1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 *  linux/arch/x86_64/entry.S
4 *
5 *  Copyright (C) 1991, 1992  Linus Torvalds
6 *  Copyright (C) 2000, 2001, 2002  Andi Kleen SuSE Labs
7 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
8 *
9 * entry.S contains the system-call and fault low-level handling routines.
10 *
11 * Some of this is documented in Documentation/x86/entry_64.rst
12 *
13 * A note on terminology:
14 * - iret frame:	Architecture defined interrupt frame from SS to RIP
15 *			at the top of the kernel process stack.
16 *
17 * Some macro usage:
18 * - SYM_FUNC_START/END:Define functions in the symbol table.
19 * - idtentry:		Define exception entry points.
20 */
21#include <linux/linkage.h>
22#include <asm/segment.h>
23#include <asm/cache.h>
24#include <asm/errno.h>
25#include <asm/asm-offsets.h>
26#include <asm/msr.h>
27#include <asm/unistd.h>
28#include <asm/thread_info.h>
29#include <asm/hw_irq.h>
30#include <asm/page_types.h>
31#include <asm/irqflags.h>
32#include <asm/paravirt.h>
33#include <asm/percpu.h>
34#include <asm/asm.h>
35#include <asm/smap.h>
36#include <asm/pgtable_types.h>
37#include <asm/export.h>
38#include <asm/frame.h>
39#include <asm/trapnr.h>
40#include <asm/nospec-branch.h>
41#include <asm/fsgsbase.h>
42#include <linux/err.h>
43
44#include "calling.h"
45
46.code64
47.section .entry.text, "ax"
48
49#ifdef CONFIG_PARAVIRT_XXL
50SYM_CODE_START(native_usergs_sysret64)
51	UNWIND_HINT_EMPTY
52	swapgs
53	sysretq
54SYM_CODE_END(native_usergs_sysret64)
55#endif /* CONFIG_PARAVIRT_XXL */
56
57/*
58 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
59 *
60 * This is the only entry point used for 64-bit system calls.  The
61 * hardware interface is reasonably well designed and the register to
62 * argument mapping Linux uses fits well with the registers that are
63 * available when SYSCALL is used.
64 *
65 * SYSCALL instructions can be found inlined in libc implementations as
66 * well as some other programs and libraries.  There are also a handful
67 * of SYSCALL instructions in the vDSO used, for example, as a
68 * clock_gettimeofday fallback.
69 *
70 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
71 * then loads new ss, cs, and rip from previously programmed MSRs.
72 * rflags gets masked by a value from another MSR (so CLD and CLAC
73 * are not needed). SYSCALL does not save anything on the stack
74 * and does not change rsp.
75 *
76 * Registers on entry:
77 * rax  system call number
78 * rcx  return address
79 * r11  saved rflags (note: r11 is callee-clobbered register in C ABI)
80 * rdi  arg0
81 * rsi  arg1
82 * rdx  arg2
83 * r10  arg3 (needs to be moved to rcx to conform to C ABI)
84 * r8   arg4
85 * r9   arg5
86 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
87 *
88 * Only called from user space.
89 *
90 * When user can change pt_regs->foo always force IRET. That is because
91 * it deals with uncanonical addresses better. SYSRET has trouble
92 * with them due to bugs in both AMD and Intel CPUs.
93 */
94
95SYM_CODE_START(entry_SYSCALL_64)
96	UNWIND_HINT_EMPTY
97
98	swapgs
99	/* tss.sp2 is scratch space. */
100	movq	%rsp, PER_CPU_VAR(cpu_tss_rw + TSS_sp2)
101	SWITCH_TO_KERNEL_CR3 scratch_reg=%rsp
102	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
103
104SYM_INNER_LABEL(entry_SYSCALL_64_safe_stack, SYM_L_GLOBAL)
105
106	/* Construct struct pt_regs on stack */
107	pushq	$__USER_DS				/* pt_regs->ss */
108	pushq	PER_CPU_VAR(cpu_tss_rw + TSS_sp2)	/* pt_regs->sp */
109	pushq	%r11					/* pt_regs->flags */
110	pushq	$__USER_CS				/* pt_regs->cs */
111	pushq	%rcx					/* pt_regs->ip */
112SYM_INNER_LABEL(entry_SYSCALL_64_after_hwframe, SYM_L_GLOBAL)
113	pushq	%rax					/* pt_regs->orig_ax */
114
115	PUSH_AND_CLEAR_REGS rax=$-ENOSYS
116
117	/* IRQs are off. */
118	movq	%rax, %rdi
119	movq	%rsp, %rsi
120	call	do_syscall_64		/* returns with IRQs disabled */
121
122	/*
123	 * Try to use SYSRET instead of IRET if we're returning to
124	 * a completely clean 64-bit userspace context.  If we're not,
125	 * go to the slow exit path.
126	 */
127	movq	RCX(%rsp), %rcx
128	movq	RIP(%rsp), %r11
129
130	cmpq	%rcx, %r11	/* SYSRET requires RCX == RIP */
131	jne	swapgs_restore_regs_and_return_to_usermode
132
133	/*
134	 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
135	 * in kernel space.  This essentially lets the user take over
136	 * the kernel, since userspace controls RSP.
137	 *
138	 * If width of "canonical tail" ever becomes variable, this will need
139	 * to be updated to remain correct on both old and new CPUs.
140	 *
141	 * Change top bits to match most significant bit (47th or 56th bit
142	 * depending on paging mode) in the address.
143	 */
144#ifdef CONFIG_X86_5LEVEL
145	ALTERNATIVE "shl $(64 - 48), %rcx; sar $(64 - 48), %rcx", \
146		"shl $(64 - 57), %rcx; sar $(64 - 57), %rcx", X86_FEATURE_LA57
147#else
148	shl	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
149	sar	$(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
150#endif
151
152	/* If this changed %rcx, it was not canonical */
153	cmpq	%rcx, %r11
154	jne	swapgs_restore_regs_and_return_to_usermode
155
156	cmpq	$__USER_CS, CS(%rsp)		/* CS must match SYSRET */
157	jne	swapgs_restore_regs_and_return_to_usermode
158
159	movq	R11(%rsp), %r11
160	cmpq	%r11, EFLAGS(%rsp)		/* R11 == RFLAGS */
161	jne	swapgs_restore_regs_and_return_to_usermode
162
163	/*
164	 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
165	 * restore RF properly. If the slowpath sets it for whatever reason, we
166	 * need to restore it correctly.
167	 *
168	 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
169	 * trap from userspace immediately after SYSRET.  This would cause an
170	 * infinite loop whenever #DB happens with register state that satisfies
171	 * the opportunistic SYSRET conditions.  For example, single-stepping
172	 * this user code:
173	 *
174	 *           movq	$stuck_here, %rcx
175	 *           pushfq
176	 *           popq %r11
177	 *   stuck_here:
178	 *
179	 * would never get past 'stuck_here'.
180	 */
181	testq	$(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
182	jnz	swapgs_restore_regs_and_return_to_usermode
183
184	/* nothing to check for RSP */
185
186	cmpq	$__USER_DS, SS(%rsp)		/* SS must match SYSRET */
187	jne	swapgs_restore_regs_and_return_to_usermode
188
189	/*
190	 * We win! This label is here just for ease of understanding
191	 * perf profiles. Nothing jumps here.
192	 */
193syscall_return_via_sysret:
194	/* rcx and r11 are already restored (see code above) */
195	POP_REGS pop_rdi=0 skip_r11rcx=1
196
197	/*
198	 * Now all regs are restored except RSP and RDI.
199	 * Save old stack pointer and switch to trampoline stack.
200	 */
201	movq	%rsp, %rdi
202	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
203	UNWIND_HINT_EMPTY
204
205	pushq	RSP-RDI(%rdi)	/* RSP */
206	pushq	(%rdi)		/* RDI */
207
208	/*
209	 * We are on the trampoline stack.  All regs except RDI are live.
210	 * We can do future final exit work right here.
211	 */
212	STACKLEAK_ERASE_NOCLOBBER
213
214	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
215
216	popq	%rdi
217	popq	%rsp
218	USERGS_SYSRET64
219SYM_CODE_END(entry_SYSCALL_64)
220
221/*
222 * %rdi: prev task
223 * %rsi: next task
224 */
225.pushsection .text, "ax"
226SYM_FUNC_START(__switch_to_asm)
227	/*
228	 * Save callee-saved registers
229	 * This must match the order in inactive_task_frame
230	 */
231	pushq	%rbp
232	pushq	%rbx
233	pushq	%r12
234	pushq	%r13
235	pushq	%r14
236	pushq	%r15
237
238	/* switch stack */
239	movq	%rsp, TASK_threadsp(%rdi)
240	movq	TASK_threadsp(%rsi), %rsp
241
242#ifdef CONFIG_STACKPROTECTOR
243	movq	TASK_stack_canary(%rsi), %rbx
244	movq	%rbx, PER_CPU_VAR(fixed_percpu_data) + stack_canary_offset
245#endif
246
247#ifdef CONFIG_RETPOLINE
248	/*
249	 * When switching from a shallower to a deeper call stack
250	 * the RSB may either underflow or use entries populated
251	 * with userspace addresses. On CPUs where those concerns
252	 * exist, overwrite the RSB with entries which capture
253	 * speculative execution to prevent attack.
254	 */
255	FILL_RETURN_BUFFER %r12, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
256#endif
257
258	/* restore callee-saved registers */
259	popq	%r15
260	popq	%r14
261	popq	%r13
262	popq	%r12
263	popq	%rbx
264	popq	%rbp
265
266	jmp	__switch_to
267SYM_FUNC_END(__switch_to_asm)
268.popsection
269
270/*
271 * A newly forked process directly context switches into this address.
272 *
273 * rax: prev task we switched from
274 * rbx: kernel thread func (NULL for user thread)
275 * r12: kernel thread arg
276 */
277.pushsection .text, "ax"
278SYM_CODE_START(ret_from_fork)
279	UNWIND_HINT_EMPTY
280	movq	%rax, %rdi
281	call	schedule_tail			/* rdi: 'prev' task parameter */
282
283	testq	%rbx, %rbx			/* from kernel_thread? */
284	jnz	1f				/* kernel threads are uncommon */
285
2862:
287	UNWIND_HINT_REGS
288	movq	%rsp, %rdi
289	call	syscall_exit_to_user_mode	/* returns with IRQs disabled */
290	jmp	swapgs_restore_regs_and_return_to_usermode
291
2921:
293	/* kernel thread */
294	UNWIND_HINT_EMPTY
295	movq	%r12, %rdi
296	CALL_NOSPEC rbx
297	/*
298	 * A kernel thread is allowed to return here after successfully
299	 * calling kernel_execve().  Exit to userspace to complete the execve()
300	 * syscall.
301	 */
302	movq	$0, RAX(%rsp)
303	jmp	2b
304SYM_CODE_END(ret_from_fork)
305.popsection
306
307.macro DEBUG_ENTRY_ASSERT_IRQS_OFF
308#ifdef CONFIG_DEBUG_ENTRY
309	pushq %rax
310	SAVE_FLAGS(CLBR_RAX)
311	testl $X86_EFLAGS_IF, %eax
312	jz .Lokay_\@
313	ud2
314.Lokay_\@:
315	popq %rax
316#endif
317.endm
318
319/**
320 * idtentry_body - Macro to emit code calling the C function
321 * @cfunc:		C function to be called
322 * @has_error_code:	Hardware pushed error code on stack
323 */
324.macro idtentry_body cfunc has_error_code:req
325
326	call	error_entry
327	UNWIND_HINT_REGS
328
329	movq	%rsp, %rdi			/* pt_regs pointer into 1st argument*/
330
331	.if \has_error_code == 1
332		movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
333		movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
334	.endif
335
336	call	\cfunc
337
338	jmp	error_return
339.endm
340
341/**
342 * idtentry - Macro to generate entry stubs for simple IDT entries
343 * @vector:		Vector number
344 * @asmsym:		ASM symbol for the entry point
345 * @cfunc:		C function to be called
346 * @has_error_code:	Hardware pushed error code on stack
347 *
348 * The macro emits code to set up the kernel context for straight forward
349 * and simple IDT entries. No IST stack, no paranoid entry checks.
350 */
351.macro idtentry vector asmsym cfunc has_error_code:req
352SYM_CODE_START(\asmsym)
353	UNWIND_HINT_IRET_REGS offset=\has_error_code*8
354	ASM_CLAC
355
356	.if \has_error_code == 0
357		pushq	$-1			/* ORIG_RAX: no syscall to restart */
358	.endif
359
360	.if \vector == X86_TRAP_BP
361		/*
362		 * If coming from kernel space, create a 6-word gap to allow the
363		 * int3 handler to emulate a call instruction.
364		 */
365		testb	$3, CS-ORIG_RAX(%rsp)
366		jnz	.Lfrom_usermode_no_gap_\@
367		.rept	6
368		pushq	5*8(%rsp)
369		.endr
370		UNWIND_HINT_IRET_REGS offset=8
371.Lfrom_usermode_no_gap_\@:
372	.endif
373
374	idtentry_body \cfunc \has_error_code
375
376_ASM_NOKPROBE(\asmsym)
377SYM_CODE_END(\asmsym)
378.endm
379
380/*
381 * Interrupt entry/exit.
382 *
383 + The interrupt stubs push (vector) onto the stack, which is the error_code
384 * position of idtentry exceptions, and jump to one of the two idtentry points
385 * (common/spurious).
386 *
387 * common_interrupt is a hotpath, align it to a cache line
388 */
389.macro idtentry_irq vector cfunc
390	.p2align CONFIG_X86_L1_CACHE_SHIFT
391	idtentry \vector asm_\cfunc \cfunc has_error_code=1
392.endm
393
394/*
395 * System vectors which invoke their handlers directly and are not
396 * going through the regular common device interrupt handling code.
397 */
398.macro idtentry_sysvec vector cfunc
399	idtentry \vector asm_\cfunc \cfunc has_error_code=0
400.endm
401
402/**
403 * idtentry_mce_db - Macro to generate entry stubs for #MC and #DB
404 * @vector:		Vector number
405 * @asmsym:		ASM symbol for the entry point
406 * @cfunc:		C function to be called
407 *
408 * The macro emits code to set up the kernel context for #MC and #DB
409 *
410 * If the entry comes from user space it uses the normal entry path
411 * including the return to user space work and preemption checks on
412 * exit.
413 *
414 * If hits in kernel mode then it needs to go through the paranoid
415 * entry as the exception can hit any random state. No preemption
416 * check on exit to keep the paranoid path simple.
417 */
418.macro idtentry_mce_db vector asmsym cfunc
419SYM_CODE_START(\asmsym)
420	UNWIND_HINT_IRET_REGS
421	ASM_CLAC
422
423	pushq	$-1			/* ORIG_RAX: no syscall to restart */
424
425	/*
426	 * If the entry is from userspace, switch stacks and treat it as
427	 * a normal entry.
428	 */
429	testb	$3, CS-ORIG_RAX(%rsp)
430	jnz	.Lfrom_usermode_switch_stack_\@
431
432	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
433	call	paranoid_entry
434
435	UNWIND_HINT_REGS
436
437	movq	%rsp, %rdi		/* pt_regs pointer */
438
439	call	\cfunc
440
441	jmp	paranoid_exit
442
443	/* Switch to the regular task stack and use the noist entry point */
444.Lfrom_usermode_switch_stack_\@:
445	idtentry_body noist_\cfunc, has_error_code=0
446
447_ASM_NOKPROBE(\asmsym)
448SYM_CODE_END(\asmsym)
449.endm
450
451#ifdef CONFIG_AMD_MEM_ENCRYPT
452/**
453 * idtentry_vc - Macro to generate entry stub for #VC
454 * @vector:		Vector number
455 * @asmsym:		ASM symbol for the entry point
456 * @cfunc:		C function to be called
457 *
458 * The macro emits code to set up the kernel context for #VC. The #VC handler
459 * runs on an IST stack and needs to be able to cause nested #VC exceptions.
460 *
461 * To make this work the #VC entry code tries its best to pretend it doesn't use
462 * an IST stack by switching to the task stack if coming from user-space (which
463 * includes early SYSCALL entry path) or back to the stack in the IRET frame if
464 * entered from kernel-mode.
465 *
466 * If entered from kernel-mode the return stack is validated first, and if it is
467 * not safe to use (e.g. because it points to the entry stack) the #VC handler
468 * will switch to a fall-back stack (VC2) and call a special handler function.
469 *
470 * The macro is only used for one vector, but it is planned to be extended in
471 * the future for the #HV exception.
472 */
473.macro idtentry_vc vector asmsym cfunc
474SYM_CODE_START(\asmsym)
475	UNWIND_HINT_IRET_REGS
476	ASM_CLAC
477
478	/*
479	 * If the entry is from userspace, switch stacks and treat it as
480	 * a normal entry.
481	 */
482	testb	$3, CS-ORIG_RAX(%rsp)
483	jnz	.Lfrom_usermode_switch_stack_\@
484
485	/*
486	 * paranoid_entry returns SWAPGS flag for paranoid_exit in EBX.
487	 * EBX == 0 -> SWAPGS, EBX == 1 -> no SWAPGS
488	 */
489	call	paranoid_entry
490
491	UNWIND_HINT_REGS
492
493	/*
494	 * Switch off the IST stack to make it free for nested exceptions. The
495	 * vc_switch_off_ist() function will switch back to the interrupted
496	 * stack if it is safe to do so. If not it switches to the VC fall-back
497	 * stack.
498	 */
499	movq	%rsp, %rdi		/* pt_regs pointer */
500	call	vc_switch_off_ist
501	movq	%rax, %rsp		/* Switch to new stack */
502
503	UNWIND_HINT_REGS
504
505	/* Update pt_regs */
506	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
507	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
508
509	movq	%rsp, %rdi		/* pt_regs pointer */
510
511	call	\cfunc
512
513	/*
514	 * No need to switch back to the IST stack. The current stack is either
515	 * identical to the stack in the IRET frame or the VC fall-back stack,
516	 * so it is definitly mapped even with PTI enabled.
517	 */
518	jmp	paranoid_exit
519
520	/* Switch to the regular task stack */
521.Lfrom_usermode_switch_stack_\@:
522	idtentry_body safe_stack_\cfunc, has_error_code=1
523
524_ASM_NOKPROBE(\asmsym)
525SYM_CODE_END(\asmsym)
526.endm
527#endif
528
529/*
530 * Double fault entry. Straight paranoid. No checks from which context
531 * this comes because for the espfix induced #DF this would do the wrong
532 * thing.
533 */
534.macro idtentry_df vector asmsym cfunc
535SYM_CODE_START(\asmsym)
536	UNWIND_HINT_IRET_REGS offset=8
537	ASM_CLAC
538
539	/* paranoid_entry returns GS information for paranoid_exit in EBX. */
540	call	paranoid_entry
541	UNWIND_HINT_REGS
542
543	movq	%rsp, %rdi		/* pt_regs pointer into first argument */
544	movq	ORIG_RAX(%rsp), %rsi	/* get error code into 2nd argument*/
545	movq	$-1, ORIG_RAX(%rsp)	/* no syscall to restart */
546	call	\cfunc
547
548	jmp	paranoid_exit
549
550_ASM_NOKPROBE(\asmsym)
551SYM_CODE_END(\asmsym)
552.endm
553
554/*
555 * Include the defines which emit the idt entries which are shared
556 * shared between 32 and 64 bit and emit the __irqentry_text_* markers
557 * so the stacktrace boundary checks work.
558 */
559	.align 16
560	.globl __irqentry_text_start
561__irqentry_text_start:
562
563#include <asm/idtentry.h>
564
565	.align 16
566	.globl __irqentry_text_end
567__irqentry_text_end:
568
569SYM_CODE_START_LOCAL(common_interrupt_return)
570SYM_INNER_LABEL(swapgs_restore_regs_and_return_to_usermode, SYM_L_GLOBAL)
571#ifdef CONFIG_DEBUG_ENTRY
572	/* Assert that pt_regs indicates user mode. */
573	testb	$3, CS(%rsp)
574	jnz	1f
575	ud2
5761:
577#endif
578	POP_REGS pop_rdi=0
579
580	/*
581	 * The stack is now user RDI, orig_ax, RIP, CS, EFLAGS, RSP, SS.
582	 * Save old stack pointer and switch to trampoline stack.
583	 */
584	movq	%rsp, %rdi
585	movq	PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %rsp
586	UNWIND_HINT_EMPTY
587
588	/* Copy the IRET frame to the trampoline stack. */
589	pushq	6*8(%rdi)	/* SS */
590	pushq	5*8(%rdi)	/* RSP */
591	pushq	4*8(%rdi)	/* EFLAGS */
592	pushq	3*8(%rdi)	/* CS */
593	pushq	2*8(%rdi)	/* RIP */
594
595	/* Push user RDI on the trampoline stack. */
596	pushq	(%rdi)
597
598	/*
599	 * We are on the trampoline stack.  All regs except RDI are live.
600	 * We can do future final exit work right here.
601	 */
602	STACKLEAK_ERASE_NOCLOBBER
603
604	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
605
606	/* Restore RDI. */
607	popq	%rdi
608	SWAPGS
609	INTERRUPT_RETURN
610
611
612SYM_INNER_LABEL(restore_regs_and_return_to_kernel, SYM_L_GLOBAL)
613#ifdef CONFIG_DEBUG_ENTRY
614	/* Assert that pt_regs indicates kernel mode. */
615	testb	$3, CS(%rsp)
616	jz	1f
617	ud2
6181:
619#endif
620	POP_REGS
621	addq	$8, %rsp	/* skip regs->orig_ax */
622	/*
623	 * ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
624	 * when returning from IPI handler.
625	 */
626	INTERRUPT_RETURN
627
628SYM_INNER_LABEL_ALIGN(native_iret, SYM_L_GLOBAL)
629	UNWIND_HINT_IRET_REGS
630	/*
631	 * Are we returning to a stack segment from the LDT?  Note: in
632	 * 64-bit mode SS:RSP on the exception stack is always valid.
633	 */
634#ifdef CONFIG_X86_ESPFIX64
635	testb	$4, (SS-RIP)(%rsp)
636	jnz	native_irq_return_ldt
637#endif
638
639SYM_INNER_LABEL(native_irq_return_iret, SYM_L_GLOBAL)
640	/*
641	 * This may fault.  Non-paranoid faults on return to userspace are
642	 * handled by fixup_bad_iret.  These include #SS, #GP, and #NP.
643	 * Double-faults due to espfix64 are handled in exc_double_fault.
644	 * Other faults here are fatal.
645	 */
646	iretq
647
648#ifdef CONFIG_X86_ESPFIX64
649native_irq_return_ldt:
650	/*
651	 * We are running with user GSBASE.  All GPRs contain their user
652	 * values.  We have a percpu ESPFIX stack that is eight slots
653	 * long (see ESPFIX_STACK_SIZE).  espfix_waddr points to the bottom
654	 * of the ESPFIX stack.
655	 *
656	 * We clobber RAX and RDI in this code.  We stash RDI on the
657	 * normal stack and RAX on the ESPFIX stack.
658	 *
659	 * The ESPFIX stack layout we set up looks like this:
660	 *
661	 * --- top of ESPFIX stack ---
662	 * SS
663	 * RSP
664	 * RFLAGS
665	 * CS
666	 * RIP  <-- RSP points here when we're done
667	 * RAX  <-- espfix_waddr points here
668	 * --- bottom of ESPFIX stack ---
669	 */
670
671	pushq	%rdi				/* Stash user RDI */
672	SWAPGS					/* to kernel GS */
673	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdi	/* to kernel CR3 */
674
675	movq	PER_CPU_VAR(espfix_waddr), %rdi
676	movq	%rax, (0*8)(%rdi)		/* user RAX */
677	movq	(1*8)(%rsp), %rax		/* user RIP */
678	movq	%rax, (1*8)(%rdi)
679	movq	(2*8)(%rsp), %rax		/* user CS */
680	movq	%rax, (2*8)(%rdi)
681	movq	(3*8)(%rsp), %rax		/* user RFLAGS */
682	movq	%rax, (3*8)(%rdi)
683	movq	(5*8)(%rsp), %rax		/* user SS */
684	movq	%rax, (5*8)(%rdi)
685	movq	(4*8)(%rsp), %rax		/* user RSP */
686	movq	%rax, (4*8)(%rdi)
687	/* Now RAX == RSP. */
688
689	andl	$0xffff0000, %eax		/* RAX = (RSP & 0xffff0000) */
690
691	/*
692	 * espfix_stack[31:16] == 0.  The page tables are set up such that
693	 * (espfix_stack | (X & 0xffff0000)) points to a read-only alias of
694	 * espfix_waddr for any X.  That is, there are 65536 RO aliases of
695	 * the same page.  Set up RSP so that RSP[31:16] contains the
696	 * respective 16 bits of the /userspace/ RSP and RSP nonetheless
697	 * still points to an RO alias of the ESPFIX stack.
698	 */
699	orq	PER_CPU_VAR(espfix_stack), %rax
700
701	SWITCH_TO_USER_CR3_STACK scratch_reg=%rdi
702	SWAPGS					/* to user GS */
703	popq	%rdi				/* Restore user RDI */
704
705	movq	%rax, %rsp
706	UNWIND_HINT_IRET_REGS offset=8
707
708	/*
709	 * At this point, we cannot write to the stack any more, but we can
710	 * still read.
711	 */
712	popq	%rax				/* Restore user RAX */
713
714	/*
715	 * RSP now points to an ordinary IRET frame, except that the page
716	 * is read-only and RSP[31:16] are preloaded with the userspace
717	 * values.  We can now IRET back to userspace.
718	 */
719	jmp	native_irq_return_iret
720#endif
721SYM_CODE_END(common_interrupt_return)
722_ASM_NOKPROBE(common_interrupt_return)
723
724/*
725 * Reload gs selector with exception handling
726 * edi:  new selector
727 *
728 * Is in entry.text as it shouldn't be instrumented.
729 */
730SYM_FUNC_START(asm_load_gs_index)
731	FRAME_BEGIN
732	swapgs
733.Lgs_change:
734	movl	%edi, %gs
7352:	ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
736	swapgs
737	FRAME_END
738	ret
739SYM_FUNC_END(asm_load_gs_index)
740EXPORT_SYMBOL(asm_load_gs_index)
741
742	_ASM_EXTABLE(.Lgs_change, .Lbad_gs)
743	.section .fixup, "ax"
744	/* running with kernelgs */
745SYM_CODE_START_LOCAL_NOALIGN(.Lbad_gs)
746	swapgs					/* switch back to user gs */
747.macro ZAP_GS
748	/* This can't be a string because the preprocessor needs to see it. */
749	movl $__USER_DS, %eax
750	movl %eax, %gs
751.endm
752	ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
753	xorl	%eax, %eax
754	movl	%eax, %gs
755	jmp	2b
756SYM_CODE_END(.Lbad_gs)
757	.previous
758
759/*
760 * rdi: New stack pointer points to the top word of the stack
761 * rsi: Function pointer
762 * rdx: Function argument (can be NULL if none)
763 */
764SYM_FUNC_START(asm_call_on_stack)
765SYM_INNER_LABEL(asm_call_sysvec_on_stack, SYM_L_GLOBAL)
766SYM_INNER_LABEL(asm_call_irq_on_stack, SYM_L_GLOBAL)
767	/*
768	 * Save the frame pointer unconditionally. This allows the ORC
769	 * unwinder to handle the stack switch.
770	 */
771	pushq		%rbp
772	mov		%rsp, %rbp
773
774	/*
775	 * The unwinder relies on the word at the top of the new stack
776	 * page linking back to the previous RSP.
777	 */
778	mov		%rsp, (%rdi)
779	mov		%rdi, %rsp
780	/* Move the argument to the right place */
781	mov		%rdx, %rdi
782
7831:
784	.pushsection .discard.instr_begin
785	.long 1b - .
786	.popsection
787
788	CALL_NOSPEC	rsi
789
7902:
791	.pushsection .discard.instr_end
792	.long 2b - .
793	.popsection
794
795	/* Restore the previous stack pointer from RBP. */
796	leaveq
797	ret
798SYM_FUNC_END(asm_call_on_stack)
799
800#ifdef CONFIG_XEN_PV
801/*
802 * A note on the "critical region" in our callback handler.
803 * We want to avoid stacking callback handlers due to events occurring
804 * during handling of the last event. To do this, we keep events disabled
805 * until we've done all processing. HOWEVER, we must enable events before
806 * popping the stack frame (can't be done atomically) and so it would still
807 * be possible to get enough handler activations to overflow the stack.
808 * Although unlikely, bugs of that kind are hard to track down, so we'd
809 * like to avoid the possibility.
810 * So, on entry to the handler we detect whether we interrupted an
811 * existing activation in its critical region -- if so, we pop the current
812 * activation and restart the handler using the previous one.
813 *
814 * C calling convention: exc_xen_hypervisor_callback(struct *pt_regs)
815 */
816SYM_CODE_START_LOCAL(exc_xen_hypervisor_callback)
817
818/*
819 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
820 * see the correct pointer to the pt_regs
821 */
822	UNWIND_HINT_FUNC
823	movq	%rdi, %rsp			/* we don't return, adjust the stack frame */
824	UNWIND_HINT_REGS
825
826	call	xen_pv_evtchn_do_upcall
827
828	jmp	error_return
829SYM_CODE_END(exc_xen_hypervisor_callback)
830
831/*
832 * Hypervisor uses this for application faults while it executes.
833 * We get here for two reasons:
834 *  1. Fault while reloading DS, ES, FS or GS
835 *  2. Fault while executing IRET
836 * Category 1 we do not need to fix up as Xen has already reloaded all segment
837 * registers that could be reloaded and zeroed the others.
838 * Category 2 we fix up by killing the current process. We cannot use the
839 * normal Linux return path in this case because if we use the IRET hypercall
840 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
841 * We distinguish between categories by comparing each saved segment register
842 * with its current contents: any discrepancy means we in category 1.
843 */
844SYM_CODE_START(xen_failsafe_callback)
845	UNWIND_HINT_EMPTY
846	movl	%ds, %ecx
847	cmpw	%cx, 0x10(%rsp)
848	jne	1f
849	movl	%es, %ecx
850	cmpw	%cx, 0x18(%rsp)
851	jne	1f
852	movl	%fs, %ecx
853	cmpw	%cx, 0x20(%rsp)
854	jne	1f
855	movl	%gs, %ecx
856	cmpw	%cx, 0x28(%rsp)
857	jne	1f
858	/* All segments match their saved values => Category 2 (Bad IRET). */
859	movq	(%rsp), %rcx
860	movq	8(%rsp), %r11
861	addq	$0x30, %rsp
862	pushq	$0				/* RIP */
863	UNWIND_HINT_IRET_REGS offset=8
864	jmp	asm_exc_general_protection
8651:	/* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
866	movq	(%rsp), %rcx
867	movq	8(%rsp), %r11
868	addq	$0x30, %rsp
869	UNWIND_HINT_IRET_REGS
870	pushq	$-1 /* orig_ax = -1 => not a system call */
871	PUSH_AND_CLEAR_REGS
872	ENCODE_FRAME_POINTER
873	jmp	error_return
874SYM_CODE_END(xen_failsafe_callback)
875#endif /* CONFIG_XEN_PV */
876
877/*
878 * Save all registers in pt_regs. Return GSBASE related information
879 * in EBX depending on the availability of the FSGSBASE instructions:
880 *
881 * FSGSBASE	R/EBX
882 *     N        0 -> SWAPGS on exit
883 *              1 -> no SWAPGS on exit
884 *
885 *     Y        GSBASE value at entry, must be restored in paranoid_exit
886 */
887SYM_CODE_START_LOCAL(paranoid_entry)
888	UNWIND_HINT_FUNC
889	cld
890	PUSH_AND_CLEAR_REGS save_ret=1
891	ENCODE_FRAME_POINTER 8
892
893	/*
894	 * Always stash CR3 in %r14.  This value will be restored,
895	 * verbatim, at exit.  Needed if paranoid_entry interrupted
896	 * another entry that already switched to the user CR3 value
897	 * but has not yet returned to userspace.
898	 *
899	 * This is also why CS (stashed in the "iret frame" by the
900	 * hardware at entry) can not be used: this may be a return
901	 * to kernel code, but with a user CR3 value.
902	 *
903	 * Switching CR3 does not depend on kernel GSBASE so it can
904	 * be done before switching to the kernel GSBASE. This is
905	 * required for FSGSBASE because the kernel GSBASE has to
906	 * be retrieved from a kernel internal table.
907	 */
908	SAVE_AND_SWITCH_TO_KERNEL_CR3 scratch_reg=%rax save_reg=%r14
909
910	/*
911	 * Handling GSBASE depends on the availability of FSGSBASE.
912	 *
913	 * Without FSGSBASE the kernel enforces that negative GSBASE
914	 * values indicate kernel GSBASE. With FSGSBASE no assumptions
915	 * can be made about the GSBASE value when entering from user
916	 * space.
917	 */
918	ALTERNATIVE "jmp .Lparanoid_entry_checkgs", "", X86_FEATURE_FSGSBASE
919
920	/*
921	 * Read the current GSBASE and store it in %rbx unconditionally,
922	 * retrieve and set the current CPUs kernel GSBASE. The stored value
923	 * has to be restored in paranoid_exit unconditionally.
924	 *
925	 * The unconditional write to GS base below ensures that no subsequent
926	 * loads based on a mispredicted GS base can happen, therefore no LFENCE
927	 * is needed here.
928	 */
929	SAVE_AND_SET_GSBASE scratch_reg=%rax save_reg=%rbx
930	ret
931
932.Lparanoid_entry_checkgs:
933	/* EBX = 1 -> kernel GSBASE active, no restore required */
934	movl	$1, %ebx
935	/*
936	 * The kernel-enforced convention is a negative GSBASE indicates
937	 * a kernel value. No SWAPGS needed on entry and exit.
938	 */
939	movl	$MSR_GS_BASE, %ecx
940	rdmsr
941	testl	%edx, %edx
942	jns	.Lparanoid_entry_swapgs
943	ret
944
945.Lparanoid_entry_swapgs:
946	SWAPGS
947
948	/*
949	 * The above SAVE_AND_SWITCH_TO_KERNEL_CR3 macro doesn't do an
950	 * unconditional CR3 write, even in the PTI case.  So do an lfence
951	 * to prevent GS speculation, regardless of whether PTI is enabled.
952	 */
953	FENCE_SWAPGS_KERNEL_ENTRY
954
955	/* EBX = 0 -> SWAPGS required on exit */
956	xorl	%ebx, %ebx
957	ret
958SYM_CODE_END(paranoid_entry)
959
960/*
961 * "Paranoid" exit path from exception stack.  This is invoked
962 * only on return from non-NMI IST interrupts that came
963 * from kernel space.
964 *
965 * We may be returning to very strange contexts (e.g. very early
966 * in syscall entry), so checking for preemption here would
967 * be complicated.  Fortunately, there's no good reason to try
968 * to handle preemption here.
969 *
970 * R/EBX contains the GSBASE related information depending on the
971 * availability of the FSGSBASE instructions:
972 *
973 * FSGSBASE	R/EBX
974 *     N        0 -> SWAPGS on exit
975 *              1 -> no SWAPGS on exit
976 *
977 *     Y        User space GSBASE, must be restored unconditionally
978 */
979SYM_CODE_START_LOCAL(paranoid_exit)
980	UNWIND_HINT_REGS
981	/*
982	 * The order of operations is important. RESTORE_CR3 requires
983	 * kernel GSBASE.
984	 *
985	 * NB to anyone to try to optimize this code: this code does
986	 * not execute at all for exceptions from user mode. Those
987	 * exceptions go through error_exit instead.
988	 */
989	RESTORE_CR3	scratch_reg=%rax save_reg=%r14
990
991	/* Handle the three GSBASE cases */
992	ALTERNATIVE "jmp .Lparanoid_exit_checkgs", "", X86_FEATURE_FSGSBASE
993
994	/* With FSGSBASE enabled, unconditionally restore GSBASE */
995	wrgsbase	%rbx
996	jmp		restore_regs_and_return_to_kernel
997
998.Lparanoid_exit_checkgs:
999	/* On non-FSGSBASE systems, conditionally do SWAPGS */
1000	testl		%ebx, %ebx
1001	jnz		restore_regs_and_return_to_kernel
1002
1003	/* We are returning to a context with user GSBASE */
1004	SWAPGS_UNSAFE_STACK
1005	jmp		restore_regs_and_return_to_kernel
1006SYM_CODE_END(paranoid_exit)
1007
1008/*
1009 * Save all registers in pt_regs, and switch GS if needed.
1010 */
1011SYM_CODE_START_LOCAL(error_entry)
1012	UNWIND_HINT_FUNC
1013	cld
1014	PUSH_AND_CLEAR_REGS save_ret=1
1015	ENCODE_FRAME_POINTER 8
1016	testb	$3, CS+8(%rsp)
1017	jz	.Lerror_kernelspace
1018
1019	/*
1020	 * We entered from user mode or we're pretending to have entered
1021	 * from user mode due to an IRET fault.
1022	 */
1023	SWAPGS
1024	FENCE_SWAPGS_USER_ENTRY
1025	/* We have user CR3.  Change to kernel CR3. */
1026	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1027
1028.Lerror_entry_from_usermode_after_swapgs:
1029	/* Put us onto the real thread stack. */
1030	popq	%r12				/* save return addr in %12 */
1031	movq	%rsp, %rdi			/* arg0 = pt_regs pointer */
1032	call	sync_regs
1033	movq	%rax, %rsp			/* switch stack */
1034	ENCODE_FRAME_POINTER
1035	pushq	%r12
1036	ret
1037
1038.Lerror_entry_done_lfence:
1039	FENCE_SWAPGS_KERNEL_ENTRY
1040.Lerror_entry_done:
1041	ret
1042
1043	/*
1044	 * There are two places in the kernel that can potentially fault with
1045	 * usergs. Handle them here.  B stepping K8s sometimes report a
1046	 * truncated RIP for IRET exceptions returning to compat mode. Check
1047	 * for these here too.
1048	 */
1049.Lerror_kernelspace:
1050	leaq	native_irq_return_iret(%rip), %rcx
1051	cmpq	%rcx, RIP+8(%rsp)
1052	je	.Lerror_bad_iret
1053	movl	%ecx, %eax			/* zero extend */
1054	cmpq	%rax, RIP+8(%rsp)
1055	je	.Lbstep_iret
1056	cmpq	$.Lgs_change, RIP+8(%rsp)
1057	jne	.Lerror_entry_done_lfence
1058
1059	/*
1060	 * hack: .Lgs_change can fail with user gsbase.  If this happens, fix up
1061	 * gsbase and proceed.  We'll fix up the exception and land in
1062	 * .Lgs_change's error handler with kernel gsbase.
1063	 */
1064	SWAPGS
1065	FENCE_SWAPGS_USER_ENTRY
1066	jmp .Lerror_entry_done
1067
1068.Lbstep_iret:
1069	/* Fix truncated RIP */
1070	movq	%rcx, RIP+8(%rsp)
1071	/* fall through */
1072
1073.Lerror_bad_iret:
1074	/*
1075	 * We came from an IRET to user mode, so we have user
1076	 * gsbase and CR3.  Switch to kernel gsbase and CR3:
1077	 */
1078	SWAPGS
1079	FENCE_SWAPGS_USER_ENTRY
1080	SWITCH_TO_KERNEL_CR3 scratch_reg=%rax
1081
1082	/*
1083	 * Pretend that the exception came from user mode: set up pt_regs
1084	 * as if we faulted immediately after IRET.
1085	 */
1086	mov	%rsp, %rdi
1087	call	fixup_bad_iret
1088	mov	%rax, %rsp
1089	jmp	.Lerror_entry_from_usermode_after_swapgs
1090SYM_CODE_END(error_entry)
1091
1092SYM_CODE_START_LOCAL(error_return)
1093	UNWIND_HINT_REGS
1094	DEBUG_ENTRY_ASSERT_IRQS_OFF
1095	testb	$3, CS(%rsp)
1096	jz	restore_regs_and_return_to_kernel
1097	jmp	swapgs_restore_regs_and_return_to_usermode
1098SYM_CODE_END(error_return)
1099
1100/*
1101 * Runs on exception stack.  Xen PV does not go through this path at all,
1102 * so we can use real assembly here.
1103 *
1104 * Registers:
1105 *	%r14: Used to save/restore the CR3 of the interrupted context
1106 *	      when PAGE_TABLE_ISOLATION is in use.  Do not clobber.
1107 */
1108SYM_CODE_START(asm_exc_nmi)
1109	UNWIND_HINT_IRET_REGS
1110
1111	/*
1112	 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1113	 * the iretq it performs will take us out of NMI context.
1114	 * This means that we can have nested NMIs where the next
1115	 * NMI is using the top of the stack of the previous NMI. We
1116	 * can't let it execute because the nested NMI will corrupt the
1117	 * stack of the previous NMI. NMI handlers are not re-entrant
1118	 * anyway.
1119	 *
1120	 * To handle this case we do the following:
1121	 *  Check the a special location on the stack that contains
1122	 *  a variable that is set when NMIs are executing.
1123	 *  The interrupted task's stack is also checked to see if it
1124	 *  is an NMI stack.
1125	 *  If the variable is not set and the stack is not the NMI
1126	 *  stack then:
1127	 *    o Set the special variable on the stack
1128	 *    o Copy the interrupt frame into an "outermost" location on the
1129	 *      stack
1130	 *    o Copy the interrupt frame into an "iret" location on the stack
1131	 *    o Continue processing the NMI
1132	 *  If the variable is set or the previous stack is the NMI stack:
1133	 *    o Modify the "iret" location to jump to the repeat_nmi
1134	 *    o return back to the first NMI
1135	 *
1136	 * Now on exit of the first NMI, we first clear the stack variable
1137	 * The NMI stack will tell any nested NMIs at that point that it is
1138	 * nested. Then we pop the stack normally with iret, and if there was
1139	 * a nested NMI that updated the copy interrupt stack frame, a
1140	 * jump will be made to the repeat_nmi code that will handle the second
1141	 * NMI.
1142	 *
1143	 * However, espfix prevents us from directly returning to userspace
1144	 * with a single IRET instruction.  Similarly, IRET to user mode
1145	 * can fault.  We therefore handle NMIs from user space like
1146	 * other IST entries.
1147	 */
1148
1149	ASM_CLAC
1150
1151	/* Use %rdx as our temp variable throughout */
1152	pushq	%rdx
1153
1154	testb	$3, CS-RIP+8(%rsp)
1155	jz	.Lnmi_from_kernel
1156
1157	/*
1158	 * NMI from user mode.  We need to run on the thread stack, but we
1159	 * can't go through the normal entry paths: NMIs are masked, and
1160	 * we don't want to enable interrupts, because then we'll end
1161	 * up in an awkward situation in which IRQs are on but NMIs
1162	 * are off.
1163	 *
1164	 * We also must not push anything to the stack before switching
1165	 * stacks lest we corrupt the "NMI executing" variable.
1166	 */
1167
1168	swapgs
1169	cld
1170	FENCE_SWAPGS_USER_ENTRY
1171	SWITCH_TO_KERNEL_CR3 scratch_reg=%rdx
1172	movq	%rsp, %rdx
1173	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1174	UNWIND_HINT_IRET_REGS base=%rdx offset=8
1175	pushq	5*8(%rdx)	/* pt_regs->ss */
1176	pushq	4*8(%rdx)	/* pt_regs->rsp */
1177	pushq	3*8(%rdx)	/* pt_regs->flags */
1178	pushq	2*8(%rdx)	/* pt_regs->cs */
1179	pushq	1*8(%rdx)	/* pt_regs->rip */
1180	UNWIND_HINT_IRET_REGS
1181	pushq   $-1		/* pt_regs->orig_ax */
1182	PUSH_AND_CLEAR_REGS rdx=(%rdx)
1183	ENCODE_FRAME_POINTER
1184
1185	/*
1186	 * At this point we no longer need to worry about stack damage
1187	 * due to nesting -- we're on the normal thread stack and we're
1188	 * done with the NMI stack.
1189	 */
1190
1191	movq	%rsp, %rdi
1192	movq	$-1, %rsi
1193	call	exc_nmi
1194
1195	/*
1196	 * Return back to user mode.  We must *not* do the normal exit
1197	 * work, because we don't want to enable interrupts.
1198	 */
1199	jmp	swapgs_restore_regs_and_return_to_usermode
1200
1201.Lnmi_from_kernel:
1202	/*
1203	 * Here's what our stack frame will look like:
1204	 * +---------------------------------------------------------+
1205	 * | original SS                                             |
1206	 * | original Return RSP                                     |
1207	 * | original RFLAGS                                         |
1208	 * | original CS                                             |
1209	 * | original RIP                                            |
1210	 * +---------------------------------------------------------+
1211	 * | temp storage for rdx                                    |
1212	 * +---------------------------------------------------------+
1213	 * | "NMI executing" variable                                |
1214	 * +---------------------------------------------------------+
1215	 * | iret SS          } Copied from "outermost" frame        |
1216	 * | iret Return RSP  } on each loop iteration; overwritten  |
1217	 * | iret RFLAGS      } by a nested NMI to force another     |
1218	 * | iret CS          } iteration if needed.                 |
1219	 * | iret RIP         }                                      |
1220	 * +---------------------------------------------------------+
1221	 * | outermost SS          } initialized in first_nmi;       |
1222	 * | outermost Return RSP  } will not be changed before      |
1223	 * | outermost RFLAGS      } NMI processing is done.         |
1224	 * | outermost CS          } Copied to "iret" frame on each  |
1225	 * | outermost RIP         } iteration.                      |
1226	 * +---------------------------------------------------------+
1227	 * | pt_regs                                                 |
1228	 * +---------------------------------------------------------+
1229	 *
1230	 * The "original" frame is used by hardware.  Before re-enabling
1231	 * NMIs, we need to be done with it, and we need to leave enough
1232	 * space for the asm code here.
1233	 *
1234	 * We return by executing IRET while RSP points to the "iret" frame.
1235	 * That will either return for real or it will loop back into NMI
1236	 * processing.
1237	 *
1238	 * The "outermost" frame is copied to the "iret" frame on each
1239	 * iteration of the loop, so each iteration starts with the "iret"
1240	 * frame pointing to the final return target.
1241	 */
1242
1243	/*
1244	 * Determine whether we're a nested NMI.
1245	 *
1246	 * If we interrupted kernel code between repeat_nmi and
1247	 * end_repeat_nmi, then we are a nested NMI.  We must not
1248	 * modify the "iret" frame because it's being written by
1249	 * the outer NMI.  That's okay; the outer NMI handler is
1250	 * about to about to call exc_nmi() anyway, so we can just
1251	 * resume the outer NMI.
1252	 */
1253
1254	movq	$repeat_nmi, %rdx
1255	cmpq	8(%rsp), %rdx
1256	ja	1f
1257	movq	$end_repeat_nmi, %rdx
1258	cmpq	8(%rsp), %rdx
1259	ja	nested_nmi_out
12601:
1261
1262	/*
1263	 * Now check "NMI executing".  If it's set, then we're nested.
1264	 * This will not detect if we interrupted an outer NMI just
1265	 * before IRET.
1266	 */
1267	cmpl	$1, -8(%rsp)
1268	je	nested_nmi
1269
1270	/*
1271	 * Now test if the previous stack was an NMI stack.  This covers
1272	 * the case where we interrupt an outer NMI after it clears
1273	 * "NMI executing" but before IRET.  We need to be careful, though:
1274	 * there is one case in which RSP could point to the NMI stack
1275	 * despite there being no NMI active: naughty userspace controls
1276	 * RSP at the very beginning of the SYSCALL targets.  We can
1277	 * pull a fast one on naughty userspace, though: we program
1278	 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1279	 * if it controls the kernel's RSP.  We set DF before we clear
1280	 * "NMI executing".
1281	 */
1282	lea	6*8(%rsp), %rdx
1283	/* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1284	cmpq	%rdx, 4*8(%rsp)
1285	/* If the stack pointer is above the NMI stack, this is a normal NMI */
1286	ja	first_nmi
1287
1288	subq	$EXCEPTION_STKSZ, %rdx
1289	cmpq	%rdx, 4*8(%rsp)
1290	/* If it is below the NMI stack, it is a normal NMI */
1291	jb	first_nmi
1292
1293	/* Ah, it is within the NMI stack. */
1294
1295	testb	$(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1296	jz	first_nmi	/* RSP was user controlled. */
1297
1298	/* This is a nested NMI. */
1299
1300nested_nmi:
1301	/*
1302	 * Modify the "iret" frame to point to repeat_nmi, forcing another
1303	 * iteration of NMI handling.
1304	 */
1305	subq	$8, %rsp
1306	leaq	-10*8(%rsp), %rdx
1307	pushq	$__KERNEL_DS
1308	pushq	%rdx
1309	pushfq
1310	pushq	$__KERNEL_CS
1311	pushq	$repeat_nmi
1312
1313	/* Put stack back */
1314	addq	$(6*8), %rsp
1315
1316nested_nmi_out:
1317	popq	%rdx
1318
1319	/* We are returning to kernel mode, so this cannot result in a fault. */
1320	iretq
1321
1322first_nmi:
1323	/* Restore rdx. */
1324	movq	(%rsp), %rdx
1325
1326	/* Make room for "NMI executing". */
1327	pushq	$0
1328
1329	/* Leave room for the "iret" frame */
1330	subq	$(5*8), %rsp
1331
1332	/* Copy the "original" frame to the "outermost" frame */
1333	.rept 5
1334	pushq	11*8(%rsp)
1335	.endr
1336	UNWIND_HINT_IRET_REGS
1337
1338	/* Everything up to here is safe from nested NMIs */
1339
1340#ifdef CONFIG_DEBUG_ENTRY
1341	/*
1342	 * For ease of testing, unmask NMIs right away.  Disabled by
1343	 * default because IRET is very expensive.
1344	 */
1345	pushq	$0		/* SS */
1346	pushq	%rsp		/* RSP (minus 8 because of the previous push) */
1347	addq	$8, (%rsp)	/* Fix up RSP */
1348	pushfq			/* RFLAGS */
1349	pushq	$__KERNEL_CS	/* CS */
1350	pushq	$1f		/* RIP */
1351	iretq			/* continues at repeat_nmi below */
1352	UNWIND_HINT_IRET_REGS
13531:
1354#endif
1355
1356repeat_nmi:
1357	/*
1358	 * If there was a nested NMI, the first NMI's iret will return
1359	 * here. But NMIs are still enabled and we can take another
1360	 * nested NMI. The nested NMI checks the interrupted RIP to see
1361	 * if it is between repeat_nmi and end_repeat_nmi, and if so
1362	 * it will just return, as we are about to repeat an NMI anyway.
1363	 * This makes it safe to copy to the stack frame that a nested
1364	 * NMI will update.
1365	 *
1366	 * RSP is pointing to "outermost RIP".  gsbase is unknown, but, if
1367	 * we're repeating an NMI, gsbase has the same value that it had on
1368	 * the first iteration.  paranoid_entry will load the kernel
1369	 * gsbase if needed before we call exc_nmi().  "NMI executing"
1370	 * is zero.
1371	 */
1372	movq	$1, 10*8(%rsp)		/* Set "NMI executing". */
1373
1374	/*
1375	 * Copy the "outermost" frame to the "iret" frame.  NMIs that nest
1376	 * here must not modify the "iret" frame while we're writing to
1377	 * it or it will end up containing garbage.
1378	 */
1379	addq	$(10*8), %rsp
1380	.rept 5
1381	pushq	-6*8(%rsp)
1382	.endr
1383	subq	$(5*8), %rsp
1384end_repeat_nmi:
1385
1386	/*
1387	 * Everything below this point can be preempted by a nested NMI.
1388	 * If this happens, then the inner NMI will change the "iret"
1389	 * frame to point back to repeat_nmi.
1390	 */
1391	pushq	$-1				/* ORIG_RAX: no syscall to restart */
1392
1393	/*
1394	 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1395	 * as we should not be calling schedule in NMI context.
1396	 * Even with normal interrupts enabled. An NMI should not be
1397	 * setting NEED_RESCHED or anything that normal interrupts and
1398	 * exceptions might do.
1399	 */
1400	call	paranoid_entry
1401	UNWIND_HINT_REGS
1402
1403	movq	%rsp, %rdi
1404	movq	$-1, %rsi
1405	call	exc_nmi
1406
1407	/* Always restore stashed CR3 value (see paranoid_entry) */
1408	RESTORE_CR3 scratch_reg=%r15 save_reg=%r14
1409
1410	/*
1411	 * The above invocation of paranoid_entry stored the GSBASE
1412	 * related information in R/EBX depending on the availability
1413	 * of FSGSBASE.
1414	 *
1415	 * If FSGSBASE is enabled, restore the saved GSBASE value
1416	 * unconditionally, otherwise take the conditional SWAPGS path.
1417	 */
1418	ALTERNATIVE "jmp nmi_no_fsgsbase", "", X86_FEATURE_FSGSBASE
1419
1420	wrgsbase	%rbx
1421	jmp	nmi_restore
1422
1423nmi_no_fsgsbase:
1424	/* EBX == 0 -> invoke SWAPGS */
1425	testl	%ebx, %ebx
1426	jnz	nmi_restore
1427
1428nmi_swapgs:
1429	SWAPGS_UNSAFE_STACK
1430
1431nmi_restore:
1432	POP_REGS
1433
1434	/*
1435	 * Skip orig_ax and the "outermost" frame to point RSP at the "iret"
1436	 * at the "iret" frame.
1437	 */
1438	addq	$6*8, %rsp
1439
1440	/*
1441	 * Clear "NMI executing".  Set DF first so that we can easily
1442	 * distinguish the remaining code between here and IRET from
1443	 * the SYSCALL entry and exit paths.
1444	 *
1445	 * We arguably should just inspect RIP instead, but I (Andy) wrote
1446	 * this code when I had the misapprehension that Xen PV supported
1447	 * NMIs, and Xen PV would break that approach.
1448	 */
1449	std
1450	movq	$0, 5*8(%rsp)		/* clear "NMI executing" */
1451
1452	/*
1453	 * iretq reads the "iret" frame and exits the NMI stack in a
1454	 * single instruction.  We are returning to kernel mode, so this
1455	 * cannot result in a fault.  Similarly, we don't need to worry
1456	 * about espfix64 on the way back to kernel mode.
1457	 */
1458	iretq
1459SYM_CODE_END(asm_exc_nmi)
1460
1461#ifndef CONFIG_IA32_EMULATION
1462/*
1463 * This handles SYSCALL from 32-bit code.  There is no way to program
1464 * MSRs to fully disable 32-bit SYSCALL.
1465 */
1466SYM_CODE_START(ignore_sysret)
1467	UNWIND_HINT_EMPTY
1468	mov	$-ENOSYS, %eax
1469	sysretl
1470SYM_CODE_END(ignore_sysret)
1471#endif
1472
1473.pushsection .text, "ax"
1474SYM_CODE_START(rewind_stack_do_exit)
1475	UNWIND_HINT_FUNC
1476	/* Prevent any naive code from trying to unwind to our caller. */
1477	xorl	%ebp, %ebp
1478
1479	movq	PER_CPU_VAR(cpu_current_top_of_stack), %rax
1480	leaq	-PTREGS_SIZE(%rax), %rsp
1481	UNWIND_HINT_REGS
1482
1483	call	do_exit
1484SYM_CODE_END(rewind_stack_do_exit)
1485.popsection
1486