 		bio->bi_end_io = bio_copy_kern_endio_read;
507 		bio->bi_private = data;
508 	} else {
509 		bio->bi_end_io = bio_copy_kern_endio;
510 	}
511 
512 	return bio;
513 
514 cleanup:
515 	bio_free_pages(bio);
516 	bio_put(bio);
517 	return ERR_PTR(-ENOMEM);
518 }
519 
520 /*
521  * Append a bio to a passthrough request.  Only works if the bio can be merged
522  * into the request based on the driver constraints.
523  */
blk_rq_append_bio(struct request * rq,struct bio ** bio)524 int blk_rq_append_bio(struct request *rq, struct bio **bio)
525 {
526 	struct bio *orig_bio = *bio;
527 	struct bvec_iter iter;
528 	struct bio_vec bv;
529 	unsigned int nr_segs = 0;
530 
531 	blk_queue_bounce(rq->q, bio);
532 
533 	bio_for_each_bvec(bv, *bio, iter)
534 		nr_segs++;
535 
536 	if (!rq->bio) {
537 		blk_rq_bio_prep(rq, *bio, nr_segs);
538 	} else {
539 		if (!ll_back_merge_fn(rq, *bio, nr_segs)) {
540 			if (orig_bio != *bio) {
541 				bio_put(*bio);
542 				*bio = orig_bio;
543 			}
544 			return -EINVAL;
545 		}
546 
547 		rq->biotail->bi_next = *bio;
548 		rq->biotail = *bio;
549 		rq->__data_len += (*bio)->bi_iter.bi_size;
550 		bio_crypt_free_ctx(*bio);
551 	}
552 
553 	return 0;
554 }
555 EXPORT_SYMBOL(blk_rq_append_bio);
556 
557 /**
558  * blk_rq_map_user_iov - map user data to a request, for passthrough requests
559  * @q:		request queue where request should be inserted
560  * @rq:		request to map data to
561  * @map_data:   pointer to the rq_map_data holding pages (if necessary)
562  * @iter:	iovec iterator
563  * @gfp_mask:	memory allocation flags
564  *
565  * Description:
566  *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
567  *    a kernel bounce buffer is used.
568  *
569  *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
570  *    still in process context.
571  *
572  *    Note: The mapped bio may need to be bounced through blk_queue_bounce()
573  *    before being submitted to the device, as pages mapped may be out of
574  *    reach. It's the callers responsibility to make sure this happens. The
575  *    original bio must be passed back in to blk_rq_unmap_user() for proper
576  *    unmapping.
577  */
blk_rq_map_user_iov(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,const struct iov_iter * iter,gfp_t gfp_mask)578 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
579 			struct rq_map_data *map_data,
580 			const struct iov_iter *iter, gfp_t gfp_mask)
581 {
582 	bool copy = false;
583 	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
584 	struct bio *bio = NULL;
585 	struct iov_iter i;
586 	int ret = -EINVAL;
587 
588 	if (!iter_is_iovec(iter))
589 		goto fail;
590 
591 	if (map_data)
592 		copy = true;
593 	else if (iov_iter_alignment(iter) & align)
594 		copy = true;
595 	else if (queue_virt_boundary(q))
596 		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);
597 
598 	i = *iter;
599 	do {
600 		if (copy)
601 			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
602 		else
603 			ret = bio_map_user_iov(rq, &i, gfp_mask);
604 		if (ret)
605 			goto unmap_rq;
606 		if (!bio)
607 			bio = rq->bio;
608 	} while (iov_iter_count(&i));
609 
610 	return 0;
611 
612 unmap_rq:
613 	blk_rq_unmap_user(bio);
614 fail:
615 	rq->bio = NULL;
616 	return ret;
617 }
618 EXPORT_SYMBOL(blk_rq_map_user_iov);
619 
blk_rq_map_user(struct request_queue * q,struct request * rq,struct rq_map_data * map_data,void __user * ubuf,unsigned long len,gfp_t gfp_mask)620 int blk_rq_map_user(struct request_queue *q, struct request *rq,
621 		    struct rq_map_data *map_data, void __user *ubuf,
622 		    unsigned long len, gfp_t gfp_mask)
623 {
624 	struct iovec iov;
625 	struct iov_iter i;
626 	int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);
627 
628 	if (unlikely(ret < 0))
629 		return ret;
630 
631 	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
632 }
633 EXPORT_SYMBOL(blk_rq_map_user);
634 
635 /**
636  * blk_rq_unmap_user - unmap a request with user data
637  * @bio:	       start of bio list
638  *
639  * Description:
640  *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
641  *    supply the original rq->bio from the blk_rq_map_user() return, since
642  *    the I/O completion may have changed rq->bio.
643  */
blk_rq_unmap_user(struct bio * bio)644 int blk_rq_unmap_user(struct bio *bio)
645 {
646 	struct bio *mapped_bio;
647 	int ret = 0, ret2;
648 
649 	while (bio) {
650 		mapped_bio = bio;
651 		if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
652 			mapped_bio = bio->bi_private;
653 
654 		if (bio->bi_private) {
655 			ret2 = bio_uncopy_user(mapped_bio);
656 			if (ret2 && !ret)
657 				ret = ret2;
658 		} else {
659 			bio_unmap_user(mapped_bio);
660 		}
661 
662 		mapped_bio = bio;
663 		bio = bio->bi_next;
664 		bio_put(mapped_bio);
665 	}
666 
667 	return ret;
668 }
669 EXPORT_SYMBOL(blk_rq_unmap_user);
670 
671 /**
672  * blk_rq_map_kern - map kernel data to a request, for passthrough requests
673  * @q:		request queue where request should be inserted
674  * @rq:		request to fill
675  * @kbuf:	the kernel buffer
676  * @len:	length of user data
677  * @gfp_mask:	memory allocation flags
678  *
679  * Description:
680  *    Data will be mapped directly if possible. Otherwise a bounce
681  *    buffer is used. Can be called multiple times to append multiple
682  *    buffers.
683  */
blk_rq_map_kern(struct request_queue * q,struct request * rq,void * kbuf,unsigned int len,gfp_t gfp_mask)684 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
685 		    unsigned int len, gfp_t gfp_mask)
686 {
687 	int reading = rq_data_dir(rq) == READ;
688 	unsigned long addr = (unsigned long) kbuf;
689 	struct bio *bio, *orig_bio;
690 	int ret;
691 
692 	if (len > (queue_max_hw_sectors(q) << 9))
693 		return -EINVAL;
694 	if (!len || !kbuf)
695 		return -EINVAL;
696 
697 	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf))
698 		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
699 	else
700 		bio = bio_map_kern(q, kbuf, len, gfp_mask);
701 
702 	if (IS_ERR(bio))
703 		return PTR_ERR(bio);
704 
705 	bio->bi_opf &= ~REQ_OP_MASK;
706 	bio->bi_opf |= req_op(rq);
707 
708 	orig_bio = bio;
709 	ret = blk_rq_append_bio(rq, &bio);
710 	if (unlikely(ret)) {
711 		/* request is too big */
712 		bio_put(orig_bio);
713 		return ret;
714 	}
715 
716 	return 0;
717 }
718 EXPORT_SYMBOL(blk_rq_map_kern);
719