1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * bpf_jit_comp64.c: eBPF JIT compiler
4 *
5 * Copyright 2016 Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
6 * IBM Corporation
7 *
8 * Based on the powerpc classic BPF JIT compiler by Matt Evans
9 */
10 #include <linux/moduleloader.h>
11 #include <asm/cacheflush.h>
12 #include <asm/asm-compat.h>
13 #include <linux/netdevice.h>
14 #include <linux/filter.h>
15 #include <linux/if_vlan.h>
16 #include <asm/kprobes.h>
17 #include <linux/bpf.h>
18
19 #include "bpf_jit64.h"
20
bpf_jit_fill_ill_insns(void * area,unsigned int size)21 static void bpf_jit_fill_ill_insns(void *area, unsigned int size)
22 {
23 memset32(area, BREAKPOINT_INSTRUCTION, size/4);
24 }
25
bpf_flush_icache(void * start,void * end)26 static inline void bpf_flush_icache(void *start, void *end)
27 {
28 smp_wmb();
29 flush_icache_range((unsigned long)start, (unsigned long)end);
30 }
31
bpf_is_seen_register(struct codegen_context * ctx,int i)32 static inline bool bpf_is_seen_register(struct codegen_context *ctx, int i)
33 {
34 return (ctx->seen & (1 << (31 - b2p[i])));
35 }
36
bpf_set_seen_register(struct codegen_context * ctx,int i)37 static inline void bpf_set_seen_register(struct codegen_context *ctx, int i)
38 {
39 ctx->seen |= (1 << (31 - b2p[i]));
40 }
41
bpf_has_stack_frame(struct codegen_context * ctx)42 static inline bool bpf_has_stack_frame(struct codegen_context *ctx)
43 {
44 /*
45 * We only need a stack frame if:
46 * - we call other functions (kernel helpers), or
47 * - the bpf program uses its stack area
48 * The latter condition is deduced from the usage of BPF_REG_FP
49 */
50 return ctx->seen & SEEN_FUNC || bpf_is_seen_register(ctx, BPF_REG_FP);
51 }
52
53 /*
54 * When not setting up our own stackframe, the redzone usage is:
55 *
56 * [ prev sp ] <-------------
57 * [ ... ] |
58 * sp (r1) ---> [ stack pointer ] --------------
59 * [ nv gpr save area ] 6*8
60 * [ tail_call_cnt ] 8
61 * [ local_tmp_var ] 8
62 * [ unused red zone ] 208 bytes protected
63 */
bpf_jit_stack_local(struct codegen_context * ctx)64 static int bpf_jit_stack_local(struct codegen_context *ctx)
65 {
66 if (bpf_has_stack_frame(ctx))
67 return STACK_FRAME_MIN_SIZE + ctx->stack_size;
68 else
69 return -(BPF_PPC_STACK_SAVE + 16);
70 }
71
bpf_jit_stack_tailcallcnt(struct codegen_context * ctx)72 static int bpf_jit_stack_tailcallcnt(struct codegen_context *ctx)
73 {
74 return bpf_jit_stack_local(ctx) + 8;
75 }
76
bpf_jit_stack_offsetof(struct codegen_context * ctx,int reg)77 static int bpf_jit_stack_offsetof(struct codegen_context *ctx, int reg)
78 {
79 if (reg >= BPF_PPC_NVR_MIN && reg < 32)
80 return (bpf_has_stack_frame(ctx) ?
81 (BPF_PPC_STACKFRAME + ctx->stack_size) : 0)
82 - (8 * (32 - reg));
83
84 pr_err("BPF JIT is asking about unknown registers");
85 BUG();
86 }
87
bpf_jit_build_prologue(u32 * image,struct codegen_context * ctx)88 static void bpf_jit_build_prologue(u32 *image, struct codegen_context *ctx)
89 {
90 int i;
91
92 /*
93 * Initialize tail_call_cnt if we do tail calls.
94 * Otherwise, put in NOPs so that it can be skipped when we are
95 * invoked through a tail call.
96 */
97 if (ctx->seen & SEEN_TAILCALL) {
98 EMIT(PPC_RAW_LI(b2p[TMP_REG_1], 0));
99 /* this goes in the redzone */
100 PPC_BPF_STL(b2p[TMP_REG_1], 1, -(BPF_PPC_STACK_SAVE + 8));
101 } else {
102 EMIT(PPC_RAW_NOP());
103 EMIT(PPC_RAW_NOP());
104 }
105
106 #define BPF_TAILCALL_PROLOGUE_SIZE 8
107
108 if (bpf_has_stack_frame(ctx)) {
109 /*
110 * We need a stack frame, but we don't necessarily need to
111 * save/restore LR unless we call other functions
112 */
113 if (ctx->seen & SEEN_FUNC) {
114 EMIT(PPC_INST_MFLR | __PPC_RT(R0));
115 PPC_BPF_STL(0, 1, PPC_LR_STKOFF);
116 }
117
118 PPC_BPF_STLU(1, 1, -(BPF_PPC_STACKFRAME + ctx->stack_size));
119 }
120
121 /*
122 * Back up non-volatile regs -- BPF registers 6-10
123 * If we haven't created our own stack frame, we save these
124 * in the protected zone below the previous stack frame
125 */
126 for (i = BPF_REG_6; i <= BPF_REG_10; i++)
127 if (bpf_is_seen_register(ctx, i))
128 PPC_BPF_STL(b2p[i], 1, bpf_jit_stack_offsetof(ctx, b2p[i]));
129
130 /* Setup frame pointer to point to the bpf stack area */
131 if (bpf_is_seen_register(ctx, BPF_REG_FP))
132 EMIT(PPC_RAW_ADDI(b2p[BPF_REG_FP], 1,
133 STACK_FRAME_MIN_SIZE + ctx->stack_size));
134 }
135
bpf_jit_emit_common_epilogue(u32 * image,struct codegen_context * ctx)136 static void bpf_jit_emit_common_epilogue(u32 *image, struct codegen_context *ctx)
137 {
138 int i;
139
140 /* Restore NVRs */
141 for (i = BPF_REG_6; i <= BPF_REG_10; i++)
142 if (bpf_is_seen_register(ctx, i))
143 PPC_BPF_LL(b2p[i], 1, bpf_jit_stack_offsetof(ctx, b2p[i]));
144
145 /* Tear down our stack frame */
146 if (bpf_has_stack_frame(ctx)) {
147 EMIT(PPC_RAW_ADDI(1, 1, BPF_PPC_STACKFRAME + ctx->stack_size));
148 if (ctx->seen & SEEN_FUNC) {
149 PPC_BPF_LL(0, 1, PPC_LR_STKOFF);
150 EMIT(PPC_RAW_MTLR(0));
151 }
152 }
153 }
154
bpf_jit_build_epilogue(u32 * image,struct codegen_context * ctx)155 static void bpf_jit_build_epilogue(u32 *image, struct codegen_context *ctx)
156 {
157 bpf_jit_emit_common_epilogue(image, ctx);
158
159 /* Move result to r3 */
160 EMIT(PPC_RAW_MR(3, b2p[BPF_REG_0]));
161
162 EMIT(PPC_RAW_BLR());
163 }
164
bpf_jit_emit_func_call_hlp(u32 * image,struct codegen_context * ctx,u64 func)165 static void bpf_jit_emit_func_call_hlp(u32 *image, struct codegen_context *ctx,
166 u64 func)
167 {
168 #ifdef PPC64_ELF_ABI_v1
169 /* func points to the function descriptor */
170 PPC_LI64(b2p[TMP_REG_2], func);
171 /* Load actual entry point from function descriptor */
172 PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_2], 0);
173 /* ... and move it to LR */
174 EMIT(PPC_RAW_MTLR(b2p[TMP_REG_1]));
175 /*
176 * Load TOC from function descriptor at offset 8.
177 * We can clobber r2 since we get called through a
178 * function pointer (so caller will save/restore r2)
179 * and since we don't use a TOC ourself.
180 */
181 PPC_BPF_LL(2, b2p[TMP_REG_2], 8);
182 #else
183 /* We can clobber r12 */
184 PPC_FUNC_ADDR(12, func);
185 EMIT(PPC_RAW_MTLR(12));
186 #endif
187 EMIT(PPC_RAW_BLRL());
188 }
189
bpf_jit_emit_func_call_rel(u32 * image,struct codegen_context * ctx,u64 func)190 static void bpf_jit_emit_func_call_rel(u32 *image, struct codegen_context *ctx,
191 u64 func)
192 {
193 unsigned int i, ctx_idx = ctx->idx;
194
195 /* Load function address into r12 */
196 PPC_LI64(12, func);
197
198 /* For bpf-to-bpf function calls, the callee's address is unknown
199 * until the last extra pass. As seen above, we use PPC_LI64() to
200 * load the callee's address, but this may optimize the number of
201 * instructions required based on the nature of the address.
202 *
203 * Since we don't want the number of instructions emitted to change,
204 * we pad the optimized PPC_LI64() call with NOPs to guarantee that
205 * we always have a five-instruction sequence, which is the maximum
206 * that PPC_LI64() can emit.
207 */
208 for (i = ctx->idx - ctx_idx; i < 5; i++)
209 EMIT(PPC_RAW_NOP());
210
211 #ifdef PPC64_ELF_ABI_v1
212 /*
213 * Load TOC from function descriptor at offset 8.
214 * We can clobber r2 since we get called through a
215 * function pointer (so caller will save/restore r2)
216 * and since we don't use a TOC ourself.
217 */
218 PPC_BPF_LL(2, 12, 8);
219 /* Load actual entry point from function descriptor */
220 PPC_BPF_LL(12, 12, 0);
221 #endif
222
223 EMIT(PPC_RAW_MTLR(12));
224 EMIT(PPC_RAW_BLRL());
225 }
226
bpf_jit_emit_tail_call(u32 * image,struct codegen_context * ctx,u32 out)227 static void bpf_jit_emit_tail_call(u32 *image, struct codegen_context *ctx, u32 out)
228 {
229 /*
230 * By now, the eBPF program has already setup parameters in r3, r4 and r5
231 * r3/BPF_REG_1 - pointer to ctx -- passed as is to the next bpf program
232 * r4/BPF_REG_2 - pointer to bpf_array
233 * r5/BPF_REG_3 - index in bpf_array
234 */
235 int b2p_bpf_array = b2p[BPF_REG_2];
236 int b2p_index = b2p[BPF_REG_3];
237
238 /*
239 * if (index >= array->map.max_entries)
240 * goto out;
241 */
242 EMIT(PPC_RAW_LWZ(b2p[TMP_REG_1], b2p_bpf_array, offsetof(struct bpf_array, map.max_entries)));
243 EMIT(PPC_RAW_RLWINM(b2p_index, b2p_index, 0, 0, 31));
244 EMIT(PPC_RAW_CMPLW(b2p_index, b2p[TMP_REG_1]));
245 PPC_BCC(COND_GE, out);
246
247 /*
248 * if (tail_call_cnt > MAX_TAIL_CALL_CNT)
249 * goto out;
250 */
251 PPC_BPF_LL(b2p[TMP_REG_1], 1, bpf_jit_stack_tailcallcnt(ctx));
252 EMIT(PPC_RAW_CMPLWI(b2p[TMP_REG_1], MAX_TAIL_CALL_CNT));
253 PPC_BCC(COND_GT, out);
254
255 /*
256 * tail_call_cnt++;
257 */
258 EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1], 1));
259 PPC_BPF_STL(b2p[TMP_REG_1], 1, bpf_jit_stack_tailcallcnt(ctx));
260
261 /* prog = array->ptrs[index]; */
262 EMIT(PPC_RAW_MULI(b2p[TMP_REG_1], b2p_index, 8));
263 EMIT(PPC_RAW_ADD(b2p[TMP_REG_1], b2p[TMP_REG_1], b2p_bpf_array));
264 PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_1], offsetof(struct bpf_array, ptrs));
265
266 /*
267 * if (prog == NULL)
268 * goto out;
269 */
270 EMIT(PPC_RAW_CMPLDI(b2p[TMP_REG_1], 0));
271 PPC_BCC(COND_EQ, out);
272
273 /* goto *(prog->bpf_func + prologue_size); */
274 PPC_BPF_LL(b2p[TMP_REG_1], b2p[TMP_REG_1], offsetof(struct bpf_prog, bpf_func));
275 #ifdef PPC64_ELF_ABI_v1
276 /* skip past the function descriptor */
277 EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1],
278 FUNCTION_DESCR_SIZE + BPF_TAILCALL_PROLOGUE_SIZE));
279 #else
280 EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], b2p[TMP_REG_1], BPF_TAILCALL_PROLOGUE_SIZE));
281 #endif
282 EMIT(PPC_RAW_MTCTR(b2p[TMP_REG_1]));
283
284 /* tear down stack, restore NVRs, ... */
285 bpf_jit_emit_common_epilogue(image, ctx);
286
287 EMIT(PPC_RAW_BCTR());
288 /* out: */
289 }
290
291 /* Assemble the body code between the prologue & epilogue */
bpf_jit_build_body(struct bpf_prog * fp,u32 * image,struct codegen_context * ctx,u32 * addrs,bool extra_pass)292 static int bpf_jit_build_body(struct bpf_prog *fp, u32 *image,
293 struct codegen_context *ctx,
294 u32 *addrs, bool extra_pass)
295 {
296 const struct bpf_insn *insn = fp->insnsi;
297 int flen = fp->len;
298 int i, ret;
299
300 /* Start of epilogue code - will only be valid 2nd pass onwards */
301 u32 exit_addr = addrs[flen];
302
303 for (i = 0; i < flen; i++) {
304 u32 code = insn[i].code;
305 u32 dst_reg = b2p[insn[i].dst_reg];
306 u32 src_reg = b2p[insn[i].src_reg];
307 s16 off = insn[i].off;
308 s32 imm = insn[i].imm;
309 bool func_addr_fixed;
310 u64 func_addr;
311 u64 imm64;
312 u32 true_cond;
313 u32 tmp_idx;
314
315 /*
316 * addrs[] maps a BPF bytecode address into a real offset from
317 * the start of the body code.
318 */
319 addrs[i] = ctx->idx * 4;
320
321 /*
322 * As an optimization, we note down which non-volatile registers
323 * are used so that we can only save/restore those in our
324 * prologue and epilogue. We do this here regardless of whether
325 * the actual BPF instruction uses src/dst registers or not
326 * (for instance, BPF_CALL does not use them). The expectation
327 * is that those instructions will have src_reg/dst_reg set to
328 * 0. Even otherwise, we just lose some prologue/epilogue
329 * optimization but everything else should work without
330 * any issues.
331 */
332 if (dst_reg >= BPF_PPC_NVR_MIN && dst_reg < 32)
333 bpf_set_seen_register(ctx, insn[i].dst_reg);
334 if (src_reg >= BPF_PPC_NVR_MIN && src_reg < 32)
335 bpf_set_seen_register(ctx, insn[i].src_reg);
336
337 switch (code) {
338 /*
339 * Arithmetic operations: ADD/SUB/MUL/DIV/MOD/NEG
340 */
341 case BPF_ALU | BPF_ADD | BPF_X: /* (u32) dst += (u32) src */
342 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst += src */
343 EMIT(PPC_RAW_ADD(dst_reg, dst_reg, src_reg));
344 goto bpf_alu32_trunc;
345 case BPF_ALU | BPF_SUB | BPF_X: /* (u32) dst -= (u32) src */
346 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst -= src */
347 EMIT(PPC_RAW_SUB(dst_reg, dst_reg, src_reg));
348 goto bpf_alu32_trunc;
349 case BPF_ALU | BPF_ADD | BPF_K: /* (u32) dst += (u32) imm */
350 case BPF_ALU | BPF_SUB | BPF_K: /* (u32) dst -= (u32) imm */
351 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst += imm */
352 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst -= imm */
353 if (BPF_OP(code) == BPF_SUB)
354 imm = -imm;
355 if (imm) {
356 if (imm >= -32768 && imm < 32768)
357 EMIT(PPC_RAW_ADDI(dst_reg, dst_reg, IMM_L(imm)));
358 else {
359 PPC_LI32(b2p[TMP_REG_1], imm);
360 EMIT(PPC_RAW_ADD(dst_reg, dst_reg, b2p[TMP_REG_1]));
361 }
362 }
363 goto bpf_alu32_trunc;
364 case BPF_ALU | BPF_MUL | BPF_X: /* (u32) dst *= (u32) src */
365 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst *= src */
366 if (BPF_CLASS(code) == BPF_ALU)
367 EMIT(PPC_RAW_MULW(dst_reg, dst_reg, src_reg));
368 else
369 EMIT(PPC_RAW_MULD(dst_reg, dst_reg, src_reg));
370 goto bpf_alu32_trunc;
371 case BPF_ALU | BPF_MUL | BPF_K: /* (u32) dst *= (u32) imm */
372 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst *= imm */
373 if (imm >= -32768 && imm < 32768)
374 EMIT(PPC_RAW_MULI(dst_reg, dst_reg, IMM_L(imm)));
375 else {
376 PPC_LI32(b2p[TMP_REG_1], imm);
377 if (BPF_CLASS(code) == BPF_ALU)
378 EMIT(PPC_RAW_MULW(dst_reg, dst_reg,
379 b2p[TMP_REG_1]));
380 else
381 EMIT(PPC_RAW_MULD(dst_reg, dst_reg,
382 b2p[TMP_REG_1]));
383 }
384 goto bpf_alu32_trunc;
385 case BPF_ALU | BPF_DIV | BPF_X: /* (u32) dst /= (u32) src */
386 case BPF_ALU | BPF_MOD | BPF_X: /* (u32) dst %= (u32) src */
387 if (BPF_OP(code) == BPF_MOD) {
388 EMIT(PPC_RAW_DIVWU(b2p[TMP_REG_1], dst_reg, src_reg));
389 EMIT(PPC_RAW_MULW(b2p[TMP_REG_1], src_reg,
390 b2p[TMP_REG_1]));
391 EMIT(PPC_RAW_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]));
392 } else
393 EMIT(PPC_RAW_DIVWU(dst_reg, dst_reg, src_reg));
394 goto bpf_alu32_trunc;
395 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst /= src */
396 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst %= src */
397 if (BPF_OP(code) == BPF_MOD) {
398 EMIT(PPC_RAW_DIVDU(b2p[TMP_REG_1], dst_reg, src_reg));
399 EMIT(PPC_RAW_MULD(b2p[TMP_REG_1], src_reg,
400 b2p[TMP_REG_1]));
401 EMIT(PPC_RAW_SUB(dst_reg, dst_reg, b2p[TMP_REG_1]));
402 } else
403 EMIT(PPC_RAW_DIVDU(dst_reg, dst_reg, src_reg));
404 break;
405 case BPF_ALU | BPF_MOD | BPF_K: /* (u32) dst %= (u32) imm */
406 case BPF_ALU | BPF_DIV | BPF_K: /* (u32) dst /= (u32) imm */
407 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst %= imm */
408 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst /= imm */
409 if (imm == 0)
410 return -EINVAL;
411 else if (imm == 1)
412 goto bpf_alu32_trunc;
413
414 PPC_LI32(b2p[TMP_REG_1], imm);
415 switch (BPF_CLASS(code)) {
416 case BPF_ALU:
417 if (BPF_OP(code) == BPF_MOD) {
418 EMIT(PPC_RAW_DIVWU(b2p[TMP_REG_2],
419 dst_reg,
420 b2p[TMP_REG_1]));
421 EMIT(PPC_RAW_MULW(b2p[TMP_REG_1],
422 b2p[TMP_REG_1],
423 b2p[TMP_REG_2]));
424 EMIT(PPC_RAW_SUB(dst_reg, dst_reg,
425 b2p[TMP_REG_1]));
426 } else
427 EMIT(PPC_RAW_DIVWU(dst_reg, dst_reg,
428 b2p[TMP_REG_1]));
429 break;
430 case BPF_ALU64:
431 if (BPF_OP(code) == BPF_MOD) {
432 EMIT(PPC_RAW_DIVDU(b2p[TMP_REG_2],
433 dst_reg,
434 b2p[TMP_REG_1]));
435 EMIT(PPC_RAW_MULD(b2p[TMP_REG_1],
436 b2p[TMP_REG_1],
437 b2p[TMP_REG_2]));
438 EMIT(PPC_RAW_SUB(dst_reg, dst_reg,
439 b2p[TMP_REG_1]));
440 } else
441 EMIT(PPC_RAW_DIVDU(dst_reg, dst_reg,
442 b2p[TMP_REG_1]));
443 break;
444 }
445 goto bpf_alu32_trunc;
446 case BPF_ALU | BPF_NEG: /* (u32) dst = -dst */
447 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
448 EMIT(PPC_RAW_NEG(dst_reg, dst_reg));
449 goto bpf_alu32_trunc;
450
451 /*
452 * Logical operations: AND/OR/XOR/[A]LSH/[A]RSH
453 */
454 case BPF_ALU | BPF_AND | BPF_X: /* (u32) dst = dst & src */
455 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
456 EMIT(PPC_RAW_AND(dst_reg, dst_reg, src_reg));
457 goto bpf_alu32_trunc;
458 case BPF_ALU | BPF_AND | BPF_K: /* (u32) dst = dst & imm */
459 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
460 if (!IMM_H(imm))
461 EMIT(PPC_RAW_ANDI(dst_reg, dst_reg, IMM_L(imm)));
462 else {
463 /* Sign-extended */
464 PPC_LI32(b2p[TMP_REG_1], imm);
465 EMIT(PPC_RAW_AND(dst_reg, dst_reg, b2p[TMP_REG_1]));
466 }
467 goto bpf_alu32_trunc;
468 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
469 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
470 EMIT(PPC_RAW_OR(dst_reg, dst_reg, src_reg));
471 goto bpf_alu32_trunc;
472 case BPF_ALU | BPF_OR | BPF_K:/* dst = (u32) dst | (u32) imm */
473 case BPF_ALU64 | BPF_OR | BPF_K:/* dst = dst | imm */
474 if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
475 /* Sign-extended */
476 PPC_LI32(b2p[TMP_REG_1], imm);
477 EMIT(PPC_RAW_OR(dst_reg, dst_reg, b2p[TMP_REG_1]));
478 } else {
479 if (IMM_L(imm))
480 EMIT(PPC_RAW_ORI(dst_reg, dst_reg, IMM_L(imm)));
481 if (IMM_H(imm))
482 EMIT(PPC_RAW_ORIS(dst_reg, dst_reg, IMM_H(imm)));
483 }
484 goto bpf_alu32_trunc;
485 case BPF_ALU | BPF_XOR | BPF_X: /* (u32) dst ^= src */
486 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst ^= src */
487 EMIT(PPC_RAW_XOR(dst_reg, dst_reg, src_reg));
488 goto bpf_alu32_trunc;
489 case BPF_ALU | BPF_XOR | BPF_K: /* (u32) dst ^= (u32) imm */
490 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst ^= imm */
491 if (imm < 0 && BPF_CLASS(code) == BPF_ALU64) {
492 /* Sign-extended */
493 PPC_LI32(b2p[TMP_REG_1], imm);
494 EMIT(PPC_RAW_XOR(dst_reg, dst_reg, b2p[TMP_REG_1]));
495 } else {
496 if (IMM_L(imm))
497 EMIT(PPC_RAW_XORI(dst_reg, dst_reg, IMM_L(imm)));
498 if (IMM_H(imm))
499 EMIT(PPC_RAW_XORIS(dst_reg, dst_reg, IMM_H(imm)));
500 }
501 goto bpf_alu32_trunc;
502 case BPF_ALU | BPF_LSH | BPF_X: /* (u32) dst <<= (u32) src */
503 /* slw clears top 32 bits */
504 EMIT(PPC_RAW_SLW(dst_reg, dst_reg, src_reg));
505 /* skip zero extension move, but set address map. */
506 if (insn_is_zext(&insn[i + 1]))
507 addrs[++i] = ctx->idx * 4;
508 break;
509 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst <<= src; */
510 EMIT(PPC_RAW_SLD(dst_reg, dst_reg, src_reg));
511 break;
512 case BPF_ALU | BPF_LSH | BPF_K: /* (u32) dst <<== (u32) imm */
513 /* with imm 0, we still need to clear top 32 bits */
514 EMIT(PPC_RAW_SLWI(dst_reg, dst_reg, imm));
515 if (insn_is_zext(&insn[i + 1]))
516 addrs[++i] = ctx->idx * 4;
517 break;
518 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst <<== imm */
519 if (imm != 0)
520 EMIT(PPC_RAW_SLDI(dst_reg, dst_reg, imm));
521 break;
522 case BPF_ALU | BPF_RSH | BPF_X: /* (u32) dst >>= (u32) src */
523 EMIT(PPC_RAW_SRW(dst_reg, dst_reg, src_reg));
524 if (insn_is_zext(&insn[i + 1]))
525 addrs[++i] = ctx->idx * 4;
526 break;
527 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst >>= src */
528 EMIT(PPC_RAW_SRD(dst_reg, dst_reg, src_reg));
529 break;
530 case BPF_ALU | BPF_RSH | BPF_K: /* (u32) dst >>= (u32) imm */
531 EMIT(PPC_RAW_SRWI(dst_reg, dst_reg, imm));
532 if (insn_is_zext(&insn[i + 1]))
533 addrs[++i] = ctx->idx * 4;
534 break;
535 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst >>= imm */
536 if (imm != 0)
537 EMIT(PPC_RAW_SRDI(dst_reg, dst_reg, imm));
538 break;
539 case BPF_ALU | BPF_ARSH | BPF_X: /* (s32) dst >>= src */
540 EMIT(PPC_RAW_SRAW(dst_reg, dst_reg, src_reg));
541 goto bpf_alu32_trunc;
542 case BPF_ALU64 | BPF_ARSH | BPF_X: /* (s64) dst >>= src */
543 EMIT(PPC_RAW_SRAD(dst_reg, dst_reg, src_reg));
544 break;
545 case BPF_ALU | BPF_ARSH | BPF_K: /* (s32) dst >>= imm */
546 EMIT(PPC_RAW_SRAWI(dst_reg, dst_reg, imm));
547 goto bpf_alu32_trunc;
548 case BPF_ALU64 | BPF_ARSH | BPF_K: /* (s64) dst >>= imm */
549 if (imm != 0)
550 EMIT(PPC_RAW_SRADI(dst_reg, dst_reg, imm));
551 break;
552
553 /*
554 * MOV
555 */
556 case BPF_ALU | BPF_MOV | BPF_X: /* (u32) dst = src */
557 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
558 if (imm == 1) {
559 /* special mov32 for zext */
560 EMIT(PPC_RAW_RLWINM(dst_reg, dst_reg, 0, 0, 31));
561 break;
562 }
563 EMIT(PPC_RAW_MR(dst_reg, src_reg));
564 goto bpf_alu32_trunc;
565 case BPF_ALU | BPF_MOV | BPF_K: /* (u32) dst = imm */
566 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = (s64) imm */
567 PPC_LI32(dst_reg, imm);
568 if (imm < 0)
569 goto bpf_alu32_trunc;
570 else if (insn_is_zext(&insn[i + 1]))
571 addrs[++i] = ctx->idx * 4;
572 break;
573
574 bpf_alu32_trunc:
575 /* Truncate to 32-bits */
576 if (BPF_CLASS(code) == BPF_ALU && !fp->aux->verifier_zext)
577 EMIT(PPC_RAW_RLWINM(dst_reg, dst_reg, 0, 0, 31));
578 break;
579
580 /*
581 * BPF_FROM_BE/LE
582 */
583 case BPF_ALU | BPF_END | BPF_FROM_LE:
584 case BPF_ALU | BPF_END | BPF_FROM_BE:
585 #ifdef __BIG_ENDIAN__
586 if (BPF_SRC(code) == BPF_FROM_BE)
587 goto emit_clear;
588 #else /* !__BIG_ENDIAN__ */
589 if (BPF_SRC(code) == BPF_FROM_LE)
590 goto emit_clear;
591 #endif
592 switch (imm) {
593 case 16:
594 /* Rotate 8 bits left & mask with 0x0000ff00 */
595 EMIT(PPC_RAW_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 16, 23));
596 /* Rotate 8 bits right & insert LSB to reg */
597 EMIT(PPC_RAW_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 24, 31));
598 /* Move result back to dst_reg */
599 EMIT(PPC_RAW_MR(dst_reg, b2p[TMP_REG_1]));
600 break;
601 case 32:
602 /*
603 * Rotate word left by 8 bits:
604 * 2 bytes are already in their final position
605 * -- byte 2 and 4 (of bytes 1, 2, 3 and 4)
606 */
607 EMIT(PPC_RAW_RLWINM(b2p[TMP_REG_1], dst_reg, 8, 0, 31));
608 /* Rotate 24 bits and insert byte 1 */
609 EMIT(PPC_RAW_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 0, 7));
610 /* Rotate 24 bits and insert byte 3 */
611 EMIT(PPC_RAW_RLWIMI(b2p[TMP_REG_1], dst_reg, 24, 16, 23));
612 EMIT(PPC_RAW_MR(dst_reg, b2p[TMP_REG_1]));
613 break;
614 case 64:
615 /*
616 * Way easier and faster(?) to store the value
617 * into stack and then use ldbrx
618 *
619 * ctx->seen will be reliable in pass2, but
620 * the instructions generated will remain the
621 * same across all passes
622 */
623 PPC_BPF_STL(dst_reg, 1, bpf_jit_stack_local(ctx));
624 EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], 1, bpf_jit_stack_local(ctx)));
625 EMIT(PPC_RAW_LDBRX(dst_reg, 0, b2p[TMP_REG_1]));
626 break;
627 }
628 break;
629
630 emit_clear:
631 switch (imm) {
632 case 16:
633 /* zero-extend 16 bits into 64 bits */
634 EMIT(PPC_RAW_RLDICL(dst_reg, dst_reg, 0, 48));
635 if (insn_is_zext(&insn[i + 1]))
636 addrs[++i] = ctx->idx * 4;
637 break;
638 case 32:
639 if (!fp->aux->verifier_zext)
640 /* zero-extend 32 bits into 64 bits */
641 EMIT(PPC_RAW_RLDICL(dst_reg, dst_reg, 0, 32));
642 break;
643 case 64:
644 /* nop */
645 break;
646 }
647 break;
648
649 /*
650 * BPF_ST(X)
651 */
652 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src */
653 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
654 if (BPF_CLASS(code) == BPF_ST) {
655 EMIT(PPC_RAW_LI(b2p[TMP_REG_1], imm));
656 src_reg = b2p[TMP_REG_1];
657 }
658 EMIT(PPC_RAW_STB(src_reg, dst_reg, off));
659 break;
660 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
661 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
662 if (BPF_CLASS(code) == BPF_ST) {
663 EMIT(PPC_RAW_LI(b2p[TMP_REG_1], imm));
664 src_reg = b2p[TMP_REG_1];
665 }
666 EMIT(PPC_RAW_STH(src_reg, dst_reg, off));
667 break;
668 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
669 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
670 if (BPF_CLASS(code) == BPF_ST) {
671 PPC_LI32(b2p[TMP_REG_1], imm);
672 src_reg = b2p[TMP_REG_1];
673 }
674 EMIT(PPC_RAW_STW(src_reg, dst_reg, off));
675 break;
676 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
677 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
678 if (BPF_CLASS(code) == BPF_ST) {
679 PPC_LI32(b2p[TMP_REG_1], imm);
680 src_reg = b2p[TMP_REG_1];
681 }
682 PPC_BPF_STL(src_reg, dst_reg, off);
683 break;
684
685 /*
686 * BPF_STX XADD (atomic_add)
687 */
688 /* *(u32 *)(dst + off) += src */
689 case BPF_STX | BPF_XADD | BPF_W:
690 /* Get EA into TMP_REG_1 */
691 EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], dst_reg, off));
692 tmp_idx = ctx->idx * 4;
693 /* load value from memory into TMP_REG_2 */
694 EMIT(PPC_RAW_LWARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0));
695 /* add value from src_reg into this */
696 EMIT(PPC_RAW_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg));
697 /* store result back */
698 EMIT(PPC_RAW_STWCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]));
699 /* we're done if this succeeded */
700 PPC_BCC_SHORT(COND_NE, tmp_idx);
701 break;
702 /* *(u64 *)(dst + off) += src */
703 case BPF_STX | BPF_XADD | BPF_DW:
704 EMIT(PPC_RAW_ADDI(b2p[TMP_REG_1], dst_reg, off));
705 tmp_idx = ctx->idx * 4;
706 EMIT(PPC_RAW_LDARX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1], 0));
707 EMIT(PPC_RAW_ADD(b2p[TMP_REG_2], b2p[TMP_REG_2], src_reg));
708 EMIT(PPC_RAW_STDCX(b2p[TMP_REG_2], 0, b2p[TMP_REG_1]));
709 PPC_BCC_SHORT(COND_NE, tmp_idx);
710 break;
711
712 /*
713 * BPF_LDX
714 */
715 /* dst = *(u8 *)(ul) (src + off) */
716 case BPF_LDX | BPF_MEM | BPF_B:
717 EMIT(PPC_RAW_LBZ(dst_reg, src_reg, off));
718 if (insn_is_zext(&insn[i + 1]))
719 addrs[++i] = ctx->idx * 4;
720 break;
721 /* dst = *(u16 *)(ul) (src + off) */
722 case BPF_LDX | BPF_MEM | BPF_H:
723 EMIT(PPC_RAW_LHZ(dst_reg, src_reg, off));
724 if (insn_is_zext(&insn[i + 1]))
725 addrs[++i] = ctx->idx * 4;
726 break;
727 /* dst = *(u32 *)(ul) (src + off) */
728 case BPF_LDX | BPF_MEM | BPF_W:
729 EMIT(PPC_RAW_LWZ(dst_reg, src_reg, off));
730 if (insn_is_zext(&insn[i + 1]))
731 addrs[++i] = ctx->idx * 4;
732 break;
733 /* dst = *(u64 *)(ul) (src + off) */
734 case BPF_LDX | BPF_MEM | BPF_DW:
735 PPC_BPF_LL(dst_reg, src_reg, off);
736 break;
737
738 /*
739 * Doubleword load
740 * 16 byte instruction that uses two 'struct bpf_insn'
741 */
742 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
743 imm64 = ((u64)(u32) insn[i].imm) |
744 (((u64)(u32) insn[i+1].imm) << 32);
745 /* Adjust for two bpf instructions */
746 addrs[++i] = ctx->idx * 4;
747 PPC_LI64(dst_reg, imm64);
748 break;
749
750 /*
751 * Return/Exit
752 */
753 case BPF_JMP | BPF_EXIT:
754 /*
755 * If this isn't the very last instruction, branch to
756 * the epilogue. If we _are_ the last instruction,
757 * we'll just fall through to the epilogue.
758 */
759 if (i != flen - 1)
760 PPC_JMP(exit_addr);
761 /* else fall through to the epilogue */
762 break;
763
764 /*
765 * Call kernel helper or bpf function
766 */
767 case BPF_JMP | BPF_CALL:
768 ctx->seen |= SEEN_FUNC;
769
770 ret = bpf_jit_get_func_addr(fp, &insn[i], extra_pass,
771 &func_addr, &func_addr_fixed);
772 if (ret < 0)
773 return ret;
774
775 if (func_addr_fixed)
776 bpf_jit_emit_func_call_hlp(image, ctx, func_addr);
777 else
778 bpf_jit_emit_func_call_rel(image, ctx, func_addr);
779 /* move return value from r3 to BPF_REG_0 */
780 EMIT(PPC_RAW_MR(b2p[BPF_REG_0], 3));
781 break;
782
783 /*
784 * Jumps and branches
785 */
786 case BPF_JMP | BPF_JA:
787 PPC_JMP(addrs[i + 1 + off]);
788 break;
789
790 case BPF_JMP | BPF_JGT | BPF_K:
791 case BPF_JMP | BPF_JGT | BPF_X:
792 case BPF_JMP | BPF_JSGT | BPF_K:
793 case BPF_JMP | BPF_JSGT | BPF_X:
794 case BPF_JMP32 | BPF_JGT | BPF_K:
795 case BPF_JMP32 | BPF_JGT | BPF_X:
796 case BPF_JMP32 | BPF_JSGT | BPF_K:
797 case BPF_JMP32 | BPF_JSGT | BPF_X:
798 true_cond = COND_GT;
799 goto cond_branch;
800 case BPF_JMP | BPF_JLT | BPF_K:
801 case BPF_JMP | BPF_JLT | BPF_X:
802 case BPF_JMP | BPF_JSLT | BPF_K:
803 case BPF_JMP | BPF_JSLT | BPF_X:
804 case BPF_JMP32 | BPF_JLT | BPF_K:
805 case BPF_JMP32 | BPF_JLT | BPF_X:
806 case BPF_JMP32 | BPF_JSLT | BPF_K:
807 case BPF_JMP32 | BPF_JSLT | BPF_X:
808 true_cond = COND_LT;
809 goto cond_branch;
810 case BPF_JMP | BPF_JGE | BPF_K:
811 case BPF_JMP | BPF_JGE | BPF_X:
812 case BPF_JMP | BPF_JSGE | BPF_K:
813 case BPF_JMP | BPF_JSGE | BPF_X:
814 case BPF_JMP32 | BPF_JGE | BPF_K:
815 case BPF_JMP32 | BPF_JGE | BPF_X:
816 case BPF_JMP32 | BPF_JSGE | BPF_K:
817 case BPF_JMP32 | BPF_JSGE | BPF_X:
818 true_cond = COND_GE;
819 goto cond_branch;
820 case BPF_JMP | BPF_JLE | BPF_K:
821 case BPF_JMP | BPF_JLE | BPF_X:
822 case BPF_JMP | BPF_JSLE | BPF_K:
823 case BPF_JMP | BPF_JSLE | BPF_X:
824 case BPF_JMP32 | BPF_JLE | BPF_K:
825 case BPF_JMP32 | BPF_JLE | BPF_X:
826 case BPF_JMP32 | BPF_JSLE | BPF_K:
827 case BPF_JMP32 | BPF_JSLE | BPF_X:
828 true_cond = COND_LE;
829 goto cond_branch;
830 case BPF_JMP | BPF_JEQ | BPF_K:
831 case BPF_JMP | BPF_JEQ | BPF_X:
832 case BPF_JMP32 | BPF_JEQ | BPF_K:
833 case BPF_JMP32 | BPF_JEQ | BPF_X:
834 true_cond = COND_EQ;
835 goto cond_branch;
836 case BPF_JMP | BPF_JNE | BPF_K:
837 case BPF_JMP | BPF_JNE | BPF_X:
838 case BPF_JMP32 | BPF_JNE | BPF_K:
839 case BPF_JMP32 | BPF_JNE | BPF_X:
840 true_cond = COND_NE;
841 goto cond_branch;
842 case BPF_JMP | BPF_JSET | BPF_K:
843 case BPF_JMP | BPF_JSET | BPF_X:
844 case BPF_JMP32 | BPF_JSET | BPF_K:
845 case BPF_JMP32 | BPF_JSET | BPF_X:
846 true_cond = COND_NE;
847 /* Fall through */
848
849 cond_branch:
850 switch (code) {
851 case BPF_JMP | BPF_JGT | BPF_X:
852 case BPF_JMP | BPF_JLT | BPF_X:
853 case BPF_JMP | BPF_JGE | BPF_X:
854 case BPF_JMP | BPF_JLE | BPF_X:
855 case BPF_JMP | BPF_JEQ | BPF_X:
856 case BPF_JMP | BPF_JNE | BPF_X:
857 case BPF_JMP32 | BPF_JGT | BPF_X:
858 case BPF_JMP32 | BPF_JLT | BPF_X:
859 case BPF_JMP32 | BPF_JGE | BPF_X:
860 case BPF_JMP32 | BPF_JLE | BPF_X:
861 case BPF_JMP32 | BPF_JEQ | BPF_X:
862 case BPF_JMP32 | BPF_JNE | BPF_X:
863 /* unsigned comparison */
864 if (BPF_CLASS(code) == BPF_JMP32)
865 EMIT(PPC_RAW_CMPLW(dst_reg, src_reg));
866 else
867 EMIT(PPC_RAW_CMPLD(dst_reg, src_reg));
868 break;
869 case BPF_JMP | BPF_JSGT | BPF_X:
870 case BPF_JMP | BPF_JSLT | BPF_X:
871 case BPF_JMP | BPF_JSGE | BPF_X:
872 case BPF_JMP | BPF_JSLE | BPF_X:
873 case BPF_JMP32 | BPF_JSGT | BPF_X:
874 case BPF_JMP32 | BPF_JSLT | BPF_X:
875 case BPF_JMP32 | BPF_JSGE | BPF_X:
876 case BPF_JMP32 | BPF_JSLE | BPF_X:
877 /* signed comparison */
878 if (BPF_CLASS(code) == BPF_JMP32)
879 EMIT(PPC_RAW_CMPW(dst_reg, src_reg));
880 else
881 EMIT(PPC_RAW_CMPD(dst_reg, src_reg));
882 break;
883 case BPF_JMP | BPF_JSET | BPF_X:
884 case BPF_JMP32 | BPF_JSET | BPF_X:
885 if (BPF_CLASS(code) == BPF_JMP) {
886 EMIT(PPC_RAW_AND_DOT(b2p[TMP_REG_1], dst_reg,
887 src_reg));
888 } else {
889 int tmp_reg = b2p[TMP_REG_1];
890
891 EMIT(PPC_RAW_AND(tmp_reg, dst_reg, src_reg));
892 EMIT(PPC_RAW_RLWINM_DOT(tmp_reg, tmp_reg, 0, 0,
893 31));
894 }
895 break;
896 case BPF_JMP | BPF_JNE | BPF_K:
897 case BPF_JMP | BPF_JEQ | BPF_K:
898 case BPF_JMP | BPF_JGT | BPF_K:
899 case BPF_JMP | BPF_JLT | BPF_K:
900 case BPF_JMP | BPF_JGE | BPF_K:
901 case BPF_JMP | BPF_JLE | BPF_K:
902 case BPF_JMP32 | BPF_JNE | BPF_K:
903 case BPF_JMP32 | BPF_JEQ | BPF_K:
904 case BPF_JMP32 | BPF_JGT | BPF_K:
905 case BPF_JMP32 | BPF_JLT | BPF_K:
906 case BPF_JMP32 | BPF_JGE | BPF_K:
907 case BPF_JMP32 | BPF_JLE | BPF_K:
908 {
909 bool is_jmp32 = BPF_CLASS(code) == BPF_JMP32;
910
911 /*
912 * Need sign-extended load, so only positive
913 * values can be used as imm in cmpldi
914 */
915 if (imm >= 0 && imm < 32768) {
916 if (is_jmp32)
917 EMIT(PPC_RAW_CMPLWI(dst_reg, imm));
918 else
919 EMIT(PPC_RAW_CMPLDI(dst_reg, imm));
920 } else {
921 /* sign-extending load */
922 PPC_LI32(b2p[TMP_REG_1], imm);
923 /* ... but unsigned comparison */
924 if (is_jmp32)
925 EMIT(PPC_RAW_CMPLW(dst_reg,
926 b2p[TMP_REG_1]));
927 else
928 EMIT(PPC_RAW_CMPLD(dst_reg,
929 b2p[TMP_REG_1]));
930 }
931 break;
932 }
933 case BPF_JMP | BPF_JSGT | BPF_K:
934 case BPF_JMP | BPF_JSLT | BPF_K:
935 case BPF_JMP | BPF_JSGE | BPF_K:
936 case BPF_JMP | BPF_JSLE | BPF_K:
937 case BPF_JMP32 | BPF_JSGT | BPF_K:
938 case BPF_JMP32 | BPF_JSLT | BPF_K:
939 case BPF_JMP32 | BPF_JSGE | BPF_K:
940 case BPF_JMP32 | BPF_JSLE | BPF_K:
941 {
942 bool is_jmp32 = BPF_CLASS(code) == BPF_JMP32;
943
944 /*
945 * signed comparison, so any 16-bit value
946 * can be used in cmpdi
947 */
948 if (imm >= -32768 && imm < 32768) {
949 if (is_jmp32)
950 EMIT(PPC_RAW_CMPWI(dst_reg, imm));
951 else
952 EMIT(PPC_RAW_CMPDI(dst_reg, imm));
953 } else {
954 PPC_LI32(b2p[TMP_REG_1], imm);
955 if (is_jmp32)
956 EMIT(PPC_RAW_CMPW(dst_reg,
957 b2p[TMP_REG_1]));
958 else
959 EMIT(PPC_RAW_CMPD(dst_reg,
960 b2p[TMP_REG_1]));
961 }
962 break;
963 }
964 case BPF_JMP | BPF_JSET | BPF_K:
965 case BPF_JMP32 | BPF_JSET | BPF_K:
966 /* andi does not sign-extend the immediate */
967 if (imm >= 0 && imm < 32768)
968 /* PPC_ANDI is _only/always_ dot-form */
969 EMIT(PPC_RAW_ANDI(b2p[TMP_REG_1], dst_reg, imm));
970 else {
971 int tmp_reg = b2p[TMP_REG_1];
972
973 PPC_LI32(tmp_reg, imm);
974 if (BPF_CLASS(code) == BPF_JMP) {
975 EMIT(PPC_RAW_AND_DOT(tmp_reg, dst_reg,
976 tmp_reg));
977 } else {
978 EMIT(PPC_RAW_AND(tmp_reg, dst_reg,
979 tmp_reg));
980 EMIT(PPC_RAW_RLWINM_DOT(tmp_reg, tmp_reg,
981 0, 0, 31));
982 }
983 }
984 break;
985 }
986 PPC_BCC(true_cond, addrs[i + 1 + off]);
987 break;
988
989 /*
990 * Tail call
991 */
992 case BPF_JMP | BPF_TAIL_CALL:
993 ctx->seen |= SEEN_TAILCALL;
994 bpf_jit_emit_tail_call(image, ctx, addrs[i + 1]);
995 break;
996
997 default:
998 /*
999 * The filter contains something cruel & unusual.
1000 * We don't handle it, but also there shouldn't be
1001 * anything missing from our list.
1002 */
1003 pr_err_ratelimited("eBPF filter opcode %04x (@%d) unsupported\n",
1004 code, i);
1005 return -ENOTSUPP;
1006 }
1007 }
1008
1009 /* Set end-of-body-code address for exit. */
1010 addrs[i] = ctx->idx * 4;
1011
1012 return 0;
1013 }
1014
1015 /* Fix the branch target addresses for subprog calls */
bpf_jit_fixup_subprog_calls(struct bpf_prog * fp,u32 * image,struct codegen_context * ctx,u32 * addrs)1016 static int bpf_jit_fixup_subprog_calls(struct bpf_prog *fp, u32 *image,
1017 struct codegen_context *ctx, u32 *addrs)
1018 {
1019 const struct bpf_insn *insn = fp->insnsi;
1020 bool func_addr_fixed;
1021 u64 func_addr;
1022 u32 tmp_idx;
1023 int i, ret;
1024
1025 for (i = 0; i < fp->len; i++) {
1026 /*
1027 * During the extra pass, only the branch target addresses for
1028 * the subprog calls need to be fixed. All other instructions
1029 * can left untouched.
1030 *
1031 * The JITed image length does not change because we already
1032 * ensure that the JITed instruction sequence for these calls
1033 * are of fixed length by padding them with NOPs.
1034 */
1035 if (insn[i].code == (BPF_JMP | BPF_CALL) &&
1036 insn[i].src_reg == BPF_PSEUDO_CALL) {
1037 ret = bpf_jit_get_func_addr(fp, &insn[i], true,
1038 &func_addr,
1039 &func_addr_fixed);
1040 if (ret < 0)
1041 return ret;
1042
1043 /*
1044 * Save ctx->idx as this would currently point to the
1045 * end of the JITed image and set it to the offset of
1046 * the instruction sequence corresponding to the
1047 * subprog call temporarily.
1048 */
1049 tmp_idx = ctx->idx;
1050 ctx->idx = addrs[i] / 4;
1051 bpf_jit_emit_func_call_rel(image, ctx, func_addr);
1052
1053 /*
1054 * Restore ctx->idx here. This is safe as the length
1055 * of the JITed sequence remains unchanged.
1056 */
1057 ctx->idx = tmp_idx;
1058 }
1059 }
1060
1061 return 0;
1062 }
1063
1064 struct powerpc64_jit_data {
1065 struct bpf_binary_header *header;
1066 u32 *addrs;
1067 u8 *image;
1068 u32 proglen;
1069 struct codegen_context ctx;
1070 };
1071
bpf_jit_needs_zext(void)1072 bool bpf_jit_needs_zext(void)
1073 {
1074 return true;
1075 }
1076
bpf_int_jit_compile(struct bpf_prog * fp)1077 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1078 {
1079 u32 proglen;
1080 u32 alloclen;
1081 u8 *image = NULL;
1082 u32 *code_base;
1083 u32 *addrs;
1084 struct powerpc64_jit_data *jit_data;
1085 struct codegen_context cgctx;
1086 int pass;
1087 int flen;
1088 struct bpf_binary_header *bpf_hdr;
1089 struct bpf_prog *org_fp = fp;
1090 struct bpf_prog *tmp_fp;
1091 bool bpf_blinded = false;
1092 bool extra_pass = false;
1093
1094 if (!fp->jit_requested)
1095 return org_fp;
1096
1097 tmp_fp = bpf_jit_blind_constants(org_fp);
1098 if (IS_ERR(tmp_fp))
1099 return org_fp;
1100
1101 if (tmp_fp != org_fp) {
1102 bpf_blinded = true;
1103 fp = tmp_fp;
1104 }
1105
1106 jit_data = fp->aux->jit_data;
1107 if (!jit_data) {
1108 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1109 if (!jit_data) {
1110 fp = org_fp;
1111 goto out;
1112 }
1113 fp->aux->jit_data = jit_data;
1114 }
1115
1116 flen = fp->len;
1117 addrs = jit_data->addrs;
1118 if (addrs) {
1119 cgctx = jit_data->ctx;
1120 image = jit_data->image;
1121 bpf_hdr = jit_data->header;
1122 proglen = jit_data->proglen;
1123 alloclen = proglen + FUNCTION_DESCR_SIZE;
1124 extra_pass = true;
1125 goto skip_init_ctx;
1126 }
1127
1128 addrs = kcalloc(flen + 1, sizeof(*addrs), GFP_KERNEL);
1129 if (addrs == NULL) {
1130 fp = org_fp;
1131 goto out_addrs;
1132 }
1133
1134 memset(&cgctx, 0, sizeof(struct codegen_context));
1135
1136 /* Make sure that the stack is quadword aligned. */
1137 cgctx.stack_size = round_up(fp->aux->stack_depth, 16);
1138
1139 /* Scouting faux-generate pass 0 */
1140 if (bpf_jit_build_body(fp, 0, &cgctx, addrs, false)) {
1141 /* We hit something illegal or unsupported. */
1142 fp = org_fp;
1143 goto out_addrs;
1144 }
1145
1146 /*
1147 * If we have seen a tail call, we need a second pass.
1148 * This is because bpf_jit_emit_common_epilogue() is called
1149 * from bpf_jit_emit_tail_call() with a not yet stable ctx->seen.
1150 */
1151 if (cgctx.seen & SEEN_TAILCALL) {
1152 cgctx.idx = 0;
1153 if (bpf_jit_build_body(fp, 0, &cgctx, addrs, false)) {
1154 fp = org_fp;
1155 goto out_addrs;
1156 }
1157 }
1158
1159 /*
1160 * Pretend to build prologue, given the features we've seen. This will
1161 * update ctgtx.idx as it pretends to output instructions, then we can
1162 * calculate total size from idx.
1163 */
1164 bpf_jit_build_prologue(0, &cgctx);
1165 bpf_jit_build_epilogue(0, &cgctx);
1166
1167 proglen = cgctx.idx * 4;
1168 alloclen = proglen + FUNCTION_DESCR_SIZE;
1169
1170 bpf_hdr = bpf_jit_binary_alloc(alloclen, &image, 4,
1171 bpf_jit_fill_ill_insns);
1172 if (!bpf_hdr) {
1173 fp = org_fp;
1174 goto out_addrs;
1175 }
1176
1177 skip_init_ctx:
1178 code_base = (u32 *)(image + FUNCTION_DESCR_SIZE);
1179
1180 if (extra_pass) {
1181 /*
1182 * Do not touch the prologue and epilogue as they will remain
1183 * unchanged. Only fix the branch target address for subprog
1184 * calls in the body.
1185 *
1186 * This does not change the offsets and lengths of the subprog
1187 * call instruction sequences and hence, the size of the JITed
1188 * image as well.
1189 */
1190 bpf_jit_fixup_subprog_calls(fp, code_base, &cgctx, addrs);
1191
1192 /* There is no need to perform the usual passes. */
1193 goto skip_codegen_passes;
1194 }
1195
1196 /* Code generation passes 1-2 */
1197 for (pass = 1; pass < 3; pass++) {
1198 /* Now build the prologue, body code & epilogue for real. */
1199 cgctx.idx = 0;
1200 bpf_jit_build_prologue(code_base, &cgctx);
1201 bpf_jit_build_body(fp, code_base, &cgctx, addrs, extra_pass);
1202 bpf_jit_build_epilogue(code_base, &cgctx);
1203
1204 if (bpf_jit_enable > 1)
1205 pr_info("Pass %d: shrink = %d, seen = 0x%x\n", pass,
1206 proglen - (cgctx.idx * 4), cgctx.seen);
1207 }
1208
1209 skip_codegen_passes:
1210 if (bpf_jit_enable > 1)
1211 /*
1212 * Note that we output the base address of the code_base
1213 * rather than image, since opcodes are in code_base.
1214 */
1215 bpf_jit_dump(flen, proglen, pass, code_base);
1216
1217 #ifdef PPC64_ELF_ABI_v1
1218 /* Function descriptor nastiness: Address + TOC */
1219 ((u64 *)image)[0] = (u64)code_base;
1220 ((u64 *)image)[1] = local_paca->kernel_toc;
1221 #endif
1222
1223 fp->bpf_func = (void *)image;
1224 fp->jited = 1;
1225 fp->jited_len = alloclen;
1226
1227 bpf_flush_icache(bpf_hdr, (u8 *)bpf_hdr + (bpf_hdr->pages * PAGE_SIZE));
1228 if (!fp->is_func || extra_pass) {
1229 bpf_prog_fill_jited_linfo(fp, addrs);
1230 out_addrs:
1231 kfree(addrs);
1232 kfree(jit_data);
1233 fp->aux->jit_data = NULL;
1234 } else {
1235 jit_data->addrs = addrs;
1236 jit_data->ctx = cgctx;
1237 jit_data->proglen = proglen;
1238 jit_data->image = image;
1239 jit_data->header = bpf_hdr;
1240 }
1241
1242 out:
1243 if (bpf_blinded)
1244 bpf_jit_prog_release_other(fp, fp == org_fp ? tmp_fp : org_fp);
1245
1246 return fp;
1247 }
1248
1249 /* Overriding bpf_jit_free() as we don't set images read-only. */
bpf_jit_free(struct bpf_prog * fp)1250 void bpf_jit_free(struct bpf_prog *fp)
1251 {
1252 unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1253 struct bpf_binary_header *bpf_hdr = (void *)addr;
1254
1255 if (fp->jited)
1256 bpf_jit_binary_free(bpf_hdr);
1257
1258 bpf_prog_unlock_free(fp);
1259 }
1260