1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 * Paul Mackerras <paulus@au1.ibm.com>
8 * Alexander Graf <agraf@suse.de>
9 * Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
16 */
17
18 #include <linux/kvm_host.h>
19 #include <linux/kernel.h>
20 #include <linux/err.h>
21 #include <linux/slab.h>
22 #include <linux/preempt.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/stat.h>
25 #include <linux/delay.h>
26 #include <linux/export.h>
27 #include <linux/fs.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/cpu.h>
30 #include <linux/cpumask.h>
31 #include <linux/spinlock.h>
32 #include <linux/page-flags.h>
33 #include <linux/srcu.h>
34 #include <linux/miscdevice.h>
35 #include <linux/debugfs.h>
36 #include <linux/gfp.h>
37 #include <linux/vmalloc.h>
38 #include <linux/highmem.h>
39 #include <linux/hugetlb.h>
40 #include <linux/kvm_irqfd.h>
41 #include <linux/irqbypass.h>
42 #include <linux/module.h>
43 #include <linux/compiler.h>
44 #include <linux/of.h>
45
46 #include <asm/ftrace.h>
47 #include <asm/reg.h>
48 #include <asm/ppc-opcode.h>
49 #include <asm/asm-prototypes.h>
50 #include <asm/archrandom.h>
51 #include <asm/debug.h>
52 #include <asm/disassemble.h>
53 #include <asm/cputable.h>
54 #include <asm/cacheflush.h>
55 #include <linux/uaccess.h>
56 #include <asm/io.h>
57 #include <asm/kvm_ppc.h>
58 #include <asm/kvm_book3s.h>
59 #include <asm/mmu_context.h>
60 #include <asm/lppaca.h>
61 #include <asm/processor.h>
62 #include <asm/cputhreads.h>
63 #include <asm/page.h>
64 #include <asm/hvcall.h>
65 #include <asm/switch_to.h>
66 #include <asm/smp.h>
67 #include <asm/dbell.h>
68 #include <asm/hmi.h>
69 #include <asm/pnv-pci.h>
70 #include <asm/mmu.h>
71 #include <asm/opal.h>
72 #include <asm/xics.h>
73 #include <asm/xive.h>
74 #include <asm/hw_breakpoint.h>
75 #include <asm/kvm_book3s_uvmem.h>
76 #include <asm/ultravisor.h>
77 #include <asm/dtl.h>
78
79 #include "book3s.h"
80
81 #define CREATE_TRACE_POINTS
82 #include "trace_hv.h"
83
84 /* #define EXIT_DEBUG */
85 /* #define EXIT_DEBUG_SIMPLE */
86 /* #define EXIT_DEBUG_INT */
87
88 /* Used to indicate that a guest page fault needs to be handled */
89 #define RESUME_PAGE_FAULT (RESUME_GUEST | RESUME_FLAG_ARCH1)
90 /* Used to indicate that a guest passthrough interrupt needs to be handled */
91 #define RESUME_PASSTHROUGH (RESUME_GUEST | RESUME_FLAG_ARCH2)
92
93 /* Used as a "null" value for timebase values */
94 #define TB_NIL (~(u64)0)
95
96 static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
97
98 static int dynamic_mt_modes = 6;
99 module_param(dynamic_mt_modes, int, 0644);
100 MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
101 static int target_smt_mode;
102 module_param(target_smt_mode, int, 0644);
103 MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
104
105 static bool indep_threads_mode = true;
106 module_param(indep_threads_mode, bool, S_IRUGO | S_IWUSR);
107 MODULE_PARM_DESC(indep_threads_mode, "Independent-threads mode (only on POWER9)");
108
109 static bool one_vm_per_core;
110 module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
111 MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires indep_threads_mode=N)");
112
113 #ifdef CONFIG_KVM_XICS
114 static const struct kernel_param_ops module_param_ops = {
115 .set = param_set_int,
116 .get = param_get_int,
117 };
118
119 module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
120 MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
121
122 module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
123 MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
124 #endif
125
126 /* If set, guests are allowed to create and control nested guests */
127 static bool nested = true;
128 module_param(nested, bool, S_IRUGO | S_IWUSR);
129 MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
130
nesting_enabled(struct kvm * kvm)131 static inline bool nesting_enabled(struct kvm *kvm)
132 {
133 return kvm->arch.nested_enable && kvm_is_radix(kvm);
134 }
135
136 /* If set, the threads on each CPU core have to be in the same MMU mode */
137 static bool no_mixing_hpt_and_radix;
138
139 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
140
141 /*
142 * RWMR values for POWER8. These control the rate at which PURR
143 * and SPURR count and should be set according to the number of
144 * online threads in the vcore being run.
145 */
146 #define RWMR_RPA_P8_1THREAD 0x164520C62609AECAUL
147 #define RWMR_RPA_P8_2THREAD 0x7FFF2908450D8DA9UL
148 #define RWMR_RPA_P8_3THREAD 0x164520C62609AECAUL
149 #define RWMR_RPA_P8_4THREAD 0x199A421245058DA9UL
150 #define RWMR_RPA_P8_5THREAD 0x164520C62609AECAUL
151 #define RWMR_RPA_P8_6THREAD 0x164520C62609AECAUL
152 #define RWMR_RPA_P8_7THREAD 0x164520C62609AECAUL
153 #define RWMR_RPA_P8_8THREAD 0x164520C62609AECAUL
154
155 static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
156 RWMR_RPA_P8_1THREAD,
157 RWMR_RPA_P8_1THREAD,
158 RWMR_RPA_P8_2THREAD,
159 RWMR_RPA_P8_3THREAD,
160 RWMR_RPA_P8_4THREAD,
161 RWMR_RPA_P8_5THREAD,
162 RWMR_RPA_P8_6THREAD,
163 RWMR_RPA_P8_7THREAD,
164 RWMR_RPA_P8_8THREAD,
165 };
166
next_runnable_thread(struct kvmppc_vcore * vc,int * ip)167 static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
168 int *ip)
169 {
170 int i = *ip;
171 struct kvm_vcpu *vcpu;
172
173 while (++i < MAX_SMT_THREADS) {
174 vcpu = READ_ONCE(vc->runnable_threads[i]);
175 if (vcpu) {
176 *ip = i;
177 return vcpu;
178 }
179 }
180 return NULL;
181 }
182
183 /* Used to traverse the list of runnable threads for a given vcore */
184 #define for_each_runnable_thread(i, vcpu, vc) \
185 for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
186
kvmppc_ipi_thread(int cpu)187 static bool kvmppc_ipi_thread(int cpu)
188 {
189 unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
190
191 /* If we're a nested hypervisor, fall back to ordinary IPIs for now */
192 if (kvmhv_on_pseries())
193 return false;
194
195 /* On POWER9 we can use msgsnd to IPI any cpu */
196 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
197 msg |= get_hard_smp_processor_id(cpu);
198 smp_mb();
199 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
200 return true;
201 }
202
203 /* On POWER8 for IPIs to threads in the same core, use msgsnd */
204 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
205 preempt_disable();
206 if (cpu_first_thread_sibling(cpu) ==
207 cpu_first_thread_sibling(smp_processor_id())) {
208 msg |= cpu_thread_in_core(cpu);
209 smp_mb();
210 __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
211 preempt_enable();
212 return true;
213 }
214 preempt_enable();
215 }
216
217 #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
218 if (cpu >= 0 && cpu < nr_cpu_ids) {
219 if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
220 xics_wake_cpu(cpu);
221 return true;
222 }
223 opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
224 return true;
225 }
226 #endif
227
228 return false;
229 }
230
kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu * vcpu)231 static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
232 {
233 int cpu;
234 struct rcuwait *waitp;
235
236 waitp = kvm_arch_vcpu_get_wait(vcpu);
237 if (rcuwait_wake_up(waitp))
238 ++vcpu->stat.halt_wakeup;
239
240 cpu = READ_ONCE(vcpu->arch.thread_cpu);
241 if (cpu >= 0 && kvmppc_ipi_thread(cpu))
242 return;
243
244 /* CPU points to the first thread of the core */
245 cpu = vcpu->cpu;
246 if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
247 smp_send_reschedule(cpu);
248 }
249
250 /*
251 * We use the vcpu_load/put functions to measure stolen time.
252 * Stolen time is counted as time when either the vcpu is able to
253 * run as part of a virtual core, but the task running the vcore
254 * is preempted or sleeping, or when the vcpu needs something done
255 * in the kernel by the task running the vcpu, but that task is
256 * preempted or sleeping. Those two things have to be counted
257 * separately, since one of the vcpu tasks will take on the job
258 * of running the core, and the other vcpu tasks in the vcore will
259 * sleep waiting for it to do that, but that sleep shouldn't count
260 * as stolen time.
261 *
262 * Hence we accumulate stolen time when the vcpu can run as part of
263 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
264 * needs its task to do other things in the kernel (for example,
265 * service a page fault) in busy_stolen. We don't accumulate
266 * stolen time for a vcore when it is inactive, or for a vcpu
267 * when it is in state RUNNING or NOTREADY. NOTREADY is a bit of
268 * a misnomer; it means that the vcpu task is not executing in
269 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
270 * the kernel. We don't have any way of dividing up that time
271 * between time that the vcpu is genuinely stopped, time that
272 * the task is actively working on behalf of the vcpu, and time
273 * that the task is preempted, so we don't count any of it as
274 * stolen.
275 *
276 * Updates to busy_stolen are protected by arch.tbacct_lock;
277 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
278 * lock. The stolen times are measured in units of timebase ticks.
279 * (Note that the != TB_NIL checks below are purely defensive;
280 * they should never fail.)
281 */
282
kvmppc_core_start_stolen(struct kvmppc_vcore * vc)283 static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc)
284 {
285 unsigned long flags;
286
287 spin_lock_irqsave(&vc->stoltb_lock, flags);
288 vc->preempt_tb = mftb();
289 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
290 }
291
kvmppc_core_end_stolen(struct kvmppc_vcore * vc)292 static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc)
293 {
294 unsigned long flags;
295
296 spin_lock_irqsave(&vc->stoltb_lock, flags);
297 if (vc->preempt_tb != TB_NIL) {
298 vc->stolen_tb += mftb() - vc->preempt_tb;
299 vc->preempt_tb = TB_NIL;
300 }
301 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302 }
303
kvmppc_core_vcpu_load_hv(struct kvm_vcpu * vcpu,int cpu)304 static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
305 {
306 struct kvmppc_vcore *vc = vcpu->arch.vcore;
307 unsigned long flags;
308
309 /*
310 * We can test vc->runner without taking the vcore lock,
311 * because only this task ever sets vc->runner to this
312 * vcpu, and once it is set to this vcpu, only this task
313 * ever sets it to NULL.
314 */
315 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
316 kvmppc_core_end_stolen(vc);
317
318 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
319 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
320 vcpu->arch.busy_preempt != TB_NIL) {
321 vcpu->arch.busy_stolen += mftb() - vcpu->arch.busy_preempt;
322 vcpu->arch.busy_preempt = TB_NIL;
323 }
324 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
325 }
326
kvmppc_core_vcpu_put_hv(struct kvm_vcpu * vcpu)327 static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
328 {
329 struct kvmppc_vcore *vc = vcpu->arch.vcore;
330 unsigned long flags;
331
332 if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
333 kvmppc_core_start_stolen(vc);
334
335 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
336 if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
337 vcpu->arch.busy_preempt = mftb();
338 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
339 }
340
kvmppc_set_pvr_hv(struct kvm_vcpu * vcpu,u32 pvr)341 static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
342 {
343 vcpu->arch.pvr = pvr;
344 }
345
346 /* Dummy value used in computing PCR value below */
347 #define PCR_ARCH_31 (PCR_ARCH_300 << 1)
348
kvmppc_set_arch_compat(struct kvm_vcpu * vcpu,u32 arch_compat)349 static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
350 {
351 unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
352 struct kvmppc_vcore *vc = vcpu->arch.vcore;
353
354 /* We can (emulate) our own architecture version and anything older */
355 if (cpu_has_feature(CPU_FTR_ARCH_31))
356 host_pcr_bit = PCR_ARCH_31;
357 else if (cpu_has_feature(CPU_FTR_ARCH_300))
358 host_pcr_bit = PCR_ARCH_300;
359 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
360 host_pcr_bit = PCR_ARCH_207;
361 else if (cpu_has_feature(CPU_FTR_ARCH_206))
362 host_pcr_bit = PCR_ARCH_206;
363 else
364 host_pcr_bit = PCR_ARCH_205;
365
366 /* Determine lowest PCR bit needed to run guest in given PVR level */
367 guest_pcr_bit = host_pcr_bit;
368 if (arch_compat) {
369 switch (arch_compat) {
370 case PVR_ARCH_205:
371 guest_pcr_bit = PCR_ARCH_205;
372 break;
373 case PVR_ARCH_206:
374 case PVR_ARCH_206p:
375 guest_pcr_bit = PCR_ARCH_206;
376 break;
377 case PVR_ARCH_207:
378 guest_pcr_bit = PCR_ARCH_207;
379 break;
380 case PVR_ARCH_300:
381 guest_pcr_bit = PCR_ARCH_300;
382 break;
383 case PVR_ARCH_31:
384 guest_pcr_bit = PCR_ARCH_31;
385 break;
386 default:
387 return -EINVAL;
388 }
389 }
390
391 /* Check requested PCR bits don't exceed our capabilities */
392 if (guest_pcr_bit > host_pcr_bit)
393 return -EINVAL;
394
395 spin_lock(&vc->lock);
396 vc->arch_compat = arch_compat;
397 /*
398 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
399 * Also set all reserved PCR bits
400 */
401 vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
402 spin_unlock(&vc->lock);
403
404 return 0;
405 }
406
kvmppc_dump_regs(struct kvm_vcpu * vcpu)407 static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
408 {
409 int r;
410
411 pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
412 pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
413 vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
414 for (r = 0; r < 16; ++r)
415 pr_err("r%2d = %.16lx r%d = %.16lx\n",
416 r, kvmppc_get_gpr(vcpu, r),
417 r+16, kvmppc_get_gpr(vcpu, r+16));
418 pr_err("ctr = %.16lx lr = %.16lx\n",
419 vcpu->arch.regs.ctr, vcpu->arch.regs.link);
420 pr_err("srr0 = %.16llx srr1 = %.16llx\n",
421 vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
422 pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
423 vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
424 pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
425 vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
426 pr_err("cr = %.8lx xer = %.16lx dsisr = %.8x\n",
427 vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
428 pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
429 pr_err("fault dar = %.16lx dsisr = %.8x\n",
430 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
431 pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
432 for (r = 0; r < vcpu->arch.slb_max; ++r)
433 pr_err(" ESID = %.16llx VSID = %.16llx\n",
434 vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
435 pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
436 vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
437 vcpu->arch.last_inst);
438 }
439
kvmppc_find_vcpu(struct kvm * kvm,int id)440 static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
441 {
442 return kvm_get_vcpu_by_id(kvm, id);
443 }
444
init_vpa(struct kvm_vcpu * vcpu,struct lppaca * vpa)445 static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
446 {
447 vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
448 vpa->yield_count = cpu_to_be32(1);
449 }
450
set_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * v,unsigned long addr,unsigned long len)451 static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
452 unsigned long addr, unsigned long len)
453 {
454 /* check address is cacheline aligned */
455 if (addr & (L1_CACHE_BYTES - 1))
456 return -EINVAL;
457 spin_lock(&vcpu->arch.vpa_update_lock);
458 if (v->next_gpa != addr || v->len != len) {
459 v->next_gpa = addr;
460 v->len = addr ? len : 0;
461 v->update_pending = 1;
462 }
463 spin_unlock(&vcpu->arch.vpa_update_lock);
464 return 0;
465 }
466
467 /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
468 struct reg_vpa {
469 u32 dummy;
470 union {
471 __be16 hword;
472 __be32 word;
473 } length;
474 };
475
vpa_is_registered(struct kvmppc_vpa * vpap)476 static int vpa_is_registered(struct kvmppc_vpa *vpap)
477 {
478 if (vpap->update_pending)
479 return vpap->next_gpa != 0;
480 return vpap->pinned_addr != NULL;
481 }
482
do_h_register_vpa(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long vcpuid,unsigned long vpa)483 static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
484 unsigned long flags,
485 unsigned long vcpuid, unsigned long vpa)
486 {
487 struct kvm *kvm = vcpu->kvm;
488 unsigned long len, nb;
489 void *va;
490 struct kvm_vcpu *tvcpu;
491 int err;
492 int subfunc;
493 struct kvmppc_vpa *vpap;
494
495 tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
496 if (!tvcpu)
497 return H_PARAMETER;
498
499 subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
500 if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
501 subfunc == H_VPA_REG_SLB) {
502 /* Registering new area - address must be cache-line aligned */
503 if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
504 return H_PARAMETER;
505
506 /* convert logical addr to kernel addr and read length */
507 va = kvmppc_pin_guest_page(kvm, vpa, &nb);
508 if (va == NULL)
509 return H_PARAMETER;
510 if (subfunc == H_VPA_REG_VPA)
511 len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
512 else
513 len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
514 kvmppc_unpin_guest_page(kvm, va, vpa, false);
515
516 /* Check length */
517 if (len > nb || len < sizeof(struct reg_vpa))
518 return H_PARAMETER;
519 } else {
520 vpa = 0;
521 len = 0;
522 }
523
524 err = H_PARAMETER;
525 vpap = NULL;
526 spin_lock(&tvcpu->arch.vpa_update_lock);
527
528 switch (subfunc) {
529 case H_VPA_REG_VPA: /* register VPA */
530 /*
531 * The size of our lppaca is 1kB because of the way we align
532 * it for the guest to avoid crossing a 4kB boundary. We only
533 * use 640 bytes of the structure though, so we should accept
534 * clients that set a size of 640.
535 */
536 BUILD_BUG_ON(sizeof(struct lppaca) != 640);
537 if (len < sizeof(struct lppaca))
538 break;
539 vpap = &tvcpu->arch.vpa;
540 err = 0;
541 break;
542
543 case H_VPA_REG_DTL: /* register DTL */
544 if (len < sizeof(struct dtl_entry))
545 break;
546 len -= len % sizeof(struct dtl_entry);
547
548 /* Check that they have previously registered a VPA */
549 err = H_RESOURCE;
550 if (!vpa_is_registered(&tvcpu->arch.vpa))
551 break;
552
553 vpap = &tvcpu->arch.dtl;
554 err = 0;
555 break;
556
557 case H_VPA_REG_SLB: /* register SLB shadow buffer */
558 /* Check that they have previously registered a VPA */
559 err = H_RESOURCE;
560 if (!vpa_is_registered(&tvcpu->arch.vpa))
561 break;
562
563 vpap = &tvcpu->arch.slb_shadow;
564 err = 0;
565 break;
566
567 case H_VPA_DEREG_VPA: /* deregister VPA */
568 /* Check they don't still have a DTL or SLB buf registered */
569 err = H_RESOURCE;
570 if (vpa_is_registered(&tvcpu->arch.dtl) ||
571 vpa_is_registered(&tvcpu->arch.slb_shadow))
572 break;
573
574 vpap = &tvcpu->arch.vpa;
575 err = 0;
576 break;
577
578 case H_VPA_DEREG_DTL: /* deregister DTL */
579 vpap = &tvcpu->arch.dtl;
580 err = 0;
581 break;
582
583 case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
584 vpap = &tvcpu->arch.slb_shadow;
585 err = 0;
586 break;
587 }
588
589 if (vpap) {
590 vpap->next_gpa = vpa;
591 vpap->len = len;
592 vpap->update_pending = 1;
593 }
594
595 spin_unlock(&tvcpu->arch.vpa_update_lock);
596
597 return err;
598 }
599
kvmppc_update_vpa(struct kvm_vcpu * vcpu,struct kvmppc_vpa * vpap)600 static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
601 {
602 struct kvm *kvm = vcpu->kvm;
603 void *va;
604 unsigned long nb;
605 unsigned long gpa;
606
607 /*
608 * We need to pin the page pointed to by vpap->next_gpa,
609 * but we can't call kvmppc_pin_guest_page under the lock
610 * as it does get_user_pages() and down_read(). So we
611 * have to drop the lock, pin the page, then get the lock
612 * again and check that a new area didn't get registered
613 * in the meantime.
614 */
615 for (;;) {
616 gpa = vpap->next_gpa;
617 spin_unlock(&vcpu->arch.vpa_update_lock);
618 va = NULL;
619 nb = 0;
620 if (gpa)
621 va = kvmppc_pin_guest_page(kvm, gpa, &nb);
622 spin_lock(&vcpu->arch.vpa_update_lock);
623 if (gpa == vpap->next_gpa)
624 break;
625 /* sigh... unpin that one and try again */
626 if (va)
627 kvmppc_unpin_guest_page(kvm, va, gpa, false);
628 }
629
630 vpap->update_pending = 0;
631 if (va && nb < vpap->len) {
632 /*
633 * If it's now too short, it must be that userspace
634 * has changed the mappings underlying guest memory,
635 * so unregister the region.
636 */
637 kvmppc_unpin_guest_page(kvm, va, gpa, false);
638 va = NULL;
639 }
640 if (vpap->pinned_addr)
641 kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
642 vpap->dirty);
643 vpap->gpa = gpa;
644 vpap->pinned_addr = va;
645 vpap->dirty = false;
646 if (va)
647 vpap->pinned_end = va + vpap->len;
648 }
649
kvmppc_update_vpas(struct kvm_vcpu * vcpu)650 static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
651 {
652 if (!(vcpu->arch.vpa.update_pending ||
653 vcpu->arch.slb_shadow.update_pending ||
654 vcpu->arch.dtl.update_pending))
655 return;
656
657 spin_lock(&vcpu->arch.vpa_update_lock);
658 if (vcpu->arch.vpa.update_pending) {
659 kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
660 if (vcpu->arch.vpa.pinned_addr)
661 init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
662 }
663 if (vcpu->arch.dtl.update_pending) {
664 kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
665 vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
666 vcpu->arch.dtl_index = 0;
667 }
668 if (vcpu->arch.slb_shadow.update_pending)
669 kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
670 spin_unlock(&vcpu->arch.vpa_update_lock);
671 }
672
673 /*
674 * Return the accumulated stolen time for the vcore up until `now'.
675 * The caller should hold the vcore lock.
676 */
vcore_stolen_time(struct kvmppc_vcore * vc,u64 now)677 static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
678 {
679 u64 p;
680 unsigned long flags;
681
682 spin_lock_irqsave(&vc->stoltb_lock, flags);
683 p = vc->stolen_tb;
684 if (vc->vcore_state != VCORE_INACTIVE &&
685 vc->preempt_tb != TB_NIL)
686 p += now - vc->preempt_tb;
687 spin_unlock_irqrestore(&vc->stoltb_lock, flags);
688 return p;
689 }
690
kvmppc_create_dtl_entry(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)691 static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
692 struct kvmppc_vcore *vc)
693 {
694 struct dtl_entry *dt;
695 struct lppaca *vpa;
696 unsigned long stolen;
697 unsigned long core_stolen;
698 u64 now;
699 unsigned long flags;
700
701 dt = vcpu->arch.dtl_ptr;
702 vpa = vcpu->arch.vpa.pinned_addr;
703 now = mftb();
704 core_stolen = vcore_stolen_time(vc, now);
705 stolen = core_stolen - vcpu->arch.stolen_logged;
706 vcpu->arch.stolen_logged = core_stolen;
707 spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
708 stolen += vcpu->arch.busy_stolen;
709 vcpu->arch.busy_stolen = 0;
710 spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
711 if (!dt || !vpa)
712 return;
713 memset(dt, 0, sizeof(struct dtl_entry));
714 dt->dispatch_reason = 7;
715 dt->processor_id = cpu_to_be16(vc->pcpu + vcpu->arch.ptid);
716 dt->timebase = cpu_to_be64(now + vc->tb_offset);
717 dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
718 dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
719 dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
720 ++dt;
721 if (dt == vcpu->arch.dtl.pinned_end)
722 dt = vcpu->arch.dtl.pinned_addr;
723 vcpu->arch.dtl_ptr = dt;
724 /* order writing *dt vs. writing vpa->dtl_idx */
725 smp_wmb();
726 vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
727 vcpu->arch.dtl.dirty = true;
728 }
729
730 /* See if there is a doorbell interrupt pending for a vcpu */
kvmppc_doorbell_pending(struct kvm_vcpu * vcpu)731 static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
732 {
733 int thr;
734 struct kvmppc_vcore *vc;
735
736 if (vcpu->arch.doorbell_request)
737 return true;
738 /*
739 * Ensure that the read of vcore->dpdes comes after the read
740 * of vcpu->doorbell_request. This barrier matches the
741 * smp_wmb() in kvmppc_guest_entry_inject().
742 */
743 smp_rmb();
744 vc = vcpu->arch.vcore;
745 thr = vcpu->vcpu_id - vc->first_vcpuid;
746 return !!(vc->dpdes & (1 << thr));
747 }
748
kvmppc_power8_compatible(struct kvm_vcpu * vcpu)749 static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
750 {
751 if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
752 return true;
753 if ((!vcpu->arch.vcore->arch_compat) &&
754 cpu_has_feature(CPU_FTR_ARCH_207S))
755 return true;
756 return false;
757 }
758
kvmppc_h_set_mode(struct kvm_vcpu * vcpu,unsigned long mflags,unsigned long resource,unsigned long value1,unsigned long value2)759 static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
760 unsigned long resource, unsigned long value1,
761 unsigned long value2)
762 {
763 switch (resource) {
764 case H_SET_MODE_RESOURCE_SET_CIABR:
765 if (!kvmppc_power8_compatible(vcpu))
766 return H_P2;
767 if (value2)
768 return H_P4;
769 if (mflags)
770 return H_UNSUPPORTED_FLAG_START;
771 /* Guests can't breakpoint the hypervisor */
772 if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
773 return H_P3;
774 vcpu->arch.ciabr = value1;
775 return H_SUCCESS;
776 case H_SET_MODE_RESOURCE_SET_DAWR0:
777 if (!kvmppc_power8_compatible(vcpu))
778 return H_P2;
779 if (!ppc_breakpoint_available())
780 return H_P2;
781 if (mflags)
782 return H_UNSUPPORTED_FLAG_START;
783 if (value2 & DABRX_HYP)
784 return H_P4;
785 vcpu->arch.dawr = value1;
786 vcpu->arch.dawrx = value2;
787 return H_SUCCESS;
788 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
789 /* KVM does not support mflags=2 (AIL=2) */
790 if (mflags != 0 && mflags != 3)
791 return H_UNSUPPORTED_FLAG_START;
792 return H_TOO_HARD;
793 default:
794 return H_TOO_HARD;
795 }
796 }
797
798 /* Copy guest memory in place - must reside within a single memslot */
kvmppc_copy_guest(struct kvm * kvm,gpa_t to,gpa_t from,unsigned long len)799 static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
800 unsigned long len)
801 {
802 struct kvm_memory_slot *to_memslot = NULL;
803 struct kvm_memory_slot *from_memslot = NULL;
804 unsigned long to_addr, from_addr;
805 int r;
806
807 /* Get HPA for from address */
808 from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
809 if (!from_memslot)
810 return -EFAULT;
811 if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
812 << PAGE_SHIFT))
813 return -EINVAL;
814 from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
815 if (kvm_is_error_hva(from_addr))
816 return -EFAULT;
817 from_addr |= (from & (PAGE_SIZE - 1));
818
819 /* Get HPA for to address */
820 to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
821 if (!to_memslot)
822 return -EFAULT;
823 if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
824 << PAGE_SHIFT))
825 return -EINVAL;
826 to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
827 if (kvm_is_error_hva(to_addr))
828 return -EFAULT;
829 to_addr |= (to & (PAGE_SIZE - 1));
830
831 /* Perform copy */
832 r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
833 len);
834 if (r)
835 return -EFAULT;
836 mark_page_dirty(kvm, to >> PAGE_SHIFT);
837 return 0;
838 }
839
kvmppc_h_page_init(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long dest,unsigned long src)840 static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
841 unsigned long dest, unsigned long src)
842 {
843 u64 pg_sz = SZ_4K; /* 4K page size */
844 u64 pg_mask = SZ_4K - 1;
845 int ret;
846
847 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
848 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
849 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
850 return H_PARAMETER;
851
852 /* dest (and src if copy_page flag set) must be page aligned */
853 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
854 return H_PARAMETER;
855
856 /* zero and/or copy the page as determined by the flags */
857 if (flags & H_COPY_PAGE) {
858 ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
859 if (ret < 0)
860 return H_PARAMETER;
861 } else if (flags & H_ZERO_PAGE) {
862 ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
863 if (ret < 0)
864 return H_PARAMETER;
865 }
866
867 /* We can ignore the remaining flags */
868
869 return H_SUCCESS;
870 }
871
kvm_arch_vcpu_yield_to(struct kvm_vcpu * target)872 static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
873 {
874 struct kvmppc_vcore *vcore = target->arch.vcore;
875
876 /*
877 * We expect to have been called by the real mode handler
878 * (kvmppc_rm_h_confer()) which would have directly returned
879 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
880 * have useful work to do and should not confer) so we don't
881 * recheck that here.
882 */
883
884 spin_lock(&vcore->lock);
885 if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
886 vcore->vcore_state != VCORE_INACTIVE &&
887 vcore->runner)
888 target = vcore->runner;
889 spin_unlock(&vcore->lock);
890
891 return kvm_vcpu_yield_to(target);
892 }
893
kvmppc_get_yield_count(struct kvm_vcpu * vcpu)894 static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
895 {
896 int yield_count = 0;
897 struct lppaca *lppaca;
898
899 spin_lock(&vcpu->arch.vpa_update_lock);
900 lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
901 if (lppaca)
902 yield_count = be32_to_cpu(lppaca->yield_count);
903 spin_unlock(&vcpu->arch.vpa_update_lock);
904 return yield_count;
905 }
906
kvmppc_pseries_do_hcall(struct kvm_vcpu * vcpu)907 int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
908 {
909 unsigned long req = kvmppc_get_gpr(vcpu, 3);
910 unsigned long target, ret = H_SUCCESS;
911 int yield_count;
912 struct kvm_vcpu *tvcpu;
913 int idx, rc;
914
915 if (req <= MAX_HCALL_OPCODE &&
916 !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
917 return RESUME_HOST;
918
919 switch (req) {
920 case H_CEDE:
921 break;
922 case H_PROD:
923 target = kvmppc_get_gpr(vcpu, 4);
924 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
925 if (!tvcpu) {
926 ret = H_PARAMETER;
927 break;
928 }
929 tvcpu->arch.prodded = 1;
930 smp_mb();
931 if (tvcpu->arch.ceded)
932 kvmppc_fast_vcpu_kick_hv(tvcpu);
933 break;
934 case H_CONFER:
935 target = kvmppc_get_gpr(vcpu, 4);
936 if (target == -1)
937 break;
938 tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
939 if (!tvcpu) {
940 ret = H_PARAMETER;
941 break;
942 }
943 yield_count = kvmppc_get_gpr(vcpu, 5);
944 if (kvmppc_get_yield_count(tvcpu) != yield_count)
945 break;
946 kvm_arch_vcpu_yield_to(tvcpu);
947 break;
948 case H_REGISTER_VPA:
949 ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
950 kvmppc_get_gpr(vcpu, 5),
951 kvmppc_get_gpr(vcpu, 6));
952 break;
953 case H_RTAS:
954 if (list_empty(&vcpu->kvm->arch.rtas_tokens))
955 return RESUME_HOST;
956
957 idx = srcu_read_lock(&vcpu->kvm->srcu);
958 rc = kvmppc_rtas_hcall(vcpu);
959 srcu_read_unlock(&vcpu->kvm->srcu, idx);
960
961 if (rc == -ENOENT)
962 return RESUME_HOST;
963 else if (rc == 0)
964 break;
965
966 /* Send the error out to userspace via KVM_RUN */
967 return rc;
968 case H_LOGICAL_CI_LOAD:
969 ret = kvmppc_h_logical_ci_load(vcpu);
970 if (ret == H_TOO_HARD)
971 return RESUME_HOST;
972 break;
973 case H_LOGICAL_CI_STORE:
974 ret = kvmppc_h_logical_ci_store(vcpu);
975 if (ret == H_TOO_HARD)
976 return RESUME_HOST;
977 break;
978 case H_SET_MODE:
979 ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
980 kvmppc_get_gpr(vcpu, 5),
981 kvmppc_get_gpr(vcpu, 6),
982 kvmppc_get_gpr(vcpu, 7));
983 if (ret == H_TOO_HARD)
984 return RESUME_HOST;
985 break;
986 case H_XIRR:
987 case H_CPPR:
988 case H_EOI:
989 case H_IPI:
990 case H_IPOLL:
991 case H_XIRR_X:
992 if (kvmppc_xics_enabled(vcpu)) {
993 if (xics_on_xive()) {
994 ret = H_NOT_AVAILABLE;
995 return RESUME_GUEST;
996 }
997 ret = kvmppc_xics_hcall(vcpu, req);
998 break;
999 }
1000 return RESUME_HOST;
1001 case H_SET_DABR:
1002 ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1003 break;
1004 case H_SET_XDABR:
1005 ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1006 kvmppc_get_gpr(vcpu, 5));
1007 break;
1008 #ifdef CONFIG_SPAPR_TCE_IOMMU
1009 case H_GET_TCE:
1010 ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1011 kvmppc_get_gpr(vcpu, 5));
1012 if (ret == H_TOO_HARD)
1013 return RESUME_HOST;
1014 break;
1015 case H_PUT_TCE:
1016 ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1017 kvmppc_get_gpr(vcpu, 5),
1018 kvmppc_get_gpr(vcpu, 6));
1019 if (ret == H_TOO_HARD)
1020 return RESUME_HOST;
1021 break;
1022 case H_PUT_TCE_INDIRECT:
1023 ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1024 kvmppc_get_gpr(vcpu, 5),
1025 kvmppc_get_gpr(vcpu, 6),
1026 kvmppc_get_gpr(vcpu, 7));
1027 if (ret == H_TOO_HARD)
1028 return RESUME_HOST;
1029 break;
1030 case H_STUFF_TCE:
1031 ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1032 kvmppc_get_gpr(vcpu, 5),
1033 kvmppc_get_gpr(vcpu, 6),
1034 kvmppc_get_gpr(vcpu, 7));
1035 if (ret == H_TOO_HARD)
1036 return RESUME_HOST;
1037 break;
1038 #endif
1039 case H_RANDOM:
1040 if (!powernv_get_random_long(&vcpu->arch.regs.gpr[4]))
1041 ret = H_HARDWARE;
1042 break;
1043
1044 case H_SET_PARTITION_TABLE:
1045 ret = H_FUNCTION;
1046 if (nesting_enabled(vcpu->kvm))
1047 ret = kvmhv_set_partition_table(vcpu);
1048 break;
1049 case H_ENTER_NESTED:
1050 ret = H_FUNCTION;
1051 if (!nesting_enabled(vcpu->kvm))
1052 break;
1053 ret = kvmhv_enter_nested_guest(vcpu);
1054 if (ret == H_INTERRUPT) {
1055 kvmppc_set_gpr(vcpu, 3, 0);
1056 vcpu->arch.hcall_needed = 0;
1057 return -EINTR;
1058 } else if (ret == H_TOO_HARD) {
1059 kvmppc_set_gpr(vcpu, 3, 0);
1060 vcpu->arch.hcall_needed = 0;
1061 return RESUME_HOST;
1062 }
1063 break;
1064 case H_TLB_INVALIDATE:
1065 ret = H_FUNCTION;
1066 if (nesting_enabled(vcpu->kvm))
1067 ret = kvmhv_do_nested_tlbie(vcpu);
1068 break;
1069 case H_COPY_TOFROM_GUEST:
1070 ret = H_FUNCTION;
1071 if (nesting_enabled(vcpu->kvm))
1072 ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1073 break;
1074 case H_PAGE_INIT:
1075 ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1076 kvmppc_get_gpr(vcpu, 5),
1077 kvmppc_get_gpr(vcpu, 6));
1078 break;
1079 case H_SVM_PAGE_IN:
1080 ret = H_UNSUPPORTED;
1081 if (kvmppc_get_srr1(vcpu) & MSR_S)
1082 ret = kvmppc_h_svm_page_in(vcpu->kvm,
1083 kvmppc_get_gpr(vcpu, 4),
1084 kvmppc_get_gpr(vcpu, 5),
1085 kvmppc_get_gpr(vcpu, 6));
1086 break;
1087 case H_SVM_PAGE_OUT:
1088 ret = H_UNSUPPORTED;
1089 if (kvmppc_get_srr1(vcpu) & MSR_S)
1090 ret = kvmppc_h_svm_page_out(vcpu->kvm,
1091 kvmppc_get_gpr(vcpu, 4),
1092 kvmppc_get_gpr(vcpu, 5),
1093 kvmppc_get_gpr(vcpu, 6));
1094 break;
1095 case H_SVM_INIT_START:
1096 ret = H_UNSUPPORTED;
1097 if (kvmppc_get_srr1(vcpu) & MSR_S)
1098 ret = kvmppc_h_svm_init_start(vcpu->kvm);
1099 break;
1100 case H_SVM_INIT_DONE:
1101 ret = H_UNSUPPORTED;
1102 if (kvmppc_get_srr1(vcpu) & MSR_S)
1103 ret = kvmppc_h_svm_init_done(vcpu->kvm);
1104 break;
1105 case H_SVM_INIT_ABORT:
1106 /*
1107 * Even if that call is made by the Ultravisor, the SSR1 value
1108 * is the guest context one, with the secure bit clear as it has
1109 * not yet been secured. So we can't check it here.
1110 * Instead the kvm->arch.secure_guest flag is checked inside
1111 * kvmppc_h_svm_init_abort().
1112 */
1113 ret = kvmppc_h_svm_init_abort(vcpu->kvm);
1114 break;
1115
1116 default:
1117 return RESUME_HOST;
1118 }
1119 kvmppc_set_gpr(vcpu, 3, ret);
1120 vcpu->arch.hcall_needed = 0;
1121 return RESUME_GUEST;
1122 }
1123
1124 /*
1125 * Handle H_CEDE in the nested virtualization case where we haven't
1126 * called the real-mode hcall handlers in book3s_hv_rmhandlers.S.
1127 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1128 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1129 */
kvmppc_nested_cede(struct kvm_vcpu * vcpu)1130 static void kvmppc_nested_cede(struct kvm_vcpu *vcpu)
1131 {
1132 vcpu->arch.shregs.msr |= MSR_EE;
1133 vcpu->arch.ceded = 1;
1134 smp_mb();
1135 if (vcpu->arch.prodded) {
1136 vcpu->arch.prodded = 0;
1137 smp_mb();
1138 vcpu->arch.ceded = 0;
1139 }
1140 }
1141
kvmppc_hcall_impl_hv(unsigned long cmd)1142 static int kvmppc_hcall_impl_hv(unsigned long cmd)
1143 {
1144 switch (cmd) {
1145 case H_CEDE:
1146 case H_PROD:
1147 case H_CONFER:
1148 case H_REGISTER_VPA:
1149 case H_SET_MODE:
1150 case H_LOGICAL_CI_LOAD:
1151 case H_LOGICAL_CI_STORE:
1152 #ifdef CONFIG_KVM_XICS
1153 case H_XIRR:
1154 case H_CPPR:
1155 case H_EOI:
1156 case H_IPI:
1157 case H_IPOLL:
1158 case H_XIRR_X:
1159 #endif
1160 case H_PAGE_INIT:
1161 return 1;
1162 }
1163
1164 /* See if it's in the real-mode table */
1165 return kvmppc_hcall_impl_hv_realmode(cmd);
1166 }
1167
kvmppc_emulate_debug_inst(struct kvm_vcpu * vcpu)1168 static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1169 {
1170 u32 last_inst;
1171
1172 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1173 EMULATE_DONE) {
1174 /*
1175 * Fetch failed, so return to guest and
1176 * try executing it again.
1177 */
1178 return RESUME_GUEST;
1179 }
1180
1181 if (last_inst == KVMPPC_INST_SW_BREAKPOINT) {
1182 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1183 vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1184 return RESUME_HOST;
1185 } else {
1186 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1187 return RESUME_GUEST;
1188 }
1189 }
1190
do_nothing(void * x)1191 static void do_nothing(void *x)
1192 {
1193 }
1194
kvmppc_read_dpdes(struct kvm_vcpu * vcpu)1195 static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1196 {
1197 int thr, cpu, pcpu, nthreads;
1198 struct kvm_vcpu *v;
1199 unsigned long dpdes;
1200
1201 nthreads = vcpu->kvm->arch.emul_smt_mode;
1202 dpdes = 0;
1203 cpu = vcpu->vcpu_id & ~(nthreads - 1);
1204 for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1205 v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1206 if (!v)
1207 continue;
1208 /*
1209 * If the vcpu is currently running on a physical cpu thread,
1210 * interrupt it in order to pull it out of the guest briefly,
1211 * which will update its vcore->dpdes value.
1212 */
1213 pcpu = READ_ONCE(v->cpu);
1214 if (pcpu >= 0)
1215 smp_call_function_single(pcpu, do_nothing, NULL, 1);
1216 if (kvmppc_doorbell_pending(v))
1217 dpdes |= 1 << thr;
1218 }
1219 return dpdes;
1220 }
1221
1222 /*
1223 * On POWER9, emulate doorbell-related instructions in order to
1224 * give the guest the illusion of running on a multi-threaded core.
1225 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1226 * and mfspr DPDES.
1227 */
kvmppc_emulate_doorbell_instr(struct kvm_vcpu * vcpu)1228 static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1229 {
1230 u32 inst, rb, thr;
1231 unsigned long arg;
1232 struct kvm *kvm = vcpu->kvm;
1233 struct kvm_vcpu *tvcpu;
1234
1235 if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &inst) != EMULATE_DONE)
1236 return RESUME_GUEST;
1237 if (get_op(inst) != 31)
1238 return EMULATE_FAIL;
1239 rb = get_rb(inst);
1240 thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1241 switch (get_xop(inst)) {
1242 case OP_31_XOP_MSGSNDP:
1243 arg = kvmppc_get_gpr(vcpu, rb);
1244 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1245 break;
1246 arg &= 0x3f;
1247 if (arg >= kvm->arch.emul_smt_mode)
1248 break;
1249 tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1250 if (!tvcpu)
1251 break;
1252 if (!tvcpu->arch.doorbell_request) {
1253 tvcpu->arch.doorbell_request = 1;
1254 kvmppc_fast_vcpu_kick_hv(tvcpu);
1255 }
1256 break;
1257 case OP_31_XOP_MSGCLRP:
1258 arg = kvmppc_get_gpr(vcpu, rb);
1259 if (((arg >> 27) & 0xf) != PPC_DBELL_SERVER)
1260 break;
1261 vcpu->arch.vcore->dpdes = 0;
1262 vcpu->arch.doorbell_request = 0;
1263 break;
1264 case OP_31_XOP_MFSPR:
1265 switch (get_sprn(inst)) {
1266 case SPRN_TIR:
1267 arg = thr;
1268 break;
1269 case SPRN_DPDES:
1270 arg = kvmppc_read_dpdes(vcpu);
1271 break;
1272 default:
1273 return EMULATE_FAIL;
1274 }
1275 kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1276 break;
1277 default:
1278 return EMULATE_FAIL;
1279 }
1280 kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1281 return RESUME_GUEST;
1282 }
1283
kvmppc_handle_exit_hv(struct kvm_vcpu * vcpu,struct task_struct * tsk)1284 static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1285 struct task_struct *tsk)
1286 {
1287 struct kvm_run *run = vcpu->run;
1288 int r = RESUME_HOST;
1289
1290 vcpu->stat.sum_exits++;
1291
1292 /*
1293 * This can happen if an interrupt occurs in the last stages
1294 * of guest entry or the first stages of guest exit (i.e. after
1295 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1296 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1297 * That can happen due to a bug, or due to a machine check
1298 * occurring at just the wrong time.
1299 */
1300 if (vcpu->arch.shregs.msr & MSR_HV) {
1301 printk(KERN_EMERG "KVM trap in HV mode!\n");
1302 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1303 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1304 vcpu->arch.shregs.msr);
1305 kvmppc_dump_regs(vcpu);
1306 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1307 run->hw.hardware_exit_reason = vcpu->arch.trap;
1308 return RESUME_HOST;
1309 }
1310 run->exit_reason = KVM_EXIT_UNKNOWN;
1311 run->ready_for_interrupt_injection = 1;
1312 switch (vcpu->arch.trap) {
1313 /* We're good on these - the host merely wanted to get our attention */
1314 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1315 vcpu->stat.dec_exits++;
1316 r = RESUME_GUEST;
1317 break;
1318 case BOOK3S_INTERRUPT_EXTERNAL:
1319 case BOOK3S_INTERRUPT_H_DOORBELL:
1320 case BOOK3S_INTERRUPT_H_VIRT:
1321 vcpu->stat.ext_intr_exits++;
1322 r = RESUME_GUEST;
1323 break;
1324 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1325 case BOOK3S_INTERRUPT_HMI:
1326 case BOOK3S_INTERRUPT_PERFMON:
1327 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1328 r = RESUME_GUEST;
1329 break;
1330 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1331 /* Print the MCE event to host console. */
1332 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1333
1334 /*
1335 * If the guest can do FWNMI, exit to userspace so it can
1336 * deliver a FWNMI to the guest.
1337 * Otherwise we synthesize a machine check for the guest
1338 * so that it knows that the machine check occurred.
1339 */
1340 if (!vcpu->kvm->arch.fwnmi_enabled) {
1341 ulong flags = vcpu->arch.shregs.msr & 0x083c0000;
1342 kvmppc_core_queue_machine_check(vcpu, flags);
1343 r = RESUME_GUEST;
1344 break;
1345 }
1346
1347 /* Exit to guest with KVM_EXIT_NMI as exit reason */
1348 run->exit_reason = KVM_EXIT_NMI;
1349 run->hw.hardware_exit_reason = vcpu->arch.trap;
1350 /* Clear out the old NMI status from run->flags */
1351 run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1352 /* Now set the NMI status */
1353 if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1354 run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1355 else
1356 run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1357
1358 r = RESUME_HOST;
1359 break;
1360 case BOOK3S_INTERRUPT_PROGRAM:
1361 {
1362 ulong flags;
1363 /*
1364 * Normally program interrupts are delivered directly
1365 * to the guest by the hardware, but we can get here
1366 * as a result of a hypervisor emulation interrupt
1367 * (e40) getting turned into a 700 by BML RTAS.
1368 */
1369 flags = vcpu->arch.shregs.msr & 0x1f0000ull;
1370 kvmppc_core_queue_program(vcpu, flags);
1371 r = RESUME_GUEST;
1372 break;
1373 }
1374 case BOOK3S_INTERRUPT_SYSCALL:
1375 {
1376 /* hcall - punt to userspace */
1377 int i;
1378
1379 /* hypercall with MSR_PR has already been handled in rmode,
1380 * and never reaches here.
1381 */
1382
1383 run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1384 for (i = 0; i < 9; ++i)
1385 run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1386 run->exit_reason = KVM_EXIT_PAPR_HCALL;
1387 vcpu->arch.hcall_needed = 1;
1388 r = RESUME_HOST;
1389 break;
1390 }
1391 /*
1392 * We get these next two if the guest accesses a page which it thinks
1393 * it has mapped but which is not actually present, either because
1394 * it is for an emulated I/O device or because the corresonding
1395 * host page has been paged out. Any other HDSI/HISI interrupts
1396 * have been handled already.
1397 */
1398 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1399 r = RESUME_PAGE_FAULT;
1400 break;
1401 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1402 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1403 vcpu->arch.fault_dsisr = vcpu->arch.shregs.msr &
1404 DSISR_SRR1_MATCH_64S;
1405 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1406 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1407 r = RESUME_PAGE_FAULT;
1408 break;
1409 /*
1410 * This occurs if the guest executes an illegal instruction.
1411 * If the guest debug is disabled, generate a program interrupt
1412 * to the guest. If guest debug is enabled, we need to check
1413 * whether the instruction is a software breakpoint instruction.
1414 * Accordingly return to Guest or Host.
1415 */
1416 case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1417 if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1418 vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1419 swab32(vcpu->arch.emul_inst) :
1420 vcpu->arch.emul_inst;
1421 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1422 r = kvmppc_emulate_debug_inst(vcpu);
1423 } else {
1424 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1425 r = RESUME_GUEST;
1426 }
1427 break;
1428 /*
1429 * This occurs if the guest (kernel or userspace), does something that
1430 * is prohibited by HFSCR.
1431 * On POWER9, this could be a doorbell instruction that we need
1432 * to emulate.
1433 * Otherwise, we just generate a program interrupt to the guest.
1434 */
1435 case BOOK3S_INTERRUPT_H_FAC_UNAVAIL:
1436 r = EMULATE_FAIL;
1437 if (((vcpu->arch.hfscr >> 56) == FSCR_MSGP_LG) &&
1438 cpu_has_feature(CPU_FTR_ARCH_300))
1439 r = kvmppc_emulate_doorbell_instr(vcpu);
1440 if (r == EMULATE_FAIL) {
1441 kvmppc_core_queue_program(vcpu, SRR1_PROGILL);
1442 r = RESUME_GUEST;
1443 }
1444 break;
1445
1446 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1447 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1448 /*
1449 * This occurs for various TM-related instructions that
1450 * we need to emulate on POWER9 DD2.2. We have already
1451 * handled the cases where the guest was in real-suspend
1452 * mode and was transitioning to transactional state.
1453 */
1454 r = kvmhv_p9_tm_emulation(vcpu);
1455 break;
1456 #endif
1457
1458 case BOOK3S_INTERRUPT_HV_RM_HARD:
1459 r = RESUME_PASSTHROUGH;
1460 break;
1461 default:
1462 kvmppc_dump_regs(vcpu);
1463 printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1464 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1465 vcpu->arch.shregs.msr);
1466 run->hw.hardware_exit_reason = vcpu->arch.trap;
1467 r = RESUME_HOST;
1468 break;
1469 }
1470
1471 return r;
1472 }
1473
kvmppc_handle_nested_exit(struct kvm_vcpu * vcpu)1474 static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1475 {
1476 int r;
1477 int srcu_idx;
1478
1479 vcpu->stat.sum_exits++;
1480
1481 /*
1482 * This can happen if an interrupt occurs in the last stages
1483 * of guest entry or the first stages of guest exit (i.e. after
1484 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1485 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1486 * That can happen due to a bug, or due to a machine check
1487 * occurring at just the wrong time.
1488 */
1489 if (vcpu->arch.shregs.msr & MSR_HV) {
1490 pr_emerg("KVM trap in HV mode while nested!\n");
1491 pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1492 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1493 vcpu->arch.shregs.msr);
1494 kvmppc_dump_regs(vcpu);
1495 return RESUME_HOST;
1496 }
1497 switch (vcpu->arch.trap) {
1498 /* We're good on these - the host merely wanted to get our attention */
1499 case BOOK3S_INTERRUPT_HV_DECREMENTER:
1500 vcpu->stat.dec_exits++;
1501 r = RESUME_GUEST;
1502 break;
1503 case BOOK3S_INTERRUPT_EXTERNAL:
1504 vcpu->stat.ext_intr_exits++;
1505 r = RESUME_HOST;
1506 break;
1507 case BOOK3S_INTERRUPT_H_DOORBELL:
1508 case BOOK3S_INTERRUPT_H_VIRT:
1509 vcpu->stat.ext_intr_exits++;
1510 r = RESUME_GUEST;
1511 break;
1512 /* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1513 case BOOK3S_INTERRUPT_HMI:
1514 case BOOK3S_INTERRUPT_PERFMON:
1515 case BOOK3S_INTERRUPT_SYSTEM_RESET:
1516 r = RESUME_GUEST;
1517 break;
1518 case BOOK3S_INTERRUPT_MACHINE_CHECK:
1519 /* Pass the machine check to the L1 guest */
1520 r = RESUME_HOST;
1521 /* Print the MCE event to host console. */
1522 machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1523 break;
1524 /*
1525 * We get these next two if the guest accesses a page which it thinks
1526 * it has mapped but which is not actually present, either because
1527 * it is for an emulated I/O device or because the corresonding
1528 * host page has been paged out.
1529 */
1530 case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1531 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1532 r = kvmhv_nested_page_fault(vcpu);
1533 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1534 break;
1535 case BOOK3S_INTERRUPT_H_INST_STORAGE:
1536 vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1537 vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1538 DSISR_SRR1_MATCH_64S;
1539 if (vcpu->arch.shregs.msr & HSRR1_HISI_WRITE)
1540 vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1541 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1542 r = kvmhv_nested_page_fault(vcpu);
1543 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1544 break;
1545
1546 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1547 case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1548 /*
1549 * This occurs for various TM-related instructions that
1550 * we need to emulate on POWER9 DD2.2. We have already
1551 * handled the cases where the guest was in real-suspend
1552 * mode and was transitioning to transactional state.
1553 */
1554 r = kvmhv_p9_tm_emulation(vcpu);
1555 break;
1556 #endif
1557
1558 case BOOK3S_INTERRUPT_HV_RM_HARD:
1559 vcpu->arch.trap = 0;
1560 r = RESUME_GUEST;
1561 if (!xics_on_xive())
1562 kvmppc_xics_rm_complete(vcpu, 0);
1563 break;
1564 default:
1565 r = RESUME_HOST;
1566 break;
1567 }
1568
1569 return r;
1570 }
1571
kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1572 static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
1573 struct kvm_sregs *sregs)
1574 {
1575 int i;
1576
1577 memset(sregs, 0, sizeof(struct kvm_sregs));
1578 sregs->pvr = vcpu->arch.pvr;
1579 for (i = 0; i < vcpu->arch.slb_max; i++) {
1580 sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
1581 sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
1582 }
1583
1584 return 0;
1585 }
1586
kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)1587 static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
1588 struct kvm_sregs *sregs)
1589 {
1590 int i, j;
1591
1592 /* Only accept the same PVR as the host's, since we can't spoof it */
1593 if (sregs->pvr != vcpu->arch.pvr)
1594 return -EINVAL;
1595
1596 j = 0;
1597 for (i = 0; i < vcpu->arch.slb_nr; i++) {
1598 if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
1599 vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
1600 vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
1601 ++j;
1602 }
1603 }
1604 vcpu->arch.slb_max = j;
1605
1606 return 0;
1607 }
1608
kvmppc_set_lpcr(struct kvm_vcpu * vcpu,u64 new_lpcr,bool preserve_top32)1609 static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
1610 bool preserve_top32)
1611 {
1612 struct kvm *kvm = vcpu->kvm;
1613 struct kvmppc_vcore *vc = vcpu->arch.vcore;
1614 u64 mask;
1615
1616 spin_lock(&vc->lock);
1617 /*
1618 * If ILE (interrupt little-endian) has changed, update the
1619 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
1620 */
1621 if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
1622 struct kvm_vcpu *vcpu;
1623 int i;
1624
1625 kvm_for_each_vcpu(i, vcpu, kvm) {
1626 if (vcpu->arch.vcore != vc)
1627 continue;
1628 if (new_lpcr & LPCR_ILE)
1629 vcpu->arch.intr_msr |= MSR_LE;
1630 else
1631 vcpu->arch.intr_msr &= ~MSR_LE;
1632 }
1633 }
1634
1635 /*
1636 * Userspace can only modify DPFD (default prefetch depth),
1637 * ILE (interrupt little-endian) and TC (translation control).
1638 * On POWER8 and POWER9 userspace can also modify AIL (alt. interrupt loc.).
1639 */
1640 mask = LPCR_DPFD | LPCR_ILE | LPCR_TC;
1641 if (cpu_has_feature(CPU_FTR_ARCH_207S))
1642 mask |= LPCR_AIL;
1643 /*
1644 * On POWER9, allow userspace to enable large decrementer for the
1645 * guest, whether or not the host has it enabled.
1646 */
1647 if (cpu_has_feature(CPU_FTR_ARCH_300))
1648 mask |= LPCR_LD;
1649
1650 /* Broken 32-bit version of LPCR must not clear top bits */
1651 if (preserve_top32)
1652 mask &= 0xFFFFFFFF;
1653 vc->lpcr = (vc->lpcr & ~mask) | (new_lpcr & mask);
1654 spin_unlock(&vc->lock);
1655 }
1656
kvmppc_get_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1657 static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1658 union kvmppc_one_reg *val)
1659 {
1660 int r = 0;
1661 long int i;
1662
1663 switch (id) {
1664 case KVM_REG_PPC_DEBUG_INST:
1665 *val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
1666 break;
1667 case KVM_REG_PPC_HIOR:
1668 *val = get_reg_val(id, 0);
1669 break;
1670 case KVM_REG_PPC_DABR:
1671 *val = get_reg_val(id, vcpu->arch.dabr);
1672 break;
1673 case KVM_REG_PPC_DABRX:
1674 *val = get_reg_val(id, vcpu->arch.dabrx);
1675 break;
1676 case KVM_REG_PPC_DSCR:
1677 *val = get_reg_val(id, vcpu->arch.dscr);
1678 break;
1679 case KVM_REG_PPC_PURR:
1680 *val = get_reg_val(id, vcpu->arch.purr);
1681 break;
1682 case KVM_REG_PPC_SPURR:
1683 *val = get_reg_val(id, vcpu->arch.spurr);
1684 break;
1685 case KVM_REG_PPC_AMR:
1686 *val = get_reg_val(id, vcpu->arch.amr);
1687 break;
1688 case KVM_REG_PPC_UAMOR:
1689 *val = get_reg_val(id, vcpu->arch.uamor);
1690 break;
1691 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1692 i = id - KVM_REG_PPC_MMCR0;
1693 *val = get_reg_val(id, vcpu->arch.mmcr[i]);
1694 break;
1695 case KVM_REG_PPC_MMCR2:
1696 *val = get_reg_val(id, vcpu->arch.mmcr[2]);
1697 break;
1698 case KVM_REG_PPC_MMCRA:
1699 *val = get_reg_val(id, vcpu->arch.mmcra);
1700 break;
1701 case KVM_REG_PPC_MMCRS:
1702 *val = get_reg_val(id, vcpu->arch.mmcrs);
1703 break;
1704 case KVM_REG_PPC_MMCR3:
1705 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
1706 break;
1707 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1708 i = id - KVM_REG_PPC_PMC1;
1709 *val = get_reg_val(id, vcpu->arch.pmc[i]);
1710 break;
1711 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1712 i = id - KVM_REG_PPC_SPMC1;
1713 *val = get_reg_val(id, vcpu->arch.spmc[i]);
1714 break;
1715 case KVM_REG_PPC_SIAR:
1716 *val = get_reg_val(id, vcpu->arch.siar);
1717 break;
1718 case KVM_REG_PPC_SDAR:
1719 *val = get_reg_val(id, vcpu->arch.sdar);
1720 break;
1721 case KVM_REG_PPC_SIER:
1722 *val = get_reg_val(id, vcpu->arch.sier[0]);
1723 break;
1724 case KVM_REG_PPC_SIER2:
1725 *val = get_reg_val(id, vcpu->arch.sier[1]);
1726 break;
1727 case KVM_REG_PPC_SIER3:
1728 *val = get_reg_val(id, vcpu->arch.sier[2]);
1729 break;
1730 case KVM_REG_PPC_IAMR:
1731 *val = get_reg_val(id, vcpu->arch.iamr);
1732 break;
1733 case KVM_REG_PPC_PSPB:
1734 *val = get_reg_val(id, vcpu->arch.pspb);
1735 break;
1736 case KVM_REG_PPC_DPDES:
1737 /*
1738 * On POWER9, where we are emulating msgsndp etc.,
1739 * we return 1 bit for each vcpu, which can come from
1740 * either vcore->dpdes or doorbell_request.
1741 * On POWER8, doorbell_request is 0.
1742 */
1743 *val = get_reg_val(id, vcpu->arch.vcore->dpdes |
1744 vcpu->arch.doorbell_request);
1745 break;
1746 case KVM_REG_PPC_VTB:
1747 *val = get_reg_val(id, vcpu->arch.vcore->vtb);
1748 break;
1749 case KVM_REG_PPC_DAWR:
1750 *val = get_reg_val(id, vcpu->arch.dawr);
1751 break;
1752 case KVM_REG_PPC_DAWRX:
1753 *val = get_reg_val(id, vcpu->arch.dawrx);
1754 break;
1755 case KVM_REG_PPC_CIABR:
1756 *val = get_reg_val(id, vcpu->arch.ciabr);
1757 break;
1758 case KVM_REG_PPC_CSIGR:
1759 *val = get_reg_val(id, vcpu->arch.csigr);
1760 break;
1761 case KVM_REG_PPC_TACR:
1762 *val = get_reg_val(id, vcpu->arch.tacr);
1763 break;
1764 case KVM_REG_PPC_TCSCR:
1765 *val = get_reg_val(id, vcpu->arch.tcscr);
1766 break;
1767 case KVM_REG_PPC_PID:
1768 *val = get_reg_val(id, vcpu->arch.pid);
1769 break;
1770 case KVM_REG_PPC_ACOP:
1771 *val = get_reg_val(id, vcpu->arch.acop);
1772 break;
1773 case KVM_REG_PPC_WORT:
1774 *val = get_reg_val(id, vcpu->arch.wort);
1775 break;
1776 case KVM_REG_PPC_TIDR:
1777 *val = get_reg_val(id, vcpu->arch.tid);
1778 break;
1779 case KVM_REG_PPC_PSSCR:
1780 *val = get_reg_val(id, vcpu->arch.psscr);
1781 break;
1782 case KVM_REG_PPC_VPA_ADDR:
1783 spin_lock(&vcpu->arch.vpa_update_lock);
1784 *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
1785 spin_unlock(&vcpu->arch.vpa_update_lock);
1786 break;
1787 case KVM_REG_PPC_VPA_SLB:
1788 spin_lock(&vcpu->arch.vpa_update_lock);
1789 val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
1790 val->vpaval.length = vcpu->arch.slb_shadow.len;
1791 spin_unlock(&vcpu->arch.vpa_update_lock);
1792 break;
1793 case KVM_REG_PPC_VPA_DTL:
1794 spin_lock(&vcpu->arch.vpa_update_lock);
1795 val->vpaval.addr = vcpu->arch.dtl.next_gpa;
1796 val->vpaval.length = vcpu->arch.dtl.len;
1797 spin_unlock(&vcpu->arch.vpa_update_lock);
1798 break;
1799 case KVM_REG_PPC_TB_OFFSET:
1800 *val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
1801 break;
1802 case KVM_REG_PPC_LPCR:
1803 case KVM_REG_PPC_LPCR_64:
1804 *val = get_reg_val(id, vcpu->arch.vcore->lpcr);
1805 break;
1806 case KVM_REG_PPC_PPR:
1807 *val = get_reg_val(id, vcpu->arch.ppr);
1808 break;
1809 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1810 case KVM_REG_PPC_TFHAR:
1811 *val = get_reg_val(id, vcpu->arch.tfhar);
1812 break;
1813 case KVM_REG_PPC_TFIAR:
1814 *val = get_reg_val(id, vcpu->arch.tfiar);
1815 break;
1816 case KVM_REG_PPC_TEXASR:
1817 *val = get_reg_val(id, vcpu->arch.texasr);
1818 break;
1819 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
1820 i = id - KVM_REG_PPC_TM_GPR0;
1821 *val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
1822 break;
1823 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
1824 {
1825 int j;
1826 i = id - KVM_REG_PPC_TM_VSR0;
1827 if (i < 32)
1828 for (j = 0; j < TS_FPRWIDTH; j++)
1829 val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
1830 else {
1831 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1832 val->vval = vcpu->arch.vr_tm.vr[i-32];
1833 else
1834 r = -ENXIO;
1835 }
1836 break;
1837 }
1838 case KVM_REG_PPC_TM_CR:
1839 *val = get_reg_val(id, vcpu->arch.cr_tm);
1840 break;
1841 case KVM_REG_PPC_TM_XER:
1842 *val = get_reg_val(id, vcpu->arch.xer_tm);
1843 break;
1844 case KVM_REG_PPC_TM_LR:
1845 *val = get_reg_val(id, vcpu->arch.lr_tm);
1846 break;
1847 case KVM_REG_PPC_TM_CTR:
1848 *val = get_reg_val(id, vcpu->arch.ctr_tm);
1849 break;
1850 case KVM_REG_PPC_TM_FPSCR:
1851 *val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
1852 break;
1853 case KVM_REG_PPC_TM_AMR:
1854 *val = get_reg_val(id, vcpu->arch.amr_tm);
1855 break;
1856 case KVM_REG_PPC_TM_PPR:
1857 *val = get_reg_val(id, vcpu->arch.ppr_tm);
1858 break;
1859 case KVM_REG_PPC_TM_VRSAVE:
1860 *val = get_reg_val(id, vcpu->arch.vrsave_tm);
1861 break;
1862 case KVM_REG_PPC_TM_VSCR:
1863 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1864 *val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
1865 else
1866 r = -ENXIO;
1867 break;
1868 case KVM_REG_PPC_TM_DSCR:
1869 *val = get_reg_val(id, vcpu->arch.dscr_tm);
1870 break;
1871 case KVM_REG_PPC_TM_TAR:
1872 *val = get_reg_val(id, vcpu->arch.tar_tm);
1873 break;
1874 #endif
1875 case KVM_REG_PPC_ARCH_COMPAT:
1876 *val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
1877 break;
1878 case KVM_REG_PPC_DEC_EXPIRY:
1879 *val = get_reg_val(id, vcpu->arch.dec_expires +
1880 vcpu->arch.vcore->tb_offset);
1881 break;
1882 case KVM_REG_PPC_ONLINE:
1883 *val = get_reg_val(id, vcpu->arch.online);
1884 break;
1885 case KVM_REG_PPC_PTCR:
1886 *val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
1887 break;
1888 default:
1889 r = -EINVAL;
1890 break;
1891 }
1892
1893 return r;
1894 }
1895
kvmppc_set_one_reg_hv(struct kvm_vcpu * vcpu,u64 id,union kvmppc_one_reg * val)1896 static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
1897 union kvmppc_one_reg *val)
1898 {
1899 int r = 0;
1900 long int i;
1901 unsigned long addr, len;
1902
1903 switch (id) {
1904 case KVM_REG_PPC_HIOR:
1905 /* Only allow this to be set to zero */
1906 if (set_reg_val(id, *val))
1907 r = -EINVAL;
1908 break;
1909 case KVM_REG_PPC_DABR:
1910 vcpu->arch.dabr = set_reg_val(id, *val);
1911 break;
1912 case KVM_REG_PPC_DABRX:
1913 vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
1914 break;
1915 case KVM_REG_PPC_DSCR:
1916 vcpu->arch.dscr = set_reg_val(id, *val);
1917 break;
1918 case KVM_REG_PPC_PURR:
1919 vcpu->arch.purr = set_reg_val(id, *val);
1920 break;
1921 case KVM_REG_PPC_SPURR:
1922 vcpu->arch.spurr = set_reg_val(id, *val);
1923 break;
1924 case KVM_REG_PPC_AMR:
1925 vcpu->arch.amr = set_reg_val(id, *val);
1926 break;
1927 case KVM_REG_PPC_UAMOR:
1928 vcpu->arch.uamor = set_reg_val(id, *val);
1929 break;
1930 case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
1931 i = id - KVM_REG_PPC_MMCR0;
1932 vcpu->arch.mmcr[i] = set_reg_val(id, *val);
1933 break;
1934 case KVM_REG_PPC_MMCR2:
1935 vcpu->arch.mmcr[2] = set_reg_val(id, *val);
1936 break;
1937 case KVM_REG_PPC_MMCRA:
1938 vcpu->arch.mmcra = set_reg_val(id, *val);
1939 break;
1940 case KVM_REG_PPC_MMCRS:
1941 vcpu->arch.mmcrs = set_reg_val(id, *val);
1942 break;
1943 case KVM_REG_PPC_MMCR3:
1944 *val = get_reg_val(id, vcpu->arch.mmcr[3]);
1945 break;
1946 case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
1947 i = id - KVM_REG_PPC_PMC1;
1948 vcpu->arch.pmc[i] = set_reg_val(id, *val);
1949 break;
1950 case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
1951 i = id - KVM_REG_PPC_SPMC1;
1952 vcpu->arch.spmc[i] = set_reg_val(id, *val);
1953 break;
1954 case KVM_REG_PPC_SIAR:
1955 vcpu->arch.siar = set_reg_val(id, *val);
1956 break;
1957 case KVM_REG_PPC_SDAR:
1958 vcpu->arch.sdar = set_reg_val(id, *val);
1959 break;
1960 case KVM_REG_PPC_SIER:
1961 vcpu->arch.sier[0] = set_reg_val(id, *val);
1962 break;
1963 case KVM_REG_PPC_SIER2:
1964 vcpu->arch.sier[1] = set_reg_val(id, *val);
1965 break;
1966 case KVM_REG_PPC_SIER3:
1967 vcpu->arch.sier[2] = set_reg_val(id, *val);
1968 break;
1969 case KVM_REG_PPC_IAMR:
1970 vcpu->arch.iamr = set_reg_val(id, *val);
1971 break;
1972 case KVM_REG_PPC_PSPB:
1973 vcpu->arch.pspb = set_reg_val(id, *val);
1974 break;
1975 case KVM_REG_PPC_DPDES:
1976 vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
1977 break;
1978 case KVM_REG_PPC_VTB:
1979 vcpu->arch.vcore->vtb = set_reg_val(id, *val);
1980 break;
1981 case KVM_REG_PPC_DAWR:
1982 vcpu->arch.dawr = set_reg_val(id, *val);
1983 break;
1984 case KVM_REG_PPC_DAWRX:
1985 vcpu->arch.dawrx = set_reg_val(id, *val) & ~DAWRX_HYP;
1986 break;
1987 case KVM_REG_PPC_CIABR:
1988 vcpu->arch.ciabr = set_reg_val(id, *val);
1989 /* Don't allow setting breakpoints in hypervisor code */
1990 if ((vcpu->arch.ciabr & CIABR_PRIV) == CIABR_PRIV_HYPER)
1991 vcpu->arch.ciabr &= ~CIABR_PRIV; /* disable */
1992 break;
1993 case KVM_REG_PPC_CSIGR:
1994 vcpu->arch.csigr = set_reg_val(id, *val);
1995 break;
1996 case KVM_REG_PPC_TACR:
1997 vcpu->arch.tacr = set_reg_val(id, *val);
1998 break;
1999 case KVM_REG_PPC_TCSCR:
2000 vcpu->arch.tcscr = set_reg_val(id, *val);
2001 break;
2002 case KVM_REG_PPC_PID:
2003 vcpu->arch.pid = set_reg_val(id, *val);
2004 break;
2005 case KVM_REG_PPC_ACOP:
2006 vcpu->arch.acop = set_reg_val(id, *val);
2007 break;
2008 case KVM_REG_PPC_WORT:
2009 vcpu->arch.wort = set_reg_val(id, *val);
2010 break;
2011 case KVM_REG_PPC_TIDR:
2012 vcpu->arch.tid = set_reg_val(id, *val);
2013 break;
2014 case KVM_REG_PPC_PSSCR:
2015 vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2016 break;
2017 case KVM_REG_PPC_VPA_ADDR:
2018 addr = set_reg_val(id, *val);
2019 r = -EINVAL;
2020 if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2021 vcpu->arch.dtl.next_gpa))
2022 break;
2023 r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2024 break;
2025 case KVM_REG_PPC_VPA_SLB:
2026 addr = val->vpaval.addr;
2027 len = val->vpaval.length;
2028 r = -EINVAL;
2029 if (addr && !vcpu->arch.vpa.next_gpa)
2030 break;
2031 r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2032 break;
2033 case KVM_REG_PPC_VPA_DTL:
2034 addr = val->vpaval.addr;
2035 len = val->vpaval.length;
2036 r = -EINVAL;
2037 if (addr && (len < sizeof(struct dtl_entry) ||
2038 !vcpu->arch.vpa.next_gpa))
2039 break;
2040 len -= len % sizeof(struct dtl_entry);
2041 r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2042 break;
2043 case KVM_REG_PPC_TB_OFFSET:
2044 /* round up to multiple of 2^24 */
2045 vcpu->arch.vcore->tb_offset =
2046 ALIGN(set_reg_val(id, *val), 1UL << 24);
2047 break;
2048 case KVM_REG_PPC_LPCR:
2049 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2050 break;
2051 case KVM_REG_PPC_LPCR_64:
2052 kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2053 break;
2054 case KVM_REG_PPC_PPR:
2055 vcpu->arch.ppr = set_reg_val(id, *val);
2056 break;
2057 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2058 case KVM_REG_PPC_TFHAR:
2059 vcpu->arch.tfhar = set_reg_val(id, *val);
2060 break;
2061 case KVM_REG_PPC_TFIAR:
2062 vcpu->arch.tfiar = set_reg_val(id, *val);
2063 break;
2064 case KVM_REG_PPC_TEXASR:
2065 vcpu->arch.texasr = set_reg_val(id, *val);
2066 break;
2067 case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2068 i = id - KVM_REG_PPC_TM_GPR0;
2069 vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2070 break;
2071 case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2072 {
2073 int j;
2074 i = id - KVM_REG_PPC_TM_VSR0;
2075 if (i < 32)
2076 for (j = 0; j < TS_FPRWIDTH; j++)
2077 vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2078 else
2079 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2080 vcpu->arch.vr_tm.vr[i-32] = val->vval;
2081 else
2082 r = -ENXIO;
2083 break;
2084 }
2085 case KVM_REG_PPC_TM_CR:
2086 vcpu->arch.cr_tm = set_reg_val(id, *val);
2087 break;
2088 case KVM_REG_PPC_TM_XER:
2089 vcpu->arch.xer_tm = set_reg_val(id, *val);
2090 break;
2091 case KVM_REG_PPC_TM_LR:
2092 vcpu->arch.lr_tm = set_reg_val(id, *val);
2093 break;
2094 case KVM_REG_PPC_TM_CTR:
2095 vcpu->arch.ctr_tm = set_reg_val(id, *val);
2096 break;
2097 case KVM_REG_PPC_TM_FPSCR:
2098 vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2099 break;
2100 case KVM_REG_PPC_TM_AMR:
2101 vcpu->arch.amr_tm = set_reg_val(id, *val);
2102 break;
2103 case KVM_REG_PPC_TM_PPR:
2104 vcpu->arch.ppr_tm = set_reg_val(id, *val);
2105 break;
2106 case KVM_REG_PPC_TM_VRSAVE:
2107 vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2108 break;
2109 case KVM_REG_PPC_TM_VSCR:
2110 if (cpu_has_feature(CPU_FTR_ALTIVEC))
2111 vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2112 else
2113 r = - ENXIO;
2114 break;
2115 case KVM_REG_PPC_TM_DSCR:
2116 vcpu->arch.dscr_tm = set_reg_val(id, *val);
2117 break;
2118 case KVM_REG_PPC_TM_TAR:
2119 vcpu->arch.tar_tm = set_reg_val(id, *val);
2120 break;
2121 #endif
2122 case KVM_REG_PPC_ARCH_COMPAT:
2123 r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2124 break;
2125 case KVM_REG_PPC_DEC_EXPIRY:
2126 vcpu->arch.dec_expires = set_reg_val(id, *val) -
2127 vcpu->arch.vcore->tb_offset;
2128 break;
2129 case KVM_REG_PPC_ONLINE:
2130 i = set_reg_val(id, *val);
2131 if (i && !vcpu->arch.online)
2132 atomic_inc(&vcpu->arch.vcore->online_count);
2133 else if (!i && vcpu->arch.online)
2134 atomic_dec(&vcpu->arch.vcore->online_count);
2135 vcpu->arch.online = i;
2136 break;
2137 case KVM_REG_PPC_PTCR:
2138 vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2139 break;
2140 default:
2141 r = -EINVAL;
2142 break;
2143 }
2144
2145 return r;
2146 }
2147
2148 /*
2149 * On POWER9, threads are independent and can be in different partitions.
2150 * Therefore we consider each thread to be a subcore.
2151 * There is a restriction that all threads have to be in the same
2152 * MMU mode (radix or HPT), unfortunately, but since we only support
2153 * HPT guests on a HPT host so far, that isn't an impediment yet.
2154 */
threads_per_vcore(struct kvm * kvm)2155 static int threads_per_vcore(struct kvm *kvm)
2156 {
2157 if (kvm->arch.threads_indep)
2158 return 1;
2159 return threads_per_subcore;
2160 }
2161
kvmppc_vcore_create(struct kvm * kvm,int id)2162 static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2163 {
2164 struct kvmppc_vcore *vcore;
2165
2166 vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2167
2168 if (vcore == NULL)
2169 return NULL;
2170
2171 spin_lock_init(&vcore->lock);
2172 spin_lock_init(&vcore->stoltb_lock);
2173 rcuwait_init(&vcore->wait);
2174 vcore->preempt_tb = TB_NIL;
2175 vcore->lpcr = kvm->arch.lpcr;
2176 vcore->first_vcpuid = id;
2177 vcore->kvm = kvm;
2178 INIT_LIST_HEAD(&vcore->preempt_list);
2179
2180 return vcore;
2181 }
2182
2183 #ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2184 static struct debugfs_timings_element {
2185 const char *name;
2186 size_t offset;
2187 } timings[] = {
2188 {"rm_entry", offsetof(struct kvm_vcpu, arch.rm_entry)},
2189 {"rm_intr", offsetof(struct kvm_vcpu, arch.rm_intr)},
2190 {"rm_exit", offsetof(struct kvm_vcpu, arch.rm_exit)},
2191 {"guest", offsetof(struct kvm_vcpu, arch.guest_time)},
2192 {"cede", offsetof(struct kvm_vcpu, arch.cede_time)},
2193 };
2194
2195 #define N_TIMINGS (ARRAY_SIZE(timings))
2196
2197 struct debugfs_timings_state {
2198 struct kvm_vcpu *vcpu;
2199 unsigned int buflen;
2200 char buf[N_TIMINGS * 100];
2201 };
2202
debugfs_timings_open(struct inode * inode,struct file * file)2203 static int debugfs_timings_open(struct inode *inode, struct file *file)
2204 {
2205 struct kvm_vcpu *vcpu = inode->i_private;
2206 struct debugfs_timings_state *p;
2207
2208 p = kzalloc(sizeof(*p), GFP_KERNEL);
2209 if (!p)
2210 return -ENOMEM;
2211
2212 kvm_get_kvm(vcpu->kvm);
2213 p->vcpu = vcpu;
2214 file->private_data = p;
2215
2216 return nonseekable_open(inode, file);
2217 }
2218
debugfs_timings_release(struct inode * inode,struct file * file)2219 static int debugfs_timings_release(struct inode *inode, struct file *file)
2220 {
2221 struct debugfs_timings_state *p = file->private_data;
2222
2223 kvm_put_kvm(p->vcpu->kvm);
2224 kfree(p);
2225 return 0;
2226 }
2227
debugfs_timings_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)2228 static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2229 size_t len, loff_t *ppos)
2230 {
2231 struct debugfs_timings_state *p = file->private_data;
2232 struct kvm_vcpu *vcpu = p->vcpu;
2233 char *s, *buf_end;
2234 struct kvmhv_tb_accumulator tb;
2235 u64 count;
2236 loff_t pos;
2237 ssize_t n;
2238 int i, loops;
2239 bool ok;
2240
2241 if (!p->buflen) {
2242 s = p->buf;
2243 buf_end = s + sizeof(p->buf);
2244 for (i = 0; i < N_TIMINGS; ++i) {
2245 struct kvmhv_tb_accumulator *acc;
2246
2247 acc = (struct kvmhv_tb_accumulator *)
2248 ((unsigned long)vcpu + timings[i].offset);
2249 ok = false;
2250 for (loops = 0; loops < 1000; ++loops) {
2251 count = acc->seqcount;
2252 if (!(count & 1)) {
2253 smp_rmb();
2254 tb = *acc;
2255 smp_rmb();
2256 if (count == acc->seqcount) {
2257 ok = true;
2258 break;
2259 }
2260 }
2261 udelay(1);
2262 }
2263 if (!ok)
2264 snprintf(s, buf_end - s, "%s: stuck\n",
2265 timings[i].name);
2266 else
2267 snprintf(s, buf_end - s,
2268 "%s: %llu %llu %llu %llu\n",
2269 timings[i].name, count / 2,
2270 tb_to_ns(tb.tb_total),
2271 tb_to_ns(tb.tb_min),
2272 tb_to_ns(tb.tb_max));
2273 s += strlen(s);
2274 }
2275 p->buflen = s - p->buf;
2276 }
2277
2278 pos = *ppos;
2279 if (pos >= p->buflen)
2280 return 0;
2281 if (len > p->buflen - pos)
2282 len = p->buflen - pos;
2283 n = copy_to_user(buf, p->buf + pos, len);
2284 if (n) {
2285 if (n == len)
2286 return -EFAULT;
2287 len -= n;
2288 }
2289 *ppos = pos + len;
2290 return len;
2291 }
2292
debugfs_timings_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)2293 static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2294 size_t len, loff_t *ppos)
2295 {
2296 return -EACCES;
2297 }
2298
2299 static const struct file_operations debugfs_timings_ops = {
2300 .owner = THIS_MODULE,
2301 .open = debugfs_timings_open,
2302 .release = debugfs_timings_release,
2303 .read = debugfs_timings_read,
2304 .write = debugfs_timings_write,
2305 .llseek = generic_file_llseek,
2306 };
2307
2308 /* Create a debugfs directory for the vcpu */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)2309 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2310 {
2311 char buf[16];
2312 struct kvm *kvm = vcpu->kvm;
2313
2314 snprintf(buf, sizeof(buf), "vcpu%u", id);
2315 vcpu->arch.debugfs_dir = debugfs_create_dir(buf, kvm->arch.debugfs_dir);
2316 debugfs_create_file("timings", 0444, vcpu->arch.debugfs_dir, vcpu,
2317 &debugfs_timings_ops);
2318 }
2319
2320 #else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
debugfs_vcpu_init(struct kvm_vcpu * vcpu,unsigned int id)2321 static void debugfs_vcpu_init(struct kvm_vcpu *vcpu, unsigned int id)
2322 {
2323 }
2324 #endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2325
kvmppc_core_vcpu_create_hv(struct kvm_vcpu * vcpu)2326 static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2327 {
2328 int err;
2329 int core;
2330 struct kvmppc_vcore *vcore;
2331 struct kvm *kvm;
2332 unsigned int id;
2333
2334 kvm = vcpu->kvm;
2335 id = vcpu->vcpu_id;
2336
2337 vcpu->arch.shared = &vcpu->arch.shregs;
2338 #ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2339 /*
2340 * The shared struct is never shared on HV,
2341 * so we can always use host endianness
2342 */
2343 #ifdef __BIG_ENDIAN__
2344 vcpu->arch.shared_big_endian = true;
2345 #else
2346 vcpu->arch.shared_big_endian = false;
2347 #endif
2348 #endif
2349 vcpu->arch.mmcr[0] = MMCR0_FC;
2350 vcpu->arch.ctrl = CTRL_RUNLATCH;
2351 /* default to host PVR, since we can't spoof it */
2352 kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2353 spin_lock_init(&vcpu->arch.vpa_update_lock);
2354 spin_lock_init(&vcpu->arch.tbacct_lock);
2355 vcpu->arch.busy_preempt = TB_NIL;
2356 vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2357
2358 /*
2359 * Set the default HFSCR for the guest from the host value.
2360 * This value is only used on POWER9.
2361 * On POWER9, we want to virtualize the doorbell facility, so we
2362 * don't set the HFSCR_MSGP bit, and that causes those instructions
2363 * to trap and then we emulate them.
2364 */
2365 vcpu->arch.hfscr = HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2366 HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP | HFSCR_PREFIX;
2367 if (cpu_has_feature(CPU_FTR_HVMODE)) {
2368 vcpu->arch.hfscr &= mfspr(SPRN_HFSCR);
2369 if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2370 vcpu->arch.hfscr |= HFSCR_TM;
2371 }
2372 if (cpu_has_feature(CPU_FTR_TM_COMP))
2373 vcpu->arch.hfscr |= HFSCR_TM;
2374
2375 kvmppc_mmu_book3s_hv_init(vcpu);
2376
2377 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2378
2379 init_waitqueue_head(&vcpu->arch.cpu_run);
2380
2381 mutex_lock(&kvm->lock);
2382 vcore = NULL;
2383 err = -EINVAL;
2384 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2385 if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2386 pr_devel("KVM: VCPU ID too high\n");
2387 core = KVM_MAX_VCORES;
2388 } else {
2389 BUG_ON(kvm->arch.smt_mode != 1);
2390 core = kvmppc_pack_vcpu_id(kvm, id);
2391 }
2392 } else {
2393 core = id / kvm->arch.smt_mode;
2394 }
2395 if (core < KVM_MAX_VCORES) {
2396 vcore = kvm->arch.vcores[core];
2397 if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2398 pr_devel("KVM: collision on id %u", id);
2399 vcore = NULL;
2400 } else if (!vcore) {
2401 /*
2402 * Take mmu_setup_lock for mutual exclusion
2403 * with kvmppc_update_lpcr().
2404 */
2405 err = -ENOMEM;
2406 vcore = kvmppc_vcore_create(kvm,
2407 id & ~(kvm->arch.smt_mode - 1));
2408 mutex_lock(&kvm->arch.mmu_setup_lock);
2409 kvm->arch.vcores[core] = vcore;
2410 kvm->arch.online_vcores++;
2411 mutex_unlock(&kvm->arch.mmu_setup_lock);
2412 }
2413 }
2414 mutex_unlock(&kvm->lock);
2415
2416 if (!vcore)
2417 return err;
2418
2419 spin_lock(&vcore->lock);
2420 ++vcore->num_threads;
2421 spin_unlock(&vcore->lock);
2422 vcpu->arch.vcore = vcore;
2423 vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
2424 vcpu->arch.thread_cpu = -1;
2425 vcpu->arch.prev_cpu = -1;
2426
2427 vcpu->arch.cpu_type = KVM_CPU_3S_64;
2428 kvmppc_sanity_check(vcpu);
2429
2430 debugfs_vcpu_init(vcpu, id);
2431
2432 return 0;
2433 }
2434
kvmhv_set_smt_mode(struct kvm * kvm,unsigned long smt_mode,unsigned long flags)2435 static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
2436 unsigned long flags)
2437 {
2438 int err;
2439 int esmt = 0;
2440
2441 if (flags)
2442 return -EINVAL;
2443 if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
2444 return -EINVAL;
2445 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
2446 /*
2447 * On POWER8 (or POWER7), the threading mode is "strict",
2448 * so we pack smt_mode vcpus per vcore.
2449 */
2450 if (smt_mode > threads_per_subcore)
2451 return -EINVAL;
2452 } else {
2453 /*
2454 * On POWER9, the threading mode is "loose",
2455 * so each vcpu gets its own vcore.
2456 */
2457 esmt = smt_mode;
2458 smt_mode = 1;
2459 }
2460 mutex_lock(&kvm->lock);
2461 err = -EBUSY;
2462 if (!kvm->arch.online_vcores) {
2463 kvm->arch.smt_mode = smt_mode;
2464 kvm->arch.emul_smt_mode = esmt;
2465 err = 0;
2466 }
2467 mutex_unlock(&kvm->lock);
2468
2469 return err;
2470 }
2471
unpin_vpa(struct kvm * kvm,struct kvmppc_vpa * vpa)2472 static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
2473 {
2474 if (vpa->pinned_addr)
2475 kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
2476 vpa->dirty);
2477 }
2478
kvmppc_core_vcpu_free_hv(struct kvm_vcpu * vcpu)2479 static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
2480 {
2481 spin_lock(&vcpu->arch.vpa_update_lock);
2482 unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
2483 unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
2484 unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
2485 spin_unlock(&vcpu->arch.vpa_update_lock);
2486 }
2487
kvmppc_core_check_requests_hv(struct kvm_vcpu * vcpu)2488 static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
2489 {
2490 /* Indicate we want to get back into the guest */
2491 return 1;
2492 }
2493
kvmppc_set_timer(struct kvm_vcpu * vcpu)2494 static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
2495 {
2496 unsigned long dec_nsec, now;
2497
2498 now = get_tb();
2499 if (now > vcpu->arch.dec_expires) {
2500 /* decrementer has already gone negative */
2501 kvmppc_core_queue_dec(vcpu);
2502 kvmppc_core_prepare_to_enter(vcpu);
2503 return;
2504 }
2505 dec_nsec = tb_to_ns(vcpu->arch.dec_expires - now);
2506 hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
2507 vcpu->arch.timer_running = 1;
2508 }
2509
2510 extern int __kvmppc_vcore_entry(void);
2511
kvmppc_remove_runnable(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu)2512 static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
2513 struct kvm_vcpu *vcpu)
2514 {
2515 u64 now;
2516
2517 if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
2518 return;
2519 spin_lock_irq(&vcpu->arch.tbacct_lock);
2520 now = mftb();
2521 vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
2522 vcpu->arch.stolen_logged;
2523 vcpu->arch.busy_preempt = now;
2524 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
2525 spin_unlock_irq(&vcpu->arch.tbacct_lock);
2526 --vc->n_runnable;
2527 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
2528 }
2529
kvmppc_grab_hwthread(int cpu)2530 static int kvmppc_grab_hwthread(int cpu)
2531 {
2532 struct paca_struct *tpaca;
2533 long timeout = 10000;
2534
2535 tpaca = paca_ptrs[cpu];
2536
2537 /* Ensure the thread won't go into the kernel if it wakes */
2538 tpaca->kvm_hstate.kvm_vcpu = NULL;
2539 tpaca->kvm_hstate.kvm_vcore = NULL;
2540 tpaca->kvm_hstate.napping = 0;
2541 smp_wmb();
2542 tpaca->kvm_hstate.hwthread_req = 1;
2543
2544 /*
2545 * If the thread is already executing in the kernel (e.g. handling
2546 * a stray interrupt), wait for it to get back to nap mode.
2547 * The smp_mb() is to ensure that our setting of hwthread_req
2548 * is visible before we look at hwthread_state, so if this
2549 * races with the code at system_reset_pSeries and the thread
2550 * misses our setting of hwthread_req, we are sure to see its
2551 * setting of hwthread_state, and vice versa.
2552 */
2553 smp_mb();
2554 while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
2555 if (--timeout <= 0) {
2556 pr_err("KVM: couldn't grab cpu %d\n", cpu);
2557 return -EBUSY;
2558 }
2559 udelay(1);
2560 }
2561 return 0;
2562 }
2563
kvmppc_release_hwthread(int cpu)2564 static void kvmppc_release_hwthread(int cpu)
2565 {
2566 struct paca_struct *tpaca;
2567
2568 tpaca = paca_ptrs[cpu];
2569 tpaca->kvm_hstate.hwthread_req = 0;
2570 tpaca->kvm_hstate.kvm_vcpu = NULL;
2571 tpaca->kvm_hstate.kvm_vcore = NULL;
2572 tpaca->kvm_hstate.kvm_split_mode = NULL;
2573 }
2574
radix_flush_cpu(struct kvm * kvm,int cpu,struct kvm_vcpu * vcpu)2575 static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
2576 {
2577 struct kvm_nested_guest *nested = vcpu->arch.nested;
2578 cpumask_t *cpu_in_guest;
2579 int i;
2580
2581 cpu = cpu_first_thread_sibling(cpu);
2582 if (nested) {
2583 cpumask_set_cpu(cpu, &nested->need_tlb_flush);
2584 cpu_in_guest = &nested->cpu_in_guest;
2585 } else {
2586 cpumask_set_cpu(cpu, &kvm->arch.need_tlb_flush);
2587 cpu_in_guest = &kvm->arch.cpu_in_guest;
2588 }
2589 /*
2590 * Make sure setting of bit in need_tlb_flush precedes
2591 * testing of cpu_in_guest bits. The matching barrier on
2592 * the other side is the first smp_mb() in kvmppc_run_core().
2593 */
2594 smp_mb();
2595 for (i = 0; i < threads_per_core; ++i)
2596 if (cpumask_test_cpu(cpu + i, cpu_in_guest))
2597 smp_call_function_single(cpu + i, do_nothing, NULL, 1);
2598 }
2599
kvmppc_prepare_radix_vcpu(struct kvm_vcpu * vcpu,int pcpu)2600 static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
2601 {
2602 struct kvm_nested_guest *nested = vcpu->arch.nested;
2603 struct kvm *kvm = vcpu->kvm;
2604 int prev_cpu;
2605
2606 if (!cpu_has_feature(CPU_FTR_HVMODE))
2607 return;
2608
2609 if (nested)
2610 prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
2611 else
2612 prev_cpu = vcpu->arch.prev_cpu;
2613
2614 /*
2615 * With radix, the guest can do TLB invalidations itself,
2616 * and it could choose to use the local form (tlbiel) if
2617 * it is invalidating a translation that has only ever been
2618 * used on one vcpu. However, that doesn't mean it has
2619 * only ever been used on one physical cpu, since vcpus
2620 * can move around between pcpus. To cope with this, when
2621 * a vcpu moves from one pcpu to another, we need to tell
2622 * any vcpus running on the same core as this vcpu previously
2623 * ran to flush the TLB. The TLB is shared between threads,
2624 * so we use a single bit in .need_tlb_flush for all 4 threads.
2625 */
2626 if (prev_cpu != pcpu) {
2627 if (prev_cpu >= 0 &&
2628 cpu_first_thread_sibling(prev_cpu) !=
2629 cpu_first_thread_sibling(pcpu))
2630 radix_flush_cpu(kvm, prev_cpu, vcpu);
2631 if (nested)
2632 nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
2633 else
2634 vcpu->arch.prev_cpu = pcpu;
2635 }
2636 }
2637
kvmppc_start_thread(struct kvm_vcpu * vcpu,struct kvmppc_vcore * vc)2638 static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
2639 {
2640 int cpu;
2641 struct paca_struct *tpaca;
2642 struct kvm *kvm = vc->kvm;
2643
2644 cpu = vc->pcpu;
2645 if (vcpu) {
2646 if (vcpu->arch.timer_running) {
2647 hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
2648 vcpu->arch.timer_running = 0;
2649 }
2650 cpu += vcpu->arch.ptid;
2651 vcpu->cpu = vc->pcpu;
2652 vcpu->arch.thread_cpu = cpu;
2653 cpumask_set_cpu(cpu, &kvm->arch.cpu_in_guest);
2654 }
2655 tpaca = paca_ptrs[cpu];
2656 tpaca->kvm_hstate.kvm_vcpu = vcpu;
2657 tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
2658 tpaca->kvm_hstate.fake_suspend = 0;
2659 /* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
2660 smp_wmb();
2661 tpaca->kvm_hstate.kvm_vcore = vc;
2662 if (cpu != smp_processor_id())
2663 kvmppc_ipi_thread(cpu);
2664 }
2665
kvmppc_wait_for_nap(int n_threads)2666 static void kvmppc_wait_for_nap(int n_threads)
2667 {
2668 int cpu = smp_processor_id();
2669 int i, loops;
2670
2671 if (n_threads <= 1)
2672 return;
2673 for (loops = 0; loops < 1000000; ++loops) {
2674 /*
2675 * Check if all threads are finished.
2676 * We set the vcore pointer when starting a thread
2677 * and the thread clears it when finished, so we look
2678 * for any threads that still have a non-NULL vcore ptr.
2679 */
2680 for (i = 1; i < n_threads; ++i)
2681 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2682 break;
2683 if (i == n_threads) {
2684 HMT_medium();
2685 return;
2686 }
2687 HMT_low();
2688 }
2689 HMT_medium();
2690 for (i = 1; i < n_threads; ++i)
2691 if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
2692 pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
2693 }
2694
2695 /*
2696 * Check that we are on thread 0 and that any other threads in
2697 * this core are off-line. Then grab the threads so they can't
2698 * enter the kernel.
2699 */
on_primary_thread(void)2700 static int on_primary_thread(void)
2701 {
2702 int cpu = smp_processor_id();
2703 int thr;
2704
2705 /* Are we on a primary subcore? */
2706 if (cpu_thread_in_subcore(cpu))
2707 return 0;
2708
2709 thr = 0;
2710 while (++thr < threads_per_subcore)
2711 if (cpu_online(cpu + thr))
2712 return 0;
2713
2714 /* Grab all hw threads so they can't go into the kernel */
2715 for (thr = 1; thr < threads_per_subcore; ++thr) {
2716 if (kvmppc_grab_hwthread(cpu + thr)) {
2717 /* Couldn't grab one; let the others go */
2718 do {
2719 kvmppc_release_hwthread(cpu + thr);
2720 } while (--thr > 0);
2721 return 0;
2722 }
2723 }
2724 return 1;
2725 }
2726
2727 /*
2728 * A list of virtual cores for each physical CPU.
2729 * These are vcores that could run but their runner VCPU tasks are
2730 * (or may be) preempted.
2731 */
2732 struct preempted_vcore_list {
2733 struct list_head list;
2734 spinlock_t lock;
2735 };
2736
2737 static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
2738
init_vcore_lists(void)2739 static void init_vcore_lists(void)
2740 {
2741 int cpu;
2742
2743 for_each_possible_cpu(cpu) {
2744 struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
2745 spin_lock_init(&lp->lock);
2746 INIT_LIST_HEAD(&lp->list);
2747 }
2748 }
2749
kvmppc_vcore_preempt(struct kvmppc_vcore * vc)2750 static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
2751 {
2752 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2753
2754 vc->vcore_state = VCORE_PREEMPT;
2755 vc->pcpu = smp_processor_id();
2756 if (vc->num_threads < threads_per_vcore(vc->kvm)) {
2757 spin_lock(&lp->lock);
2758 list_add_tail(&vc->preempt_list, &lp->list);
2759 spin_unlock(&lp->lock);
2760 }
2761
2762 /* Start accumulating stolen time */
2763 kvmppc_core_start_stolen(vc);
2764 }
2765
kvmppc_vcore_end_preempt(struct kvmppc_vcore * vc)2766 static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
2767 {
2768 struct preempted_vcore_list *lp;
2769
2770 kvmppc_core_end_stolen(vc);
2771 if (!list_empty(&vc->preempt_list)) {
2772 lp = &per_cpu(preempted_vcores, vc->pcpu);
2773 spin_lock(&lp->lock);
2774 list_del_init(&vc->preempt_list);
2775 spin_unlock(&lp->lock);
2776 }
2777 vc->vcore_state = VCORE_INACTIVE;
2778 }
2779
2780 /*
2781 * This stores information about the virtual cores currently
2782 * assigned to a physical core.
2783 */
2784 struct core_info {
2785 int n_subcores;
2786 int max_subcore_threads;
2787 int total_threads;
2788 int subcore_threads[MAX_SUBCORES];
2789 struct kvmppc_vcore *vc[MAX_SUBCORES];
2790 };
2791
2792 /*
2793 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
2794 * respectively in 2-way micro-threading (split-core) mode on POWER8.
2795 */
2796 static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
2797
init_core_info(struct core_info * cip,struct kvmppc_vcore * vc)2798 static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
2799 {
2800 memset(cip, 0, sizeof(*cip));
2801 cip->n_subcores = 1;
2802 cip->max_subcore_threads = vc->num_threads;
2803 cip->total_threads = vc->num_threads;
2804 cip->subcore_threads[0] = vc->num_threads;
2805 cip->vc[0] = vc;
2806 }
2807
subcore_config_ok(int n_subcores,int n_threads)2808 static bool subcore_config_ok(int n_subcores, int n_threads)
2809 {
2810 /*
2811 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
2812 * split-core mode, with one thread per subcore.
2813 */
2814 if (cpu_has_feature(CPU_FTR_ARCH_300))
2815 return n_subcores <= 4 && n_threads == 1;
2816
2817 /* On POWER8, can only dynamically split if unsplit to begin with */
2818 if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
2819 return false;
2820 if (n_subcores > MAX_SUBCORES)
2821 return false;
2822 if (n_subcores > 1) {
2823 if (!(dynamic_mt_modes & 2))
2824 n_subcores = 4;
2825 if (n_subcores > 2 && !(dynamic_mt_modes & 4))
2826 return false;
2827 }
2828
2829 return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
2830 }
2831
init_vcore_to_run(struct kvmppc_vcore * vc)2832 static void init_vcore_to_run(struct kvmppc_vcore *vc)
2833 {
2834 vc->entry_exit_map = 0;
2835 vc->in_guest = 0;
2836 vc->napping_threads = 0;
2837 vc->conferring_threads = 0;
2838 vc->tb_offset_applied = 0;
2839 }
2840
can_dynamic_split(struct kvmppc_vcore * vc,struct core_info * cip)2841 static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
2842 {
2843 int n_threads = vc->num_threads;
2844 int sub;
2845
2846 if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2847 return false;
2848
2849 /* In one_vm_per_core mode, require all vcores to be from the same vm */
2850 if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
2851 return false;
2852
2853 /* Some POWER9 chips require all threads to be in the same MMU mode */
2854 if (no_mixing_hpt_and_radix &&
2855 kvm_is_radix(vc->kvm) != kvm_is_radix(cip->vc[0]->kvm))
2856 return false;
2857
2858 if (n_threads < cip->max_subcore_threads)
2859 n_threads = cip->max_subcore_threads;
2860 if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
2861 return false;
2862 cip->max_subcore_threads = n_threads;
2863
2864 sub = cip->n_subcores;
2865 ++cip->n_subcores;
2866 cip->total_threads += vc->num_threads;
2867 cip->subcore_threads[sub] = vc->num_threads;
2868 cip->vc[sub] = vc;
2869 init_vcore_to_run(vc);
2870 list_del_init(&vc->preempt_list);
2871
2872 return true;
2873 }
2874
2875 /*
2876 * Work out whether it is possible to piggyback the execution of
2877 * vcore *pvc onto the execution of the other vcores described in *cip.
2878 */
can_piggyback(struct kvmppc_vcore * pvc,struct core_info * cip,int target_threads)2879 static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
2880 int target_threads)
2881 {
2882 if (cip->total_threads + pvc->num_threads > target_threads)
2883 return false;
2884
2885 return can_dynamic_split(pvc, cip);
2886 }
2887
prepare_threads(struct kvmppc_vcore * vc)2888 static void prepare_threads(struct kvmppc_vcore *vc)
2889 {
2890 int i;
2891 struct kvm_vcpu *vcpu;
2892
2893 for_each_runnable_thread(i, vcpu, vc) {
2894 if (signal_pending(vcpu->arch.run_task))
2895 vcpu->arch.ret = -EINTR;
2896 else if (vcpu->arch.vpa.update_pending ||
2897 vcpu->arch.slb_shadow.update_pending ||
2898 vcpu->arch.dtl.update_pending)
2899 vcpu->arch.ret = RESUME_GUEST;
2900 else
2901 continue;
2902 kvmppc_remove_runnable(vc, vcpu);
2903 wake_up(&vcpu->arch.cpu_run);
2904 }
2905 }
2906
collect_piggybacks(struct core_info * cip,int target_threads)2907 static void collect_piggybacks(struct core_info *cip, int target_threads)
2908 {
2909 struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
2910 struct kvmppc_vcore *pvc, *vcnext;
2911
2912 spin_lock(&lp->lock);
2913 list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
2914 if (!spin_trylock(&pvc->lock))
2915 continue;
2916 prepare_threads(pvc);
2917 if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
2918 list_del_init(&pvc->preempt_list);
2919 if (pvc->runner == NULL) {
2920 pvc->vcore_state = VCORE_INACTIVE;
2921 kvmppc_core_end_stolen(pvc);
2922 }
2923 spin_unlock(&pvc->lock);
2924 continue;
2925 }
2926 if (!can_piggyback(pvc, cip, target_threads)) {
2927 spin_unlock(&pvc->lock);
2928 continue;
2929 }
2930 kvmppc_core_end_stolen(pvc);
2931 pvc->vcore_state = VCORE_PIGGYBACK;
2932 if (cip->total_threads >= target_threads)
2933 break;
2934 }
2935 spin_unlock(&lp->lock);
2936 }
2937
recheck_signals_and_mmu(struct core_info * cip)2938 static bool recheck_signals_and_mmu(struct core_info *cip)
2939 {
2940 int sub, i;
2941 struct kvm_vcpu *vcpu;
2942 struct kvmppc_vcore *vc;
2943
2944 for (sub = 0; sub < cip->n_subcores; ++sub) {
2945 vc = cip->vc[sub];
2946 if (!vc->kvm->arch.mmu_ready)
2947 return true;
2948 for_each_runnable_thread(i, vcpu, vc)
2949 if (signal_pending(vcpu->arch.run_task))
2950 return true;
2951 }
2952 return false;
2953 }
2954
post_guest_process(struct kvmppc_vcore * vc,bool is_master)2955 static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
2956 {
2957 int still_running = 0, i;
2958 u64 now;
2959 long ret;
2960 struct kvm_vcpu *vcpu;
2961
2962 spin_lock(&vc->lock);
2963 now = get_tb();
2964 for_each_runnable_thread(i, vcpu, vc) {
2965 /*
2966 * It's safe to unlock the vcore in the loop here, because
2967 * for_each_runnable_thread() is safe against removal of
2968 * the vcpu, and the vcore state is VCORE_EXITING here,
2969 * so any vcpus becoming runnable will have their arch.trap
2970 * set to zero and can't actually run in the guest.
2971 */
2972 spin_unlock(&vc->lock);
2973 /* cancel pending dec exception if dec is positive */
2974 if (now < vcpu->arch.dec_expires &&
2975 kvmppc_core_pending_dec(vcpu))
2976 kvmppc_core_dequeue_dec(vcpu);
2977
2978 trace_kvm_guest_exit(vcpu);
2979
2980 ret = RESUME_GUEST;
2981 if (vcpu->arch.trap)
2982 ret = kvmppc_handle_exit_hv(vcpu,
2983 vcpu->arch.run_task);
2984
2985 vcpu->arch.ret = ret;
2986 vcpu->arch.trap = 0;
2987
2988 spin_lock(&vc->lock);
2989 if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
2990 if (vcpu->arch.pending_exceptions)
2991 kvmppc_core_prepare_to_enter(vcpu);
2992 if (vcpu->arch.ceded)
2993 kvmppc_set_timer(vcpu);
2994 else
2995 ++still_running;
2996 } else {
2997 kvmppc_remove_runnable(vc, vcpu);
2998 wake_up(&vcpu->arch.cpu_run);
2999 }
3000 }
3001 if (!is_master) {
3002 if (still_running > 0) {
3003 kvmppc_vcore_preempt(vc);
3004 } else if (vc->runner) {
3005 vc->vcore_state = VCORE_PREEMPT;
3006 kvmppc_core_start_stolen(vc);
3007 } else {
3008 vc->vcore_state = VCORE_INACTIVE;
3009 }
3010 if (vc->n_runnable > 0 && vc->runner == NULL) {
3011 /* make sure there's a candidate runner awake */
3012 i = -1;
3013 vcpu = next_runnable_thread(vc, &i);
3014 wake_up(&vcpu->arch.cpu_run);
3015 }
3016 }
3017 spin_unlock(&vc->lock);
3018 }
3019
3020 /*
3021 * Clear core from the list of active host cores as we are about to
3022 * enter the guest. Only do this if it is the primary thread of the
3023 * core (not if a subcore) that is entering the guest.
3024 */
kvmppc_clear_host_core(unsigned int cpu)3025 static inline int kvmppc_clear_host_core(unsigned int cpu)
3026 {
3027 int core;
3028
3029 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3030 return 0;
3031 /*
3032 * Memory barrier can be omitted here as we will do a smp_wmb()
3033 * later in kvmppc_start_thread and we need ensure that state is
3034 * visible to other CPUs only after we enter guest.
3035 */
3036 core = cpu >> threads_shift;
3037 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3038 return 0;
3039 }
3040
3041 /*
3042 * Advertise this core as an active host core since we exited the guest
3043 * Only need to do this if it is the primary thread of the core that is
3044 * exiting.
3045 */
kvmppc_set_host_core(unsigned int cpu)3046 static inline int kvmppc_set_host_core(unsigned int cpu)
3047 {
3048 int core;
3049
3050 if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3051 return 0;
3052
3053 /*
3054 * Memory barrier can be omitted here because we do a spin_unlock
3055 * immediately after this which provides the memory barrier.
3056 */
3057 core = cpu >> threads_shift;
3058 kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3059 return 0;
3060 }
3061
set_irq_happened(int trap)3062 static void set_irq_happened(int trap)
3063 {
3064 switch (trap) {
3065 case BOOK3S_INTERRUPT_EXTERNAL:
3066 local_paca->irq_happened |= PACA_IRQ_EE;
3067 break;
3068 case BOOK3S_INTERRUPT_H_DOORBELL:
3069 local_paca->irq_happened |= PACA_IRQ_DBELL;
3070 break;
3071 case BOOK3S_INTERRUPT_HMI:
3072 local_paca->irq_happened |= PACA_IRQ_HMI;
3073 break;
3074 case BOOK3S_INTERRUPT_SYSTEM_RESET:
3075 replay_system_reset();
3076 break;
3077 }
3078 }
3079
3080 /*
3081 * Run a set of guest threads on a physical core.
3082 * Called with vc->lock held.
3083 */
kvmppc_run_core(struct kvmppc_vcore * vc)3084 static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3085 {
3086 struct kvm_vcpu *vcpu;
3087 int i;
3088 int srcu_idx;
3089 struct core_info core_info;
3090 struct kvmppc_vcore *pvc;
3091 struct kvm_split_mode split_info, *sip;
3092 int split, subcore_size, active;
3093 int sub;
3094 bool thr0_done;
3095 unsigned long cmd_bit, stat_bit;
3096 int pcpu, thr;
3097 int target_threads;
3098 int controlled_threads;
3099 int trap;
3100 bool is_power8;
3101 bool hpt_on_radix;
3102
3103 /*
3104 * Remove from the list any threads that have a signal pending
3105 * or need a VPA update done
3106 */
3107 prepare_threads(vc);
3108
3109 /* if the runner is no longer runnable, let the caller pick a new one */
3110 if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3111 return;
3112
3113 /*
3114 * Initialize *vc.
3115 */
3116 init_vcore_to_run(vc);
3117 vc->preempt_tb = TB_NIL;
3118
3119 /*
3120 * Number of threads that we will be controlling: the same as
3121 * the number of threads per subcore, except on POWER9,
3122 * where it's 1 because the threads are (mostly) independent.
3123 */
3124 controlled_threads = threads_per_vcore(vc->kvm);
3125
3126 /*
3127 * Make sure we are running on primary threads, and that secondary
3128 * threads are offline. Also check if the number of threads in this
3129 * guest are greater than the current system threads per guest.
3130 * On POWER9, we need to be not in independent-threads mode if
3131 * this is a HPT guest on a radix host machine where the
3132 * CPU threads may not be in different MMU modes.
3133 */
3134 hpt_on_radix = no_mixing_hpt_and_radix && radix_enabled() &&
3135 !kvm_is_radix(vc->kvm);
3136 if (((controlled_threads > 1) &&
3137 ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) ||
3138 (hpt_on_radix && vc->kvm->arch.threads_indep)) {
3139 for_each_runnable_thread(i, vcpu, vc) {
3140 vcpu->arch.ret = -EBUSY;
3141 kvmppc_remove_runnable(vc, vcpu);
3142 wake_up(&vcpu->arch.cpu_run);
3143 }
3144 goto out;
3145 }
3146
3147 /*
3148 * See if we could run any other vcores on the physical core
3149 * along with this one.
3150 */
3151 init_core_info(&core_info, vc);
3152 pcpu = smp_processor_id();
3153 target_threads = controlled_threads;
3154 if (target_smt_mode && target_smt_mode < target_threads)
3155 target_threads = target_smt_mode;
3156 if (vc->num_threads < target_threads)
3157 collect_piggybacks(&core_info, target_threads);
3158
3159 /*
3160 * On radix, arrange for TLB flushing if necessary.
3161 * This has to be done before disabling interrupts since
3162 * it uses smp_call_function().
3163 */
3164 pcpu = smp_processor_id();
3165 if (kvm_is_radix(vc->kvm)) {
3166 for (sub = 0; sub < core_info.n_subcores; ++sub)
3167 for_each_runnable_thread(i, vcpu, core_info.vc[sub])
3168 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
3169 }
3170
3171 /*
3172 * Hard-disable interrupts, and check resched flag and signals.
3173 * If we need to reschedule or deliver a signal, clean up
3174 * and return without going into the guest(s).
3175 * If the mmu_ready flag has been cleared, don't go into the
3176 * guest because that means a HPT resize operation is in progress.
3177 */
3178 local_irq_disable();
3179 hard_irq_disable();
3180 if (lazy_irq_pending() || need_resched() ||
3181 recheck_signals_and_mmu(&core_info)) {
3182 local_irq_enable();
3183 vc->vcore_state = VCORE_INACTIVE;
3184 /* Unlock all except the primary vcore */
3185 for (sub = 1; sub < core_info.n_subcores; ++sub) {
3186 pvc = core_info.vc[sub];
3187 /* Put back on to the preempted vcores list */
3188 kvmppc_vcore_preempt(pvc);
3189 spin_unlock(&pvc->lock);
3190 }
3191 for (i = 0; i < controlled_threads; ++i)
3192 kvmppc_release_hwthread(pcpu + i);
3193 return;
3194 }
3195
3196 kvmppc_clear_host_core(pcpu);
3197
3198 /* Decide on micro-threading (split-core) mode */
3199 subcore_size = threads_per_subcore;
3200 cmd_bit = stat_bit = 0;
3201 split = core_info.n_subcores;
3202 sip = NULL;
3203 is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S)
3204 && !cpu_has_feature(CPU_FTR_ARCH_300);
3205
3206 if (split > 1 || hpt_on_radix) {
3207 sip = &split_info;
3208 memset(&split_info, 0, sizeof(split_info));
3209 for (sub = 0; sub < core_info.n_subcores; ++sub)
3210 split_info.vc[sub] = core_info.vc[sub];
3211
3212 if (is_power8) {
3213 if (split == 2 && (dynamic_mt_modes & 2)) {
3214 cmd_bit = HID0_POWER8_1TO2LPAR;
3215 stat_bit = HID0_POWER8_2LPARMODE;
3216 } else {
3217 split = 4;
3218 cmd_bit = HID0_POWER8_1TO4LPAR;
3219 stat_bit = HID0_POWER8_4LPARMODE;
3220 }
3221 subcore_size = MAX_SMT_THREADS / split;
3222 split_info.rpr = mfspr(SPRN_RPR);
3223 split_info.pmmar = mfspr(SPRN_PMMAR);
3224 split_info.ldbar = mfspr(SPRN_LDBAR);
3225 split_info.subcore_size = subcore_size;
3226 } else {
3227 split_info.subcore_size = 1;
3228 if (hpt_on_radix) {
3229 /* Use the split_info for LPCR/LPIDR changes */
3230 split_info.lpcr_req = vc->lpcr;
3231 split_info.lpidr_req = vc->kvm->arch.lpid;
3232 split_info.host_lpcr = vc->kvm->arch.host_lpcr;
3233 split_info.do_set = 1;
3234 }
3235 }
3236
3237 /* order writes to split_info before kvm_split_mode pointer */
3238 smp_wmb();
3239 }
3240
3241 for (thr = 0; thr < controlled_threads; ++thr) {
3242 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3243
3244 paca->kvm_hstate.tid = thr;
3245 paca->kvm_hstate.napping = 0;
3246 paca->kvm_hstate.kvm_split_mode = sip;
3247 }
3248
3249 /* Initiate micro-threading (split-core) on POWER8 if required */
3250 if (cmd_bit) {
3251 unsigned long hid0 = mfspr(SPRN_HID0);
3252
3253 hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3254 mb();
3255 mtspr(SPRN_HID0, hid0);
3256 isync();
3257 for (;;) {
3258 hid0 = mfspr(SPRN_HID0);
3259 if (hid0 & stat_bit)
3260 break;
3261 cpu_relax();
3262 }
3263 }
3264
3265 /*
3266 * On POWER8, set RWMR register.
3267 * Since it only affects PURR and SPURR, it doesn't affect
3268 * the host, so we don't save/restore the host value.
3269 */
3270 if (is_power8) {
3271 unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3272 int n_online = atomic_read(&vc->online_count);
3273
3274 /*
3275 * Use the 8-thread value if we're doing split-core
3276 * or if the vcore's online count looks bogus.
3277 */
3278 if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3279 n_online >= 1 && n_online <= MAX_SMT_THREADS)
3280 rwmr_val = p8_rwmr_values[n_online];
3281 mtspr(SPRN_RWMR, rwmr_val);
3282 }
3283
3284 /* Start all the threads */
3285 active = 0;
3286 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3287 thr = is_power8 ? subcore_thread_map[sub] : sub;
3288 thr0_done = false;
3289 active |= 1 << thr;
3290 pvc = core_info.vc[sub];
3291 pvc->pcpu = pcpu + thr;
3292 for_each_runnable_thread(i, vcpu, pvc) {
3293 kvmppc_start_thread(vcpu, pvc);
3294 kvmppc_create_dtl_entry(vcpu, pvc);
3295 trace_kvm_guest_enter(vcpu);
3296 if (!vcpu->arch.ptid)
3297 thr0_done = true;
3298 active |= 1 << (thr + vcpu->arch.ptid);
3299 }
3300 /*
3301 * We need to start the first thread of each subcore
3302 * even if it doesn't have a vcpu.
3303 */
3304 if (!thr0_done)
3305 kvmppc_start_thread(NULL, pvc);
3306 }
3307
3308 /*
3309 * Ensure that split_info.do_nap is set after setting
3310 * the vcore pointer in the PACA of the secondaries.
3311 */
3312 smp_mb();
3313
3314 /*
3315 * When doing micro-threading, poke the inactive threads as well.
3316 * This gets them to the nap instruction after kvm_do_nap,
3317 * which reduces the time taken to unsplit later.
3318 * For POWER9 HPT guest on radix host, we need all the secondary
3319 * threads woken up so they can do the LPCR/LPIDR change.
3320 */
3321 if (cmd_bit || hpt_on_radix) {
3322 split_info.do_nap = 1; /* ask secondaries to nap when done */
3323 for (thr = 1; thr < threads_per_subcore; ++thr)
3324 if (!(active & (1 << thr)))
3325 kvmppc_ipi_thread(pcpu + thr);
3326 }
3327
3328 vc->vcore_state = VCORE_RUNNING;
3329 preempt_disable();
3330
3331 trace_kvmppc_run_core(vc, 0);
3332
3333 for (sub = 0; sub < core_info.n_subcores; ++sub)
3334 spin_unlock(&core_info.vc[sub]->lock);
3335
3336 guest_enter_irqoff();
3337
3338 srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3339
3340 this_cpu_disable_ftrace();
3341
3342 /*
3343 * Interrupts will be enabled once we get into the guest,
3344 * so tell lockdep that we're about to enable interrupts.
3345 */
3346 trace_hardirqs_on();
3347
3348 trap = __kvmppc_vcore_entry();
3349
3350 trace_hardirqs_off();
3351
3352 this_cpu_enable_ftrace();
3353
3354 srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3355
3356 set_irq_happened(trap);
3357
3358 spin_lock(&vc->lock);
3359 /* prevent other vcpu threads from doing kvmppc_start_thread() now */
3360 vc->vcore_state = VCORE_EXITING;
3361
3362 /* wait for secondary threads to finish writing their state to memory */
3363 kvmppc_wait_for_nap(controlled_threads);
3364
3365 /* Return to whole-core mode if we split the core earlier */
3366 if (cmd_bit) {
3367 unsigned long hid0 = mfspr(SPRN_HID0);
3368 unsigned long loops = 0;
3369
3370 hid0 &= ~HID0_POWER8_DYNLPARDIS;
3371 stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3372 mb();
3373 mtspr(SPRN_HID0, hid0);
3374 isync();
3375 for (;;) {
3376 hid0 = mfspr(SPRN_HID0);
3377 if (!(hid0 & stat_bit))
3378 break;
3379 cpu_relax();
3380 ++loops;
3381 }
3382 } else if (hpt_on_radix) {
3383 /* Wait for all threads to have seen final sync */
3384 for (thr = 1; thr < controlled_threads; ++thr) {
3385 struct paca_struct *paca = paca_ptrs[pcpu + thr];
3386
3387 while (paca->kvm_hstate.kvm_split_mode) {
3388 HMT_low();
3389 barrier();
3390 }
3391 HMT_medium();
3392 }
3393 }
3394 split_info.do_nap = 0;
3395
3396 kvmppc_set_host_core(pcpu);
3397
3398 local_irq_enable();
3399 guest_exit();
3400
3401 /* Let secondaries go back to the offline loop */
3402 for (i = 0; i < controlled_threads; ++i) {
3403 kvmppc_release_hwthread(pcpu + i);
3404 if (sip && sip->napped[i])
3405 kvmppc_ipi_thread(pcpu + i);
3406 cpumask_clear_cpu(pcpu + i, &vc->kvm->arch.cpu_in_guest);
3407 }
3408
3409 spin_unlock(&vc->lock);
3410
3411 /* make sure updates to secondary vcpu structs are visible now */
3412 smp_mb();
3413
3414 preempt_enable();
3415
3416 for (sub = 0; sub < core_info.n_subcores; ++sub) {
3417 pvc = core_info.vc[sub];
3418 post_guest_process(pvc, pvc == vc);
3419 }
3420
3421 spin_lock(&vc->lock);
3422
3423 out:
3424 vc->vcore_state = VCORE_INACTIVE;
3425 trace_kvmppc_run_core(vc, 1);
3426 }
3427
3428 /*
3429 * Load up hypervisor-mode registers on P9.
3430 */
kvmhv_load_hv_regs_and_go(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr)3431 static int kvmhv_load_hv_regs_and_go(struct kvm_vcpu *vcpu, u64 time_limit,
3432 unsigned long lpcr)
3433 {
3434 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3435 s64 hdec;
3436 u64 tb, purr, spurr;
3437 int trap;
3438 unsigned long host_hfscr = mfspr(SPRN_HFSCR);
3439 unsigned long host_ciabr = mfspr(SPRN_CIABR);
3440 unsigned long host_dawr = mfspr(SPRN_DAWR0);
3441 unsigned long host_dawrx = mfspr(SPRN_DAWRX0);
3442 unsigned long host_psscr = mfspr(SPRN_PSSCR);
3443 unsigned long host_pidr = mfspr(SPRN_PID);
3444
3445 /*
3446 * P8 and P9 suppress the HDEC exception when LPCR[HDICE] = 0,
3447 * so set HDICE before writing HDEC.
3448 */
3449 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr | LPCR_HDICE);
3450 isync();
3451
3452 hdec = time_limit - mftb();
3453 if (hdec < 0) {
3454 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3455 isync();
3456 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3457 }
3458 mtspr(SPRN_HDEC, hdec);
3459
3460 if (vc->tb_offset) {
3461 u64 new_tb = mftb() + vc->tb_offset;
3462 mtspr(SPRN_TBU40, new_tb);
3463 tb = mftb();
3464 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3465 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3466 vc->tb_offset_applied = vc->tb_offset;
3467 }
3468
3469 if (vc->pcr)
3470 mtspr(SPRN_PCR, vc->pcr | PCR_MASK);
3471 mtspr(SPRN_DPDES, vc->dpdes);
3472 mtspr(SPRN_VTB, vc->vtb);
3473
3474 local_paca->kvm_hstate.host_purr = mfspr(SPRN_PURR);
3475 local_paca->kvm_hstate.host_spurr = mfspr(SPRN_SPURR);
3476 mtspr(SPRN_PURR, vcpu->arch.purr);
3477 mtspr(SPRN_SPURR, vcpu->arch.spurr);
3478
3479 if (dawr_enabled()) {
3480 mtspr(SPRN_DAWR0, vcpu->arch.dawr);
3481 mtspr(SPRN_DAWRX0, vcpu->arch.dawrx);
3482 }
3483 mtspr(SPRN_CIABR, vcpu->arch.ciabr);
3484 mtspr(SPRN_IC, vcpu->arch.ic);
3485 mtspr(SPRN_PID, vcpu->arch.pid);
3486
3487 mtspr(SPRN_PSSCR, vcpu->arch.psscr | PSSCR_EC |
3488 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3489
3490 mtspr(SPRN_HFSCR, vcpu->arch.hfscr);
3491
3492 mtspr(SPRN_SPRG0, vcpu->arch.shregs.sprg0);
3493 mtspr(SPRN_SPRG1, vcpu->arch.shregs.sprg1);
3494 mtspr(SPRN_SPRG2, vcpu->arch.shregs.sprg2);
3495 mtspr(SPRN_SPRG3, vcpu->arch.shregs.sprg3);
3496
3497 mtspr(SPRN_AMOR, ~0UL);
3498
3499 mtspr(SPRN_LPCR, lpcr);
3500 isync();
3501
3502 kvmppc_xive_push_vcpu(vcpu);
3503
3504 mtspr(SPRN_SRR0, vcpu->arch.shregs.srr0);
3505 mtspr(SPRN_SRR1, vcpu->arch.shregs.srr1);
3506
3507 trap = __kvmhv_vcpu_entry_p9(vcpu);
3508
3509 /* Advance host PURR/SPURR by the amount used by guest */
3510 purr = mfspr(SPRN_PURR);
3511 spurr = mfspr(SPRN_SPURR);
3512 mtspr(SPRN_PURR, local_paca->kvm_hstate.host_purr +
3513 purr - vcpu->arch.purr);
3514 mtspr(SPRN_SPURR, local_paca->kvm_hstate.host_spurr +
3515 spurr - vcpu->arch.spurr);
3516 vcpu->arch.purr = purr;
3517 vcpu->arch.spurr = spurr;
3518
3519 vcpu->arch.ic = mfspr(SPRN_IC);
3520 vcpu->arch.pid = mfspr(SPRN_PID);
3521 vcpu->arch.psscr = mfspr(SPRN_PSSCR) & PSSCR_GUEST_VIS;
3522
3523 vcpu->arch.shregs.sprg0 = mfspr(SPRN_SPRG0);
3524 vcpu->arch.shregs.sprg1 = mfspr(SPRN_SPRG1);
3525 vcpu->arch.shregs.sprg2 = mfspr(SPRN_SPRG2);
3526 vcpu->arch.shregs.sprg3 = mfspr(SPRN_SPRG3);
3527
3528 /* Preserve PSSCR[FAKE_SUSPEND] until we've called kvmppc_save_tm_hv */
3529 mtspr(SPRN_PSSCR, host_psscr |
3530 (local_paca->kvm_hstate.fake_suspend << PSSCR_FAKE_SUSPEND_LG));
3531 mtspr(SPRN_HFSCR, host_hfscr);
3532 mtspr(SPRN_CIABR, host_ciabr);
3533 mtspr(SPRN_DAWR0, host_dawr);
3534 mtspr(SPRN_DAWRX0, host_dawrx);
3535 mtspr(SPRN_PID, host_pidr);
3536
3537 /*
3538 * Since this is radix, do a eieio; tlbsync; ptesync sequence in
3539 * case we interrupted the guest between a tlbie and a ptesync.
3540 */
3541 asm volatile("eieio; tlbsync; ptesync");
3542
3543 /*
3544 * cp_abort is required if the processor supports local copy-paste
3545 * to clear the copy buffer that was under control of the guest.
3546 */
3547 if (cpu_has_feature(CPU_FTR_ARCH_31))
3548 asm volatile(PPC_CP_ABORT);
3549
3550 mtspr(SPRN_LPID, vcpu->kvm->arch.host_lpid); /* restore host LPID */
3551 isync();
3552
3553 vc->dpdes = mfspr(SPRN_DPDES);
3554 vc->vtb = mfspr(SPRN_VTB);
3555 mtspr(SPRN_DPDES, 0);
3556 if (vc->pcr)
3557 mtspr(SPRN_PCR, PCR_MASK);
3558
3559 if (vc->tb_offset_applied) {
3560 u64 new_tb = mftb() - vc->tb_offset_applied;
3561 mtspr(SPRN_TBU40, new_tb);
3562 tb = mftb();
3563 if ((tb & 0xffffff) < (new_tb & 0xffffff))
3564 mtspr(SPRN_TBU40, new_tb + 0x1000000);
3565 vc->tb_offset_applied = 0;
3566 }
3567
3568 mtspr(SPRN_HDEC, 0x7fffffff);
3569 mtspr(SPRN_LPCR, vcpu->kvm->arch.host_lpcr);
3570
3571 return trap;
3572 }
3573
3574 /*
3575 * Virtual-mode guest entry for POWER9 and later when the host and
3576 * guest are both using the radix MMU. The LPIDR has already been set.
3577 */
kvmhv_p9_guest_entry(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr)3578 static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
3579 unsigned long lpcr)
3580 {
3581 struct kvmppc_vcore *vc = vcpu->arch.vcore;
3582 unsigned long host_dscr = mfspr(SPRN_DSCR);
3583 unsigned long host_tidr = mfspr(SPRN_TIDR);
3584 unsigned long host_iamr = mfspr(SPRN_IAMR);
3585 unsigned long host_amr = mfspr(SPRN_AMR);
3586 s64 dec;
3587 u64 tb;
3588 int trap, save_pmu;
3589
3590 dec = mfspr(SPRN_DEC);
3591 tb = mftb();
3592 if (dec < 0)
3593 return BOOK3S_INTERRUPT_HV_DECREMENTER;
3594 local_paca->kvm_hstate.dec_expires = dec + tb;
3595 if (local_paca->kvm_hstate.dec_expires < time_limit)
3596 time_limit = local_paca->kvm_hstate.dec_expires;
3597
3598 vcpu->arch.ceded = 0;
3599
3600 kvmhv_save_host_pmu(); /* saves it to PACA kvm_hstate */
3601
3602 kvmppc_subcore_enter_guest();
3603
3604 vc->entry_exit_map = 1;
3605 vc->in_guest = 1;
3606
3607 if (vcpu->arch.vpa.pinned_addr) {
3608 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3609 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3610 lp->yield_count = cpu_to_be32(yield_count);
3611 vcpu->arch.vpa.dirty = 1;
3612 }
3613
3614 if (cpu_has_feature(CPU_FTR_TM) ||
3615 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3616 kvmppc_restore_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3617
3618 kvmhv_load_guest_pmu(vcpu);
3619
3620 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3621 load_fp_state(&vcpu->arch.fp);
3622 #ifdef CONFIG_ALTIVEC
3623 load_vr_state(&vcpu->arch.vr);
3624 #endif
3625 mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
3626
3627 mtspr(SPRN_DSCR, vcpu->arch.dscr);
3628 mtspr(SPRN_IAMR, vcpu->arch.iamr);
3629 mtspr(SPRN_PSPB, vcpu->arch.pspb);
3630 mtspr(SPRN_FSCR, vcpu->arch.fscr);
3631 mtspr(SPRN_TAR, vcpu->arch.tar);
3632 mtspr(SPRN_EBBHR, vcpu->arch.ebbhr);
3633 mtspr(SPRN_EBBRR, vcpu->arch.ebbrr);
3634 mtspr(SPRN_BESCR, vcpu->arch.bescr);
3635 mtspr(SPRN_WORT, vcpu->arch.wort);
3636 mtspr(SPRN_TIDR, vcpu->arch.tid);
3637 mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
3638 mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
3639 mtspr(SPRN_AMR, vcpu->arch.amr);
3640 mtspr(SPRN_UAMOR, vcpu->arch.uamor);
3641
3642 if (!(vcpu->arch.ctrl & 1))
3643 mtspr(SPRN_CTRLT, mfspr(SPRN_CTRLF) & ~1);
3644
3645 mtspr(SPRN_DEC, vcpu->arch.dec_expires - mftb());
3646
3647 if (kvmhv_on_pseries()) {
3648 /*
3649 * We need to save and restore the guest visible part of the
3650 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
3651 * doesn't do this for us. Note only required if pseries since
3652 * this is done in kvmhv_load_hv_regs_and_go() below otherwise.
3653 */
3654 unsigned long host_psscr;
3655 /* call our hypervisor to load up HV regs and go */
3656 struct hv_guest_state hvregs;
3657
3658 host_psscr = mfspr(SPRN_PSSCR_PR);
3659 mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
3660 kvmhv_save_hv_regs(vcpu, &hvregs);
3661 hvregs.lpcr = lpcr;
3662 vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
3663 hvregs.version = HV_GUEST_STATE_VERSION;
3664 if (vcpu->arch.nested) {
3665 hvregs.lpid = vcpu->arch.nested->shadow_lpid;
3666 hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
3667 } else {
3668 hvregs.lpid = vcpu->kvm->arch.lpid;
3669 hvregs.vcpu_token = vcpu->vcpu_id;
3670 }
3671 hvregs.hdec_expiry = time_limit;
3672 trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
3673 __pa(&vcpu->arch.regs));
3674 kvmhv_restore_hv_return_state(vcpu, &hvregs);
3675 vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
3676 vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
3677 vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
3678 vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
3679 mtspr(SPRN_PSSCR_PR, host_psscr);
3680
3681 /* H_CEDE has to be handled now, not later */
3682 if (trap == BOOK3S_INTERRUPT_SYSCALL && !vcpu->arch.nested &&
3683 kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
3684 kvmppc_nested_cede(vcpu);
3685 kvmppc_set_gpr(vcpu, 3, 0);
3686 trap = 0;
3687 }
3688 } else {
3689 trap = kvmhv_load_hv_regs_and_go(vcpu, time_limit, lpcr);
3690 }
3691
3692 vcpu->arch.slb_max = 0;
3693 dec = mfspr(SPRN_DEC);
3694 if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
3695 dec = (s32) dec;
3696 tb = mftb();
3697 vcpu->arch.dec_expires = dec + tb;
3698 vcpu->cpu = -1;
3699 vcpu->arch.thread_cpu = -1;
3700 vcpu->arch.ctrl = mfspr(SPRN_CTRLF);
3701
3702 vcpu->arch.iamr = mfspr(SPRN_IAMR);
3703 vcpu->arch.pspb = mfspr(SPRN_PSPB);
3704 vcpu->arch.fscr = mfspr(SPRN_FSCR);
3705 vcpu->arch.tar = mfspr(SPRN_TAR);
3706 vcpu->arch.ebbhr = mfspr(SPRN_EBBHR);
3707 vcpu->arch.ebbrr = mfspr(SPRN_EBBRR);
3708 vcpu->arch.bescr = mfspr(SPRN_BESCR);
3709 vcpu->arch.wort = mfspr(SPRN_WORT);
3710 vcpu->arch.tid = mfspr(SPRN_TIDR);
3711 vcpu->arch.amr = mfspr(SPRN_AMR);
3712 vcpu->arch.uamor = mfspr(SPRN_UAMOR);
3713 vcpu->arch.dscr = mfspr(SPRN_DSCR);
3714
3715 mtspr(SPRN_PSPB, 0);
3716 mtspr(SPRN_WORT, 0);
3717 mtspr(SPRN_UAMOR, 0);
3718 mtspr(SPRN_DSCR, host_dscr);
3719 mtspr(SPRN_TIDR, host_tidr);
3720 mtspr(SPRN_IAMR, host_iamr);
3721 mtspr(SPRN_PSPB, 0);
3722
3723 if (host_amr != vcpu->arch.amr)
3724 mtspr(SPRN_AMR, host_amr);
3725
3726 msr_check_and_set(MSR_FP | MSR_VEC | MSR_VSX);
3727 store_fp_state(&vcpu->arch.fp);
3728 #ifdef CONFIG_ALTIVEC
3729 store_vr_state(&vcpu->arch.vr);
3730 #endif
3731 vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
3732
3733 if (cpu_has_feature(CPU_FTR_TM) ||
3734 cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
3735 kvmppc_save_tm_hv(vcpu, vcpu->arch.shregs.msr, true);
3736
3737 save_pmu = 1;
3738 if (vcpu->arch.vpa.pinned_addr) {
3739 struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
3740 u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
3741 lp->yield_count = cpu_to_be32(yield_count);
3742 vcpu->arch.vpa.dirty = 1;
3743 save_pmu = lp->pmcregs_in_use;
3744 }
3745 /* Must save pmu if this guest is capable of running nested guests */
3746 save_pmu |= nesting_enabled(vcpu->kvm);
3747
3748 kvmhv_save_guest_pmu(vcpu, save_pmu);
3749
3750 vc->entry_exit_map = 0x101;
3751 vc->in_guest = 0;
3752
3753 mtspr(SPRN_DEC, local_paca->kvm_hstate.dec_expires - mftb());
3754 mtspr(SPRN_SPRG_VDSO_WRITE, local_paca->sprg_vdso);
3755
3756 kvmhv_load_host_pmu();
3757
3758 kvmppc_subcore_exit_guest();
3759
3760 return trap;
3761 }
3762
3763 /*
3764 * Wait for some other vcpu thread to execute us, and
3765 * wake us up when we need to handle something in the host.
3766 */
kvmppc_wait_for_exec(struct kvmppc_vcore * vc,struct kvm_vcpu * vcpu,int wait_state)3767 static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
3768 struct kvm_vcpu *vcpu, int wait_state)
3769 {
3770 DEFINE_WAIT(wait);
3771
3772 prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
3773 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
3774 spin_unlock(&vc->lock);
3775 schedule();
3776 spin_lock(&vc->lock);
3777 }
3778 finish_wait(&vcpu->arch.cpu_run, &wait);
3779 }
3780
grow_halt_poll_ns(struct kvmppc_vcore * vc)3781 static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
3782 {
3783 if (!halt_poll_ns_grow)
3784 return;
3785
3786 vc->halt_poll_ns *= halt_poll_ns_grow;
3787 if (vc->halt_poll_ns < halt_poll_ns_grow_start)
3788 vc->halt_poll_ns = halt_poll_ns_grow_start;
3789 }
3790
shrink_halt_poll_ns(struct kvmppc_vcore * vc)3791 static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
3792 {
3793 if (halt_poll_ns_shrink == 0)
3794 vc->halt_poll_ns = 0;
3795 else
3796 vc->halt_poll_ns /= halt_poll_ns_shrink;
3797 }
3798
3799 #ifdef CONFIG_KVM_XICS
xive_interrupt_pending(struct kvm_vcpu * vcpu)3800 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3801 {
3802 if (!xics_on_xive())
3803 return false;
3804 return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
3805 vcpu->arch.xive_saved_state.cppr;
3806 }
3807 #else
xive_interrupt_pending(struct kvm_vcpu * vcpu)3808 static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
3809 {
3810 return false;
3811 }
3812 #endif /* CONFIG_KVM_XICS */
3813
kvmppc_vcpu_woken(struct kvm_vcpu * vcpu)3814 static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
3815 {
3816 if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
3817 kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
3818 return true;
3819
3820 return false;
3821 }
3822
3823 /*
3824 * Check to see if any of the runnable vcpus on the vcore have pending
3825 * exceptions or are no longer ceded
3826 */
kvmppc_vcore_check_block(struct kvmppc_vcore * vc)3827 static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
3828 {
3829 struct kvm_vcpu *vcpu;
3830 int i;
3831
3832 for_each_runnable_thread(i, vcpu, vc) {
3833 if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
3834 return 1;
3835 }
3836
3837 return 0;
3838 }
3839
3840 /*
3841 * All the vcpus in this vcore are idle, so wait for a decrementer
3842 * or external interrupt to one of the vcpus. vc->lock is held.
3843 */
kvmppc_vcore_blocked(struct kvmppc_vcore * vc)3844 static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
3845 {
3846 ktime_t cur, start_poll, start_wait;
3847 int do_sleep = 1;
3848 u64 block_ns;
3849
3850 /* Poll for pending exceptions and ceded state */
3851 cur = start_poll = ktime_get();
3852 if (vc->halt_poll_ns) {
3853 ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
3854 ++vc->runner->stat.halt_attempted_poll;
3855
3856 vc->vcore_state = VCORE_POLLING;
3857 spin_unlock(&vc->lock);
3858
3859 do {
3860 if (kvmppc_vcore_check_block(vc)) {
3861 do_sleep = 0;
3862 break;
3863 }
3864 cur = ktime_get();
3865 } while (single_task_running() && ktime_before(cur, stop));
3866
3867 spin_lock(&vc->lock);
3868 vc->vcore_state = VCORE_INACTIVE;
3869
3870 if (!do_sleep) {
3871 ++vc->runner->stat.halt_successful_poll;
3872 goto out;
3873 }
3874 }
3875
3876 prepare_to_rcuwait(&vc->wait);
3877 set_current_state(TASK_INTERRUPTIBLE);
3878 if (kvmppc_vcore_check_block(vc)) {
3879 finish_rcuwait(&vc->wait);
3880 do_sleep = 0;
3881 /* If we polled, count this as a successful poll */
3882 if (vc->halt_poll_ns)
3883 ++vc->runner->stat.halt_successful_poll;
3884 goto out;
3885 }
3886
3887 start_wait = ktime_get();
3888
3889 vc->vcore_state = VCORE_SLEEPING;
3890 trace_kvmppc_vcore_blocked(vc, 0);
3891 spin_unlock(&vc->lock);
3892 schedule();
3893 finish_rcuwait(&vc->wait);
3894 spin_lock(&vc->lock);
3895 vc->vcore_state = VCORE_INACTIVE;
3896 trace_kvmppc_vcore_blocked(vc, 1);
3897 ++vc->runner->stat.halt_successful_wait;
3898
3899 cur = ktime_get();
3900
3901 out:
3902 block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
3903
3904 /* Attribute wait time */
3905 if (do_sleep) {
3906 vc->runner->stat.halt_wait_ns +=
3907 ktime_to_ns(cur) - ktime_to_ns(start_wait);
3908 /* Attribute failed poll time */
3909 if (vc->halt_poll_ns)
3910 vc->runner->stat.halt_poll_fail_ns +=
3911 ktime_to_ns(start_wait) -
3912 ktime_to_ns(start_poll);
3913 } else {
3914 /* Attribute successful poll time */
3915 if (vc->halt_poll_ns)
3916 vc->runner->stat.halt_poll_success_ns +=
3917 ktime_to_ns(cur) -
3918 ktime_to_ns(start_poll);
3919 }
3920
3921 /* Adjust poll time */
3922 if (halt_poll_ns) {
3923 if (block_ns <= vc->halt_poll_ns)
3924 ;
3925 /* We slept and blocked for longer than the max halt time */
3926 else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
3927 shrink_halt_poll_ns(vc);
3928 /* We slept and our poll time is too small */
3929 else if (vc->halt_poll_ns < halt_poll_ns &&
3930 block_ns < halt_poll_ns)
3931 grow_halt_poll_ns(vc);
3932 if (vc->halt_poll_ns > halt_poll_ns)
3933 vc->halt_poll_ns = halt_poll_ns;
3934 } else
3935 vc->halt_poll_ns = 0;
3936
3937 trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
3938 }
3939
3940 /*
3941 * This never fails for a radix guest, as none of the operations it does
3942 * for a radix guest can fail or have a way to report failure.
3943 * kvmhv_run_single_vcpu() relies on this fact.
3944 */
kvmhv_setup_mmu(struct kvm_vcpu * vcpu)3945 static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
3946 {
3947 int r = 0;
3948 struct kvm *kvm = vcpu->kvm;
3949
3950 mutex_lock(&kvm->arch.mmu_setup_lock);
3951 if (!kvm->arch.mmu_ready) {
3952 if (!kvm_is_radix(kvm))
3953 r = kvmppc_hv_setup_htab_rma(vcpu);
3954 if (!r) {
3955 if (cpu_has_feature(CPU_FTR_ARCH_300))
3956 kvmppc_setup_partition_table(kvm);
3957 kvm->arch.mmu_ready = 1;
3958 }
3959 }
3960 mutex_unlock(&kvm->arch.mmu_setup_lock);
3961 return r;
3962 }
3963
kvmppc_run_vcpu(struct kvm_vcpu * vcpu)3964 static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
3965 {
3966 struct kvm_run *run = vcpu->run;
3967 int n_ceded, i, r;
3968 struct kvmppc_vcore *vc;
3969 struct kvm_vcpu *v;
3970
3971 trace_kvmppc_run_vcpu_enter(vcpu);
3972
3973 run->exit_reason = 0;
3974 vcpu->arch.ret = RESUME_GUEST;
3975 vcpu->arch.trap = 0;
3976 kvmppc_update_vpas(vcpu);
3977
3978 /*
3979 * Synchronize with other threads in this virtual core
3980 */
3981 vc = vcpu->arch.vcore;
3982 spin_lock(&vc->lock);
3983 vcpu->arch.ceded = 0;
3984 vcpu->arch.run_task = current;
3985 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
3986 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
3987 vcpu->arch.busy_preempt = TB_NIL;
3988 WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
3989 ++vc->n_runnable;
3990
3991 /*
3992 * This happens the first time this is called for a vcpu.
3993 * If the vcore is already running, we may be able to start
3994 * this thread straight away and have it join in.
3995 */
3996 if (!signal_pending(current)) {
3997 if ((vc->vcore_state == VCORE_PIGGYBACK ||
3998 vc->vcore_state == VCORE_RUNNING) &&
3999 !VCORE_IS_EXITING(vc)) {
4000 kvmppc_create_dtl_entry(vcpu, vc);
4001 kvmppc_start_thread(vcpu, vc);
4002 trace_kvm_guest_enter(vcpu);
4003 } else if (vc->vcore_state == VCORE_SLEEPING) {
4004 rcuwait_wake_up(&vc->wait);
4005 }
4006
4007 }
4008
4009 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4010 !signal_pending(current)) {
4011 /* See if the MMU is ready to go */
4012 if (!vcpu->kvm->arch.mmu_ready) {
4013 spin_unlock(&vc->lock);
4014 r = kvmhv_setup_mmu(vcpu);
4015 spin_lock(&vc->lock);
4016 if (r) {
4017 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4018 run->fail_entry.
4019 hardware_entry_failure_reason = 0;
4020 vcpu->arch.ret = r;
4021 break;
4022 }
4023 }
4024
4025 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4026 kvmppc_vcore_end_preempt(vc);
4027
4028 if (vc->vcore_state != VCORE_INACTIVE) {
4029 kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4030 continue;
4031 }
4032 for_each_runnable_thread(i, v, vc) {
4033 kvmppc_core_prepare_to_enter(v);
4034 if (signal_pending(v->arch.run_task)) {
4035 kvmppc_remove_runnable(vc, v);
4036 v->stat.signal_exits++;
4037 v->run->exit_reason = KVM_EXIT_INTR;
4038 v->arch.ret = -EINTR;
4039 wake_up(&v->arch.cpu_run);
4040 }
4041 }
4042 if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4043 break;
4044 n_ceded = 0;
4045 for_each_runnable_thread(i, v, vc) {
4046 if (!kvmppc_vcpu_woken(v))
4047 n_ceded += v->arch.ceded;
4048 else
4049 v->arch.ceded = 0;
4050 }
4051 vc->runner = vcpu;
4052 if (n_ceded == vc->n_runnable) {
4053 kvmppc_vcore_blocked(vc);
4054 } else if (need_resched()) {
4055 kvmppc_vcore_preempt(vc);
4056 /* Let something else run */
4057 cond_resched_lock(&vc->lock);
4058 if (vc->vcore_state == VCORE_PREEMPT)
4059 kvmppc_vcore_end_preempt(vc);
4060 } else {
4061 kvmppc_run_core(vc);
4062 }
4063 vc->runner = NULL;
4064 }
4065
4066 while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4067 (vc->vcore_state == VCORE_RUNNING ||
4068 vc->vcore_state == VCORE_EXITING ||
4069 vc->vcore_state == VCORE_PIGGYBACK))
4070 kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4071
4072 if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4073 kvmppc_vcore_end_preempt(vc);
4074
4075 if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4076 kvmppc_remove_runnable(vc, vcpu);
4077 vcpu->stat.signal_exits++;
4078 run->exit_reason = KVM_EXIT_INTR;
4079 vcpu->arch.ret = -EINTR;
4080 }
4081
4082 if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4083 /* Wake up some vcpu to run the core */
4084 i = -1;
4085 v = next_runnable_thread(vc, &i);
4086 wake_up(&v->arch.cpu_run);
4087 }
4088
4089 trace_kvmppc_run_vcpu_exit(vcpu);
4090 spin_unlock(&vc->lock);
4091 return vcpu->arch.ret;
4092 }
4093
kvmhv_run_single_vcpu(struct kvm_vcpu * vcpu,u64 time_limit,unsigned long lpcr)4094 int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4095 unsigned long lpcr)
4096 {
4097 struct kvm_run *run = vcpu->run;
4098 int trap, r, pcpu;
4099 int srcu_idx, lpid;
4100 struct kvmppc_vcore *vc;
4101 struct kvm *kvm = vcpu->kvm;
4102 struct kvm_nested_guest *nested = vcpu->arch.nested;
4103
4104 trace_kvmppc_run_vcpu_enter(vcpu);
4105
4106 run->exit_reason = 0;
4107 vcpu->arch.ret = RESUME_GUEST;
4108 vcpu->arch.trap = 0;
4109
4110 vc = vcpu->arch.vcore;
4111 vcpu->arch.ceded = 0;
4112 vcpu->arch.run_task = current;
4113 vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4114 vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4115 vcpu->arch.busy_preempt = TB_NIL;
4116 vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4117 vc->runnable_threads[0] = vcpu;
4118 vc->n_runnable = 1;
4119 vc->runner = vcpu;
4120
4121 /* See if the MMU is ready to go */
4122 if (!kvm->arch.mmu_ready)
4123 kvmhv_setup_mmu(vcpu);
4124
4125 if (need_resched())
4126 cond_resched();
4127
4128 kvmppc_update_vpas(vcpu);
4129
4130 init_vcore_to_run(vc);
4131 vc->preempt_tb = TB_NIL;
4132
4133 preempt_disable();
4134 pcpu = smp_processor_id();
4135 vc->pcpu = pcpu;
4136 kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4137
4138 local_irq_disable();
4139 hard_irq_disable();
4140 if (signal_pending(current))
4141 goto sigpend;
4142 if (lazy_irq_pending() || need_resched() || !kvm->arch.mmu_ready)
4143 goto out;
4144
4145 if (!nested) {
4146 kvmppc_core_prepare_to_enter(vcpu);
4147 if (vcpu->arch.doorbell_request) {
4148 vc->dpdes = 1;
4149 smp_wmb();
4150 vcpu->arch.doorbell_request = 0;
4151 }
4152 if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4153 &vcpu->arch.pending_exceptions))
4154 lpcr |= LPCR_MER;
4155 } else if (vcpu->arch.pending_exceptions ||
4156 vcpu->arch.doorbell_request ||
4157 xive_interrupt_pending(vcpu)) {
4158 vcpu->arch.ret = RESUME_HOST;
4159 goto out;
4160 }
4161
4162 kvmppc_clear_host_core(pcpu);
4163
4164 local_paca->kvm_hstate.tid = 0;
4165 local_paca->kvm_hstate.napping = 0;
4166 local_paca->kvm_hstate.kvm_split_mode = NULL;
4167 kvmppc_start_thread(vcpu, vc);
4168 kvmppc_create_dtl_entry(vcpu, vc);
4169 trace_kvm_guest_enter(vcpu);
4170
4171 vc->vcore_state = VCORE_RUNNING;
4172 trace_kvmppc_run_core(vc, 0);
4173
4174 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4175 lpid = nested ? nested->shadow_lpid : kvm->arch.lpid;
4176 mtspr(SPRN_LPID, lpid);
4177 isync();
4178 kvmppc_check_need_tlb_flush(kvm, pcpu, nested);
4179 }
4180
4181 guest_enter_irqoff();
4182
4183 srcu_idx = srcu_read_lock(&kvm->srcu);
4184
4185 this_cpu_disable_ftrace();
4186
4187 /* Tell lockdep that we're about to enable interrupts */
4188 trace_hardirqs_on();
4189
4190 trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr);
4191 vcpu->arch.trap = trap;
4192
4193 trace_hardirqs_off();
4194
4195 this_cpu_enable_ftrace();
4196
4197 srcu_read_unlock(&kvm->srcu, srcu_idx);
4198
4199 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4200 mtspr(SPRN_LPID, kvm->arch.host_lpid);
4201 isync();
4202 }
4203
4204 set_irq_happened(trap);
4205
4206 kvmppc_set_host_core(pcpu);
4207
4208 local_irq_enable();
4209 guest_exit();
4210
4211 cpumask_clear_cpu(pcpu, &kvm->arch.cpu_in_guest);
4212
4213 preempt_enable();
4214
4215 /*
4216 * cancel pending decrementer exception if DEC is now positive, or if
4217 * entering a nested guest in which case the decrementer is now owned
4218 * by L2 and the L1 decrementer is provided in hdec_expires
4219 */
4220 if (kvmppc_core_pending_dec(vcpu) &&
4221 ((get_tb() < vcpu->arch.dec_expires) ||
4222 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4223 kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4224 kvmppc_core_dequeue_dec(vcpu);
4225
4226 trace_kvm_guest_exit(vcpu);
4227 r = RESUME_GUEST;
4228 if (trap) {
4229 if (!nested)
4230 r = kvmppc_handle_exit_hv(vcpu, current);
4231 else
4232 r = kvmppc_handle_nested_exit(vcpu);
4233 }
4234 vcpu->arch.ret = r;
4235
4236 if (is_kvmppc_resume_guest(r) && vcpu->arch.ceded &&
4237 !kvmppc_vcpu_woken(vcpu)) {
4238 kvmppc_set_timer(vcpu);
4239 while (vcpu->arch.ceded && !kvmppc_vcpu_woken(vcpu)) {
4240 if (signal_pending(current)) {
4241 vcpu->stat.signal_exits++;
4242 run->exit_reason = KVM_EXIT_INTR;
4243 vcpu->arch.ret = -EINTR;
4244 break;
4245 }
4246 spin_lock(&vc->lock);
4247 kvmppc_vcore_blocked(vc);
4248 spin_unlock(&vc->lock);
4249 }
4250 }
4251 vcpu->arch.ceded = 0;
4252
4253 vc->vcore_state = VCORE_INACTIVE;
4254 trace_kvmppc_run_core(vc, 1);
4255
4256 done:
4257 kvmppc_remove_runnable(vc, vcpu);
4258 trace_kvmppc_run_vcpu_exit(vcpu);
4259
4260 return vcpu->arch.ret;
4261
4262 sigpend:
4263 vcpu->stat.signal_exits++;
4264 run->exit_reason = KVM_EXIT_INTR;
4265 vcpu->arch.ret = -EINTR;
4266 out:
4267 local_irq_enable();
4268 preempt_enable();
4269 goto done;
4270 }
4271
kvmppc_vcpu_run_hv(struct kvm_vcpu * vcpu)4272 static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4273 {
4274 struct kvm_run *run = vcpu->run;
4275 int r;
4276 int srcu_idx;
4277 unsigned long ebb_regs[3] = {}; /* shut up GCC */
4278 unsigned long user_tar = 0;
4279 unsigned int user_vrsave;
4280 struct kvm *kvm;
4281
4282 if (!vcpu->arch.sane) {
4283 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4284 return -EINVAL;
4285 }
4286
4287 /*
4288 * Don't allow entry with a suspended transaction, because
4289 * the guest entry/exit code will lose it.
4290 * If the guest has TM enabled, save away their TM-related SPRs
4291 * (they will get restored by the TM unavailable interrupt).
4292 */
4293 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4294 if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4295 (current->thread.regs->msr & MSR_TM)) {
4296 if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4297 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4298 run->fail_entry.hardware_entry_failure_reason = 0;
4299 return -EINVAL;
4300 }
4301 /* Enable TM so we can read the TM SPRs */
4302 mtmsr(mfmsr() | MSR_TM);
4303 current->thread.tm_tfhar = mfspr(SPRN_TFHAR);
4304 current->thread.tm_tfiar = mfspr(SPRN_TFIAR);
4305 current->thread.tm_texasr = mfspr(SPRN_TEXASR);
4306 current->thread.regs->msr &= ~MSR_TM;
4307 }
4308 #endif
4309
4310 /*
4311 * Force online to 1 for the sake of old userspace which doesn't
4312 * set it.
4313 */
4314 if (!vcpu->arch.online) {
4315 atomic_inc(&vcpu->arch.vcore->online_count);
4316 vcpu->arch.online = 1;
4317 }
4318
4319 kvmppc_core_prepare_to_enter(vcpu);
4320
4321 /* No need to go into the guest when all we'll do is come back out */
4322 if (signal_pending(current)) {
4323 run->exit_reason = KVM_EXIT_INTR;
4324 return -EINTR;
4325 }
4326
4327 kvm = vcpu->kvm;
4328 atomic_inc(&kvm->arch.vcpus_running);
4329 /* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4330 smp_mb();
4331
4332 flush_all_to_thread(current);
4333
4334 /* Save userspace EBB and other register values */
4335 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4336 ebb_regs[0] = mfspr(SPRN_EBBHR);
4337 ebb_regs[1] = mfspr(SPRN_EBBRR);
4338 ebb_regs[2] = mfspr(SPRN_BESCR);
4339 user_tar = mfspr(SPRN_TAR);
4340 }
4341 user_vrsave = mfspr(SPRN_VRSAVE);
4342
4343 vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4344 vcpu->arch.pgdir = kvm->mm->pgd;
4345 vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4346
4347 do {
4348 /*
4349 * The early POWER9 chips that can't mix radix and HPT threads
4350 * on the same core also need the workaround for the problem
4351 * where the TLB would prefetch entries in the guest exit path
4352 * for radix guests using the guest PIDR value and LPID 0.
4353 * The workaround is in the old path (kvmppc_run_vcpu())
4354 * but not the new path (kvmhv_run_single_vcpu()).
4355 */
4356 if (kvm->arch.threads_indep && kvm_is_radix(kvm) &&
4357 !no_mixing_hpt_and_radix)
4358 r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4359 vcpu->arch.vcore->lpcr);
4360 else
4361 r = kvmppc_run_vcpu(vcpu);
4362
4363 if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
4364 !(vcpu->arch.shregs.msr & MSR_PR)) {
4365 trace_kvm_hcall_enter(vcpu);
4366 r = kvmppc_pseries_do_hcall(vcpu);
4367 trace_kvm_hcall_exit(vcpu, r);
4368 kvmppc_core_prepare_to_enter(vcpu);
4369 } else if (r == RESUME_PAGE_FAULT) {
4370 srcu_idx = srcu_read_lock(&kvm->srcu);
4371 r = kvmppc_book3s_hv_page_fault(vcpu,
4372 vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4373 srcu_read_unlock(&kvm->srcu, srcu_idx);
4374 } else if (r == RESUME_PASSTHROUGH) {
4375 if (WARN_ON(xics_on_xive()))
4376 r = H_SUCCESS;
4377 else
4378 r = kvmppc_xics_rm_complete(vcpu, 0);
4379 }
4380 } while (is_kvmppc_resume_guest(r));
4381
4382 /* Restore userspace EBB and other register values */
4383 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
4384 mtspr(SPRN_EBBHR, ebb_regs[0]);
4385 mtspr(SPRN_EBBRR, ebb_regs[1]);
4386 mtspr(SPRN_BESCR, ebb_regs[2]);
4387 mtspr(SPRN_TAR, user_tar);
4388 mtspr(SPRN_FSCR, current->thread.fscr);
4389 }
4390 mtspr(SPRN_VRSAVE, user_vrsave);
4391
4392 vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4393 atomic_dec(&kvm->arch.vcpus_running);
4394 return r;
4395 }
4396
kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size ** sps,int shift,int sllp)4397 static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4398 int shift, int sllp)
4399 {
4400 (*sps)->page_shift = shift;
4401 (*sps)->slb_enc = sllp;
4402 (*sps)->enc[0].page_shift = shift;
4403 (*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4404 /*
4405 * Add 16MB MPSS support (may get filtered out by userspace)
4406 */
4407 if (shift != 24) {
4408 int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4409 if (penc != -1) {
4410 (*sps)->enc[1].page_shift = 24;
4411 (*sps)->enc[1].pte_enc = penc;
4412 }
4413 }
4414 (*sps)++;
4415 }
4416
kvm_vm_ioctl_get_smmu_info_hv(struct kvm * kvm,struct kvm_ppc_smmu_info * info)4417 static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4418 struct kvm_ppc_smmu_info *info)
4419 {
4420 struct kvm_ppc_one_seg_page_size *sps;
4421
4422 /*
4423 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4424 * POWER7 doesn't support keys for instruction accesses,
4425 * POWER8 and POWER9 do.
4426 */
4427 info->data_keys = 32;
4428 info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4429
4430 /* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4431 info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4432 info->slb_size = 32;
4433
4434 /* We only support these sizes for now, and no muti-size segments */
4435 sps = &info->sps[0];
4436 kvmppc_add_seg_page_size(&sps, 12, 0);
4437 kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4438 kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4439
4440 /* If running as a nested hypervisor, we don't support HPT guests */
4441 if (kvmhv_on_pseries())
4442 info->flags |= KVM_PPC_NO_HASH;
4443
4444 return 0;
4445 }
4446
4447 /*
4448 * Get (and clear) the dirty memory log for a memory slot.
4449 */
kvm_vm_ioctl_get_dirty_log_hv(struct kvm * kvm,struct kvm_dirty_log * log)4450 static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4451 struct kvm_dirty_log *log)
4452 {
4453 struct kvm_memslots *slots;
4454 struct kvm_memory_slot *memslot;
4455 int i, r;
4456 unsigned long n;
4457 unsigned long *buf, *p;
4458 struct kvm_vcpu *vcpu;
4459
4460 mutex_lock(&kvm->slots_lock);
4461
4462 r = -EINVAL;
4463 if (log->slot >= KVM_USER_MEM_SLOTS)
4464 goto out;
4465
4466 slots = kvm_memslots(kvm);
4467 memslot = id_to_memslot(slots, log->slot);
4468 r = -ENOENT;
4469 if (!memslot || !memslot->dirty_bitmap)
4470 goto out;
4471
4472 /*
4473 * Use second half of bitmap area because both HPT and radix
4474 * accumulate bits in the first half.
4475 */
4476 n = kvm_dirty_bitmap_bytes(memslot);
4477 buf = memslot->dirty_bitmap + n / sizeof(long);
4478 memset(buf, 0, n);
4479
4480 if (kvm_is_radix(kvm))
4481 r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
4482 else
4483 r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
4484 if (r)
4485 goto out;
4486
4487 /*
4488 * We accumulate dirty bits in the first half of the
4489 * memslot's dirty_bitmap area, for when pages are paged
4490 * out or modified by the host directly. Pick up these
4491 * bits and add them to the map.
4492 */
4493 p = memslot->dirty_bitmap;
4494 for (i = 0; i < n / sizeof(long); ++i)
4495 buf[i] |= xchg(&p[i], 0);
4496
4497 /* Harvest dirty bits from VPA and DTL updates */
4498 /* Note: we never modify the SLB shadow buffer areas */
4499 kvm_for_each_vcpu(i, vcpu, kvm) {
4500 spin_lock(&vcpu->arch.vpa_update_lock);
4501 kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
4502 kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
4503 spin_unlock(&vcpu->arch.vpa_update_lock);
4504 }
4505
4506 r = -EFAULT;
4507 if (copy_to_user(log->dirty_bitmap, buf, n))
4508 goto out;
4509
4510 r = 0;
4511 out:
4512 mutex_unlock(&kvm->slots_lock);
4513 return r;
4514 }
4515
kvmppc_core_free_memslot_hv(struct kvm_memory_slot * slot)4516 static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
4517 {
4518 vfree(slot->arch.rmap);
4519 slot->arch.rmap = NULL;
4520 }
4521
kvmppc_core_prepare_memory_region_hv(struct kvm * kvm,struct kvm_memory_slot * slot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)4522 static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
4523 struct kvm_memory_slot *slot,
4524 const struct kvm_userspace_memory_region *mem,
4525 enum kvm_mr_change change)
4526 {
4527 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4528
4529 if (change == KVM_MR_CREATE) {
4530 slot->arch.rmap = vzalloc(array_size(npages,
4531 sizeof(*slot->arch.rmap)));
4532 if (!slot->arch.rmap)
4533 return -ENOMEM;
4534 }
4535
4536 return 0;
4537 }
4538
kvmppc_core_commit_memory_region_hv(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,const struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)4539 static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
4540 const struct kvm_userspace_memory_region *mem,
4541 const struct kvm_memory_slot *old,
4542 const struct kvm_memory_slot *new,
4543 enum kvm_mr_change change)
4544 {
4545 unsigned long npages = mem->memory_size >> PAGE_SHIFT;
4546
4547 /*
4548 * If we are making a new memslot, it might make
4549 * some address that was previously cached as emulated
4550 * MMIO be no longer emulated MMIO, so invalidate
4551 * all the caches of emulated MMIO translations.
4552 */
4553 if (npages)
4554 atomic64_inc(&kvm->arch.mmio_update);
4555
4556 /*
4557 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
4558 * have already called kvm_arch_flush_shadow_memslot() to
4559 * flush shadow mappings. For KVM_MR_CREATE we have no
4560 * previous mappings. So the only case to handle is
4561 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
4562 * has been changed.
4563 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
4564 * to get rid of any THP PTEs in the partition-scoped page tables
4565 * so we can track dirtiness at the page level; we flush when
4566 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
4567 * using THP PTEs.
4568 */
4569 if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
4570 ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
4571 kvmppc_radix_flush_memslot(kvm, old);
4572 /*
4573 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
4574 */
4575 if (!kvm->arch.secure_guest)
4576 return;
4577
4578 switch (change) {
4579 case KVM_MR_CREATE:
4580 /*
4581 * @TODO kvmppc_uvmem_memslot_create() can fail and
4582 * return error. Fix this.
4583 */
4584 kvmppc_uvmem_memslot_create(kvm, new);
4585 break;
4586 case KVM_MR_DELETE:
4587 kvmppc_uvmem_memslot_delete(kvm, old);
4588 break;
4589 default:
4590 /* TODO: Handle KVM_MR_MOVE */
4591 break;
4592 }
4593 }
4594
4595 /*
4596 * Update LPCR values in kvm->arch and in vcores.
4597 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
4598 * of kvm->arch.lpcr update).
4599 */
kvmppc_update_lpcr(struct kvm * kvm,unsigned long lpcr,unsigned long mask)4600 void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
4601 {
4602 long int i;
4603 u32 cores_done = 0;
4604
4605 if ((kvm->arch.lpcr & mask) == lpcr)
4606 return;
4607
4608 kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
4609
4610 for (i = 0; i < KVM_MAX_VCORES; ++i) {
4611 struct kvmppc_vcore *vc = kvm->arch.vcores[i];
4612 if (!vc)
4613 continue;
4614 spin_lock(&vc->lock);
4615 vc->lpcr = (vc->lpcr & ~mask) | lpcr;
4616 spin_unlock(&vc->lock);
4617 if (++cores_done >= kvm->arch.online_vcores)
4618 break;
4619 }
4620 }
4621
kvmppc_setup_partition_table(struct kvm * kvm)4622 void kvmppc_setup_partition_table(struct kvm *kvm)
4623 {
4624 unsigned long dw0, dw1;
4625
4626 if (!kvm_is_radix(kvm)) {
4627 /* PS field - page size for VRMA */
4628 dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
4629 ((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
4630 /* HTABSIZE and HTABORG fields */
4631 dw0 |= kvm->arch.sdr1;
4632
4633 /* Second dword as set by userspace */
4634 dw1 = kvm->arch.process_table;
4635 } else {
4636 dw0 = PATB_HR | radix__get_tree_size() |
4637 __pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
4638 dw1 = PATB_GR | kvm->arch.process_table;
4639 }
4640 kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
4641 }
4642
4643 /*
4644 * Set up HPT (hashed page table) and RMA (real-mode area).
4645 * Must be called with kvm->arch.mmu_setup_lock held.
4646 */
kvmppc_hv_setup_htab_rma(struct kvm_vcpu * vcpu)4647 static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
4648 {
4649 int err = 0;
4650 struct kvm *kvm = vcpu->kvm;
4651 unsigned long hva;
4652 struct kvm_memory_slot *memslot;
4653 struct vm_area_struct *vma;
4654 unsigned long lpcr = 0, senc;
4655 unsigned long psize, porder;
4656 int srcu_idx;
4657
4658 /* Allocate hashed page table (if not done already) and reset it */
4659 if (!kvm->arch.hpt.virt) {
4660 int order = KVM_DEFAULT_HPT_ORDER;
4661 struct kvm_hpt_info info;
4662
4663 err = kvmppc_allocate_hpt(&info, order);
4664 /* If we get here, it means userspace didn't specify a
4665 * size explicitly. So, try successively smaller
4666 * sizes if the default failed. */
4667 while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
4668 err = kvmppc_allocate_hpt(&info, order);
4669
4670 if (err < 0) {
4671 pr_err("KVM: Couldn't alloc HPT\n");
4672 goto out;
4673 }
4674
4675 kvmppc_set_hpt(kvm, &info);
4676 }
4677
4678 /* Look up the memslot for guest physical address 0 */
4679 srcu_idx = srcu_read_lock(&kvm->srcu);
4680 memslot = gfn_to_memslot(kvm, 0);
4681
4682 /* We must have some memory at 0 by now */
4683 err = -EINVAL;
4684 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
4685 goto out_srcu;
4686
4687 /* Look up the VMA for the start of this memory slot */
4688 hva = memslot->userspace_addr;
4689 mmap_read_lock(kvm->mm);
4690 vma = find_vma(kvm->mm, hva);
4691 if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
4692 goto up_out;
4693
4694 psize = vma_kernel_pagesize(vma);
4695
4696 mmap_read_unlock(kvm->mm);
4697
4698 /* We can handle 4k, 64k or 16M pages in the VRMA */
4699 if (psize >= 0x1000000)
4700 psize = 0x1000000;
4701 else if (psize >= 0x10000)
4702 psize = 0x10000;
4703 else
4704 psize = 0x1000;
4705 porder = __ilog2(psize);
4706
4707 senc = slb_pgsize_encoding(psize);
4708 kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
4709 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4710 /* Create HPTEs in the hash page table for the VRMA */
4711 kvmppc_map_vrma(vcpu, memslot, porder);
4712
4713 /* Update VRMASD field in the LPCR */
4714 if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
4715 /* the -4 is to account for senc values starting at 0x10 */
4716 lpcr = senc << (LPCR_VRMASD_SH - 4);
4717 kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
4718 }
4719
4720 /* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
4721 smp_wmb();
4722 err = 0;
4723 out_srcu:
4724 srcu_read_unlock(&kvm->srcu, srcu_idx);
4725 out:
4726 return err;
4727
4728 up_out:
4729 mmap_read_unlock(kvm->mm);
4730 goto out_srcu;
4731 }
4732
4733 /*
4734 * Must be called with kvm->arch.mmu_setup_lock held and
4735 * mmu_ready = 0 and no vcpus running.
4736 */
kvmppc_switch_mmu_to_hpt(struct kvm * kvm)4737 int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
4738 {
4739 if (nesting_enabled(kvm))
4740 kvmhv_release_all_nested(kvm);
4741 kvmppc_rmap_reset(kvm);
4742 kvm->arch.process_table = 0;
4743 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4744 spin_lock(&kvm->mmu_lock);
4745 kvm->arch.radix = 0;
4746 spin_unlock(&kvm->mmu_lock);
4747 kvmppc_free_radix(kvm);
4748 kvmppc_update_lpcr(kvm, LPCR_VPM1,
4749 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4750 return 0;
4751 }
4752
4753 /*
4754 * Must be called with kvm->arch.mmu_setup_lock held and
4755 * mmu_ready = 0 and no vcpus running.
4756 */
kvmppc_switch_mmu_to_radix(struct kvm * kvm)4757 int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
4758 {
4759 int err;
4760
4761 err = kvmppc_init_vm_radix(kvm);
4762 if (err)
4763 return err;
4764 kvmppc_rmap_reset(kvm);
4765 /* Mutual exclusion with kvm_unmap_hva_range etc. */
4766 spin_lock(&kvm->mmu_lock);
4767 kvm->arch.radix = 1;
4768 spin_unlock(&kvm->mmu_lock);
4769 kvmppc_free_hpt(&kvm->arch.hpt);
4770 kvmppc_update_lpcr(kvm, LPCR_UPRT | LPCR_GTSE | LPCR_HR,
4771 LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR);
4772 return 0;
4773 }
4774
4775 #ifdef CONFIG_KVM_XICS
4776 /*
4777 * Allocate a per-core structure for managing state about which cores are
4778 * running in the host versus the guest and for exchanging data between
4779 * real mode KVM and CPU running in the host.
4780 * This is only done for the first VM.
4781 * The allocated structure stays even if all VMs have stopped.
4782 * It is only freed when the kvm-hv module is unloaded.
4783 * It's OK for this routine to fail, we just don't support host
4784 * core operations like redirecting H_IPI wakeups.
4785 */
kvmppc_alloc_host_rm_ops(void)4786 void kvmppc_alloc_host_rm_ops(void)
4787 {
4788 struct kvmppc_host_rm_ops *ops;
4789 unsigned long l_ops;
4790 int cpu, core;
4791 int size;
4792
4793 /* Not the first time here ? */
4794 if (kvmppc_host_rm_ops_hv != NULL)
4795 return;
4796
4797 ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
4798 if (!ops)
4799 return;
4800
4801 size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
4802 ops->rm_core = kzalloc(size, GFP_KERNEL);
4803
4804 if (!ops->rm_core) {
4805 kfree(ops);
4806 return;
4807 }
4808
4809 cpus_read_lock();
4810
4811 for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
4812 if (!cpu_online(cpu))
4813 continue;
4814
4815 core = cpu >> threads_shift;
4816 ops->rm_core[core].rm_state.in_host = 1;
4817 }
4818
4819 ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
4820
4821 /*
4822 * Make the contents of the kvmppc_host_rm_ops structure visible
4823 * to other CPUs before we assign it to the global variable.
4824 * Do an atomic assignment (no locks used here), but if someone
4825 * beats us to it, just free our copy and return.
4826 */
4827 smp_wmb();
4828 l_ops = (unsigned long) ops;
4829
4830 if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
4831 cpus_read_unlock();
4832 kfree(ops->rm_core);
4833 kfree(ops);
4834 return;
4835 }
4836
4837 cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
4838 "ppc/kvm_book3s:prepare",
4839 kvmppc_set_host_core,
4840 kvmppc_clear_host_core);
4841 cpus_read_unlock();
4842 }
4843
kvmppc_free_host_rm_ops(void)4844 void kvmppc_free_host_rm_ops(void)
4845 {
4846 if (kvmppc_host_rm_ops_hv) {
4847 cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
4848 kfree(kvmppc_host_rm_ops_hv->rm_core);
4849 kfree(kvmppc_host_rm_ops_hv);
4850 kvmppc_host_rm_ops_hv = NULL;
4851 }
4852 }
4853 #endif
4854
kvmppc_core_init_vm_hv(struct kvm * kvm)4855 static int kvmppc_core_init_vm_hv(struct kvm *kvm)
4856 {
4857 unsigned long lpcr, lpid;
4858 char buf[32];
4859 int ret;
4860
4861 mutex_init(&kvm->arch.uvmem_lock);
4862 INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
4863 mutex_init(&kvm->arch.mmu_setup_lock);
4864
4865 /* Allocate the guest's logical partition ID */
4866
4867 lpid = kvmppc_alloc_lpid();
4868 if ((long)lpid < 0)
4869 return -ENOMEM;
4870 kvm->arch.lpid = lpid;
4871
4872 kvmppc_alloc_host_rm_ops();
4873
4874 kvmhv_vm_nested_init(kvm);
4875
4876 /*
4877 * Since we don't flush the TLB when tearing down a VM,
4878 * and this lpid might have previously been used,
4879 * make sure we flush on each core before running the new VM.
4880 * On POWER9, the tlbie in mmu_partition_table_set_entry()
4881 * does this flush for us.
4882 */
4883 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4884 cpumask_setall(&kvm->arch.need_tlb_flush);
4885
4886 /* Start out with the default set of hcalls enabled */
4887 memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
4888 sizeof(kvm->arch.enabled_hcalls));
4889
4890 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4891 kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
4892
4893 /* Init LPCR for virtual RMA mode */
4894 if (cpu_has_feature(CPU_FTR_HVMODE)) {
4895 kvm->arch.host_lpid = mfspr(SPRN_LPID);
4896 kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
4897 lpcr &= LPCR_PECE | LPCR_LPES;
4898 } else {
4899 lpcr = 0;
4900 }
4901 lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
4902 LPCR_VPM0 | LPCR_VPM1;
4903 kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
4904 (VRMA_VSID << SLB_VSID_SHIFT_1T);
4905 /* On POWER8 turn on online bit to enable PURR/SPURR */
4906 if (cpu_has_feature(CPU_FTR_ARCH_207S))
4907 lpcr |= LPCR_ONL;
4908 /*
4909 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
4910 * Set HVICE bit to enable hypervisor virtualization interrupts.
4911 * Set HEIC to prevent OS interrupts to go to hypervisor (should
4912 * be unnecessary but better safe than sorry in case we re-enable
4913 * EE in HV mode with this LPCR still set)
4914 */
4915 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4916 lpcr &= ~LPCR_VPM0;
4917 lpcr |= LPCR_HVICE | LPCR_HEIC;
4918
4919 /*
4920 * If xive is enabled, we route 0x500 interrupts directly
4921 * to the guest.
4922 */
4923 if (xics_on_xive())
4924 lpcr |= LPCR_LPES;
4925 }
4926
4927 /*
4928 * If the host uses radix, the guest starts out as radix.
4929 */
4930 if (radix_enabled()) {
4931 kvm->arch.radix = 1;
4932 kvm->arch.mmu_ready = 1;
4933 lpcr &= ~LPCR_VPM1;
4934 lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
4935 ret = kvmppc_init_vm_radix(kvm);
4936 if (ret) {
4937 kvmppc_free_lpid(kvm->arch.lpid);
4938 return ret;
4939 }
4940 kvmppc_setup_partition_table(kvm);
4941 }
4942
4943 kvm->arch.lpcr = lpcr;
4944
4945 /* Initialization for future HPT resizes */
4946 kvm->arch.resize_hpt = NULL;
4947
4948 /*
4949 * Work out how many sets the TLB has, for the use of
4950 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
4951 */
4952 if (radix_enabled())
4953 kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX; /* 128 */
4954 else if (cpu_has_feature(CPU_FTR_ARCH_300))
4955 kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH; /* 256 */
4956 else if (cpu_has_feature(CPU_FTR_ARCH_207S))
4957 kvm->arch.tlb_sets = POWER8_TLB_SETS; /* 512 */
4958 else
4959 kvm->arch.tlb_sets = POWER7_TLB_SETS; /* 128 */
4960
4961 /*
4962 * Track that we now have a HV mode VM active. This blocks secondary
4963 * CPU threads from coming online.
4964 * On POWER9, we only need to do this if the "indep_threads_mode"
4965 * module parameter has been set to N.
4966 */
4967 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
4968 if (!indep_threads_mode && !cpu_has_feature(CPU_FTR_HVMODE)) {
4969 pr_warn("KVM: Ignoring indep_threads_mode=N in nested hypervisor\n");
4970 kvm->arch.threads_indep = true;
4971 } else {
4972 kvm->arch.threads_indep = indep_threads_mode;
4973 }
4974 }
4975 if (!kvm->arch.threads_indep)
4976 kvm_hv_vm_activated();
4977
4978 /*
4979 * Initialize smt_mode depending on processor.
4980 * POWER8 and earlier have to use "strict" threading, where
4981 * all vCPUs in a vcore have to run on the same (sub)core,
4982 * whereas on POWER9 the threads can each run a different
4983 * guest.
4984 */
4985 if (!cpu_has_feature(CPU_FTR_ARCH_300))
4986 kvm->arch.smt_mode = threads_per_subcore;
4987 else
4988 kvm->arch.smt_mode = 1;
4989 kvm->arch.emul_smt_mode = 1;
4990
4991 /*
4992 * Create a debugfs directory for the VM
4993 */
4994 snprintf(buf, sizeof(buf), "vm%d", current->pid);
4995 kvm->arch.debugfs_dir = debugfs_create_dir(buf, kvm_debugfs_dir);
4996 kvmppc_mmu_debugfs_init(kvm);
4997 if (radix_enabled())
4998 kvmhv_radix_debugfs_init(kvm);
4999
5000 return 0;
5001 }
5002
kvmppc_free_vcores(struct kvm * kvm)5003 static void kvmppc_free_vcores(struct kvm *kvm)
5004 {
5005 long int i;
5006
5007 for (i = 0; i < KVM_MAX_VCORES; ++i)
5008 kfree(kvm->arch.vcores[i]);
5009 kvm->arch.online_vcores = 0;
5010 }
5011
kvmppc_core_destroy_vm_hv(struct kvm * kvm)5012 static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5013 {
5014 debugfs_remove_recursive(kvm->arch.debugfs_dir);
5015
5016 if (!kvm->arch.threads_indep)
5017 kvm_hv_vm_deactivated();
5018
5019 kvmppc_free_vcores(kvm);
5020
5021
5022 if (kvm_is_radix(kvm))
5023 kvmppc_free_radix(kvm);
5024 else
5025 kvmppc_free_hpt(&kvm->arch.hpt);
5026
5027 /* Perform global invalidation and return lpid to the pool */
5028 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5029 if (nesting_enabled(kvm))
5030 kvmhv_release_all_nested(kvm);
5031 kvm->arch.process_table = 0;
5032 if (kvm->arch.secure_guest)
5033 uv_svm_terminate(kvm->arch.lpid);
5034 kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5035 }
5036
5037 kvmppc_free_lpid(kvm->arch.lpid);
5038
5039 kvmppc_free_pimap(kvm);
5040 }
5041
5042 /* We don't need to emulate any privileged instructions or dcbz */
kvmppc_core_emulate_op_hv(struct kvm_vcpu * vcpu,unsigned int inst,int * advance)5043 static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5044 unsigned int inst, int *advance)
5045 {
5046 return EMULATE_FAIL;
5047 }
5048
kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong spr_val)5049 static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5050 ulong spr_val)
5051 {
5052 return EMULATE_FAIL;
5053 }
5054
kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu * vcpu,int sprn,ulong * spr_val)5055 static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5056 ulong *spr_val)
5057 {
5058 return EMULATE_FAIL;
5059 }
5060
kvmppc_core_check_processor_compat_hv(void)5061 static int kvmppc_core_check_processor_compat_hv(void)
5062 {
5063 if (cpu_has_feature(CPU_FTR_HVMODE) &&
5064 cpu_has_feature(CPU_FTR_ARCH_206))
5065 return 0;
5066
5067 /* POWER9 in radix mode is capable of being a nested hypervisor. */
5068 if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5069 return 0;
5070
5071 return -EIO;
5072 }
5073
5074 #ifdef CONFIG_KVM_XICS
5075
kvmppc_free_pimap(struct kvm * kvm)5076 void kvmppc_free_pimap(struct kvm *kvm)
5077 {
5078 kfree(kvm->arch.pimap);
5079 }
5080
kvmppc_alloc_pimap(void)5081 static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5082 {
5083 return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5084 }
5085
kvmppc_set_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5086 static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5087 {
5088 struct irq_desc *desc;
5089 struct kvmppc_irq_map *irq_map;
5090 struct kvmppc_passthru_irqmap *pimap;
5091 struct irq_chip *chip;
5092 int i, rc = 0;
5093
5094 if (!kvm_irq_bypass)
5095 return 1;
5096
5097 desc = irq_to_desc(host_irq);
5098 if (!desc)
5099 return -EIO;
5100
5101 mutex_lock(&kvm->lock);
5102
5103 pimap = kvm->arch.pimap;
5104 if (pimap == NULL) {
5105 /* First call, allocate structure to hold IRQ map */
5106 pimap = kvmppc_alloc_pimap();
5107 if (pimap == NULL) {
5108 mutex_unlock(&kvm->lock);
5109 return -ENOMEM;
5110 }
5111 kvm->arch.pimap = pimap;
5112 }
5113
5114 /*
5115 * For now, we only support interrupts for which the EOI operation
5116 * is an OPAL call followed by a write to XIRR, since that's
5117 * what our real-mode EOI code does, or a XIVE interrupt
5118 */
5119 chip = irq_data_get_irq_chip(&desc->irq_data);
5120 if (!chip || !(is_pnv_opal_msi(chip) || is_xive_irq(chip))) {
5121 pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5122 host_irq, guest_gsi);
5123 mutex_unlock(&kvm->lock);
5124 return -ENOENT;
5125 }
5126
5127 /*
5128 * See if we already have an entry for this guest IRQ number.
5129 * If it's mapped to a hardware IRQ number, that's an error,
5130 * otherwise re-use this entry.
5131 */
5132 for (i = 0; i < pimap->n_mapped; i++) {
5133 if (guest_gsi == pimap->mapped[i].v_hwirq) {
5134 if (pimap->mapped[i].r_hwirq) {
5135 mutex_unlock(&kvm->lock);
5136 return -EINVAL;
5137 }
5138 break;
5139 }
5140 }
5141
5142 if (i == KVMPPC_PIRQ_MAPPED) {
5143 mutex_unlock(&kvm->lock);
5144 return -EAGAIN; /* table is full */
5145 }
5146
5147 irq_map = &pimap->mapped[i];
5148
5149 irq_map->v_hwirq = guest_gsi;
5150 irq_map->desc = desc;
5151
5152 /*
5153 * Order the above two stores before the next to serialize with
5154 * the KVM real mode handler.
5155 */
5156 smp_wmb();
5157 irq_map->r_hwirq = desc->irq_data.hwirq;
5158
5159 if (i == pimap->n_mapped)
5160 pimap->n_mapped++;
5161
5162 if (xics_on_xive())
5163 rc = kvmppc_xive_set_mapped(kvm, guest_gsi, desc);
5164 else
5165 kvmppc_xics_set_mapped(kvm, guest_gsi, desc->irq_data.hwirq);
5166 if (rc)
5167 irq_map->r_hwirq = 0;
5168
5169 mutex_unlock(&kvm->lock);
5170
5171 return 0;
5172 }
5173
kvmppc_clr_passthru_irq(struct kvm * kvm,int host_irq,int guest_gsi)5174 static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5175 {
5176 struct irq_desc *desc;
5177 struct kvmppc_passthru_irqmap *pimap;
5178 int i, rc = 0;
5179
5180 if (!kvm_irq_bypass)
5181 return 0;
5182
5183 desc = irq_to_desc(host_irq);
5184 if (!desc)
5185 return -EIO;
5186
5187 mutex_lock(&kvm->lock);
5188 if (!kvm->arch.pimap)
5189 goto unlock;
5190
5191 pimap = kvm->arch.pimap;
5192
5193 for (i = 0; i < pimap->n_mapped; i++) {
5194 if (guest_gsi == pimap->mapped[i].v_hwirq)
5195 break;
5196 }
5197
5198 if (i == pimap->n_mapped) {
5199 mutex_unlock(&kvm->lock);
5200 return -ENODEV;
5201 }
5202
5203 if (xics_on_xive())
5204 rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, pimap->mapped[i].desc);
5205 else
5206 kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5207
5208 /* invalidate the entry (what do do on error from the above ?) */
5209 pimap->mapped[i].r_hwirq = 0;
5210
5211 /*
5212 * We don't free this structure even when the count goes to
5213 * zero. The structure is freed when we destroy the VM.
5214 */
5215 unlock:
5216 mutex_unlock(&kvm->lock);
5217 return rc;
5218 }
5219
kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5220 static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5221 struct irq_bypass_producer *prod)
5222 {
5223 int ret = 0;
5224 struct kvm_kernel_irqfd *irqfd =
5225 container_of(cons, struct kvm_kernel_irqfd, consumer);
5226
5227 irqfd->producer = prod;
5228
5229 ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5230 if (ret)
5231 pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5232 prod->irq, irqfd->gsi, ret);
5233
5234 return ret;
5235 }
5236
kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)5237 static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5238 struct irq_bypass_producer *prod)
5239 {
5240 int ret;
5241 struct kvm_kernel_irqfd *irqfd =
5242 container_of(cons, struct kvm_kernel_irqfd, consumer);
5243
5244 irqfd->producer = NULL;
5245
5246 /*
5247 * When producer of consumer is unregistered, we change back to
5248 * default external interrupt handling mode - KVM real mode
5249 * will switch back to host.
5250 */
5251 ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5252 if (ret)
5253 pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5254 prod->irq, irqfd->gsi, ret);
5255 }
5256 #endif
5257
kvm_arch_vm_ioctl_hv(struct file * filp,unsigned int ioctl,unsigned long arg)5258 static long kvm_arch_vm_ioctl_hv(struct file *filp,
5259 unsigned int ioctl, unsigned long arg)
5260 {
5261 struct kvm *kvm __maybe_unused = filp->private_data;
5262 void __user *argp = (void __user *)arg;
5263 long r;
5264
5265 switch (ioctl) {
5266
5267 case KVM_PPC_ALLOCATE_HTAB: {
5268 u32 htab_order;
5269
5270 /* If we're a nested hypervisor, we currently only support radix */
5271 if (kvmhv_on_pseries()) {
5272 r = -EOPNOTSUPP;
5273 break;
5274 }
5275
5276 r = -EFAULT;
5277 if (get_user(htab_order, (u32 __user *)argp))
5278 break;
5279 r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5280 if (r)
5281 break;
5282 r = 0;
5283 break;
5284 }
5285
5286 case KVM_PPC_GET_HTAB_FD: {
5287 struct kvm_get_htab_fd ghf;
5288
5289 r = -EFAULT;
5290 if (copy_from_user(&ghf, argp, sizeof(ghf)))
5291 break;
5292 r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5293 break;
5294 }
5295
5296 case KVM_PPC_RESIZE_HPT_PREPARE: {
5297 struct kvm_ppc_resize_hpt rhpt;
5298
5299 r = -EFAULT;
5300 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5301 break;
5302
5303 r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5304 break;
5305 }
5306
5307 case KVM_PPC_RESIZE_HPT_COMMIT: {
5308 struct kvm_ppc_resize_hpt rhpt;
5309
5310 r = -EFAULT;
5311 if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5312 break;
5313
5314 r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5315 break;
5316 }
5317
5318 default:
5319 r = -ENOTTY;
5320 }
5321
5322 return r;
5323 }
5324
5325 /*
5326 * List of hcall numbers to enable by default.
5327 * For compatibility with old userspace, we enable by default
5328 * all hcalls that were implemented before the hcall-enabling
5329 * facility was added. Note this list should not include H_RTAS.
5330 */
5331 static unsigned int default_hcall_list[] = {
5332 H_REMOVE,
5333 H_ENTER,
5334 H_READ,
5335 H_PROTECT,
5336 H_BULK_REMOVE,
5337 H_GET_TCE,
5338 H_PUT_TCE,
5339 H_SET_DABR,
5340 H_SET_XDABR,
5341 H_CEDE,
5342 H_PROD,
5343 H_CONFER,
5344 H_REGISTER_VPA,
5345 #ifdef CONFIG_KVM_XICS
5346 H_EOI,
5347 H_CPPR,
5348 H_IPI,
5349 H_IPOLL,
5350 H_XIRR,
5351 H_XIRR_X,
5352 #endif
5353 0
5354 };
5355
init_default_hcalls(void)5356 static void init_default_hcalls(void)
5357 {
5358 int i;
5359 unsigned int hcall;
5360
5361 for (i = 0; default_hcall_list[i]; ++i) {
5362 hcall = default_hcall_list[i];
5363 WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5364 __set_bit(hcall / 4, default_enabled_hcalls);
5365 }
5366 }
5367
kvmhv_configure_mmu(struct kvm * kvm,struct kvm_ppc_mmuv3_cfg * cfg)5368 static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5369 {
5370 unsigned long lpcr;
5371 int radix;
5372 int err;
5373
5374 /* If not on a POWER9, reject it */
5375 if (!cpu_has_feature(CPU_FTR_ARCH_300))
5376 return -ENODEV;
5377
5378 /* If any unknown flags set, reject it */
5379 if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5380 return -EINVAL;
5381
5382 /* GR (guest radix) bit in process_table field must match */
5383 radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5384 if (!!(cfg->process_table & PATB_GR) != radix)
5385 return -EINVAL;
5386
5387 /* Process table size field must be reasonable, i.e. <= 24 */
5388 if ((cfg->process_table & PRTS_MASK) > 24)
5389 return -EINVAL;
5390
5391 /* We can change a guest to/from radix now, if the host is radix */
5392 if (radix && !radix_enabled())
5393 return -EINVAL;
5394
5395 /* If we're a nested hypervisor, we currently only support radix */
5396 if (kvmhv_on_pseries() && !radix)
5397 return -EINVAL;
5398
5399 mutex_lock(&kvm->arch.mmu_setup_lock);
5400 if (radix != kvm_is_radix(kvm)) {
5401 if (kvm->arch.mmu_ready) {
5402 kvm->arch.mmu_ready = 0;
5403 /* order mmu_ready vs. vcpus_running */
5404 smp_mb();
5405 if (atomic_read(&kvm->arch.vcpus_running)) {
5406 kvm->arch.mmu_ready = 1;
5407 err = -EBUSY;
5408 goto out_unlock;
5409 }
5410 }
5411 if (radix)
5412 err = kvmppc_switch_mmu_to_radix(kvm);
5413 else
5414 err = kvmppc_switch_mmu_to_hpt(kvm);
5415 if (err)
5416 goto out_unlock;
5417 }
5418
5419 kvm->arch.process_table = cfg->process_table;
5420 kvmppc_setup_partition_table(kvm);
5421
5422 lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5423 kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5424 err = 0;
5425
5426 out_unlock:
5427 mutex_unlock(&kvm->arch.mmu_setup_lock);
5428 return err;
5429 }
5430
kvmhv_enable_nested(struct kvm * kvm)5431 static int kvmhv_enable_nested(struct kvm *kvm)
5432 {
5433 if (!nested)
5434 return -EPERM;
5435 if (!cpu_has_feature(CPU_FTR_ARCH_300) || no_mixing_hpt_and_radix)
5436 return -ENODEV;
5437
5438 /* kvm == NULL means the caller is testing if the capability exists */
5439 if (kvm)
5440 kvm->arch.nested_enable = true;
5441 return 0;
5442 }
5443
kvmhv_load_from_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)5444 static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5445 int size)
5446 {
5447 int rc = -EINVAL;
5448
5449 if (kvmhv_vcpu_is_radix(vcpu)) {
5450 rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
5451
5452 if (rc > 0)
5453 rc = -EINVAL;
5454 }
5455
5456 /* For now quadrants are the only way to access nested guest memory */
5457 if (rc && vcpu->arch.nested)
5458 rc = -EAGAIN;
5459
5460 return rc;
5461 }
5462
kvmhv_store_to_eaddr(struct kvm_vcpu * vcpu,ulong * eaddr,void * ptr,int size)5463 static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
5464 int size)
5465 {
5466 int rc = -EINVAL;
5467
5468 if (kvmhv_vcpu_is_radix(vcpu)) {
5469 rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
5470
5471 if (rc > 0)
5472 rc = -EINVAL;
5473 }
5474
5475 /* For now quadrants are the only way to access nested guest memory */
5476 if (rc && vcpu->arch.nested)
5477 rc = -EAGAIN;
5478
5479 return rc;
5480 }
5481
unpin_vpa_reset(struct kvm * kvm,struct kvmppc_vpa * vpa)5482 static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
5483 {
5484 unpin_vpa(kvm, vpa);
5485 vpa->gpa = 0;
5486 vpa->pinned_addr = NULL;
5487 vpa->dirty = false;
5488 vpa->update_pending = 0;
5489 }
5490
5491 /*
5492 * Enable a guest to become a secure VM, or test whether
5493 * that could be enabled.
5494 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
5495 * tested (kvm == NULL) or enabled (kvm != NULL).
5496 */
kvmhv_enable_svm(struct kvm * kvm)5497 static int kvmhv_enable_svm(struct kvm *kvm)
5498 {
5499 if (!kvmppc_uvmem_available())
5500 return -EINVAL;
5501 if (kvm)
5502 kvm->arch.svm_enabled = 1;
5503 return 0;
5504 }
5505
5506 /*
5507 * IOCTL handler to turn off secure mode of guest
5508 *
5509 * - Release all device pages
5510 * - Issue ucall to terminate the guest on the UV side
5511 * - Unpin the VPA pages.
5512 * - Reinit the partition scoped page tables
5513 */
kvmhv_svm_off(struct kvm * kvm)5514 static int kvmhv_svm_off(struct kvm *kvm)
5515 {
5516 struct kvm_vcpu *vcpu;
5517 int mmu_was_ready;
5518 int srcu_idx;
5519 int ret = 0;
5520 int i;
5521
5522 if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
5523 return ret;
5524
5525 mutex_lock(&kvm->arch.mmu_setup_lock);
5526 mmu_was_ready = kvm->arch.mmu_ready;
5527 if (kvm->arch.mmu_ready) {
5528 kvm->arch.mmu_ready = 0;
5529 /* order mmu_ready vs. vcpus_running */
5530 smp_mb();
5531 if (atomic_read(&kvm->arch.vcpus_running)) {
5532 kvm->arch.mmu_ready = 1;
5533 ret = -EBUSY;
5534 goto out;
5535 }
5536 }
5537
5538 srcu_idx = srcu_read_lock(&kvm->srcu);
5539 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5540 struct kvm_memory_slot *memslot;
5541 struct kvm_memslots *slots = __kvm_memslots(kvm, i);
5542
5543 if (!slots)
5544 continue;
5545
5546 kvm_for_each_memslot(memslot, slots) {
5547 kvmppc_uvmem_drop_pages(memslot, kvm, true);
5548 uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
5549 }
5550 }
5551 srcu_read_unlock(&kvm->srcu, srcu_idx);
5552
5553 ret = uv_svm_terminate(kvm->arch.lpid);
5554 if (ret != U_SUCCESS) {
5555 ret = -EINVAL;
5556 goto out;
5557 }
5558
5559 /*
5560 * When secure guest is reset, all the guest pages are sent
5561 * to UV via UV_PAGE_IN before the non-boot vcpus get a
5562 * chance to run and unpin their VPA pages. Unpinning of all
5563 * VPA pages is done here explicitly so that VPA pages
5564 * can be migrated to the secure side.
5565 *
5566 * This is required to for the secure SMP guest to reboot
5567 * correctly.
5568 */
5569 kvm_for_each_vcpu(i, vcpu, kvm) {
5570 spin_lock(&vcpu->arch.vpa_update_lock);
5571 unpin_vpa_reset(kvm, &vcpu->arch.dtl);
5572 unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
5573 unpin_vpa_reset(kvm, &vcpu->arch.vpa);
5574 spin_unlock(&vcpu->arch.vpa_update_lock);
5575 }
5576
5577 kvmppc_setup_partition_table(kvm);
5578 kvm->arch.secure_guest = 0;
5579 kvm->arch.mmu_ready = mmu_was_ready;
5580 out:
5581 mutex_unlock(&kvm->arch.mmu_setup_lock);
5582 return ret;
5583 }
5584
5585 static struct kvmppc_ops kvm_ops_hv = {
5586 .get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
5587 .set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
5588 .get_one_reg = kvmppc_get_one_reg_hv,
5589 .set_one_reg = kvmppc_set_one_reg_hv,
5590 .vcpu_load = kvmppc_core_vcpu_load_hv,
5591 .vcpu_put = kvmppc_core_vcpu_put_hv,
5592 .inject_interrupt = kvmppc_inject_interrupt_hv,
5593 .set_msr = kvmppc_set_msr_hv,
5594 .vcpu_run = kvmppc_vcpu_run_hv,
5595 .vcpu_create = kvmppc_core_vcpu_create_hv,
5596 .vcpu_free = kvmppc_core_vcpu_free_hv,
5597 .check_requests = kvmppc_core_check_requests_hv,
5598 .get_dirty_log = kvm_vm_ioctl_get_dirty_log_hv,
5599 .flush_memslot = kvmppc_core_flush_memslot_hv,
5600 .prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
5601 .commit_memory_region = kvmppc_core_commit_memory_region_hv,
5602 .unmap_hva_range = kvm_unmap_hva_range_hv,
5603 .age_hva = kvm_age_hva_hv,
5604 .test_age_hva = kvm_test_age_hva_hv,
5605 .set_spte_hva = kvm_set_spte_hva_hv,
5606 .free_memslot = kvmppc_core_free_memslot_hv,
5607 .init_vm = kvmppc_core_init_vm_hv,
5608 .destroy_vm = kvmppc_core_destroy_vm_hv,
5609 .get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
5610 .emulate_op = kvmppc_core_emulate_op_hv,
5611 .emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
5612 .emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
5613 .fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
5614 .arch_vm_ioctl = kvm_arch_vm_ioctl_hv,
5615 .hcall_implemented = kvmppc_hcall_impl_hv,
5616 #ifdef CONFIG_KVM_XICS
5617 .irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
5618 .irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
5619 #endif
5620 .configure_mmu = kvmhv_configure_mmu,
5621 .get_rmmu_info = kvmhv_get_rmmu_info,
5622 .set_smt_mode = kvmhv_set_smt_mode,
5623 .enable_nested = kvmhv_enable_nested,
5624 .load_from_eaddr = kvmhv_load_from_eaddr,
5625 .store_to_eaddr = kvmhv_store_to_eaddr,
5626 .enable_svm = kvmhv_enable_svm,
5627 .svm_off = kvmhv_svm_off,
5628 };
5629
kvm_init_subcore_bitmap(void)5630 static int kvm_init_subcore_bitmap(void)
5631 {
5632 int i, j;
5633 int nr_cores = cpu_nr_cores();
5634 struct sibling_subcore_state *sibling_subcore_state;
5635
5636 for (i = 0; i < nr_cores; i++) {
5637 int first_cpu = i * threads_per_core;
5638 int node = cpu_to_node(first_cpu);
5639
5640 /* Ignore if it is already allocated. */
5641 if (paca_ptrs[first_cpu]->sibling_subcore_state)
5642 continue;
5643
5644 sibling_subcore_state =
5645 kzalloc_node(sizeof(struct sibling_subcore_state),
5646 GFP_KERNEL, node);
5647 if (!sibling_subcore_state)
5648 return -ENOMEM;
5649
5650
5651 for (j = 0; j < threads_per_core; j++) {
5652 int cpu = first_cpu + j;
5653
5654 paca_ptrs[cpu]->sibling_subcore_state =
5655 sibling_subcore_state;
5656 }
5657 }
5658 return 0;
5659 }
5660
kvmppc_radix_possible(void)5661 static int kvmppc_radix_possible(void)
5662 {
5663 return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
5664 }
5665
kvmppc_book3s_init_hv(void)5666 static int kvmppc_book3s_init_hv(void)
5667 {
5668 int r;
5669
5670 if (!tlbie_capable) {
5671 pr_err("KVM-HV: Host does not support TLBIE\n");
5672 return -ENODEV;
5673 }
5674
5675 /*
5676 * FIXME!! Do we need to check on all cpus ?
5677 */
5678 r = kvmppc_core_check_processor_compat_hv();
5679 if (r < 0)
5680 return -ENODEV;
5681
5682 r = kvmhv_nested_init();
5683 if (r)
5684 return r;
5685
5686 r = kvm_init_subcore_bitmap();
5687 if (r)
5688 return r;
5689
5690 /*
5691 * We need a way of accessing the XICS interrupt controller,
5692 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
5693 * indirectly, via OPAL.
5694 */
5695 #ifdef CONFIG_SMP
5696 if (!xics_on_xive() && !kvmhv_on_pseries() &&
5697 !local_paca->kvm_hstate.xics_phys) {
5698 struct device_node *np;
5699
5700 np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
5701 if (!np) {
5702 pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
5703 return -ENODEV;
5704 }
5705 /* presence of intc confirmed - node can be dropped again */
5706 of_node_put(np);
5707 }
5708 #endif
5709
5710 kvm_ops_hv.owner = THIS_MODULE;
5711 kvmppc_hv_ops = &kvm_ops_hv;
5712
5713 init_default_hcalls();
5714
5715 init_vcore_lists();
5716
5717 r = kvmppc_mmu_hv_init();
5718 if (r)
5719 return r;
5720
5721 if (kvmppc_radix_possible())
5722 r = kvmppc_radix_init();
5723
5724 /*
5725 * POWER9 chips before version 2.02 can't have some threads in
5726 * HPT mode and some in radix mode on the same core.
5727 */
5728 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5729 unsigned int pvr = mfspr(SPRN_PVR);
5730 if ((pvr >> 16) == PVR_POWER9 &&
5731 (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
5732 ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
5733 no_mixing_hpt_and_radix = true;
5734 }
5735
5736 r = kvmppc_uvmem_init();
5737 if (r < 0)
5738 pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
5739
5740 return r;
5741 }
5742
kvmppc_book3s_exit_hv(void)5743 static void kvmppc_book3s_exit_hv(void)
5744 {
5745 kvmppc_uvmem_free();
5746 kvmppc_free_host_rm_ops();
5747 if (kvmppc_radix_possible())
5748 kvmppc_radix_exit();
5749 kvmppc_hv_ops = NULL;
5750 kvmhv_nested_exit();
5751 }
5752
5753 module_init(kvmppc_book3s_init_hv);
5754 module_exit(kvmppc_book3s_exit_hv);
5755 MODULE_LICENSE("GPL");
5756 MODULE_ALIAS_MISCDEV(KVM_MINOR);
5757 MODULE_ALIAS("devname:kvm");
5758