1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * linux/arch/x86_64/entry.S 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs 7 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz> 8 * 9 * entry.S contains the system-call and fault low-level handling routines. 10 * 11 * Some of this is documented in Documentation/x86/entry_64.rst 12 * 13 * A note on terminology: 14 * - iret frame: Architecture defined interrupt frame from SS to RIP 15 * at the top of the kernel process stack. 16 * 17 * Some macro usage: 18 * - SYM_FUNC_START/END:Define functions in the symbol table. 19 * - idtentry: Define exception entry points. 20 */ 21#include <linux/linkage.h> 22#include <asm/segment.h> 23#include <asm/cache.h> 24#include <asm/errno.h> 25#include <asm/asm-offsets.h> 26#include <asm/msr.h> 27#include <asm/unistd.h> 28#include <asm/thread_info.h> 29#include <asm/hw_irq.h> 30#include <asm/page_types.h> 31#include <asm/irqflags.h> 32#include <asm/paravirt.h> 33#include <asm/percpu.h> 34#include <asm/asm.h> 35#include <asm/smap.h> 36#include <asm/pgtable_types.h> 37#include <asm/export.h> 38#include <asm/frame.h> 39#include <asm/trapnr.h> 40#include <asm/nospec-branch.h> 41#include <asm/fsgsbase.h> 42#include <linux/err.h> 43 44#include "calling.h" 45 46.code64 47.section .entry.text, "ax" 48 49#ifdef CONFIG_PARAVIRT_XXL 50SYM_CODE_START(native_usergs_sysret64) 51 UNWIND_HINT_EMPTY 52 swapgs 53 sysretq 54SYM_CODE_END(native_usergs_sysret64) 55#endif /* CONFIG_PARAVIRT_XXL */ 56 57/* 58 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers. 59 * 60 * This is the only entry point used for 64-bit system calls. The 61 * hardware interface is reasonably well designed and the register to 62 * argument mapping Linux uses fits well with the registers that are 63 * available when SYSCALL is used. 64 * 65 * SYSCALL instructions can be found inlined in libc implementations as 66 * well as some other programs and libraries. There are also a handful 67 * of SYSCALL instructions in the vDSO used, for example, as a 68 * clock_gettimeofday fallback. 69 * 70 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11, 71 * then loads new ss, cs, and rip from previously programmed MSRs. 72 * rflags gets masked by a value from another MSR (so CLD and CLAC 73 * are not needed). SYSCALL does not save anything on the stack 74 * and does not change rsp. 75 * 76 * Registers on entry: 77 * rax system call number 78 * rcx return address 79 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI) 80 * rdi arg0 81 * rsi arg1 82 * rdx arg2 83 * r10 arg3 (needs to be moved to rcx to conform to C ABI) 84 * r8 arg4 85 * r9 arg5 86 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI) 87 * 88 * Only called from user space. 89 * 90 * When user can change pt_regs->foo always force IRET. That is because 91 * it deals with uncanonical addresses better. SYSRET has trouble 92 * with them due to bugs in both AMD and Intel CPUs. 93 */ 94 95SYM_CODE_START(entry_SYSCALL_64) 96 UNWIND_HINT_EMPTY 97 98 swapgs 99 /* tss.sp2 is scratch space. */ 100 movq %rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2) 101 SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp 102 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 103 104SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL) 105 106 /* Construct struct pt_regs on stack */ 107 pushq $__USER_DS /* pt_regs->ss */ 108 pushq PER_CPU_VAR(cpu_tss_rw + TSS_sp2) /* pt_regs->sp */ 109 pushq %r11 /* pt_regs->flags */ 110 pushq $__USER_CS /* pt_regs->cs */ 111 pushq %rcx /* pt_regs->ip */ 112SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL) 113 pushq %rax /* pt_regs->orig_ax */ 114 115 PUSH_AND_CLEAR_REGS rax=$-ENOSYS 116 117 /* IRQs are off. */ 118 movq %rax, %rdi 119 movq %rsp, %rsi 120 call do_syscall_64 /* returns with IRQs disabled */ 121 122 /* 123 * Try to use SYSRET instead of IRET if we're returning to 124 * a completely clean 64-bit userspace context. If we're not, 125 * go to the slow exit path. 126 */ 127 movq RCX(%rsp), %rcx 128 movq RIP(%rsp), %r11 129 130 cmpq %rcx, %r11 /* SYSRET requires RCX == RIP */ 131 jne swapgs_restore_regs_and_return_to_usermode 132 133 /* 134 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP 135 * in kernel space. This essentially lets the user take over 136 * the kernel, since userspace controls RSP. 137 * 138 * If width of "canonical tail" ever becomes variable, this will need 139 * to be updated to remain correct on both old and new CPUs. 140 * 141 * Change top bits to match most significant bit (47th or 56th bit 142 * depending on paging mode) in the address. 143 */ 144#ifdef CONFIG_X86_5LEVEL 145 ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \ 146 "shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57 147#else 148 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 149 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx 150#endif 151 152 /* If this changed %rcx, it was not canonical */ 153 cmpq %rcx, %r11 154 jne swapgs_restore_regs_and_return_to_usermode 155 156 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */ 157 jne swapgs_restore_regs_and_return_to_usermode 158 159 movq R11(%rsp), %r11 160 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */ 161 jne swapgs_restore_regs_and_return_to_usermode 162 163 /* 164 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot 165 * restore RF properly. If the slowpath sets it for whatever reason, we 166 * need to restore it correctly. 167 * 168 * SYSRET can restore TF, but unlike IRET, restoring TF results in a 169 * trap from userspace immediately after SYSRET. This would cause an 170 * infinite loop whenever #DB happens with register state that satisfies 171 * the opportunistic SYSRET conditions. For example, single-stepping 172 * this user code: 173 * 174 * movq $stuck_here, %rcx 175 * pushfq 176 * popq %r11 177 * stuck_here: 178 * 179 * would never get past 'stuck_here'. 180 */ 181 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11 182 jnz swapgs_restore_regs_and_return_to_usermode 183 184 /* nothing to check for RSP */ 185 186 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */ 187 jne swapgs_restore_regs_and_return_to_usermode 188 189 /* 190 * We win! This label is here just for ease of understanding 191 * perf profiles. Nothing jumps here. 192 */ 193syscall_return_via_sysret: 194 /* rcx and r11 are already restored (see code above) */ 195 POP_REGS pop_rdi=0 skip_r11rcx=1 196 197 /* 198 * Now all regs are restored except RSP and RDI. 199 * Save old stack pointer and switch to trampoline stack. 200 */ 201 movq %rsp, %rdi 202 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 203 UNWIND_HINT_EMPTY 204 205 pushq RSP-RDI(%rdi) /* RSP */ 206 pushq (%rdi) /* RDI */ 207 208 /* 209 * We are on the trampoline stack. All regs except RDI are live. 210 * We can do future final exit work right here. 211 */ 212 STACKLEAK_ERASE_NOCLOBBER 213 214 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 215 216 popq %rdi 217 popq %rsp 218 USERGS_SYSRET64 219SYM_CODE_END(entry_SYSCALL_64) 220 221/* 222 * %rdi: prev task 223 * %rsi: next task 224 */ 225.pushsection .text, "ax" 226SYM_FUNC_START(__switch_to_asm) 227 /* 228 * Save callee-saved registers 229 * This must match the order in inactive_task_frame 230 */ 231 pushq %rbp 232 pushq %rbx 233 pushq %r12 234 pushq %r13 235 pushq %r14 236 pushq %r15 237 238 /* switch stack */ 239 movq %rsp, TASK_threadsp(%rdi) 240 movq TASK_threadsp(%rsi), %rsp 241 242#ifdef CONFIG_STACKPROTECTOR 243 movq TASK_stack_canary(%rsi), %rbx 244 movq %rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset 245#endif 246 247#ifdef CONFIG_RETPOLINE 248 /* 249 * When switching from a shallower to a deeper call stack 250 * the RSB may either underflow or use entries populated 251 * with userspace addresses. On CPUs where those concerns 252 * exist, overwrite the RSB with entries which capture 253 * speculative execution to prevent attack. 254 */ 255 FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW 256#endif 257 258 /* restore callee-saved registers */ 259 popq %r15 260 popq %r14 261 popq %r13 262 popq %r12 263 popq %rbx 264 popq %rbp 265 266 jmp __switch_to 267SYM_FUNC_END(__switch_to_asm) 268.popsection 269 270/* 271 * A newly forked process directly context switches into this address. 272 * 273 * rax: prev task we switched from 274 * rbx: kernel thread func (NULL for user thread) 275 * r12: kernel thread arg 276 */ 277.pushsection .text, "ax" 278SYM_CODE_START(ret_from_fork) 279 UNWIND_HINT_EMPTY 280 movq %rax, %rdi 281 call schedule_tail /* rdi: 'prev' task parameter */ 282 283 testq %rbx, %rbx /* from kernel_thread? */ 284 jnz 1f /* kernel threads are uncommon */ 285 2862: 287 UNWIND_HINT_REGS 288 movq %rsp, %rdi 289 call syscall_exit_to_user_mode /* returns with IRQs disabled */ 290 jmp swapgs_restore_regs_and_return_to_usermode 291 2921: 293 /* kernel thread */ 294 UNWIND_HINT_EMPTY 295 movq %r12, %rdi 296 CALL_NOSPEC rbx 297 /* 298 * A kernel thread is allowed to return here after successfully 299 * calling kernel_execve(). Exit to userspace to complete the execve() 300 * syscall. 301 */ 302 movq $0, RAX(%rsp) 303 jmp 2b 304SYM_CODE_END(ret_from_fork) 305.popsection 306 307.macro DEBUG_ENTRY_ASSERT_IRQS_OFF 308#ifdef CONFIG_DEBUG_ENTRY 309 pushq %rax 310 SAVE_FLAGS(CLBR_RAX) 311 testl $X86_EFLAGS_IF, %eax 312 jz .Lokay_\@ 313 ud2 314.Lokay_\@: 315 popq %rax 316#endif 317.endm 318 319/** 320 * idtentry_body - Macro to emit code calling the C function 321 * @cfunc: C function to be called 322 * @has_error_code: Hardware pushed error code on stack 323 */ 324.macro idtentry_body cfunc has_error_code:req 325 326 call error_entry 327 UNWIND_HINT_REGS 328 329 movq %rsp, %rdi /* pt_regs pointer into 1st argument*/ 330 331 .if \has_error_code == 1 332 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 333 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 334 .endif 335 336 call \cfunc 337 338 jmp error_return 339.endm 340 341/** 342 * idtentry - Macro to generate entry stubs for simple IDT entries 343 * @vector: Vector number 344 * @asmsym: ASM symbol for the entry point 345 * @cfunc: C function to be called 346 * @has_error_code: Hardware pushed error code on stack 347 * 348 * The macro emits code to set up the kernel context for straight forward 349 * and simple IDT entries. No IST stack, no paranoid entry checks. 350 */ 351.macro idtentry vector asmsym cfunc has_error_code:req 352SYM_CODE_START(\asmsym) 353 UNWIND_HINT_IRET_REGS offset=\has_error_code*8 354 ASM_CLAC 355 356 .if \has_error_code == 0 357 pushq $-1 /* ORIG_RAX: no syscall to restart */ 358 .endif 359 360 .if \vector == X86_TRAP_BP 361 /* 362 * If coming from kernel space, create a 6-word gap to allow the 363 * int3 handler to emulate a call instruction. 364 */ 365 testb $3, CS-ORIG_RAX(%rsp) 366 jnz .Lfrom_usermode_no_gap_\@ 367 .rept 6 368 pushq 5*8(%rsp) 369 .endr 370 UNWIND_HINT_IRET_REGS offset=8 371.Lfrom_usermode_no_gap_\@: 372 .endif 373 374 idtentry_body \cfunc \has_error_code 375 376_ASM_NOKPROBE(\asmsym) 377SYM_CODE_END(\asmsym) 378.endm 379 380/* 381 * Interrupt entry/exit. 382 * 383 + The interrupt stubs push (vector) onto the stack, which is the error_code 384 * position of idtentry exceptions, and jump to one of the two idtentry points 385 * (common/spurious). 386 * 387 * common_interrupt is a hotpath, align it to a cache line 388 */ 389.macro idtentry_irq vector cfunc 390 .p2align CONFIG_X86_L1_CACHE_SHIFT 391 idtentry \vector asm_\cfunc \cfunc has_error_code=1 392.endm 393 394/* 395 * System vectors which invoke their handlers directly and are not 396 * going through the regular common device interrupt handling code. 397 */ 398.macro idtentry_sysvec vector cfunc 399 idtentry \vector asm_\cfunc \cfunc has_error_code=0 400.endm 401 402/** 403 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB 404 * @vector: Vector number 405 * @asmsym: ASM symbol for the entry point 406 * @cfunc: C function to be called 407 * 408 * The macro emits code to set up the kernel context for #MC and #DB 409 * 410 * If the entry comes from user space it uses the normal entry path 411 * including the return to user space work and preemption checks on 412 * exit. 413 * 414 * If hits in kernel mode then it needs to go through the paranoid 415 * entry as the exception can hit any random state. No preemption 416 * check on exit to keep the paranoid path simple. 417 */ 418.macro idtentry_mce_db vector asmsym cfunc 419SYM_CODE_START(\asmsym) 420 UNWIND_HINT_IRET_REGS 421 ASM_CLAC 422 423 pushq $-1 /* ORIG_RAX: no syscall to restart */ 424 425 /* 426 * If the entry is from userspace, switch stacks and treat it as 427 * a normal entry. 428 */ 429 testb $3, CS-ORIG_RAX(%rsp) 430 jnz .Lfrom_usermode_switch_stack_\@ 431 432 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 433 call paranoid_entry 434 435 UNWIND_HINT_REGS 436 437 movq %rsp, %rdi /* pt_regs pointer */ 438 439 call \cfunc 440 441 jmp paranoid_exit 442 443 /* Switch to the regular task stack and use the noist entry point */ 444.Lfrom_usermode_switch_stack_\@: 445 idtentry_body noist_\cfunc, has_error_code=0 446 447_ASM_NOKPROBE(\asmsym) 448SYM_CODE_END(\asmsym) 449.endm 450 451#ifdef CONFIG_AMD_MEM_ENCRYPT 452/** 453 * idtentry_vc - Macro to generate entry stub for #VC 454 * @vector: Vector number 455 * @asmsym: ASM symbol for the entry point 456 * @cfunc: C function to be called 457 * 458 * The macro emits code to set up the kernel context for #VC. The #VC handler 459 * runs on an IST stack and needs to be able to cause nested #VC exceptions. 460 * 461 * To make this work the #VC entry code tries its best to pretend it doesn't use 462 * an IST stack by switching to the task stack if coming from user-space (which 463 * includes early SYSCALL entry path) or back to the stack in the IRET frame if 464 * entered from kernel-mode. 465 * 466 * If entered from kernel-mode the return stack is validated first, and if it is 467 * not safe to use (e.g. because it points to the entry stack) the #VC handler 468 * will switch to a fall-back stack (VC2) and call a special handler function. 469 * 470 * The macro is only used for one vector, but it is planned to be extended in 471 * the future for the #HV exception. 472 */ 473.macro idtentry_vc vector asmsym cfunc 474SYM_CODE_START(\asmsym) 475 UNWIND_HINT_IRET_REGS 476 ASM_CLAC 477 478 /* 479 * If the entry is from userspace, switch stacks and treat it as 480 * a normal entry. 481 */ 482 testb $3, CS-ORIG_RAX(%rsp) 483 jnz .Lfrom_usermode_switch_stack_\@ 484 485 /* 486 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX. 487 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS 488 */ 489 call paranoid_entry 490 491 UNWIND_HINT_REGS 492 493 /* 494 * Switch off the IST stack to make it free for nested exceptions. The 495 * vc_switch_off_ist() function will switch back to the interrupted 496 * stack if it is safe to do so. If not it switches to the VC fall-back 497 * stack. 498 */ 499 movq %rsp, %rdi /* pt_regs pointer */ 500 call vc_switch_off_ist 501 movq %rax, %rsp /* Switch to new stack */ 502 503 UNWIND_HINT_REGS 504 505 /* Update pt_regs */ 506 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 507 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 508 509 movq %rsp, %rdi /* pt_regs pointer */ 510 511 call \cfunc 512 513 /* 514 * No need to switch back to the IST stack. The current stack is either 515 * identical to the stack in the IRET frame or the VC fall-back stack, 516 * so it is definitly mapped even with PTI enabled. 517 */ 518 jmp paranoid_exit 519 520 /* Switch to the regular task stack */ 521.Lfrom_usermode_switch_stack_\@: 522 idtentry_body safe_stack_\cfunc, has_error_code=1 523 524_ASM_NOKPROBE(\asmsym) 525SYM_CODE_END(\asmsym) 526.endm 527#endif 528 529/* 530 * Double fault entry. Straight paranoid. No checks from which context 531 * this comes because for the espfix induced #DF this would do the wrong 532 * thing. 533 */ 534.macro idtentry_df vector asmsym cfunc 535SYM_CODE_START(\asmsym) 536 UNWIND_HINT_IRET_REGS offset=8 537 ASM_CLAC 538 539 /* paranoid_entry returns GS information for paranoid_exit in EBX. */ 540 call paranoid_entry 541 UNWIND_HINT_REGS 542 543 movq %rsp, %rdi /* pt_regs pointer into first argument */ 544 movq ORIG_RAX(%rsp), %rsi /* get error code into 2nd argument*/ 545 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */ 546 call \cfunc 547 548 jmp paranoid_exit 549 550_ASM_NOKPROBE(\asmsym) 551SYM_CODE_END(\asmsym) 552.endm 553 554/* 555 * Include the defines which emit the idt entries which are shared 556 * shared between 32 and 64 bit and emit the __irqentry_text_* markers 557 * so the stacktrace boundary checks work. 558 */ 559 .align 16 560 .globl __irqentry_text_start 561__irqentry_text_start: 562 563#include <asm/idtentry.h> 564 565 .align 16 566 .globl __irqentry_text_end 567__irqentry_text_end: 568 569SYM_CODE_START_LOCAL(common_interrupt_return) 570SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL) 571#ifdef CONFIG_DEBUG_ENTRY 572 /* Assert that pt_regs indicates user mode. */ 573 testb $3, CS(%rsp) 574 jnz 1f 575 ud2 5761: 577#endif 578 POP_REGS pop_rdi=0 579 580 /* 581 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS. 582 * Save old stack pointer and switch to trampoline stack. 583 */ 584 movq %rsp, %rdi 585 movq PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp 586 UNWIND_HINT_EMPTY 587 588 /* Copy the IRET frame to the trampoline stack. */ 589 pushq 6*8(%rdi) /* SS */ 590 pushq 5*8(%rdi) /* RSP */ 591 pushq 4*8(%rdi) /* EFLAGS */ 592 pushq 3*8(%rdi) /* CS */ 593 pushq 2*8(%rdi) /* RIP */ 594 595 /* Push user RDI on the trampoline stack. */ 596 pushq (%rdi) 597 598 /* 599 * We are on the trampoline stack. All regs except RDI are live. 600 * We can do future final exit work right here. 601 */ 602 STACKLEAK_ERASE_NOCLOBBER 603 604 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 605 606 /* Restore RDI. */ 607 popq %rdi 608 SWAPGS 609 INTERRUPT_RETURN 610 611 612SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL) 613#ifdef CONFIG_DEBUG_ENTRY 614 /* Assert that pt_regs indicates kernel mode. */ 615 testb $3, CS(%rsp) 616 jz 1f 617 ud2 6181: 619#endif 620 POP_REGS 621 addq $8, %rsp /* skip regs->orig_ax */ 622 /* 623 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization 624 * when returning from IPI handler. 625 */ 626 INTERRUPT_RETURN 627 628SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL) 629 UNWIND_HINT_IRET_REGS 630 /* 631 * Are we returning to a stack segment from the LDT? Note: in 632 * 64-bit mode SS:RSP on the exception stack is always valid. 633 */ 634#ifdef CONFIG_X86_ESPFIX64 635 testb $4, (SS-RIP)(%rsp) 636 jnz native_irq_return_ldt 637#endif 638 639SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL) 640 /* 641 * This may fault. Non-paranoid faults on return to userspace are 642 * handled by fixup_bad_iret. These include #SS, #GP, and #NP. 643 * Double-faults due to espfix64 are handled in exc_double_fault. 644 * Other faults here are fatal. 645 */ 646 iretq 647 648#ifdef CONFIG_X86_ESPFIX64 649native_irq_return_ldt: 650 /* 651 * We are running with user GSBASE. All GPRs contain their user 652 * values. We have a percpu ESPFIX stack that is eight slots 653 * long (see ESPFIX_STACK_SIZE). espfix_waddr points to the bottom 654 * of the ESPFIX stack. 655 * 656 * We clobber RAX and RDI in this code. We stash RDI on the 657 * normal stack and RAX on the ESPFIX stack. 658 * 659 * The ESPFIX stack layout we set up looks like this: 660 * 661 * --- top of ESPFIX stack --- 662 * SS 663 * RSP 664 * RFLAGS 665 * CS 666 * RIP <-- RSP points here when we're done 667 * RAX <-- espfix_waddr points here 668 * --- bottom of ESPFIX stack --- 669 */ 670 671 pushq %rdi /* Stash user RDI */ 672 SWAPGS /* to kernel GS */ 673 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi /* to kernel CR3 */ 674 675 movq PER_CPU_VAR(espfix_waddr), %rdi 676 movq %rax, (0*8)(%rdi) /* user RAX */ 677 movq (1*8)(%rsp), %rax /* user RIP */ 678 movq %rax, (1*8)(%rdi) 679 movq (2*8)(%rsp), %rax /* user CS */ 680 movq %rax, (2*8)(%rdi) 681 movq (3*8)(%rsp), %rax /* user RFLAGS */ 682 movq %rax, (3*8)(%rdi) 683 movq (5*8)(%rsp), %rax /* user SS */ 684 movq %rax, (5*8)(%rdi) 685 movq (4*8)(%rsp), %rax /* user RSP */ 686 movq %rax, (4*8)(%rdi) 687 /* Now RAX == RSP. */ 688 689 andl $0xffff0000, %eax /* RAX = (RSP & 0xffff0000) */ 690 691 /* 692 * espfix_stack[31:16] == 0. The page tables are set up such that 693 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of 694 * espfix_waddr for any X. That is, there are 65536 RO aliases of 695 * the same page. Set up RSP so that RSP[31:16] contains the 696 * respective 16 bits of the /userspace/ RSP and RSP nonetheless 697 * still points to an RO alias of the ESPFIX stack. 698 */ 699 orq PER_CPU_VAR(espfix_stack), %rax 700 701 SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi 702 SWAPGS /* to user GS */ 703 popq %rdi /* Restore user RDI */ 704 705 movq %rax, %rsp 706 UNWIND_HINT_IRET_REGS offset=8 707 708 /* 709 * At this point, we cannot write to the stack any more, but we can 710 * still read. 711 */ 712 popq %rax /* Restore user RAX */ 713 714 /* 715 * RSP now points to an ordinary IRET frame, except that the page 716 * is read-only and RSP[31:16] are preloaded with the userspace 717 * values. We can now IRET back to userspace. 718 */ 719 jmp native_irq_return_iret 720#endif 721SYM_CODE_END(common_interrupt_return) 722_ASM_NOKPROBE(common_interrupt_return) 723 724/* 725 * Reload gs selector with exception handling 726 * edi: new selector 727 * 728 * Is in entry.text as it shouldn't be instrumented. 729 */ 730SYM_FUNC_START(asm_load_gs_index) 731 FRAME_BEGIN 732 swapgs 733.Lgs_change: 734 movl %edi, %gs 7352: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE 736 swapgs 737 FRAME_END 738 ret 739SYM_FUNC_END(asm_load_gs_index) 740EXPORT_SYMBOL(asm_load_gs_index) 741 742 _ASM_EXTABLE(.Lgs_change, .Lbad_gs) 743 .section .fixup, "ax" 744 /* running with kernelgs */ 745SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs) 746 swapgs /* switch back to user gs */ 747.macro ZAP_GS 748 /* This can't be a string because the preprocessor needs to see it. */ 749 movl $__USER_DS, %eax 750 movl %eax, %gs 751.endm 752 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG 753 xorl %eax, %eax 754 movl %eax, %gs 755 jmp 2b 756SYM_CODE_END(.Lbad_gs) 757 .previous 758 759/* 760 * rdi: New stack pointer points to the top word of the stack 761 * rsi: Function pointer 762 * rdx: Function argument (can be NULL if none) 763 */ 764SYM_FUNC_START(asm_call_on_stack) 765SYM_INNER_LABEL(asm_call_sysvec_on_stack, SYM_L_GLOBAL) 766SYM_INNER_LABEL(asm_call_irq_on_stack, SYM_L_GLOBAL) 767 /* 768 * Save the frame pointer unconditionally. This allows the ORC 769 * unwinder to handle the stack switch. 770 */ 771 pushq %rbp 772 mov %rsp, %rbp 773 774 /* 775 * The unwinder relies on the word at the top of the new stack 776 * page linking back to the previous RSP. 777 */ 778 mov %rsp, (%rdi) 779 mov %rdi, %rsp 780 /* Move the argument to the right place */ 781 mov %rdx, %rdi 782 7831: 784 .pushsection .discard.instr_begin 785 .long 1b - . 786 .popsection 787 788 CALL_NOSPEC rsi 789 7902: 791 .pushsection .discard.instr_end 792 .long 2b - . 793 .popsection 794 795 /* Restore the previous stack pointer from RBP. */ 796 leaveq 797 ret 798SYM_FUNC_END(asm_call_on_stack) 799 800#ifdef CONFIG_XEN_PV 801/* 802 * A note on the "critical region" in our callback handler. 803 * We want to avoid stacking callback handlers due to events occurring 804 * during handling of the last event. To do this, we keep events disabled 805 * until we've done all processing. HOWEVER, we must enable events before 806 * popping the stack frame (can't be done atomically) and so it would still 807 * be possible to get enough handler activations to overflow the stack. 808 * Although unlikely, bugs of that kind are hard to track down, so we'd 809 * like to avoid the possibility. 810 * So, on entry to the handler we detect whether we interrupted an 811 * existing activation in its critical region -- if so, we pop the current 812 * activation and restart the handler using the previous one. 813 * 814 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs) 815 */ 816SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback) 817 818/* 819 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will 820 * see the correct pointer to the pt_regs 821 */ 822 UNWIND_HINT_FUNC 823 movq %rdi, %rsp /* we don't return, adjust the stack frame */ 824 UNWIND_HINT_REGS 825 826 call xen_pv_evtchn_do_upcall 827 828 jmp error_return 829SYM_CODE_END(exc_xen_hypervisor_callback) 830 831/* 832 * Hypervisor uses this for application faults while it executes. 833 * We get here for two reasons: 834 * 1. Fault while reloading DS, ES, FS or GS 835 * 2. Fault while executing IRET 836 * Category 1 we do not need to fix up as Xen has already reloaded all segment 837 * registers that could be reloaded and zeroed the others. 838 * Category 2 we fix up by killing the current process. We cannot use the 839 * normal Linux return path in this case because if we use the IRET hypercall 840 * to pop the stack frame we end up in an infinite loop of failsafe callbacks. 841 * We distinguish between categories by comparing each saved segment register 842 * with its current contents: any discrepancy means we in category 1. 843 */ 844SYM_CODE_START(xen_failsafe_callback) 845 UNWIND_HINT_EMPTY 846 movl %ds, %ecx 847 cmpw %cx, 0x10(%rsp) 848 jne 1f 849 movl %es, %ecx 850 cmpw %cx, 0x18(%rsp) 851 jne 1f 852 movl %fs, %ecx 853 cmpw %cx, 0x20(%rsp) 854 jne 1f 855 movl %gs, %ecx 856 cmpw %cx, 0x28(%rsp) 857 jne 1f 858 /* All segments match their saved values => Category 2 (Bad IRET). */ 859 movq (%rsp), %rcx 860 movq 8(%rsp), %r11 861 addq $0x30, %rsp 862 pushq $0 /* RIP */ 863 UNWIND_HINT_IRET_REGS offset=8 864 jmp asm_exc_general_protection 8651: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */ 866 movq (%rsp), %rcx 867 movq 8(%rsp), %r11 868 addq $0x30, %rsp 869 UNWIND_HINT_IRET_REGS 870 pushq $-1 /* orig_ax = -1 => not a system call */ 871 PUSH_AND_CLEAR_REGS 872 ENCODE_FRAME_POINTER 873 jmp error_return 874SYM_CODE_END(xen_failsafe_callback) 875#endif /* CONFIG_XEN_PV */ 876 877/* 878 * Save all registers in pt_regs. Return GSBASE related information 879 * in EBX depending on the availability of the FSGSBASE instructions: 880 * 881 * FSGSBASE R/EBX 882 * N 0 -> SWAPGS on exit 883 * 1 -> no SWAPGS on exit 884 * 885 * Y GSBASE value at entry, must be restored in paranoid_exit 886 */ 887SYM_CODE_START_LOCAL(paranoid_entry) 888 UNWIND_HINT_FUNC 889 cld 890 PUSH_AND_CLEAR_REGS save_ret=1 891 ENCODE_FRAME_POINTER 8 892 893 /* 894 * Always stash CR3 in %r14. This value will be restored, 895 * verbatim, at exit. Needed if paranoid_entry interrupted 896 * another entry that already switched to the user CR3 value 897 * but has not yet returned to userspace. 898 * 899 * This is also why CS (stashed in the "iret frame" by the 900 * hardware at entry) can not be used: this may be a return 901 * to kernel code, but with a user CR3 value. 902 * 903 * Switching CR3 does not depend on kernel GSBASE so it can 904 * be done before switching to the kernel GSBASE. This is 905 * required for FSGSBASE because the kernel GSBASE has to 906 * be retrieved from a kernel internal table. 907 */ 908 SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14 909 910 /* 911 * Handling GSBASE depends on the availability of FSGSBASE. 912 * 913 * Without FSGSBASE the kernel enforces that negative GSBASE 914 * values indicate kernel GSBASE. With FSGSBASE no assumptions 915 * can be made about the GSBASE value when entering from user 916 * space. 917 */ 918 ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE 919 920 /* 921 * Read the current GSBASE and store it in %rbx unconditionally, 922 * retrieve and set the current CPUs kernel GSBASE. The stored value 923 * has to be restored in paranoid_exit unconditionally. 924 * 925 * The unconditional write to GS base below ensures that no subsequent 926 * loads based on a mispredicted GS base can happen, therefore no LFENCE 927 * is needed here. 928 */ 929 SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx 930 ret 931 932.Lparanoid_entry_checkgs: 933 /* EBX = 1 -> kernel GSBASE active, no restore required */ 934 movl $1, %ebx 935 /* 936 * The kernel-enforced convention is a negative GSBASE indicates 937 * a kernel value. No SWAPGS needed on entry and exit. 938 */ 939 movl $MSR_GS_BASE, %ecx 940 rdmsr 941 testl %edx, %edx 942 jns .Lparanoid_entry_swapgs 943 ret 944 945.Lparanoid_entry_swapgs: 946 SWAPGS 947 948 /* 949 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an 950 * unconditional CR3 write, even in the PTI case. So do an lfence 951 * to prevent GS speculation, regardless of whether PTI is enabled. 952 */ 953 FENCE_SWAPGS_KERNEL_ENTRY 954 955 /* EBX = 0 -> SWAPGS required on exit */ 956 xorl %ebx, %ebx 957 ret 958SYM_CODE_END(paranoid_entry) 959 960/* 961 * "Paranoid" exit path from exception stack. This is invoked 962 * only on return from non-NMI IST interrupts that came 963 * from kernel space. 964 * 965 * We may be returning to very strange contexts (e.g. very early 966 * in syscall entry), so checking for preemption here would 967 * be complicated. Fortunately, there's no good reason to try 968 * to handle preemption here. 969 * 970 * R/EBX contains the GSBASE related information depending on the 971 * availability of the FSGSBASE instructions: 972 * 973 * FSGSBASE R/EBX 974 * N 0 -> SWAPGS on exit 975 * 1 -> no SWAPGS on exit 976 * 977 * Y User space GSBASE, must be restored unconditionally 978 */ 979SYM_CODE_START_LOCAL(paranoid_exit) 980 UNWIND_HINT_REGS 981 /* 982 * The order of operations is important. RESTORE_CR3 requires 983 * kernel GSBASE. 984 * 985 * NB to anyone to try to optimize this code: this code does 986 * not execute at all for exceptions from user mode. Those 987 * exceptions go through error_exit instead. 988 */ 989 RESTORE_CR3 scratch_reg=%rax save_reg=%r14 990 991 /* Handle the three GSBASE cases */ 992 ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE 993 994 /* With FSGSBASE enabled, unconditionally restore GSBASE */ 995 wrgsbase %rbx 996 jmp restore_regs_and_return_to_kernel 997 998.Lparanoid_exit_checkgs: 999 /* On non-FSGSBASE systems, conditionally do SWAPGS */ 1000 testl %ebx, %ebx 1001 jnz restore_regs_and_return_to_kernel 1002 1003 /* We are returning to a context with user GSBASE */ 1004 SWAPGS_UNSAFE_STACK 1005 jmp restore_regs_and_return_to_kernel 1006SYM_CODE_END(paranoid_exit) 1007 1008/* 1009 * Save all registers in pt_regs, and switch GS if needed. 1010 */ 1011SYM_CODE_START_LOCAL(error_entry) 1012 UNWIND_HINT_FUNC 1013 cld 1014 PUSH_AND_CLEAR_REGS save_ret=1 1015 ENCODE_FRAME_POINTER 8 1016 testb $3, CS+8(%rsp) 1017 jz .Lerror_kernelspace 1018 1019 /* 1020 * We entered from user mode or we're pretending to have entered 1021 * from user mode due to an IRET fault. 1022 */ 1023 SWAPGS 1024 FENCE_SWAPGS_USER_ENTRY 1025 /* We have user CR3. Change to kernel CR3. */ 1026 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1027 1028.Lerror_entry_from_usermode_after_swapgs: 1029 /* Put us onto the real thread stack. */ 1030 popq %r12 /* save return addr in %12 */ 1031 movq %rsp, %rdi /* arg0 = pt_regs pointer */ 1032 call sync_regs 1033 movq %rax, %rsp /* switch stack */ 1034 ENCODE_FRAME_POINTER 1035 pushq %r12 1036 ret 1037 1038.Lerror_entry_done_lfence: 1039 FENCE_SWAPGS_KERNEL_ENTRY 1040.Lerror_entry_done: 1041 ret 1042 1043 /* 1044 * There are two places in the kernel that can potentially fault with 1045 * usergs. Handle them here. B stepping K8s sometimes report a 1046 * truncated RIP for IRET exceptions returning to compat mode. Check 1047 * for these here too. 1048 */ 1049.Lerror_kernelspace: 1050 leaq native_irq_return_iret(%rip), %rcx 1051 cmpq %rcx, RIP+8(%rsp) 1052 je .Lerror_bad_iret 1053 movl %ecx, %eax /* zero extend */ 1054 cmpq %rax, RIP+8(%rsp) 1055 je .Lbstep_iret 1056 cmpq $.Lgs_change, RIP+8(%rsp) 1057 jne .Lerror_entry_done_lfence 1058 1059 /* 1060 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up 1061 * gsbase and proceed. We'll fix up the exception and land in 1062 * .Lgs_change's error handler with kernel gsbase. 1063 */ 1064 SWAPGS 1065 FENCE_SWAPGS_USER_ENTRY 1066 jmp .Lerror_entry_done 1067 1068.Lbstep_iret: 1069 /* Fix truncated RIP */ 1070 movq %rcx, RIP+8(%rsp) 1071 /* fall through */ 1072 1073.Lerror_bad_iret: 1074 /* 1075 * We came from an IRET to user mode, so we have user 1076 * gsbase and CR3. Switch to kernel gsbase and CR3: 1077 */ 1078 SWAPGS 1079 FENCE_SWAPGS_USER_ENTRY 1080 SWITCH_TO_KERNEL_CR3 scratch_reg=%rax 1081 1082 /* 1083 * Pretend that the exception came from user mode: set up pt_regs 1084 * as if we faulted immediately after IRET. 1085 */ 1086 mov %rsp, %rdi 1087 call fixup_bad_iret 1088 mov %rax, %rsp 1089 jmp .Lerror_entry_from_usermode_after_swapgs 1090SYM_CODE_END(error_entry) 1091 1092SYM_CODE_START_LOCAL(error_return) 1093 UNWIND_HINT_REGS 1094 DEBUG_ENTRY_ASSERT_IRQS_OFF 1095 testb $3, CS(%rsp) 1096 jz restore_regs_and_return_to_kernel 1097 jmp swapgs_restore_regs_and_return_to_usermode 1098SYM_CODE_END(error_return) 1099 1100/* 1101 * Runs on exception stack. Xen PV does not go through this path at all, 1102 * so we can use real assembly here. 1103 * 1104 * Registers: 1105 * %r14: Used to save/restore the CR3 of the interrupted context 1106 * when PAGE_TABLE_ISOLATION is in use. Do not clobber. 1107 */ 1108SYM_CODE_START(asm_exc_nmi) 1109 UNWIND_HINT_IRET_REGS 1110 1111 /* 1112 * We allow breakpoints in NMIs. If a breakpoint occurs, then 1113 * the iretq it performs will take us out of NMI context. 1114 * This means that we can have nested NMIs where the next 1115 * NMI is using the top of the stack of the previous NMI. We 1116 * can't let it execute because the nested NMI will corrupt the 1117 * stack of the previous NMI. NMI handlers are not re-entrant 1118 * anyway. 1119 * 1120 * To handle this case we do the following: 1121 * Check the a special location on the stack that contains 1122 * a variable that is set when NMIs are executing. 1123 * The interrupted task's stack is also checked to see if it 1124 * is an NMI stack. 1125 * If the variable is not set and the stack is not the NMI 1126 * stack then: 1127 * o Set the special variable on the stack 1128 * o Copy the interrupt frame into an "outermost" location on the 1129 * stack 1130 * o Copy the interrupt frame into an "iret" location on the stack 1131 * o Continue processing the NMI 1132 * If the variable is set or the previous stack is the NMI stack: 1133 * o Modify the "iret" location to jump to the repeat_nmi 1134 * o return back to the first NMI 1135 * 1136 * Now on exit of the first NMI, we first clear the stack variable 1137 * The NMI stack will tell any nested NMIs at that point that it is 1138 * nested. Then we pop the stack normally with iret, and if there was 1139 * a nested NMI that updated the copy interrupt stack frame, a 1140 * jump will be made to the repeat_nmi code that will handle the second 1141 * NMI. 1142 * 1143 * However, espfix prevents us from directly returning to userspace 1144 * with a single IRET instruction. Similarly, IRET to user mode 1145 * can fault. We therefore handle NMIs from user space like 1146 * other IST entries. 1147 */ 1148 1149 ASM_CLAC 1150 1151 /* Use %rdx as our temp variable throughout */ 1152 pushq %rdx 1153 1154 testb $3, CS-RIP+8(%rsp) 1155 jz .Lnmi_from_kernel 1156 1157 /* 1158 * NMI from user mode. We need to run on the thread stack, but we 1159 * can't go through the normal entry paths: NMIs are masked, and 1160 * we don't want to enable interrupts, because then we'll end 1161 * up in an awkward situation in which IRQs are on but NMIs 1162 * are off. 1163 * 1164 * We also must not push anything to the stack before switching 1165 * stacks lest we corrupt the "NMI executing" variable. 1166 */ 1167 1168 swapgs 1169 cld 1170 FENCE_SWAPGS_USER_ENTRY 1171 SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx 1172 movq %rsp, %rdx 1173 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp 1174 UNWIND_HINT_IRET_REGS base=%rdx offset=8 1175 pushq 5*8(%rdx) /* pt_regs->ss */ 1176 pushq 4*8(%rdx) /* pt_regs->rsp */ 1177 pushq 3*8(%rdx) /* pt_regs->flags */ 1178 pushq 2*8(%rdx) /* pt_regs->cs */ 1179 pushq 1*8(%rdx) /* pt_regs->rip */ 1180 UNWIND_HINT_IRET_REGS 1181 pushq $-1 /* pt_regs->orig_ax */ 1182 PUSH_AND_CLEAR_REGS rdx=(%rdx) 1183 ENCODE_FRAME_POINTER 1184 1185 /* 1186 * At this point we no longer need to worry about stack damage 1187 * due to nesting -- we're on the normal thread stack and we're 1188 * done with the NMI stack. 1189 */ 1190 1191 movq %rsp, %rdi 1192 movq $-1, %rsi 1193 call exc_nmi 1194 1195 /* 1196 * Return back to user mode. We must *not* do the normal exit 1197 * work, because we don't want to enable interrupts. 1198 */ 1199 jmp swapgs_restore_regs_and_return_to_usermode 1200 1201.Lnmi_from_kernel: 1202 /* 1203 * Here's what our stack frame will look like: 1204 * +---------------------------------------------------------+ 1205 * | original SS | 1206 * | original Return RSP | 1207 * | original RFLAGS | 1208 * | original CS | 1209 * | original RIP | 1210 * +---------------------------------------------------------+ 1211 * | temp storage for rdx | 1212 * +---------------------------------------------------------+ 1213 * | "NMI executing" variable | 1214 * +---------------------------------------------------------+ 1215 * | iret SS } Copied from "outermost" frame | 1216 * | iret Return RSP } on each loop iteration; overwritten | 1217 * | iret RFLAGS } by a nested NMI to force another | 1218 * | iret CS } iteration if needed. | 1219 * | iret RIP } | 1220 * +---------------------------------------------------------+ 1221 * | outermost SS } initialized in first_nmi; | 1222 * | outermost Return RSP } will not be changed before | 1223 * | outermost RFLAGS } NMI processing is done. | 1224 * | outermost CS } Copied to "iret" frame on each | 1225 * | outermost RIP } iteration. | 1226 * +---------------------------------------------------------+ 1227 * | pt_regs | 1228 * +---------------------------------------------------------+ 1229 * 1230 * The "original" frame is used by hardware. Before re-enabling 1231 * NMIs, we need to be done with it, and we need to leave enough 1232 * space for the asm code here. 1233 * 1234 * We return by executing IRET while RSP points to the "iret" frame. 1235 * That will either return for real or it will loop back into NMI 1236 * processing. 1237 * 1238 * The "outermost" frame is copied to the "iret" frame on each 1239 * iteration of the loop, so each iteration starts with the "iret" 1240 * frame pointing to the final return target. 1241 */ 1242 1243 /* 1244 * Determine whether we're a nested NMI. 1245 * 1246 * If we interrupted kernel code between repeat_nmi and 1247 * end_repeat_nmi, then we are a nested NMI. We must not 1248 * modify the "iret" frame because it's being written by 1249 * the outer NMI. That's okay; the outer NMI handler is 1250 * about to about to call exc_nmi() anyway, so we can just 1251 * resume the outer NMI. 1252 */ 1253 1254 movq $repeat_nmi, %rdx 1255 cmpq 8(%rsp), %rdx 1256 ja 1f 1257 movq $end_repeat_nmi, %rdx 1258 cmpq 8(%rsp), %rdx 1259 ja nested_nmi_out 12601: 1261 1262 /* 1263 * Now check "NMI executing". If it's set, then we're nested. 1264 * This will not detect if we interrupted an outer NMI just 1265 * before IRET. 1266 */ 1267 cmpl $1, -8(%rsp) 1268 je nested_nmi 1269 1270 /* 1271 * Now test if the previous stack was an NMI stack. This covers 1272 * the case where we interrupt an outer NMI after it clears 1273 * "NMI executing" but before IRET. We need to be careful, though: 1274 * there is one case in which RSP could point to the NMI stack 1275 * despite there being no NMI active: naughty userspace controls 1276 * RSP at the very beginning of the SYSCALL targets. We can 1277 * pull a fast one on naughty userspace, though: we program 1278 * SYSCALL to mask DF, so userspace cannot cause DF to be set 1279 * if it controls the kernel's RSP. We set DF before we clear 1280 * "NMI executing". 1281 */ 1282 lea 6*8(%rsp), %rdx 1283 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */ 1284 cmpq %rdx, 4*8(%rsp) 1285 /* If the stack pointer is above the NMI stack, this is a normal NMI */ 1286 ja first_nmi 1287 1288 subq $EXCEPTION_STKSZ, %rdx 1289 cmpq %rdx, 4*8(%rsp) 1290 /* If it is below the NMI stack, it is a normal NMI */ 1291 jb first_nmi 1292 1293 /* Ah, it is within the NMI stack. */ 1294 1295 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp) 1296 jz first_nmi /* RSP was user controlled. */ 1297 1298 /* This is a nested NMI. */ 1299 1300nested_nmi: 1301 /* 1302 * Modify the "iret" frame to point to repeat_nmi, forcing another 1303 * iteration of NMI handling. 1304 */ 1305 subq $8, %rsp 1306 leaq -10*8(%rsp), %rdx 1307 pushq $__KERNEL_DS 1308 pushq %rdx 1309 pushfq 1310 pushq $__KERNEL_CS 1311 pushq $repeat_nmi 1312 1313 /* Put stack back */ 1314 addq $(6*8), %rsp 1315 1316nested_nmi_out: 1317 popq %rdx 1318 1319 /* We are returning to kernel mode, so this cannot result in a fault. */ 1320 iretq 1321 1322first_nmi: 1323 /* Restore rdx. */ 1324 movq (%rsp), %rdx 1325 1326 /* Make room for "NMI executing". */ 1327 pushq $0 1328 1329 /* Leave room for the "iret" frame */ 1330 subq $(5*8), %rsp 1331 1332 /* Copy the "original" frame to the "outermost" frame */ 1333 .rept 5 1334 pushq 11*8(%rsp) 1335 .endr 1336 UNWIND_HINT_IRET_REGS 1337 1338 /* Everything up to here is safe from nested NMIs */ 1339 1340#ifdef CONFIG_DEBUG_ENTRY 1341 /* 1342 * For ease of testing, unmask NMIs right away. Disabled by 1343 * default because IRET is very expensive. 1344 */ 1345 pushq $0 /* SS */ 1346 pushq %rsp /* RSP (minus 8 because of the previous push) */ 1347 addq $8, (%rsp) /* Fix up RSP */ 1348 pushfq /* RFLAGS */ 1349 pushq $__KERNEL_CS /* CS */ 1350 pushq $1f /* RIP */ 1351 iretq /* continues at repeat_nmi below */ 1352 UNWIND_HINT_IRET_REGS 13531: 1354#endif 1355 1356repeat_nmi: 1357 /* 1358 * If there was a nested NMI, the first NMI's iret will return 1359 * here. But NMIs are still enabled and we can take another 1360 * nested NMI. The nested NMI checks the interrupted RIP to see 1361 * if it is between repeat_nmi and end_repeat_nmi, and if so 1362 * it will just return, as we are about to repeat an NMI anyway. 1363 * This makes it safe to copy to the stack frame that a nested 1364 * NMI will update. 1365 * 1366 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if 1367 * we're repeating an NMI, gsbase has the same value that it had on 1368 * the first iteration. paranoid_entry will load the kernel 1369 * gsbase if needed before we call exc_nmi(). "NMI executing" 1370 * is zero. 1371 */ 1372 movq $1, 10*8(%rsp) /* Set "NMI executing". */ 1373 1374 /* 1375 * Copy the "outermost" frame to the "iret" frame. NMIs that nest 1376 * here must not modify the "iret" frame while we're writing to 1377 * it or it will end up containing garbage. 1378 */ 1379 addq $(10*8), %rsp 1380 .rept 5 1381 pushq -6*8(%rsp) 1382 .endr 1383 subq $(5*8), %rsp 1384end_repeat_nmi: 1385 1386 /* 1387 * Everything below this point can be preempted by a nested NMI. 1388 * If this happens, then the inner NMI will change the "iret" 1389 * frame to point back to repeat_nmi. 1390 */ 1391 pushq $-1 /* ORIG_RAX: no syscall to restart */ 1392 1393 /* 1394 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit 1395 * as we should not be calling schedule in NMI context. 1396 * Even with normal interrupts enabled. An NMI should not be 1397 * setting NEED_RESCHED or anything that normal interrupts and 1398 * exceptions might do. 1399 */ 1400 call paranoid_entry 1401 UNWIND_HINT_REGS 1402 1403 movq %rsp, %rdi 1404 movq $-1, %rsi 1405 call exc_nmi 1406 1407 /* Always restore stashed CR3 value (see paranoid_entry) */ 1408 RESTORE_CR3 scratch_reg=%r15 save_reg=%r14 1409 1410 /* 1411 * The above invocation of paranoid_entry stored the GSBASE 1412 * related information in R/EBX depending on the availability 1413 * of FSGSBASE. 1414 * 1415 * If FSGSBASE is enabled, restore the saved GSBASE value 1416 * unconditionally, otherwise take the conditional SWAPGS path. 1417 */ 1418 ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE 1419 1420 wrgsbase %rbx 1421 jmp nmi_restore 1422 1423nmi_no_fsgsbase: 1424 /* EBX == 0 -> invoke SWAPGS */ 1425 testl %ebx, %ebx 1426 jnz nmi_restore 1427 1428nmi_swapgs: 1429 SWAPGS_UNSAFE_STACK 1430 1431nmi_restore: 1432 POP_REGS 1433 1434 /* 1435 * Skip orig_ax and the "outermost" frame to point RSP at the "iret" 1436 * at the "iret" frame. 1437 */ 1438 addq $6*8, %rsp 1439 1440 /* 1441 * Clear "NMI executing". Set DF first so that we can easily 1442 * distinguish the remaining code between here and IRET from 1443 * the SYSCALL entry and exit paths. 1444 * 1445 * We arguably should just inspect RIP instead, but I (Andy) wrote 1446 * this code when I had the misapprehension that Xen PV supported 1447 * NMIs, and Xen PV would break that approach. 1448 */ 1449 std 1450 movq $0, 5*8(%rsp) /* clear "NMI executing" */ 1451 1452 /* 1453 * iretq reads the "iret" frame and exits the NMI stack in a 1454 * single instruction. We are returning to kernel mode, so this 1455 * cannot result in a fault. Similarly, we don't need to worry 1456 * about espfix64 on the way back to kernel mode. 1457 */ 1458 iretq 1459SYM_CODE_END(asm_exc_nmi) 1460 1461#ifndef CONFIG_IA32_EMULATION 1462/* 1463 * This handles SYSCALL from 32-bit code. There is no way to program 1464 * MSRs to fully disable 32-bit SYSCALL. 1465 */ 1466SYM_CODE_START(ignore_sysret) 1467 UNWIND_HINT_EMPTY 1468 mov $-ENOSYS, %eax 1469 sysretl 1470SYM_CODE_END(ignore_sysret) 1471#endif 1472 1473.pushsection .text, "ax" 1474SYM_CODE_START(rewind_stack_do_exit) 1475 UNWIND_HINT_FUNC 1476 /* Prevent any naive code from trying to unwind to our caller. */ 1477 xorl %ebp, %ebp 1478 1479 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax 1480 leaq -PTREGS_SIZE(%rax), %rsp 1481 UNWIND_HINT_REGS 1482 1483 call do_exit 1484SYM_CODE_END(rewind_stack_do_exit) 1485.popsection 1486