1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * spu management operations for of based platforms
4 *
5 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Copyright 2006 Sony Corp.
7 * (C) Copyright 2007 TOSHIBA CORPORATION
8 */
9
10 #include <linux/interrupt.h>
11 #include <linux/list.h>
12 #include <linux/export.h>
13 #include <linux/ptrace.h>
14 #include <linux/wait.h>
15 #include <linux/mm.h>
16 #include <linux/io.h>
17 #include <linux/mutex.h>
18 #include <linux/device.h>
19
20 #include <asm/spu.h>
21 #include <asm/spu_priv1.h>
22 #include <asm/firmware.h>
23 #include <asm/prom.h>
24
25 #include "spufs/spufs.h"
26 #include "interrupt.h"
27
spu_devnode(struct spu * spu)28 struct device_node *spu_devnode(struct spu *spu)
29 {
30 return spu->devnode;
31 }
32
33 EXPORT_SYMBOL_GPL(spu_devnode);
34
find_spu_unit_number(struct device_node * spe)35 static u64 __init find_spu_unit_number(struct device_node *spe)
36 {
37 const unsigned int *prop;
38 int proplen;
39
40 /* new device trees should provide the physical-id attribute */
41 prop = of_get_property(spe, "physical-id", &proplen);
42 if (proplen == 4)
43 return (u64)*prop;
44
45 /* celleb device tree provides the unit-id */
46 prop = of_get_property(spe, "unit-id", &proplen);
47 if (proplen == 4)
48 return (u64)*prop;
49
50 /* legacy device trees provide the id in the reg attribute */
51 prop = of_get_property(spe, "reg", &proplen);
52 if (proplen == 4)
53 return (u64)*prop;
54
55 return 0;
56 }
57
spu_unmap(struct spu * spu)58 static void spu_unmap(struct spu *spu)
59 {
60 if (!firmware_has_feature(FW_FEATURE_LPAR))
61 iounmap(spu->priv1);
62 iounmap(spu->priv2);
63 iounmap(spu->problem);
64 iounmap((__force u8 __iomem *)spu->local_store);
65 }
66
spu_map_interrupts_old(struct spu * spu,struct device_node * np)67 static int __init spu_map_interrupts_old(struct spu *spu,
68 struct device_node *np)
69 {
70 unsigned int isrc;
71 const u32 *tmp;
72 int nid;
73
74 /* Get the interrupt source unit from the device-tree */
75 tmp = of_get_property(np, "isrc", NULL);
76 if (!tmp)
77 return -ENODEV;
78 isrc = tmp[0];
79
80 tmp = of_get_property(np->parent->parent, "node-id", NULL);
81 if (!tmp) {
82 printk(KERN_WARNING "%s: can't find node-id\n", __func__);
83 nid = spu->node;
84 } else
85 nid = tmp[0];
86
87 /* Add the node number */
88 isrc |= nid << IIC_IRQ_NODE_SHIFT;
89
90 /* Now map interrupts of all 3 classes */
91 spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
92 spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
93 spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
94
95 /* Right now, we only fail if class 2 failed */
96 if (!spu->irqs[2])
97 return -EINVAL;
98
99 return 0;
100 }
101
spu_map_prop_old(struct spu * spu,struct device_node * n,const char * name)102 static void __iomem * __init spu_map_prop_old(struct spu *spu,
103 struct device_node *n,
104 const char *name)
105 {
106 const struct address_prop {
107 unsigned long address;
108 unsigned int len;
109 } __attribute__((packed)) *prop;
110 int proplen;
111
112 prop = of_get_property(n, name, &proplen);
113 if (prop == NULL || proplen != sizeof (struct address_prop))
114 return NULL;
115
116 return ioremap(prop->address, prop->len);
117 }
118
spu_map_device_old(struct spu * spu)119 static int __init spu_map_device_old(struct spu *spu)
120 {
121 struct device_node *node = spu->devnode;
122 const char *prop;
123 int ret;
124
125 ret = -ENODEV;
126 spu->name = of_get_property(node, "name", NULL);
127 if (!spu->name)
128 goto out;
129
130 prop = of_get_property(node, "local-store", NULL);
131 if (!prop)
132 goto out;
133 spu->local_store_phys = *(unsigned long *)prop;
134
135 /* we use local store as ram, not io memory */
136 spu->local_store = (void __force *)
137 spu_map_prop_old(spu, node, "local-store");
138 if (!spu->local_store)
139 goto out;
140
141 prop = of_get_property(node, "problem", NULL);
142 if (!prop)
143 goto out_unmap;
144 spu->problem_phys = *(unsigned long *)prop;
145
146 spu->problem = spu_map_prop_old(spu, node, "problem");
147 if (!spu->problem)
148 goto out_unmap;
149
150 spu->priv2 = spu_map_prop_old(spu, node, "priv2");
151 if (!spu->priv2)
152 goto out_unmap;
153
154 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
155 spu->priv1 = spu_map_prop_old(spu, node, "priv1");
156 if (!spu->priv1)
157 goto out_unmap;
158 }
159
160 ret = 0;
161 goto out;
162
163 out_unmap:
164 spu_unmap(spu);
165 out:
166 return ret;
167 }
168
spu_map_interrupts(struct spu * spu,struct device_node * np)169 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
170 {
171 int i;
172
173 for (i=0; i < 3; i++) {
174 spu->irqs[i] = irq_of_parse_and_map(np, i);
175 if (!spu->irqs[i])
176 goto err;
177 }
178 return 0;
179
180 err:
181 pr_debug("failed to map irq %x for spu %s\n", i, spu->name);
182 for (; i >= 0; i--) {
183 if (spu->irqs[i])
184 irq_dispose_mapping(spu->irqs[i]);
185 }
186 return -EINVAL;
187 }
188
spu_map_resource(struct spu * spu,int nr,void __iomem ** virt,unsigned long * phys)189 static int spu_map_resource(struct spu *spu, int nr,
190 void __iomem** virt, unsigned long *phys)
191 {
192 struct device_node *np = spu->devnode;
193 struct resource resource = { };
194 unsigned long len;
195 int ret;
196
197 ret = of_address_to_resource(np, nr, &resource);
198 if (ret)
199 return ret;
200 if (phys)
201 *phys = resource.start;
202 len = resource_size(&resource);
203 *virt = ioremap(resource.start, len);
204 if (!*virt)
205 return -EINVAL;
206 return 0;
207 }
208
spu_map_device(struct spu * spu)209 static int __init spu_map_device(struct spu *spu)
210 {
211 struct device_node *np = spu->devnode;
212 int ret = -ENODEV;
213
214 spu->name = of_get_property(np, "name", NULL);
215 if (!spu->name)
216 goto out;
217
218 ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
219 &spu->local_store_phys);
220 if (ret) {
221 pr_debug("spu_new: failed to map %pOF resource 0\n",
222 np);
223 goto out;
224 }
225 ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
226 &spu->problem_phys);
227 if (ret) {
228 pr_debug("spu_new: failed to map %pOF resource 1\n",
229 np);
230 goto out_unmap;
231 }
232 ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
233 if (ret) {
234 pr_debug("spu_new: failed to map %pOF resource 2\n",
235 np);
236 goto out_unmap;
237 }
238 if (!firmware_has_feature(FW_FEATURE_LPAR))
239 ret = spu_map_resource(spu, 3,
240 (void __iomem**)&spu->priv1, NULL);
241 if (ret) {
242 pr_debug("spu_new: failed to map %pOF resource 3\n",
243 np);
244 goto out_unmap;
245 }
246 pr_debug("spu_new: %pOF maps:\n", np);
247 pr_debug(" local store : 0x%016lx -> 0x%p\n",
248 spu->local_store_phys, spu->local_store);
249 pr_debug(" problem state : 0x%016lx -> 0x%p\n",
250 spu->problem_phys, spu->problem);
251 pr_debug(" priv2 : 0x%p\n", spu->priv2);
252 pr_debug(" priv1 : 0x%p\n", spu->priv1);
253
254 return 0;
255
256 out_unmap:
257 spu_unmap(spu);
258 out:
259 pr_debug("failed to map spe %s: %d\n", spu->name, ret);
260 return ret;
261 }
262
of_enumerate_spus(int (* fn)(void * data))263 static int __init of_enumerate_spus(int (*fn)(void *data))
264 {
265 int ret;
266 struct device_node *node;
267 unsigned int n = 0;
268
269 ret = -ENODEV;
270 for_each_node_by_type(node, "spe") {
271 ret = fn(node);
272 if (ret) {
273 printk(KERN_WARNING "%s: Error initializing %pOFn\n",
274 __func__, node);
275 of_node_put(node);
276 break;
277 }
278 n++;
279 }
280 return ret ? ret : n;
281 }
282
of_create_spu(struct spu * spu,void * data)283 static int __init of_create_spu(struct spu *spu, void *data)
284 {
285 int ret;
286 struct device_node *spe = (struct device_node *)data;
287 static int legacy_map = 0, legacy_irq = 0;
288
289 spu->devnode = of_node_get(spe);
290 spu->spe_id = find_spu_unit_number(spe);
291
292 spu->node = of_node_to_nid(spe);
293 if (spu->node >= MAX_NUMNODES) {
294 printk(KERN_WARNING "SPE %pOF on node %d ignored,"
295 " node number too big\n", spe, spu->node);
296 printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
297 ret = -ENODEV;
298 goto out;
299 }
300
301 ret = spu_map_device(spu);
302 if (ret) {
303 if (!legacy_map) {
304 legacy_map = 1;
305 printk(KERN_WARNING "%s: Legacy device tree found, "
306 "trying to map old style\n", __func__);
307 }
308 ret = spu_map_device_old(spu);
309 if (ret) {
310 printk(KERN_ERR "Unable to map %s\n",
311 spu->name);
312 goto out;
313 }
314 }
315
316 ret = spu_map_interrupts(spu, spe);
317 if (ret) {
318 if (!legacy_irq) {
319 legacy_irq = 1;
320 printk(KERN_WARNING "%s: Legacy device tree found, "
321 "trying old style irq\n", __func__);
322 }
323 ret = spu_map_interrupts_old(spu, spe);
324 if (ret) {
325 printk(KERN_ERR "%s: could not map interrupts\n",
326 spu->name);
327 goto out_unmap;
328 }
329 }
330
331 pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
332 spu->local_store, spu->problem, spu->priv1,
333 spu->priv2, spu->number);
334 goto out;
335
336 out_unmap:
337 spu_unmap(spu);
338 out:
339 return ret;
340 }
341
of_destroy_spu(struct spu * spu)342 static int of_destroy_spu(struct spu *spu)
343 {
344 spu_unmap(spu);
345 of_node_put(spu->devnode);
346 return 0;
347 }
348
enable_spu_by_master_run(struct spu_context * ctx)349 static void enable_spu_by_master_run(struct spu_context *ctx)
350 {
351 ctx->ops->master_start(ctx);
352 }
353
disable_spu_by_master_run(struct spu_context * ctx)354 static void disable_spu_by_master_run(struct spu_context *ctx)
355 {
356 ctx->ops->master_stop(ctx);
357 }
358
359 /* Hardcoded affinity idxs for qs20 */
360 #define QS20_SPES_PER_BE 8
361 static int qs20_reg_idxs[QS20_SPES_PER_BE] = { 0, 2, 4, 6, 7, 5, 3, 1 };
362 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
363
spu_lookup_reg(int node,u32 reg)364 static struct spu *spu_lookup_reg(int node, u32 reg)
365 {
366 struct spu *spu;
367 const u32 *spu_reg;
368
369 list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
370 spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
371 if (*spu_reg == reg)
372 return spu;
373 }
374 return NULL;
375 }
376
init_affinity_qs20_harcoded(void)377 static void init_affinity_qs20_harcoded(void)
378 {
379 int node, i;
380 struct spu *last_spu, *spu;
381 u32 reg;
382
383 for (node = 0; node < MAX_NUMNODES; node++) {
384 last_spu = NULL;
385 for (i = 0; i < QS20_SPES_PER_BE; i++) {
386 reg = qs20_reg_idxs[i];
387 spu = spu_lookup_reg(node, reg);
388 if (!spu)
389 continue;
390 spu->has_mem_affinity = qs20_reg_memory[reg];
391 if (last_spu)
392 list_add_tail(&spu->aff_list,
393 &last_spu->aff_list);
394 last_spu = spu;
395 }
396 }
397 }
398
of_has_vicinity(void)399 static int of_has_vicinity(void)
400 {
401 struct device_node *dn;
402
403 for_each_node_by_type(dn, "spe") {
404 if (of_find_property(dn, "vicinity", NULL)) {
405 of_node_put(dn);
406 return 1;
407 }
408 }
409 return 0;
410 }
411
devnode_spu(int cbe,struct device_node * dn)412 static struct spu *devnode_spu(int cbe, struct device_node *dn)
413 {
414 struct spu *spu;
415
416 list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
417 if (spu_devnode(spu) == dn)
418 return spu;
419 return NULL;
420 }
421
422 static struct spu *
neighbour_spu(int cbe,struct device_node * target,struct device_node * avoid)423 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
424 {
425 struct spu *spu;
426 struct device_node *spu_dn;
427 const phandle *vic_handles;
428 int lenp, i;
429
430 list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
431 spu_dn = spu_devnode(spu);
432 if (spu_dn == avoid)
433 continue;
434 vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
435 for (i=0; i < (lenp / sizeof(phandle)); i++) {
436 if (vic_handles[i] == target->phandle)
437 return spu;
438 }
439 }
440 return NULL;
441 }
442
init_affinity_node(int cbe)443 static void init_affinity_node(int cbe)
444 {
445 struct spu *spu, *last_spu;
446 struct device_node *vic_dn, *last_spu_dn;
447 phandle avoid_ph;
448 const phandle *vic_handles;
449 int lenp, i, added;
450
451 last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
452 cbe_list);
453 avoid_ph = 0;
454 for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
455 last_spu_dn = spu_devnode(last_spu);
456 vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
457
458 /*
459 * Walk through each phandle in vicinity property of the spu
460 * (tipically two vicinity phandles per spe node)
461 */
462 for (i = 0; i < (lenp / sizeof(phandle)); i++) {
463 if (vic_handles[i] == avoid_ph)
464 continue;
465
466 vic_dn = of_find_node_by_phandle(vic_handles[i]);
467 if (!vic_dn)
468 continue;
469
470 if (of_node_name_eq(vic_dn, "spe") ) {
471 spu = devnode_spu(cbe, vic_dn);
472 avoid_ph = last_spu_dn->phandle;
473 } else {
474 /*
475 * "mic-tm" and "bif0" nodes do not have
476 * vicinity property. So we need to find the
477 * spe which has vic_dn as neighbour, but
478 * skipping the one we came from (last_spu_dn)
479 */
480 spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
481 if (!spu)
482 continue;
483 if (of_node_name_eq(vic_dn, "mic-tm")) {
484 last_spu->has_mem_affinity = 1;
485 spu->has_mem_affinity = 1;
486 }
487 avoid_ph = vic_dn->phandle;
488 }
489
490 list_add_tail(&spu->aff_list, &last_spu->aff_list);
491 last_spu = spu;
492 break;
493 }
494 }
495 }
496
init_affinity_fw(void)497 static void init_affinity_fw(void)
498 {
499 int cbe;
500
501 for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
502 init_affinity_node(cbe);
503 }
504
init_affinity(void)505 static int __init init_affinity(void)
506 {
507 if (of_has_vicinity()) {
508 init_affinity_fw();
509 } else {
510 if (of_machine_is_compatible("IBM,CPBW-1.0"))
511 init_affinity_qs20_harcoded();
512 else
513 printk("No affinity configuration found\n");
514 }
515
516 return 0;
517 }
518
519 const struct spu_management_ops spu_management_of_ops = {
520 .enumerate_spus = of_enumerate_spus,
521 .create_spu = of_create_spu,
522 .destroy_spu = of_destroy_spu,
523 .enable_spu = enable_spu_by_master_run,
524 .disable_spu = disable_spu_by_master_run,
525 .init_affinity = init_affinity,
526 };
527