1 /*
2 * PPC Huge TLB Page Support for Kernel.
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/moduleparam.h>
19 #include <linux/swap.h>
20 #include <linux/swapops.h>
21 #include <linux/kmemleak.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/setup.h>
25 #include <asm/hugetlb.h>
26 #include <asm/pte-walk.h>
27
28 bool hugetlb_disabled = false;
29
30 #define hugepd_none(hpd) (hpd_val(hpd) == 0)
31
32 #define PTE_T_ORDER (__builtin_ffs(sizeof(pte_basic_t)) - \
33 __builtin_ffs(sizeof(void *)))
34
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)35 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
36 {
37 /*
38 * Only called for hugetlbfs pages, hence can ignore THP and the
39 * irq disabled walk.
40 */
41 return __find_linux_pte(mm->pgd, addr, NULL, NULL);
42 }
43
__hugepte_alloc(struct mm_struct * mm,hugepd_t * hpdp,unsigned long address,unsigned int pdshift,unsigned int pshift,spinlock_t * ptl)44 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
45 unsigned long address, unsigned int pdshift,
46 unsigned int pshift, spinlock_t *ptl)
47 {
48 struct kmem_cache *cachep;
49 pte_t *new;
50 int i;
51 int num_hugepd;
52
53 if (pshift >= pdshift) {
54 cachep = PGT_CACHE(PTE_T_ORDER);
55 num_hugepd = 1 << (pshift - pdshift);
56 } else {
57 cachep = PGT_CACHE(pdshift - pshift);
58 num_hugepd = 1;
59 }
60
61 if (!cachep) {
62 WARN_ONCE(1, "No page table cache created for hugetlb tables");
63 return -ENOMEM;
64 }
65
66 new = kmem_cache_alloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
67
68 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
69 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
70
71 if (!new)
72 return -ENOMEM;
73
74 /*
75 * Make sure other cpus find the hugepd set only after a
76 * properly initialized page table is visible to them.
77 * For more details look for comment in __pte_alloc().
78 */
79 smp_wmb();
80
81 spin_lock(ptl);
82 /*
83 * We have multiple higher-level entries that point to the same
84 * actual pte location. Fill in each as we go and backtrack on error.
85 * We need all of these so the DTLB pgtable walk code can find the
86 * right higher-level entry without knowing if it's a hugepage or not.
87 */
88 for (i = 0; i < num_hugepd; i++, hpdp++) {
89 if (unlikely(!hugepd_none(*hpdp)))
90 break;
91 hugepd_populate(hpdp, new, pshift);
92 }
93 /* If we bailed from the for loop early, an error occurred, clean up */
94 if (i < num_hugepd) {
95 for (i = i - 1 ; i >= 0; i--, hpdp--)
96 *hpdp = __hugepd(0);
97 kmem_cache_free(cachep, new);
98 } else {
99 kmemleak_ignore(new);
100 }
101 spin_unlock(ptl);
102 return 0;
103 }
104
105 /*
106 * At this point we do the placement change only for BOOK3S 64. This would
107 * possibly work on other subarchs.
108 */
huge_pte_alloc(struct mm_struct * mm,unsigned long addr,unsigned long sz)109 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
110 {
111 pgd_t *pg;
112 p4d_t *p4;
113 pud_t *pu;
114 pmd_t *pm;
115 hugepd_t *hpdp = NULL;
116 unsigned pshift = __ffs(sz);
117 unsigned pdshift = PGDIR_SHIFT;
118 spinlock_t *ptl;
119
120 addr &= ~(sz-1);
121 pg = pgd_offset(mm, addr);
122 p4 = p4d_offset(pg, addr);
123
124 #ifdef CONFIG_PPC_BOOK3S_64
125 if (pshift == PGDIR_SHIFT)
126 /* 16GB huge page */
127 return (pte_t *) p4;
128 else if (pshift > PUD_SHIFT) {
129 /*
130 * We need to use hugepd table
131 */
132 ptl = &mm->page_table_lock;
133 hpdp = (hugepd_t *)p4;
134 } else {
135 pdshift = PUD_SHIFT;
136 pu = pud_alloc(mm, p4, addr);
137 if (!pu)
138 return NULL;
139 if (pshift == PUD_SHIFT)
140 return (pte_t *)pu;
141 else if (pshift > PMD_SHIFT) {
142 ptl = pud_lockptr(mm, pu);
143 hpdp = (hugepd_t *)pu;
144 } else {
145 pdshift = PMD_SHIFT;
146 pm = pmd_alloc(mm, pu, addr);
147 if (!pm)
148 return NULL;
149 if (pshift == PMD_SHIFT)
150 /* 16MB hugepage */
151 return (pte_t *)pm;
152 else {
153 ptl = pmd_lockptr(mm, pm);
154 hpdp = (hugepd_t *)pm;
155 }
156 }
157 }
158 #else
159 if (pshift >= PGDIR_SHIFT) {
160 ptl = &mm->page_table_lock;
161 hpdp = (hugepd_t *)p4;
162 } else {
163 pdshift = PUD_SHIFT;
164 pu = pud_alloc(mm, p4, addr);
165 if (!pu)
166 return NULL;
167 if (pshift >= PUD_SHIFT) {
168 ptl = pud_lockptr(mm, pu);
169 hpdp = (hugepd_t *)pu;
170 } else {
171 pdshift = PMD_SHIFT;
172 pm = pmd_alloc(mm, pu, addr);
173 if (!pm)
174 return NULL;
175 ptl = pmd_lockptr(mm, pm);
176 hpdp = (hugepd_t *)pm;
177 }
178 }
179 #endif
180 if (!hpdp)
181 return NULL;
182
183 if (IS_ENABLED(CONFIG_PPC_8xx) && pshift < PMD_SHIFT)
184 return pte_alloc_map(mm, (pmd_t *)hpdp, addr);
185
186 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
187
188 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
189 pdshift, pshift, ptl))
190 return NULL;
191
192 return hugepte_offset(*hpdp, addr, pdshift);
193 }
194
195 #ifdef CONFIG_PPC_BOOK3S_64
196 /*
197 * Tracks gpages after the device tree is scanned and before the
198 * huge_boot_pages list is ready on pseries.
199 */
200 #define MAX_NUMBER_GPAGES 1024
201 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
202 __initdata static unsigned nr_gpages;
203
204 /*
205 * Build list of addresses of gigantic pages. This function is used in early
206 * boot before the buddy allocator is setup.
207 */
pseries_add_gpage(u64 addr,u64 page_size,unsigned long number_of_pages)208 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
209 {
210 if (!addr)
211 return;
212 while (number_of_pages > 0) {
213 gpage_freearray[nr_gpages] = addr;
214 nr_gpages++;
215 number_of_pages--;
216 addr += page_size;
217 }
218 }
219
pseries_alloc_bootmem_huge_page(struct hstate * hstate)220 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
221 {
222 struct huge_bootmem_page *m;
223 if (nr_gpages == 0)
224 return 0;
225 m = phys_to_virt(gpage_freearray[--nr_gpages]);
226 gpage_freearray[nr_gpages] = 0;
227 list_add(&m->list, &huge_boot_pages);
228 m->hstate = hstate;
229 return 1;
230 }
231 #endif
232
233
alloc_bootmem_huge_page(struct hstate * h)234 int __init alloc_bootmem_huge_page(struct hstate *h)
235 {
236
237 #ifdef CONFIG_PPC_BOOK3S_64
238 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
239 return pseries_alloc_bootmem_huge_page(h);
240 #endif
241 return __alloc_bootmem_huge_page(h);
242 }
243
244 #ifndef CONFIG_PPC_BOOK3S_64
245 #define HUGEPD_FREELIST_SIZE \
246 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
247
248 struct hugepd_freelist {
249 struct rcu_head rcu;
250 unsigned int index;
251 void *ptes[];
252 };
253
254 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
255
hugepd_free_rcu_callback(struct rcu_head * head)256 static void hugepd_free_rcu_callback(struct rcu_head *head)
257 {
258 struct hugepd_freelist *batch =
259 container_of(head, struct hugepd_freelist, rcu);
260 unsigned int i;
261
262 for (i = 0; i < batch->index; i++)
263 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), batch->ptes[i]);
264
265 free_page((unsigned long)batch);
266 }
267
hugepd_free(struct mmu_gather * tlb,void * hugepte)268 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
269 {
270 struct hugepd_freelist **batchp;
271
272 batchp = &get_cpu_var(hugepd_freelist_cur);
273
274 if (atomic_read(&tlb->mm->mm_users) < 2 ||
275 mm_is_thread_local(tlb->mm)) {
276 kmem_cache_free(PGT_CACHE(PTE_T_ORDER), hugepte);
277 put_cpu_var(hugepd_freelist_cur);
278 return;
279 }
280
281 if (*batchp == NULL) {
282 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
283 (*batchp)->index = 0;
284 }
285
286 (*batchp)->ptes[(*batchp)->index++] = hugepte;
287 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
288 call_rcu(&(*batchp)->rcu, hugepd_free_rcu_callback);
289 *batchp = NULL;
290 }
291 put_cpu_var(hugepd_freelist_cur);
292 }
293 #else
hugepd_free(struct mmu_gather * tlb,void * hugepte)294 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
295 #endif
296
free_hugepd_range(struct mmu_gather * tlb,hugepd_t * hpdp,int pdshift,unsigned long start,unsigned long end,unsigned long floor,unsigned long ceiling)297 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
298 unsigned long start, unsigned long end,
299 unsigned long floor, unsigned long ceiling)
300 {
301 pte_t *hugepte = hugepd_page(*hpdp);
302 int i;
303
304 unsigned long pdmask = ~((1UL << pdshift) - 1);
305 unsigned int num_hugepd = 1;
306 unsigned int shift = hugepd_shift(*hpdp);
307
308 /* Note: On fsl the hpdp may be the first of several */
309 if (shift > pdshift)
310 num_hugepd = 1 << (shift - pdshift);
311
312 start &= pdmask;
313 if (start < floor)
314 return;
315 if (ceiling) {
316 ceiling &= pdmask;
317 if (! ceiling)
318 return;
319 }
320 if (end - 1 > ceiling - 1)
321 return;
322
323 for (i = 0; i < num_hugepd; i++, hpdp++)
324 *hpdp = __hugepd(0);
325
326 if (shift >= pdshift)
327 hugepd_free(tlb, hugepte);
328 else
329 pgtable_free_tlb(tlb, hugepte,
330 get_hugepd_cache_index(pdshift - shift));
331 }
332
hugetlb_free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)333 static void hugetlb_free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
334 unsigned long addr, unsigned long end,
335 unsigned long floor, unsigned long ceiling)
336 {
337 unsigned long start = addr;
338 pgtable_t token = pmd_pgtable(*pmd);
339
340 start &= PMD_MASK;
341 if (start < floor)
342 return;
343 if (ceiling) {
344 ceiling &= PMD_MASK;
345 if (!ceiling)
346 return;
347 }
348 if (end - 1 > ceiling - 1)
349 return;
350
351 pmd_clear(pmd);
352 pte_free_tlb(tlb, token, addr);
353 mm_dec_nr_ptes(tlb->mm);
354 }
355
hugetlb_free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)356 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
357 unsigned long addr, unsigned long end,
358 unsigned long floor, unsigned long ceiling)
359 {
360 pmd_t *pmd;
361 unsigned long next;
362 unsigned long start;
363
364 start = addr;
365 do {
366 unsigned long more;
367
368 pmd = pmd_offset(pud, addr);
369 next = pmd_addr_end(addr, end);
370 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
371 if (pmd_none_or_clear_bad(pmd))
372 continue;
373
374 /*
375 * if it is not hugepd pointer, we should already find
376 * it cleared.
377 */
378 WARN_ON(!IS_ENABLED(CONFIG_PPC_8xx));
379
380 hugetlb_free_pte_range(tlb, pmd, addr, end, floor, ceiling);
381
382 continue;
383 }
384 /*
385 * Increment next by the size of the huge mapping since
386 * there may be more than one entry at this level for a
387 * single hugepage, but all of them point to
388 * the same kmem cache that holds the hugepte.
389 */
390 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
391 if (more > next)
392 next = more;
393
394 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
395 addr, next, floor, ceiling);
396 } while (addr = next, addr != end);
397
398 start &= PUD_MASK;
399 if (start < floor)
400 return;
401 if (ceiling) {
402 ceiling &= PUD_MASK;
403 if (!ceiling)
404 return;
405 }
406 if (end - 1 > ceiling - 1)
407 return;
408
409 pmd = pmd_offset(pud, start);
410 pud_clear(pud);
411 pmd_free_tlb(tlb, pmd, start);
412 mm_dec_nr_pmds(tlb->mm);
413 }
414
hugetlb_free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)415 static void hugetlb_free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
416 unsigned long addr, unsigned long end,
417 unsigned long floor, unsigned long ceiling)
418 {
419 pud_t *pud;
420 unsigned long next;
421 unsigned long start;
422
423 start = addr;
424 do {
425 pud = pud_offset(p4d, addr);
426 next = pud_addr_end(addr, end);
427 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
428 if (pud_none_or_clear_bad(pud))
429 continue;
430 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
431 ceiling);
432 } else {
433 unsigned long more;
434 /*
435 * Increment next by the size of the huge mapping since
436 * there may be more than one entry at this level for a
437 * single hugepage, but all of them point to
438 * the same kmem cache that holds the hugepte.
439 */
440 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
441 if (more > next)
442 next = more;
443
444 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
445 addr, next, floor, ceiling);
446 }
447 } while (addr = next, addr != end);
448
449 start &= PGDIR_MASK;
450 if (start < floor)
451 return;
452 if (ceiling) {
453 ceiling &= PGDIR_MASK;
454 if (!ceiling)
455 return;
456 }
457 if (end - 1 > ceiling - 1)
458 return;
459
460 pud = pud_offset(p4d, start);
461 p4d_clear(p4d);
462 pud_free_tlb(tlb, pud, start);
463 mm_dec_nr_puds(tlb->mm);
464 }
465
466 /*
467 * This function frees user-level page tables of a process.
468 */
hugetlb_free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)469 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
470 unsigned long addr, unsigned long end,
471 unsigned long floor, unsigned long ceiling)
472 {
473 pgd_t *pgd;
474 p4d_t *p4d;
475 unsigned long next;
476
477 /*
478 * Because there are a number of different possible pagetable
479 * layouts for hugepage ranges, we limit knowledge of how
480 * things should be laid out to the allocation path
481 * (huge_pte_alloc(), above). Everything else works out the
482 * structure as it goes from information in the hugepd
483 * pointers. That means that we can't here use the
484 * optimization used in the normal page free_pgd_range(), of
485 * checking whether we're actually covering a large enough
486 * range to have to do anything at the top level of the walk
487 * instead of at the bottom.
488 *
489 * To make sense of this, you should probably go read the big
490 * block comment at the top of the normal free_pgd_range(),
491 * too.
492 */
493
494 do {
495 next = pgd_addr_end(addr, end);
496 pgd = pgd_offset(tlb->mm, addr);
497 p4d = p4d_offset(pgd, addr);
498 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
499 if (p4d_none_or_clear_bad(p4d))
500 continue;
501 hugetlb_free_pud_range(tlb, p4d, addr, next, floor, ceiling);
502 } else {
503 unsigned long more;
504 /*
505 * Increment next by the size of the huge mapping since
506 * there may be more than one entry at the pgd level
507 * for a single hugepage, but all of them point to the
508 * same kmem cache that holds the hugepte.
509 */
510 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
511 if (more > next)
512 next = more;
513
514 free_hugepd_range(tlb, (hugepd_t *)p4d, PGDIR_SHIFT,
515 addr, next, floor, ceiling);
516 }
517 } while (addr = next, addr != end);
518 }
519
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)520 struct page *follow_huge_pd(struct vm_area_struct *vma,
521 unsigned long address, hugepd_t hpd,
522 int flags, int pdshift)
523 {
524 pte_t *ptep;
525 spinlock_t *ptl;
526 struct page *page = NULL;
527 unsigned long mask;
528 int shift = hugepd_shift(hpd);
529 struct mm_struct *mm = vma->vm_mm;
530
531 retry:
532 /*
533 * hugepage directory entries are protected by mm->page_table_lock
534 * Use this instead of huge_pte_lockptr
535 */
536 ptl = &mm->page_table_lock;
537 spin_lock(ptl);
538
539 ptep = hugepte_offset(hpd, address, pdshift);
540 if (pte_present(*ptep)) {
541 mask = (1UL << shift) - 1;
542 page = pte_page(*ptep);
543 page += ((address & mask) >> PAGE_SHIFT);
544 if (flags & FOLL_GET)
545 get_page(page);
546 } else {
547 if (is_hugetlb_entry_migration(*ptep)) {
548 spin_unlock(ptl);
549 __migration_entry_wait(mm, ptep, ptl);
550 goto retry;
551 }
552 }
553 spin_unlock(ptl);
554 return page;
555 }
556
557 #ifdef CONFIG_PPC_MM_SLICES
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)558 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
559 unsigned long len, unsigned long pgoff,
560 unsigned long flags)
561 {
562 struct hstate *hstate = hstate_file(file);
563 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
564
565 #ifdef CONFIG_PPC_RADIX_MMU
566 if (radix_enabled())
567 return radix__hugetlb_get_unmapped_area(file, addr, len,
568 pgoff, flags);
569 #endif
570 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
571 }
572 #endif
573
vma_mmu_pagesize(struct vm_area_struct * vma)574 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
575 {
576 /* With radix we don't use slice, so derive it from vma*/
577 if (IS_ENABLED(CONFIG_PPC_MM_SLICES) && !radix_enabled()) {
578 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
579
580 return 1UL << mmu_psize_to_shift(psize);
581 }
582 return vma_kernel_pagesize(vma);
583 }
584
arch_hugetlb_valid_size(unsigned long size)585 bool __init arch_hugetlb_valid_size(unsigned long size)
586 {
587 int shift = __ffs(size);
588 int mmu_psize;
589
590 /* Check that it is a page size supported by the hardware and
591 * that it fits within pagetable and slice limits. */
592 if (size <= PAGE_SIZE || !is_power_of_2(size))
593 return false;
594
595 mmu_psize = check_and_get_huge_psize(shift);
596 if (mmu_psize < 0)
597 return false;
598
599 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
600
601 return true;
602 }
603
add_huge_page_size(unsigned long long size)604 static int __init add_huge_page_size(unsigned long long size)
605 {
606 int shift = __ffs(size);
607
608 if (!arch_hugetlb_valid_size((unsigned long)size))
609 return -EINVAL;
610
611 hugetlb_add_hstate(shift - PAGE_SHIFT);
612 return 0;
613 }
614
hugetlbpage_init(void)615 static int __init hugetlbpage_init(void)
616 {
617 bool configured = false;
618 int psize;
619
620 if (hugetlb_disabled) {
621 pr_info("HugeTLB support is disabled!\n");
622 return 0;
623 }
624
625 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled() &&
626 !mmu_has_feature(MMU_FTR_16M_PAGE))
627 return -ENODEV;
628
629 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
630 unsigned shift;
631 unsigned pdshift;
632
633 if (!mmu_psize_defs[psize].shift)
634 continue;
635
636 shift = mmu_psize_to_shift(psize);
637
638 #ifdef CONFIG_PPC_BOOK3S_64
639 if (shift > PGDIR_SHIFT)
640 continue;
641 else if (shift > PUD_SHIFT)
642 pdshift = PGDIR_SHIFT;
643 else if (shift > PMD_SHIFT)
644 pdshift = PUD_SHIFT;
645 else
646 pdshift = PMD_SHIFT;
647 #else
648 if (shift < PUD_SHIFT)
649 pdshift = PMD_SHIFT;
650 else if (shift < PGDIR_SHIFT)
651 pdshift = PUD_SHIFT;
652 else
653 pdshift = PGDIR_SHIFT;
654 #endif
655
656 if (add_huge_page_size(1ULL << shift) < 0)
657 continue;
658 /*
659 * if we have pdshift and shift value same, we don't
660 * use pgt cache for hugepd.
661 */
662 if (pdshift > shift) {
663 if (!IS_ENABLED(CONFIG_PPC_8xx))
664 pgtable_cache_add(pdshift - shift);
665 } else if (IS_ENABLED(CONFIG_PPC_FSL_BOOK3E) ||
666 IS_ENABLED(CONFIG_PPC_8xx)) {
667 pgtable_cache_add(PTE_T_ORDER);
668 }
669
670 configured = true;
671 }
672
673 if (configured) {
674 if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
675 hugetlbpage_init_default();
676 } else
677 pr_info("Failed to initialize. Disabling HugeTLB");
678
679 return 0;
680 }
681
682 arch_initcall(hugetlbpage_init);
683
flush_dcache_icache_hugepage(struct page * page)684 void flush_dcache_icache_hugepage(struct page *page)
685 {
686 int i;
687 void *start;
688
689 BUG_ON(!PageCompound(page));
690
691 for (i = 0; i < compound_nr(page); i++) {
692 if (!PageHighMem(page)) {
693 __flush_dcache_icache(page_address(page+i));
694 } else {
695 start = kmap_atomic(page+i);
696 __flush_dcache_icache(start);
697 kunmap_atomic(start);
698 }
699 }
700 }
701
gigantic_hugetlb_cma_reserve(void)702 void __init gigantic_hugetlb_cma_reserve(void)
703 {
704 unsigned long order = 0;
705
706 if (radix_enabled())
707 order = PUD_SHIFT - PAGE_SHIFT;
708 else if (!firmware_has_feature(FW_FEATURE_LPAR) && mmu_psize_defs[MMU_PAGE_16G].shift)
709 /*
710 * For pseries we do use ibm,expected#pages for reserving 16G pages.
711 */
712 order = mmu_psize_to_shift(MMU_PAGE_16G) - PAGE_SHIFT;
713
714 if (order) {
715 VM_WARN_ON(order < MAX_ORDER);
716 hugetlb_cma_reserve(order);
717 }
718 }
719