1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AMD Memory Encryption Support
4  *
5  * Copyright (C) 2019 SUSE
6  *
7  * Author: Joerg Roedel <jroedel@suse.de>
8  */
9 
10 #define pr_fmt(fmt)	"SEV-ES: " fmt
11 
12 #include <linux/sched/debug.h>	/* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/mem_encrypt.h>
15 #include <linux/lockdep.h>
16 #include <linux/printk.h>
17 #include <linux/mm_types.h>
18 #include <linux/set_memory.h>
19 #include <linux/memblock.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 
23 #include <asm/cpu_entry_area.h>
24 #include <asm/stacktrace.h>
25 #include <asm/sev-es.h>
26 #include <asm/insn-eval.h>
27 #include <asm/fpu/internal.h>
28 #include <asm/processor.h>
29 #include <asm/realmode.h>
30 #include <asm/traps.h>
31 #include <asm/svm.h>
32 #include <asm/smp.h>
33 #include <asm/cpu.h>
34 
35 #define DR7_RESET_VALUE        0x400
36 
37 /* For early boot hypervisor communication in SEV-ES enabled guests */
38 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
39 
40 /*
41  * Needs to be in the .data section because we need it NULL before bss is
42  * cleared
43  */
44 static struct ghcb __initdata *boot_ghcb;
45 
46 /* #VC handler runtime per-CPU data */
47 struct sev_es_runtime_data {
48 	struct ghcb ghcb_page;
49 
50 	/* Physical storage for the per-CPU IST stack of the #VC handler */
51 	char ist_stack[EXCEPTION_STKSZ] __aligned(PAGE_SIZE);
52 
53 	/*
54 	 * Physical storage for the per-CPU fall-back stack of the #VC handler.
55 	 * The fall-back stack is used when it is not safe to switch back to the
56 	 * interrupted stack in the #VC entry code.
57 	 */
58 	char fallback_stack[EXCEPTION_STKSZ] __aligned(PAGE_SIZE);
59 
60 	/*
61 	 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
62 	 * It is needed when an NMI happens while the #VC handler uses the real
63 	 * GHCB, and the NMI handler itself is causing another #VC exception. In
64 	 * that case the GHCB content of the first handler needs to be backed up
65 	 * and restored.
66 	 */
67 	struct ghcb backup_ghcb;
68 
69 	/*
70 	 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
71 	 * There is no need for it to be atomic, because nothing is written to
72 	 * the GHCB between the read and the write of ghcb_active. So it is safe
73 	 * to use it when a nested #VC exception happens before the write.
74 	 *
75 	 * This is necessary for example in the #VC->NMI->#VC case when the NMI
76 	 * happens while the first #VC handler uses the GHCB. When the NMI code
77 	 * raises a second #VC handler it might overwrite the contents of the
78 	 * GHCB written by the first handler. To avoid this the content of the
79 	 * GHCB is saved and restored when the GHCB is detected to be in use
80 	 * already.
81 	 */
82 	bool ghcb_active;
83 	bool backup_ghcb_active;
84 
85 	/*
86 	 * Cached DR7 value - write it on DR7 writes and return it on reads.
87 	 * That value will never make it to the real hardware DR7 as debugging
88 	 * is currently unsupported in SEV-ES guests.
89 	 */
90 	unsigned long dr7;
91 };
92 
93 struct ghcb_state {
94 	struct ghcb *ghcb;
95 };
96 
97 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
98 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
99 
100 /* Needed in vc_early_forward_exception */
101 void do_early_exception(struct pt_regs *regs, int trapnr);
102 
setup_vc_stacks(int cpu)103 static void __init setup_vc_stacks(int cpu)
104 {
105 	struct sev_es_runtime_data *data;
106 	struct cpu_entry_area *cea;
107 	unsigned long vaddr;
108 	phys_addr_t pa;
109 
110 	data = per_cpu(runtime_data, cpu);
111 	cea  = get_cpu_entry_area(cpu);
112 
113 	/* Map #VC IST stack */
114 	vaddr = CEA_ESTACK_BOT(&cea->estacks, VC);
115 	pa    = __pa(data->ist_stack);
116 	cea_set_pte((void *)vaddr, pa, PAGE_KERNEL);
117 
118 	/* Map VC fall-back stack */
119 	vaddr = CEA_ESTACK_BOT(&cea->estacks, VC2);
120 	pa    = __pa(data->fallback_stack);
121 	cea_set_pte((void *)vaddr, pa, PAGE_KERNEL);
122 }
123 
on_vc_stack(unsigned long sp)124 static __always_inline bool on_vc_stack(unsigned long sp)
125 {
126 	return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
127 }
128 
129 /*
130  * This function handles the case when an NMI is raised in the #VC exception
131  * handler entry code. In this case, the IST entry for #VC must be adjusted, so
132  * that any subsequent #VC exception will not overwrite the stack contents of the
133  * interrupted #VC handler.
134  *
135  * The IST entry is adjusted unconditionally so that it can be also be
136  * unconditionally adjusted back in sev_es_ist_exit(). Otherwise a nested
137  * sev_es_ist_exit() call may adjust back the IST entry too early.
138  */
__sev_es_ist_enter(struct pt_regs * regs)139 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
140 {
141 	unsigned long old_ist, new_ist;
142 
143 	/* Read old IST entry */
144 	old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
145 
146 	/* Make room on the IST stack */
147 	if (on_vc_stack(regs->sp))
148 		new_ist = ALIGN_DOWN(regs->sp, 8) - sizeof(old_ist);
149 	else
150 		new_ist = old_ist - sizeof(old_ist);
151 
152 	/* Store old IST entry */
153 	*(unsigned long *)new_ist = old_ist;
154 
155 	/* Set new IST entry */
156 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
157 }
158 
__sev_es_ist_exit(void)159 void noinstr __sev_es_ist_exit(void)
160 {
161 	unsigned long ist;
162 
163 	/* Read IST entry */
164 	ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
165 
166 	if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
167 		return;
168 
169 	/* Read back old IST entry and write it to the TSS */
170 	this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
171 }
172 
sev_es_get_ghcb(struct ghcb_state * state)173 static __always_inline struct ghcb *sev_es_get_ghcb(struct ghcb_state *state)
174 {
175 	struct sev_es_runtime_data *data;
176 	struct ghcb *ghcb;
177 
178 	data = this_cpu_read(runtime_data);
179 	ghcb = &data->ghcb_page;
180 
181 	if (unlikely(data->ghcb_active)) {
182 		/* GHCB is already in use - save its contents */
183 
184 		if (unlikely(data->backup_ghcb_active))
185 			return NULL;
186 
187 		/* Mark backup_ghcb active before writing to it */
188 		data->backup_ghcb_active = true;
189 
190 		state->ghcb = &data->backup_ghcb;
191 
192 		/* Backup GHCB content */
193 		*state->ghcb = *ghcb;
194 	} else {
195 		state->ghcb = NULL;
196 		data->ghcb_active = true;
197 	}
198 
199 	return ghcb;
200 }
201 
sev_es_put_ghcb(struct ghcb_state * state)202 static __always_inline void sev_es_put_ghcb(struct ghcb_state *state)
203 {
204 	struct sev_es_runtime_data *data;
205 	struct ghcb *ghcb;
206 
207 	data = this_cpu_read(runtime_data);
208 	ghcb = &data->ghcb_page;
209 
210 	if (state->ghcb) {
211 		/* Restore GHCB from Backup */
212 		*ghcb = *state->ghcb;
213 		data->backup_ghcb_active = false;
214 		state->ghcb = NULL;
215 	} else {
216 		data->ghcb_active = false;
217 	}
218 }
219 
220 /* Needed in vc_early_forward_exception */
221 void do_early_exception(struct pt_regs *regs, int trapnr);
222 
sev_es_rd_ghcb_msr(void)223 static inline u64 sev_es_rd_ghcb_msr(void)
224 {
225 	return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
226 }
227 
sev_es_wr_ghcb_msr(u64 val)228 static inline void sev_es_wr_ghcb_msr(u64 val)
229 {
230 	u32 low, high;
231 
232 	low  = (u32)(val);
233 	high = (u32)(val >> 32);
234 
235 	native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
236 }
237 
vc_fetch_insn_kernel(struct es_em_ctxt * ctxt,unsigned char * buffer)238 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
239 				unsigned char *buffer)
240 {
241 	return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
242 }
243 
vc_decode_insn(struct es_em_ctxt * ctxt)244 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
245 {
246 	char buffer[MAX_INSN_SIZE];
247 	enum es_result ret;
248 	int res;
249 
250 	if (user_mode(ctxt->regs)) {
251 		res = insn_fetch_from_user(ctxt->regs, buffer);
252 		if (!res) {
253 			ctxt->fi.vector     = X86_TRAP_PF;
254 			ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
255 			ctxt->fi.cr2        = ctxt->regs->ip;
256 			return ES_EXCEPTION;
257 		}
258 
259 		if (!insn_decode(&ctxt->insn, ctxt->regs, buffer, res))
260 			return ES_DECODE_FAILED;
261 	} else {
262 		res = vc_fetch_insn_kernel(ctxt, buffer);
263 		if (res) {
264 			ctxt->fi.vector     = X86_TRAP_PF;
265 			ctxt->fi.error_code = X86_PF_INSTR;
266 			ctxt->fi.cr2        = ctxt->regs->ip;
267 			return ES_EXCEPTION;
268 		}
269 
270 		insn_init(&ctxt->insn, buffer, MAX_INSN_SIZE - res, 1);
271 		insn_get_length(&ctxt->insn);
272 	}
273 
274 	ret = ctxt->insn.immediate.got ? ES_OK : ES_DECODE_FAILED;
275 
276 	return ret;
277 }
278 
vc_write_mem(struct es_em_ctxt * ctxt,char * dst,char * buf,size_t size)279 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
280 				   char *dst, char *buf, size_t size)
281 {
282 	unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
283 	char __user *target = (char __user *)dst;
284 	u64 d8;
285 	u32 d4;
286 	u16 d2;
287 	u8  d1;
288 
289 	switch (size) {
290 	case 1:
291 		memcpy(&d1, buf, 1);
292 		if (put_user(d1, target))
293 			goto fault;
294 		break;
295 	case 2:
296 		memcpy(&d2, buf, 2);
297 		if (put_user(d2, target))
298 			goto fault;
299 		break;
300 	case 4:
301 		memcpy(&d4, buf, 4);
302 		if (put_user(d4, target))
303 			goto fault;
304 		break;
305 	case 8:
306 		memcpy(&d8, buf, 8);
307 		if (put_user(d8, target))
308 			goto fault;
309 		break;
310 	default:
311 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
312 		return ES_UNSUPPORTED;
313 	}
314 
315 	return ES_OK;
316 
317 fault:
318 	if (user_mode(ctxt->regs))
319 		error_code |= X86_PF_USER;
320 
321 	ctxt->fi.vector = X86_TRAP_PF;
322 	ctxt->fi.error_code = error_code;
323 	ctxt->fi.cr2 = (unsigned long)dst;
324 
325 	return ES_EXCEPTION;
326 }
327 
vc_read_mem(struct es_em_ctxt * ctxt,char * src,char * buf,size_t size)328 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
329 				  char *src, char *buf, size_t size)
330 {
331 	unsigned long error_code = X86_PF_PROT;
332 	char __user *s = (char __user *)src;
333 	u64 d8;
334 	u32 d4;
335 	u16 d2;
336 	u8  d1;
337 
338 	switch (size) {
339 	case 1:
340 		if (get_user(d1, s))
341 			goto fault;
342 		memcpy(buf, &d1, 1);
343 		break;
344 	case 2:
345 		if (get_user(d2, s))
346 			goto fault;
347 		memcpy(buf, &d2, 2);
348 		break;
349 	case 4:
350 		if (get_user(d4, s))
351 			goto fault;
352 		memcpy(buf, &d4, 4);
353 		break;
354 	case 8:
355 		if (get_user(d8, s))
356 			goto fault;
357 		memcpy(buf, &d8, 8);
358 		break;
359 	default:
360 		WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
361 		return ES_UNSUPPORTED;
362 	}
363 
364 	return ES_OK;
365 
366 fault:
367 	if (user_mode(ctxt->regs))
368 		error_code |= X86_PF_USER;
369 
370 	ctxt->fi.vector = X86_TRAP_PF;
371 	ctxt->fi.error_code = error_code;
372 	ctxt->fi.cr2 = (unsigned long)src;
373 
374 	return ES_EXCEPTION;
375 }
376 
vc_slow_virt_to_phys(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned long vaddr,phys_addr_t * paddr)377 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
378 					   unsigned long vaddr, phys_addr_t *paddr)
379 {
380 	unsigned long va = (unsigned long)vaddr;
381 	unsigned int level;
382 	phys_addr_t pa;
383 	pgd_t *pgd;
384 	pte_t *pte;
385 
386 	pgd = __va(read_cr3_pa());
387 	pgd = &pgd[pgd_index(va)];
388 	pte = lookup_address_in_pgd(pgd, va, &level);
389 	if (!pte) {
390 		ctxt->fi.vector     = X86_TRAP_PF;
391 		ctxt->fi.cr2        = vaddr;
392 		ctxt->fi.error_code = 0;
393 
394 		if (user_mode(ctxt->regs))
395 			ctxt->fi.error_code |= X86_PF_USER;
396 
397 		return ES_EXCEPTION;
398 	}
399 
400 	if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
401 		/* Emulated MMIO to/from encrypted memory not supported */
402 		return ES_UNSUPPORTED;
403 
404 	pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
405 	pa |= va & ~page_level_mask(level);
406 
407 	*paddr = pa;
408 
409 	return ES_OK;
410 }
411 
412 /* Include code shared with pre-decompression boot stage */
413 #include "sev-es-shared.c"
414 
__sev_es_nmi_complete(void)415 void noinstr __sev_es_nmi_complete(void)
416 {
417 	struct ghcb_state state;
418 	struct ghcb *ghcb;
419 
420 	ghcb = sev_es_get_ghcb(&state);
421 
422 	vc_ghcb_invalidate(ghcb);
423 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
424 	ghcb_set_sw_exit_info_1(ghcb, 0);
425 	ghcb_set_sw_exit_info_2(ghcb, 0);
426 
427 	sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
428 	VMGEXIT();
429 
430 	sev_es_put_ghcb(&state);
431 }
432 
get_jump_table_addr(void)433 static u64 get_jump_table_addr(void)
434 {
435 	struct ghcb_state state;
436 	unsigned long flags;
437 	struct ghcb *ghcb;
438 	u64 ret = 0;
439 
440 	local_irq_save(flags);
441 
442 	ghcb = sev_es_get_ghcb(&state);
443 
444 	vc_ghcb_invalidate(ghcb);
445 	ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
446 	ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
447 	ghcb_set_sw_exit_info_2(ghcb, 0);
448 
449 	sev_es_wr_ghcb_msr(__pa(ghcb));
450 	VMGEXIT();
451 
452 	if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
453 	    ghcb_sw_exit_info_2_is_valid(ghcb))
454 		ret = ghcb->save.sw_exit_info_2;
455 
456 	sev_es_put_ghcb(&state);
457 
458 	local_irq_restore(flags);
459 
460 	return ret;
461 }
462 
sev_es_setup_ap_jump_table(struct real_mode_header * rmh)463 int sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
464 {
465 	u16 startup_cs, startup_ip;
466 	phys_addr_t jump_table_pa;
467 	u64 jump_table_addr;
468 	u16 __iomem *jump_table;
469 
470 	jump_table_addr = get_jump_table_addr();
471 
472 	/* On UP guests there is no jump table so this is not a failure */
473 	if (!jump_table_addr)
474 		return 0;
475 
476 	/* Check if AP Jump Table is page-aligned */
477 	if (jump_table_addr & ~PAGE_MASK)
478 		return -EINVAL;
479 
480 	jump_table_pa = jump_table_addr & PAGE_MASK;
481 
482 	startup_cs = (u16)(rmh->trampoline_start >> 4);
483 	startup_ip = (u16)(rmh->sev_es_trampoline_start -
484 			   rmh->trampoline_start);
485 
486 	jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
487 	if (!jump_table)
488 		return -EIO;
489 
490 	writew(startup_ip, &jump_table[0]);
491 	writew(startup_cs, &jump_table[1]);
492 
493 	iounmap(jump_table);
494 
495 	return 0;
496 }
497 
498 /*
499  * This is needed by the OVMF UEFI firmware which will use whatever it finds in
500  * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
501  * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
502  */
sev_es_efi_map_ghcbs(pgd_t * pgd)503 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
504 {
505 	struct sev_es_runtime_data *data;
506 	unsigned long address, pflags;
507 	int cpu;
508 	u64 pfn;
509 
510 	if (!sev_es_active())
511 		return 0;
512 
513 	pflags = _PAGE_NX | _PAGE_RW;
514 
515 	for_each_possible_cpu(cpu) {
516 		data = per_cpu(runtime_data, cpu);
517 
518 		address = __pa(&data->ghcb_page);
519 		pfn = address >> PAGE_SHIFT;
520 
521 		if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
522 			return 1;
523 	}
524 
525 	return 0;
526 }
527 
vc_handle_msr(struct ghcb * ghcb,struct es_em_ctxt * ctxt)528 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
529 {
530 	struct pt_regs *regs = ctxt->regs;
531 	enum es_result ret;
532 	u64 exit_info_1;
533 
534 	/* Is it a WRMSR? */
535 	exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
536 
537 	ghcb_set_rcx(ghcb, regs->cx);
538 	if (exit_info_1) {
539 		ghcb_set_rax(ghcb, regs->ax);
540 		ghcb_set_rdx(ghcb, regs->dx);
541 	}
542 
543 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
544 
545 	if ((ret == ES_OK) && (!exit_info_1)) {
546 		regs->ax = ghcb->save.rax;
547 		regs->dx = ghcb->save.rdx;
548 	}
549 
550 	return ret;
551 }
552 
553 /*
554  * This function runs on the first #VC exception after the kernel
555  * switched to virtual addresses.
556  */
sev_es_setup_ghcb(void)557 static bool __init sev_es_setup_ghcb(void)
558 {
559 	/* First make sure the hypervisor talks a supported protocol. */
560 	if (!sev_es_negotiate_protocol())
561 		return false;
562 
563 	/*
564 	 * Clear the boot_ghcb. The first exception comes in before the bss
565 	 * section is cleared.
566 	 */
567 	memset(&boot_ghcb_page, 0, PAGE_SIZE);
568 
569 	/* Alright - Make the boot-ghcb public */
570 	boot_ghcb = &boot_ghcb_page;
571 
572 	return true;
573 }
574 
575 #ifdef CONFIG_HOTPLUG_CPU
sev_es_ap_hlt_loop(void)576 static void sev_es_ap_hlt_loop(void)
577 {
578 	struct ghcb_state state;
579 	struct ghcb *ghcb;
580 
581 	ghcb = sev_es_get_ghcb(&state);
582 
583 	while (true) {
584 		vc_ghcb_invalidate(ghcb);
585 		ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
586 		ghcb_set_sw_exit_info_1(ghcb, 0);
587 		ghcb_set_sw_exit_info_2(ghcb, 0);
588 
589 		sev_es_wr_ghcb_msr(__pa(ghcb));
590 		VMGEXIT();
591 
592 		/* Wakeup signal? */
593 		if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
594 		    ghcb->save.sw_exit_info_2)
595 			break;
596 	}
597 
598 	sev_es_put_ghcb(&state);
599 }
600 
601 /*
602  * Play_dead handler when running under SEV-ES. This is needed because
603  * the hypervisor can't deliver an SIPI request to restart the AP.
604  * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
605  * hypervisor wakes it up again.
606  */
sev_es_play_dead(void)607 static void sev_es_play_dead(void)
608 {
609 	play_dead_common();
610 
611 	/* IRQs now disabled */
612 
613 	sev_es_ap_hlt_loop();
614 
615 	/*
616 	 * If we get here, the VCPU was woken up again. Jump to CPU
617 	 * startup code to get it back online.
618 	 */
619 	start_cpu0();
620 }
621 #else  /* CONFIG_HOTPLUG_CPU */
622 #define sev_es_play_dead	native_play_dead
623 #endif /* CONFIG_HOTPLUG_CPU */
624 
625 #ifdef CONFIG_SMP
sev_es_setup_play_dead(void)626 static void __init sev_es_setup_play_dead(void)
627 {
628 	smp_ops.play_dead = sev_es_play_dead;
629 }
630 #else
sev_es_setup_play_dead(void)631 static inline void sev_es_setup_play_dead(void) { }
632 #endif
633 
alloc_runtime_data(int cpu)634 static void __init alloc_runtime_data(int cpu)
635 {
636 	struct sev_es_runtime_data *data;
637 
638 	data = memblock_alloc(sizeof(*data), PAGE_SIZE);
639 	if (!data)
640 		panic("Can't allocate SEV-ES runtime data");
641 
642 	per_cpu(runtime_data, cpu) = data;
643 }
644 
init_ghcb(int cpu)645 static void __init init_ghcb(int cpu)
646 {
647 	struct sev_es_runtime_data *data;
648 	int err;
649 
650 	data = per_cpu(runtime_data, cpu);
651 
652 	err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
653 					 sizeof(data->ghcb_page));
654 	if (err)
655 		panic("Can't map GHCBs unencrypted");
656 
657 	memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
658 
659 	data->ghcb_active = false;
660 	data->backup_ghcb_active = false;
661 }
662 
sev_es_init_vc_handling(void)663 void __init sev_es_init_vc_handling(void)
664 {
665 	int cpu;
666 
667 	BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
668 
669 	if (!sev_es_active())
670 		return;
671 
672 	if (!sev_es_check_cpu_features())
673 		panic("SEV-ES CPU Features missing");
674 
675 	/* Enable SEV-ES special handling */
676 	static_branch_enable(&sev_es_enable_key);
677 
678 	/* Initialize per-cpu GHCB pages */
679 	for_each_possible_cpu(cpu) {
680 		alloc_runtime_data(cpu);
681 		init_ghcb(cpu);
682 		setup_vc_stacks(cpu);
683 	}
684 
685 	sev_es_setup_play_dead();
686 
687 	/* Secondary CPUs use the runtime #VC handler */
688 	initial_vc_handler = (unsigned long)safe_stack_exc_vmm_communication;
689 }
690 
vc_early_forward_exception(struct es_em_ctxt * ctxt)691 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
692 {
693 	int trapnr = ctxt->fi.vector;
694 
695 	if (trapnr == X86_TRAP_PF)
696 		native_write_cr2(ctxt->fi.cr2);
697 
698 	ctxt->regs->orig_ax = ctxt->fi.error_code;
699 	do_early_exception(ctxt->regs, trapnr);
700 }
701 
vc_insn_get_reg(struct es_em_ctxt * ctxt)702 static long *vc_insn_get_reg(struct es_em_ctxt *ctxt)
703 {
704 	long *reg_array;
705 	int offset;
706 
707 	reg_array = (long *)ctxt->regs;
708 	offset    = insn_get_modrm_reg_off(&ctxt->insn, ctxt->regs);
709 
710 	if (offset < 0)
711 		return NULL;
712 
713 	offset /= sizeof(long);
714 
715 	return reg_array + offset;
716 }
717 
vc_insn_get_rm(struct es_em_ctxt * ctxt)718 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
719 {
720 	long *reg_array;
721 	int offset;
722 
723 	reg_array = (long *)ctxt->regs;
724 	offset    = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
725 
726 	if (offset < 0)
727 		return NULL;
728 
729 	offset /= sizeof(long);
730 
731 	return reg_array + offset;
732 }
vc_do_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt,unsigned int bytes,bool read)733 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
734 				 unsigned int bytes, bool read)
735 {
736 	u64 exit_code, exit_info_1, exit_info_2;
737 	unsigned long ghcb_pa = __pa(ghcb);
738 	enum es_result res;
739 	phys_addr_t paddr;
740 	void __user *ref;
741 
742 	ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
743 	if (ref == (void __user *)-1L)
744 		return ES_UNSUPPORTED;
745 
746 	exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
747 
748 	res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
749 	if (res != ES_OK) {
750 		if (res == ES_EXCEPTION && !read)
751 			ctxt->fi.error_code |= X86_PF_WRITE;
752 
753 		return res;
754 	}
755 
756 	exit_info_1 = paddr;
757 	/* Can never be greater than 8 */
758 	exit_info_2 = bytes;
759 
760 	ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
761 
762 	return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
763 }
764 
vc_handle_mmio_twobyte_ops(struct ghcb * ghcb,struct es_em_ctxt * ctxt)765 static enum es_result vc_handle_mmio_twobyte_ops(struct ghcb *ghcb,
766 						 struct es_em_ctxt *ctxt)
767 {
768 	struct insn *insn = &ctxt->insn;
769 	unsigned int bytes = 0;
770 	enum es_result ret;
771 	int sign_byte;
772 	long *reg_data;
773 
774 	switch (insn->opcode.bytes[1]) {
775 		/* MMIO Read w/ zero-extension */
776 	case 0xb6:
777 		bytes = 1;
778 		fallthrough;
779 	case 0xb7:
780 		if (!bytes)
781 			bytes = 2;
782 
783 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
784 		if (ret)
785 			break;
786 
787 		/* Zero extend based on operand size */
788 		reg_data = vc_insn_get_reg(ctxt);
789 		if (!reg_data)
790 			return ES_DECODE_FAILED;
791 
792 		memset(reg_data, 0, insn->opnd_bytes);
793 
794 		memcpy(reg_data, ghcb->shared_buffer, bytes);
795 		break;
796 
797 		/* MMIO Read w/ sign-extension */
798 	case 0xbe:
799 		bytes = 1;
800 		fallthrough;
801 	case 0xbf:
802 		if (!bytes)
803 			bytes = 2;
804 
805 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
806 		if (ret)
807 			break;
808 
809 		/* Sign extend based on operand size */
810 		reg_data = vc_insn_get_reg(ctxt);
811 		if (!reg_data)
812 			return ES_DECODE_FAILED;
813 
814 		if (bytes == 1) {
815 			u8 *val = (u8 *)ghcb->shared_buffer;
816 
817 			sign_byte = (*val & 0x80) ? 0xff : 0x00;
818 		} else {
819 			u16 *val = (u16 *)ghcb->shared_buffer;
820 
821 			sign_byte = (*val & 0x8000) ? 0xff : 0x00;
822 		}
823 		memset(reg_data, sign_byte, insn->opnd_bytes);
824 
825 		memcpy(reg_data, ghcb->shared_buffer, bytes);
826 		break;
827 
828 	default:
829 		ret = ES_UNSUPPORTED;
830 	}
831 
832 	return ret;
833 }
834 
835 /*
836  * The MOVS instruction has two memory operands, which raises the
837  * problem that it is not known whether the access to the source or the
838  * destination caused the #VC exception (and hence whether an MMIO read
839  * or write operation needs to be emulated).
840  *
841  * Instead of playing games with walking page-tables and trying to guess
842  * whether the source or destination is an MMIO range, split the move
843  * into two operations, a read and a write with only one memory operand.
844  * This will cause a nested #VC exception on the MMIO address which can
845  * then be handled.
846  *
847  * This implementation has the benefit that it also supports MOVS where
848  * source _and_ destination are MMIO regions.
849  *
850  * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
851  * rare operation. If it turns out to be a performance problem the split
852  * operations can be moved to memcpy_fromio() and memcpy_toio().
853  */
vc_handle_mmio_movs(struct es_em_ctxt * ctxt,unsigned int bytes)854 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
855 					  unsigned int bytes)
856 {
857 	unsigned long ds_base, es_base;
858 	unsigned char *src, *dst;
859 	unsigned char buffer[8];
860 	enum es_result ret;
861 	bool rep;
862 	int off;
863 
864 	ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
865 	es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
866 
867 	if (ds_base == -1L || es_base == -1L) {
868 		ctxt->fi.vector = X86_TRAP_GP;
869 		ctxt->fi.error_code = 0;
870 		return ES_EXCEPTION;
871 	}
872 
873 	src = ds_base + (unsigned char *)ctxt->regs->si;
874 	dst = es_base + (unsigned char *)ctxt->regs->di;
875 
876 	ret = vc_read_mem(ctxt, src, buffer, bytes);
877 	if (ret != ES_OK)
878 		return ret;
879 
880 	ret = vc_write_mem(ctxt, dst, buffer, bytes);
881 	if (ret != ES_OK)
882 		return ret;
883 
884 	if (ctxt->regs->flags & X86_EFLAGS_DF)
885 		off = -bytes;
886 	else
887 		off =  bytes;
888 
889 	ctxt->regs->si += off;
890 	ctxt->regs->di += off;
891 
892 	rep = insn_has_rep_prefix(&ctxt->insn);
893 	if (rep)
894 		ctxt->regs->cx -= 1;
895 
896 	if (!rep || ctxt->regs->cx == 0)
897 		return ES_OK;
898 	else
899 		return ES_RETRY;
900 }
901 
vc_handle_mmio(struct ghcb * ghcb,struct es_em_ctxt * ctxt)902 static enum es_result vc_handle_mmio(struct ghcb *ghcb,
903 				     struct es_em_ctxt *ctxt)
904 {
905 	struct insn *insn = &ctxt->insn;
906 	unsigned int bytes = 0;
907 	enum es_result ret;
908 	long *reg_data;
909 
910 	switch (insn->opcode.bytes[0]) {
911 	/* MMIO Write */
912 	case 0x88:
913 		bytes = 1;
914 		fallthrough;
915 	case 0x89:
916 		if (!bytes)
917 			bytes = insn->opnd_bytes;
918 
919 		reg_data = vc_insn_get_reg(ctxt);
920 		if (!reg_data)
921 			return ES_DECODE_FAILED;
922 
923 		memcpy(ghcb->shared_buffer, reg_data, bytes);
924 
925 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
926 		break;
927 
928 	case 0xc6:
929 		bytes = 1;
930 		fallthrough;
931 	case 0xc7:
932 		if (!bytes)
933 			bytes = insn->opnd_bytes;
934 
935 		memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
936 
937 		ret = vc_do_mmio(ghcb, ctxt, bytes, false);
938 		break;
939 
940 		/* MMIO Read */
941 	case 0x8a:
942 		bytes = 1;
943 		fallthrough;
944 	case 0x8b:
945 		if (!bytes)
946 			bytes = insn->opnd_bytes;
947 
948 		ret = vc_do_mmio(ghcb, ctxt, bytes, true);
949 		if (ret)
950 			break;
951 
952 		reg_data = vc_insn_get_reg(ctxt);
953 		if (!reg_data)
954 			return ES_DECODE_FAILED;
955 
956 		/* Zero-extend for 32-bit operation */
957 		if (bytes == 4)
958 			*reg_data = 0;
959 
960 		memcpy(reg_data, ghcb->shared_buffer, bytes);
961 		break;
962 
963 		/* MOVS instruction */
964 	case 0xa4:
965 		bytes = 1;
966 		fallthrough;
967 	case 0xa5:
968 		if (!bytes)
969 			bytes = insn->opnd_bytes;
970 
971 		ret = vc_handle_mmio_movs(ctxt, bytes);
972 		break;
973 		/* Two-Byte Opcodes */
974 	case 0x0f:
975 		ret = vc_handle_mmio_twobyte_ops(ghcb, ctxt);
976 		break;
977 	default:
978 		ret = ES_UNSUPPORTED;
979 	}
980 
981 	return ret;
982 }
983 
vc_handle_dr7_write(struct ghcb * ghcb,struct es_em_ctxt * ctxt)984 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
985 					  struct es_em_ctxt *ctxt)
986 {
987 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
988 	long val, *reg = vc_insn_get_rm(ctxt);
989 	enum es_result ret;
990 
991 	if (!reg)
992 		return ES_DECODE_FAILED;
993 
994 	val = *reg;
995 
996 	/* Upper 32 bits must be written as zeroes */
997 	if (val >> 32) {
998 		ctxt->fi.vector = X86_TRAP_GP;
999 		ctxt->fi.error_code = 0;
1000 		return ES_EXCEPTION;
1001 	}
1002 
1003 	/* Clear out other reserved bits and set bit 10 */
1004 	val = (val & 0xffff23ffL) | BIT(10);
1005 
1006 	/* Early non-zero writes to DR7 are not supported */
1007 	if (!data && (val & ~DR7_RESET_VALUE))
1008 		return ES_UNSUPPORTED;
1009 
1010 	/* Using a value of 0 for ExitInfo1 means RAX holds the value */
1011 	ghcb_set_rax(ghcb, val);
1012 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1013 	if (ret != ES_OK)
1014 		return ret;
1015 
1016 	if (data)
1017 		data->dr7 = val;
1018 
1019 	return ES_OK;
1020 }
1021 
vc_handle_dr7_read(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1022 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1023 					 struct es_em_ctxt *ctxt)
1024 {
1025 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1026 	long *reg = vc_insn_get_rm(ctxt);
1027 
1028 	if (!reg)
1029 		return ES_DECODE_FAILED;
1030 
1031 	if (data)
1032 		*reg = data->dr7;
1033 	else
1034 		*reg = DR7_RESET_VALUE;
1035 
1036 	return ES_OK;
1037 }
1038 
vc_handle_wbinvd(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1039 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1040 				       struct es_em_ctxt *ctxt)
1041 {
1042 	return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1043 }
1044 
vc_handle_rdpmc(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1045 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1046 {
1047 	enum es_result ret;
1048 
1049 	ghcb_set_rcx(ghcb, ctxt->regs->cx);
1050 
1051 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1052 	if (ret != ES_OK)
1053 		return ret;
1054 
1055 	if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1056 		return ES_VMM_ERROR;
1057 
1058 	ctxt->regs->ax = ghcb->save.rax;
1059 	ctxt->regs->dx = ghcb->save.rdx;
1060 
1061 	return ES_OK;
1062 }
1063 
vc_handle_monitor(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1064 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1065 					struct es_em_ctxt *ctxt)
1066 {
1067 	/*
1068 	 * Treat it as a NOP and do not leak a physical address to the
1069 	 * hypervisor.
1070 	 */
1071 	return ES_OK;
1072 }
1073 
vc_handle_mwait(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1074 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1075 				      struct es_em_ctxt *ctxt)
1076 {
1077 	/* Treat the same as MONITOR/MONITORX */
1078 	return ES_OK;
1079 }
1080 
vc_handle_vmmcall(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1081 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1082 					struct es_em_ctxt *ctxt)
1083 {
1084 	enum es_result ret;
1085 
1086 	ghcb_set_rax(ghcb, ctxt->regs->ax);
1087 	ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1088 
1089 	if (x86_platform.hyper.sev_es_hcall_prepare)
1090 		x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1091 
1092 	ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1093 	if (ret != ES_OK)
1094 		return ret;
1095 
1096 	if (!ghcb_rax_is_valid(ghcb))
1097 		return ES_VMM_ERROR;
1098 
1099 	ctxt->regs->ax = ghcb->save.rax;
1100 
1101 	/*
1102 	 * Call sev_es_hcall_finish() after regs->ax is already set.
1103 	 * This allows the hypervisor handler to overwrite it again if
1104 	 * necessary.
1105 	 */
1106 	if (x86_platform.hyper.sev_es_hcall_finish &&
1107 	    !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1108 		return ES_VMM_ERROR;
1109 
1110 	return ES_OK;
1111 }
1112 
vc_handle_trap_ac(struct ghcb * ghcb,struct es_em_ctxt * ctxt)1113 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1114 					struct es_em_ctxt *ctxt)
1115 {
1116 	/*
1117 	 * Calling ecx_alignment_check() directly does not work, because it
1118 	 * enables IRQs and the GHCB is active. Forward the exception and call
1119 	 * it later from vc_forward_exception().
1120 	 */
1121 	ctxt->fi.vector = X86_TRAP_AC;
1122 	ctxt->fi.error_code = 0;
1123 	return ES_EXCEPTION;
1124 }
1125 
vc_handle_trap_db(struct pt_regs * regs)1126 static __always_inline void vc_handle_trap_db(struct pt_regs *regs)
1127 {
1128 	if (user_mode(regs))
1129 		noist_exc_debug(regs);
1130 	else
1131 		exc_debug(regs);
1132 }
1133 
vc_handle_exitcode(struct es_em_ctxt * ctxt,struct ghcb * ghcb,unsigned long exit_code)1134 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1135 					 struct ghcb *ghcb,
1136 					 unsigned long exit_code)
1137 {
1138 	enum es_result result;
1139 
1140 	switch (exit_code) {
1141 	case SVM_EXIT_READ_DR7:
1142 		result = vc_handle_dr7_read(ghcb, ctxt);
1143 		break;
1144 	case SVM_EXIT_WRITE_DR7:
1145 		result = vc_handle_dr7_write(ghcb, ctxt);
1146 		break;
1147 	case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1148 		result = vc_handle_trap_ac(ghcb, ctxt);
1149 		break;
1150 	case SVM_EXIT_RDTSC:
1151 	case SVM_EXIT_RDTSCP:
1152 		result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1153 		break;
1154 	case SVM_EXIT_RDPMC:
1155 		result = vc_handle_rdpmc(ghcb, ctxt);
1156 		break;
1157 	case SVM_EXIT_INVD:
1158 		pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1159 		result = ES_UNSUPPORTED;
1160 		break;
1161 	case SVM_EXIT_CPUID:
1162 		result = vc_handle_cpuid(ghcb, ctxt);
1163 		break;
1164 	case SVM_EXIT_IOIO:
1165 		result = vc_handle_ioio(ghcb, ctxt);
1166 		break;
1167 	case SVM_EXIT_MSR:
1168 		result = vc_handle_msr(ghcb, ctxt);
1169 		break;
1170 	case SVM_EXIT_VMMCALL:
1171 		result = vc_handle_vmmcall(ghcb, ctxt);
1172 		break;
1173 	case SVM_EXIT_WBINVD:
1174 		result = vc_handle_wbinvd(ghcb, ctxt);
1175 		break;
1176 	case SVM_EXIT_MONITOR:
1177 		result = vc_handle_monitor(ghcb, ctxt);
1178 		break;
1179 	case SVM_EXIT_MWAIT:
1180 		result = vc_handle_mwait(ghcb, ctxt);
1181 		break;
1182 	case SVM_EXIT_NPF:
1183 		result = vc_handle_mmio(ghcb, ctxt);
1184 		break;
1185 	default:
1186 		/*
1187 		 * Unexpected #VC exception
1188 		 */
1189 		result = ES_UNSUPPORTED;
1190 	}
1191 
1192 	return result;
1193 }
1194 
vc_forward_exception(struct es_em_ctxt * ctxt)1195 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1196 {
1197 	long error_code = ctxt->fi.error_code;
1198 	int trapnr = ctxt->fi.vector;
1199 
1200 	ctxt->regs->orig_ax = ctxt->fi.error_code;
1201 
1202 	switch (trapnr) {
1203 	case X86_TRAP_GP:
1204 		exc_general_protection(ctxt->regs, error_code);
1205 		break;
1206 	case X86_TRAP_UD:
1207 		exc_invalid_op(ctxt->regs);
1208 		break;
1209 	case X86_TRAP_AC:
1210 		exc_alignment_check(ctxt->regs, error_code);
1211 		break;
1212 	default:
1213 		pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1214 		BUG();
1215 	}
1216 }
1217 
on_vc_fallback_stack(struct pt_regs * regs)1218 static __always_inline bool on_vc_fallback_stack(struct pt_regs *regs)
1219 {
1220 	unsigned long sp = (unsigned long)regs;
1221 
1222 	return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1223 }
1224 
1225 /*
1226  * Main #VC exception handler. It is called when the entry code was able to
1227  * switch off the IST to a safe kernel stack.
1228  *
1229  * With the current implementation it is always possible to switch to a safe
1230  * stack because #VC exceptions only happen at known places, like intercepted
1231  * instructions or accesses to MMIO areas/IO ports. They can also happen with
1232  * code instrumentation when the hypervisor intercepts #DB, but the critical
1233  * paths are forbidden to be instrumented, so #DB exceptions currently also
1234  * only happen in safe places.
1235  */
DEFINE_IDTENTRY_VC_SAFE_STACK(exc_vmm_communication)1236 DEFINE_IDTENTRY_VC_SAFE_STACK(exc_vmm_communication)
1237 {
1238 	struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1239 	struct ghcb_state state;
1240 	struct es_em_ctxt ctxt;
1241 	enum es_result result;
1242 	struct ghcb *ghcb;
1243 
1244 	lockdep_assert_irqs_disabled();
1245 
1246 	/*
1247 	 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1248 	 */
1249 	if (error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB) {
1250 		vc_handle_trap_db(regs);
1251 		return;
1252 	}
1253 
1254 	instrumentation_begin();
1255 
1256 	/*
1257 	 * This is invoked through an interrupt gate, so IRQs are disabled. The
1258 	 * code below might walk page-tables for user or kernel addresses, so
1259 	 * keep the IRQs disabled to protect us against concurrent TLB flushes.
1260 	 */
1261 
1262 	ghcb = sev_es_get_ghcb(&state);
1263 	if (!ghcb) {
1264 		/*
1265 		 * Mark GHCBs inactive so that panic() is able to print the
1266 		 * message.
1267 		 */
1268 		data->ghcb_active        = false;
1269 		data->backup_ghcb_active = false;
1270 
1271 		panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
1272 	}
1273 
1274 	vc_ghcb_invalidate(ghcb);
1275 	result = vc_init_em_ctxt(&ctxt, regs, error_code);
1276 
1277 	if (result == ES_OK)
1278 		result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1279 
1280 	sev_es_put_ghcb(&state);
1281 
1282 	/* Done - now check the result */
1283 	switch (result) {
1284 	case ES_OK:
1285 		vc_finish_insn(&ctxt);
1286 		break;
1287 	case ES_UNSUPPORTED:
1288 		pr_err_ratelimited("Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1289 				   error_code, regs->ip);
1290 		goto fail;
1291 	case ES_VMM_ERROR:
1292 		pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1293 				   error_code, regs->ip);
1294 		goto fail;
1295 	case ES_DECODE_FAILED:
1296 		pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1297 				   error_code, regs->ip);
1298 		goto fail;
1299 	case ES_EXCEPTION:
1300 		vc_forward_exception(&ctxt);
1301 		break;
1302 	case ES_RETRY:
1303 		/* Nothing to do */
1304 		break;
1305 	default:
1306 		pr_emerg("Unknown result in %s():%d\n", __func__, result);
1307 		/*
1308 		 * Emulating the instruction which caused the #VC exception
1309 		 * failed - can't continue so print debug information
1310 		 */
1311 		BUG();
1312 	}
1313 
1314 out:
1315 	instrumentation_end();
1316 
1317 	return;
1318 
1319 fail:
1320 	if (user_mode(regs)) {
1321 		/*
1322 		 * Do not kill the machine if user-space triggered the
1323 		 * exception. Send SIGBUS instead and let user-space deal with
1324 		 * it.
1325 		 */
1326 		force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
1327 	} else {
1328 		pr_emerg("PANIC: Unhandled #VC exception in kernel space (result=%d)\n",
1329 			 result);
1330 
1331 		/* Show some debug info */
1332 		show_regs(regs);
1333 
1334 		/* Ask hypervisor to sev_es_terminate */
1335 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1336 
1337 		/* If that fails and we get here - just panic */
1338 		panic("Returned from Terminate-Request to Hypervisor\n");
1339 	}
1340 
1341 	goto out;
1342 }
1343 
1344 /* This handler runs on the #VC fall-back stack. It can cause further #VC exceptions */
DEFINE_IDTENTRY_VC_IST(exc_vmm_communication)1345 DEFINE_IDTENTRY_VC_IST(exc_vmm_communication)
1346 {
1347 	instrumentation_begin();
1348 	panic("Can't handle #VC exception from unsupported context\n");
1349 	instrumentation_end();
1350 }
1351 
DEFINE_IDTENTRY_VC(exc_vmm_communication)1352 DEFINE_IDTENTRY_VC(exc_vmm_communication)
1353 {
1354 	if (likely(!on_vc_fallback_stack(regs)))
1355 		safe_stack_exc_vmm_communication(regs, error_code);
1356 	else
1357 		ist_exc_vmm_communication(regs, error_code);
1358 }
1359 
handle_vc_boot_ghcb(struct pt_regs * regs)1360 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
1361 {
1362 	unsigned long exit_code = regs->orig_ax;
1363 	struct es_em_ctxt ctxt;
1364 	enum es_result result;
1365 
1366 	/* Do initial setup or terminate the guest */
1367 	if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb()))
1368 		sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST);
1369 
1370 	vc_ghcb_invalidate(boot_ghcb);
1371 
1372 	result = vc_init_em_ctxt(&ctxt, regs, exit_code);
1373 	if (result == ES_OK)
1374 		result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
1375 
1376 	/* Done - now check the result */
1377 	switch (result) {
1378 	case ES_OK:
1379 		vc_finish_insn(&ctxt);
1380 		break;
1381 	case ES_UNSUPPORTED:
1382 		early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
1383 				exit_code, regs->ip);
1384 		goto fail;
1385 	case ES_VMM_ERROR:
1386 		early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1387 				exit_code, regs->ip);
1388 		goto fail;
1389 	case ES_DECODE_FAILED:
1390 		early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1391 				exit_code, regs->ip);
1392 		goto fail;
1393 	case ES_EXCEPTION:
1394 		vc_early_forward_exception(&ctxt);
1395 		break;
1396 	case ES_RETRY:
1397 		/* Nothing to do */
1398 		break;
1399 	default:
1400 		BUG();
1401 	}
1402 
1403 	return true;
1404 
1405 fail:
1406 	show_regs(regs);
1407 
1408 	while (true)
1409 		halt();
1410 }
1411