1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Common boot and setup code.
5 *
6 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 */
8
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33 #include <linux/pgtable.h>
34
35 #include <asm/debugfs.h>
36 #include <asm/io.h>
37 #include <asm/kdump.h>
38 #include <asm/prom.h>
39 #include <asm/processor.h>
40 #include <asm/smp.h>
41 #include <asm/elf.h>
42 #include <asm/machdep.h>
43 #include <asm/paca.h>
44 #include <asm/time.h>
45 #include <asm/cputable.h>
46 #include <asm/dt_cpu_ftrs.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/rtas.h>
52 #include <asm/iommu.h>
53 #include <asm/serial.h>
54 #include <asm/cache.h>
55 #include <asm/page.h>
56 #include <asm/mmu.h>
57 #include <asm/firmware.h>
58 #include <asm/xmon.h>
59 #include <asm/udbg.h>
60 #include <asm/kexec.h>
61 #include <asm/code-patching.h>
62 #include <asm/livepatch.h>
63 #include <asm/opal.h>
64 #include <asm/cputhreads.h>
65 #include <asm/hw_irq.h>
66 #include <asm/feature-fixups.h>
67 #include <asm/kup.h>
68 #include <asm/early_ioremap.h>
69 #include <asm/pgalloc.h>
70
71 #include "setup.h"
72
73 int spinning_secondaries;
74 u64 ppc64_pft_size;
75
76 struct ppc64_caches ppc64_caches = {
77 .l1d = {
78 .block_size = 0x40,
79 .log_block_size = 6,
80 },
81 .l1i = {
82 .block_size = 0x40,
83 .log_block_size = 6
84 },
85 };
86 EXPORT_SYMBOL_GPL(ppc64_caches);
87
88 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
setup_tlb_core_data(void)89 void __init setup_tlb_core_data(void)
90 {
91 int cpu;
92
93 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
94
95 for_each_possible_cpu(cpu) {
96 int first = cpu_first_thread_sibling(cpu);
97
98 /*
99 * If we boot via kdump on a non-primary thread,
100 * make sure we point at the thread that actually
101 * set up this TLB.
102 */
103 if (cpu_first_thread_sibling(boot_cpuid) == first)
104 first = boot_cpuid;
105
106 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
107
108 /*
109 * If we have threads, we need either tlbsrx.
110 * or e6500 tablewalk mode, or else TLB handlers
111 * will be racy and could produce duplicate entries.
112 * Should we panic instead?
113 */
114 WARN_ONCE(smt_enabled_at_boot >= 2 &&
115 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
116 book3e_htw_mode != PPC_HTW_E6500,
117 "%s: unsupported MMU configuration\n", __func__);
118 }
119 }
120 #endif
121
122 #ifdef CONFIG_SMP
123
124 static char *smt_enabled_cmdline;
125
126 /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)127 void __init check_smt_enabled(void)
128 {
129 struct device_node *dn;
130 const char *smt_option;
131
132 /* Default to enabling all threads */
133 smt_enabled_at_boot = threads_per_core;
134
135 /* Allow the command line to overrule the OF option */
136 if (smt_enabled_cmdline) {
137 if (!strcmp(smt_enabled_cmdline, "on"))
138 smt_enabled_at_boot = threads_per_core;
139 else if (!strcmp(smt_enabled_cmdline, "off"))
140 smt_enabled_at_boot = 0;
141 else {
142 int smt;
143 int rc;
144
145 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
146 if (!rc)
147 smt_enabled_at_boot =
148 min(threads_per_core, smt);
149 }
150 } else {
151 dn = of_find_node_by_path("/options");
152 if (dn) {
153 smt_option = of_get_property(dn, "ibm,smt-enabled",
154 NULL);
155
156 if (smt_option) {
157 if (!strcmp(smt_option, "on"))
158 smt_enabled_at_boot = threads_per_core;
159 else if (!strcmp(smt_option, "off"))
160 smt_enabled_at_boot = 0;
161 }
162
163 of_node_put(dn);
164 }
165 }
166 }
167
168 /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)169 static int __init early_smt_enabled(char *p)
170 {
171 smt_enabled_cmdline = p;
172 return 0;
173 }
174 early_param("smt-enabled", early_smt_enabled);
175
176 #endif /* CONFIG_SMP */
177
178 /** Fix up paca fields required for the boot cpu */
fixup_boot_paca(void)179 static void __init fixup_boot_paca(void)
180 {
181 /* The boot cpu is started */
182 get_paca()->cpu_start = 1;
183 /* Allow percpu accesses to work until we setup percpu data */
184 get_paca()->data_offset = 0;
185 /* Mark interrupts disabled in PACA */
186 irq_soft_mask_set(IRQS_DISABLED);
187 }
188
configure_exceptions(void)189 static void __init configure_exceptions(void)
190 {
191 /*
192 * Setup the trampolines from the lowmem exception vectors
193 * to the kdump kernel when not using a relocatable kernel.
194 */
195 setup_kdump_trampoline();
196
197 /* Under a PAPR hypervisor, we need hypercalls */
198 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
199 /* Enable AIL if possible */
200 if (!pseries_enable_reloc_on_exc()) {
201 init_task.thread.fscr &= ~FSCR_SCV;
202 cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
203 }
204
205 /*
206 * Tell the hypervisor that we want our exceptions to
207 * be taken in little endian mode.
208 *
209 * We don't call this for big endian as our calling convention
210 * makes us always enter in BE, and the call may fail under
211 * some circumstances with kdump.
212 */
213 #ifdef __LITTLE_ENDIAN__
214 pseries_little_endian_exceptions();
215 #endif
216 } else {
217 /* Set endian mode using OPAL */
218 if (firmware_has_feature(FW_FEATURE_OPAL))
219 opal_configure_cores();
220
221 /* AIL on native is done in cpu_ready_for_interrupts() */
222 }
223 }
224
cpu_ready_for_interrupts(void)225 static void cpu_ready_for_interrupts(void)
226 {
227 /*
228 * Enable AIL if supported, and we are in hypervisor mode. This
229 * is called once for every processor.
230 *
231 * If we are not in hypervisor mode the job is done once for
232 * the whole partition in configure_exceptions().
233 */
234 if (cpu_has_feature(CPU_FTR_HVMODE) &&
235 cpu_has_feature(CPU_FTR_ARCH_207S)) {
236 unsigned long lpcr = mfspr(SPRN_LPCR);
237 mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
238 }
239
240 /*
241 * Set HFSCR:TM based on CPU features:
242 * In the special case of TM no suspend (P9N DD2.1), Linux is
243 * told TM is off via the dt-ftrs but told to (partially) use
244 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
245 * will be off from dt-ftrs but we need to turn it on for the
246 * no suspend case.
247 */
248 if (cpu_has_feature(CPU_FTR_HVMODE)) {
249 if (cpu_has_feature(CPU_FTR_TM_COMP))
250 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
251 else
252 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
253 }
254
255 /* Set IR and DR in PACA MSR */
256 get_paca()->kernel_msr = MSR_KERNEL;
257 }
258
259 unsigned long spr_default_dscr = 0;
260
record_spr_defaults(void)261 void __init record_spr_defaults(void)
262 {
263 if (early_cpu_has_feature(CPU_FTR_DSCR))
264 spr_default_dscr = mfspr(SPRN_DSCR);
265 }
266
267 /*
268 * Early initialization entry point. This is called by head.S
269 * with MMU translation disabled. We rely on the "feature" of
270 * the CPU that ignores the top 2 bits of the address in real
271 * mode so we can access kernel globals normally provided we
272 * only toy with things in the RMO region. From here, we do
273 * some early parsing of the device-tree to setup out MEMBLOCK
274 * data structures, and allocate & initialize the hash table
275 * and segment tables so we can start running with translation
276 * enabled.
277 *
278 * It is this function which will call the probe() callback of
279 * the various platform types and copy the matching one to the
280 * global ppc_md structure. Your platform can eventually do
281 * some very early initializations from the probe() routine, but
282 * this is not recommended, be very careful as, for example, the
283 * device-tree is not accessible via normal means at this point.
284 */
285
early_setup(unsigned long dt_ptr)286 void __init __nostackprotector early_setup(unsigned long dt_ptr)
287 {
288 static __initdata struct paca_struct boot_paca;
289
290 /* -------- printk is _NOT_ safe to use here ! ------- */
291
292 /*
293 * Assume we're on cpu 0 for now.
294 *
295 * We need to load a PACA very early for a few reasons.
296 *
297 * The stack protector canary is stored in the paca, so as soon as we
298 * call any stack protected code we need r13 pointing somewhere valid.
299 *
300 * If we are using kcov it will call in_task() in its instrumentation,
301 * which relies on the current task from the PACA.
302 *
303 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
304 * printk(), which can trigger both stack protector and kcov.
305 *
306 * percpu variables and spin locks also use the paca.
307 *
308 * So set up a temporary paca. It will be replaced below once we know
309 * what CPU we are on.
310 */
311 initialise_paca(&boot_paca, 0);
312 setup_paca(&boot_paca);
313 fixup_boot_paca();
314
315 /* -------- printk is now safe to use ------- */
316
317 /* Try new device tree based feature discovery ... */
318 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
319 /* Otherwise use the old style CPU table */
320 identify_cpu(0, mfspr(SPRN_PVR));
321
322 /* Enable early debugging if any specified (see udbg.h) */
323 udbg_early_init();
324
325 udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
326
327 /*
328 * Do early initialization using the flattened device
329 * tree, such as retrieving the physical memory map or
330 * calculating/retrieving the hash table size.
331 */
332 early_init_devtree(__va(dt_ptr));
333
334 /* Now we know the logical id of our boot cpu, setup the paca. */
335 if (boot_cpuid != 0) {
336 /* Poison paca_ptrs[0] again if it's not the boot cpu */
337 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
338 }
339 setup_paca(paca_ptrs[boot_cpuid]);
340 fixup_boot_paca();
341
342 /*
343 * Configure exception handlers. This include setting up trampolines
344 * if needed, setting exception endian mode, etc...
345 */
346 configure_exceptions();
347
348 /*
349 * Configure Kernel Userspace Protection. This needs to happen before
350 * feature fixups for platforms that implement this using features.
351 */
352 setup_kup();
353
354 /* Apply all the dynamic patching */
355 apply_feature_fixups();
356 setup_feature_keys();
357
358 early_ioremap_setup();
359
360 /* Initialize the hash table or TLB handling */
361 early_init_mmu();
362
363 /*
364 * After firmware and early platform setup code has set things up,
365 * we note the SPR values for configurable control/performance
366 * registers, and use those as initial defaults.
367 */
368 record_spr_defaults();
369
370 /*
371 * At this point, we can let interrupts switch to virtual mode
372 * (the MMU has been setup), so adjust the MSR in the PACA to
373 * have IR and DR set and enable AIL if it exists
374 */
375 cpu_ready_for_interrupts();
376
377 /*
378 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
379 * will only actually get enabled on the boot cpu much later once
380 * ftrace itself has been initialized.
381 */
382 this_cpu_enable_ftrace();
383
384 udbg_printf(" <- %s()\n", __func__);
385
386 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
387 /*
388 * This needs to be done *last* (after the above udbg_printf() even)
389 *
390 * Right after we return from this function, we turn on the MMU
391 * which means the real-mode access trick that btext does will
392 * no longer work, it needs to switch to using a real MMU
393 * mapping. This call will ensure that it does
394 */
395 btext_map();
396 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
397 }
398
399 #ifdef CONFIG_SMP
early_setup_secondary(void)400 void early_setup_secondary(void)
401 {
402 /* Mark interrupts disabled in PACA */
403 irq_soft_mask_set(IRQS_DISABLED);
404
405 /* Initialize the hash table or TLB handling */
406 early_init_mmu_secondary();
407
408 /* Perform any KUP setup that is per-cpu */
409 setup_kup();
410
411 /*
412 * At this point, we can let interrupts switch to virtual mode
413 * (the MMU has been setup), so adjust the MSR in the PACA to
414 * have IR and DR set.
415 */
416 cpu_ready_for_interrupts();
417 }
418
419 #endif /* CONFIG_SMP */
420
panic_smp_self_stop(void)421 void panic_smp_self_stop(void)
422 {
423 hard_irq_disable();
424 spin_begin();
425 while (1)
426 spin_cpu_relax();
427 }
428
429 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
use_spinloop(void)430 static bool use_spinloop(void)
431 {
432 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
433 /*
434 * See comments in head_64.S -- not all platforms insert
435 * secondaries at __secondary_hold and wait at the spin
436 * loop.
437 */
438 if (firmware_has_feature(FW_FEATURE_OPAL))
439 return false;
440 return true;
441 }
442
443 /*
444 * When book3e boots from kexec, the ePAPR spin table does
445 * not get used.
446 */
447 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
448 }
449
smp_release_cpus(void)450 void smp_release_cpus(void)
451 {
452 unsigned long *ptr;
453 int i;
454
455 if (!use_spinloop())
456 return;
457
458 /* All secondary cpus are spinning on a common spinloop, release them
459 * all now so they can start to spin on their individual paca
460 * spinloops. For non SMP kernels, the secondary cpus never get out
461 * of the common spinloop.
462 */
463
464 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
465 - PHYSICAL_START);
466 *ptr = ppc_function_entry(generic_secondary_smp_init);
467
468 /* And wait a bit for them to catch up */
469 for (i = 0; i < 100000; i++) {
470 mb();
471 HMT_low();
472 if (spinning_secondaries == 0)
473 break;
474 udelay(1);
475 }
476 pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
477 }
478 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
479
480 /*
481 * Initialize some remaining members of the ppc64_caches and systemcfg
482 * structures
483 * (at least until we get rid of them completely). This is mostly some
484 * cache informations about the CPU that will be used by cache flush
485 * routines and/or provided to userland
486 */
487
init_cache_info(struct ppc_cache_info * info,u32 size,u32 lsize,u32 bsize,u32 sets)488 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
489 u32 bsize, u32 sets)
490 {
491 info->size = size;
492 info->sets = sets;
493 info->line_size = lsize;
494 info->block_size = bsize;
495 info->log_block_size = __ilog2(bsize);
496 if (bsize)
497 info->blocks_per_page = PAGE_SIZE / bsize;
498 else
499 info->blocks_per_page = 0;
500
501 if (sets == 0)
502 info->assoc = 0xffff;
503 else
504 info->assoc = size / (sets * lsize);
505 }
506
parse_cache_info(struct device_node * np,bool icache,struct ppc_cache_info * info)507 static bool __init parse_cache_info(struct device_node *np,
508 bool icache,
509 struct ppc_cache_info *info)
510 {
511 static const char *ipropnames[] __initdata = {
512 "i-cache-size",
513 "i-cache-sets",
514 "i-cache-block-size",
515 "i-cache-line-size",
516 };
517 static const char *dpropnames[] __initdata = {
518 "d-cache-size",
519 "d-cache-sets",
520 "d-cache-block-size",
521 "d-cache-line-size",
522 };
523 const char **propnames = icache ? ipropnames : dpropnames;
524 const __be32 *sizep, *lsizep, *bsizep, *setsp;
525 u32 size, lsize, bsize, sets;
526 bool success = true;
527
528 size = 0;
529 sets = -1u;
530 lsize = bsize = cur_cpu_spec->dcache_bsize;
531 sizep = of_get_property(np, propnames[0], NULL);
532 if (sizep != NULL)
533 size = be32_to_cpu(*sizep);
534 setsp = of_get_property(np, propnames[1], NULL);
535 if (setsp != NULL)
536 sets = be32_to_cpu(*setsp);
537 bsizep = of_get_property(np, propnames[2], NULL);
538 lsizep = of_get_property(np, propnames[3], NULL);
539 if (bsizep == NULL)
540 bsizep = lsizep;
541 if (lsizep == NULL)
542 lsizep = bsizep;
543 if (lsizep != NULL)
544 lsize = be32_to_cpu(*lsizep);
545 if (bsizep != NULL)
546 bsize = be32_to_cpu(*bsizep);
547 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
548 success = false;
549
550 /*
551 * OF is weird .. it represents fully associative caches
552 * as "1 way" which doesn't make much sense and doesn't
553 * leave room for direct mapped. We'll assume that 0
554 * in OF means direct mapped for that reason.
555 */
556 if (sets == 1)
557 sets = 0;
558 else if (sets == 0)
559 sets = 1;
560
561 init_cache_info(info, size, lsize, bsize, sets);
562
563 return success;
564 }
565
initialize_cache_info(void)566 void __init initialize_cache_info(void)
567 {
568 struct device_node *cpu = NULL, *l2, *l3 = NULL;
569 u32 pvr;
570
571 /*
572 * All shipping POWER8 machines have a firmware bug that
573 * puts incorrect information in the device-tree. This will
574 * be (hopefully) fixed for future chips but for now hard
575 * code the values if we are running on one of these
576 */
577 pvr = PVR_VER(mfspr(SPRN_PVR));
578 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
579 pvr == PVR_POWER8NVL) {
580 /* size lsize blk sets */
581 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
582 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
583 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
584 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
585 } else
586 cpu = of_find_node_by_type(NULL, "cpu");
587
588 /*
589 * We're assuming *all* of the CPUs have the same
590 * d-cache and i-cache sizes... -Peter
591 */
592 if (cpu) {
593 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
594 pr_warn("Argh, can't find dcache properties !\n");
595
596 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
597 pr_warn("Argh, can't find icache properties !\n");
598
599 /*
600 * Try to find the L2 and L3 if any. Assume they are
601 * unified and use the D-side properties.
602 */
603 l2 = of_find_next_cache_node(cpu);
604 of_node_put(cpu);
605 if (l2) {
606 parse_cache_info(l2, false, &ppc64_caches.l2);
607 l3 = of_find_next_cache_node(l2);
608 of_node_put(l2);
609 }
610 if (l3) {
611 parse_cache_info(l3, false, &ppc64_caches.l3);
612 of_node_put(l3);
613 }
614 }
615
616 /* For use by binfmt_elf */
617 dcache_bsize = ppc64_caches.l1d.block_size;
618 icache_bsize = ppc64_caches.l1i.block_size;
619
620 cur_cpu_spec->dcache_bsize = dcache_bsize;
621 cur_cpu_spec->icache_bsize = icache_bsize;
622 }
623
624 /*
625 * This returns the limit below which memory accesses to the linear
626 * mapping are guarnateed not to cause an architectural exception (e.g.,
627 * TLB or SLB miss fault).
628 *
629 * This is used to allocate PACAs and various interrupt stacks that
630 * that are accessed early in interrupt handlers that must not cause
631 * re-entrant interrupts.
632 */
ppc64_bolted_size(void)633 __init u64 ppc64_bolted_size(void)
634 {
635 #ifdef CONFIG_PPC_BOOK3E
636 /* Freescale BookE bolts the entire linear mapping */
637 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
638 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
639 return linear_map_top;
640 /* Other BookE, we assume the first GB is bolted */
641 return 1ul << 30;
642 #else
643 /* BookS radix, does not take faults on linear mapping */
644 if (early_radix_enabled())
645 return ULONG_MAX;
646
647 /* BookS hash, the first segment is bolted */
648 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
649 return 1UL << SID_SHIFT_1T;
650 return 1UL << SID_SHIFT;
651 #endif
652 }
653
alloc_stack(unsigned long limit,int cpu)654 static void *__init alloc_stack(unsigned long limit, int cpu)
655 {
656 void *ptr;
657
658 BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
659
660 ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
661 MEMBLOCK_LOW_LIMIT, limit,
662 early_cpu_to_node(cpu));
663 if (!ptr)
664 panic("cannot allocate stacks");
665
666 return ptr;
667 }
668
irqstack_early_init(void)669 void __init irqstack_early_init(void)
670 {
671 u64 limit = ppc64_bolted_size();
672 unsigned int i;
673
674 /*
675 * Interrupt stacks must be in the first segment since we
676 * cannot afford to take SLB misses on them. They are not
677 * accessed in realmode.
678 */
679 for_each_possible_cpu(i) {
680 softirq_ctx[i] = alloc_stack(limit, i);
681 hardirq_ctx[i] = alloc_stack(limit, i);
682 }
683 }
684
685 #ifdef CONFIG_PPC_BOOK3E
exc_lvl_early_init(void)686 void __init exc_lvl_early_init(void)
687 {
688 unsigned int i;
689
690 for_each_possible_cpu(i) {
691 void *sp;
692
693 sp = alloc_stack(ULONG_MAX, i);
694 critirq_ctx[i] = sp;
695 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
696
697 sp = alloc_stack(ULONG_MAX, i);
698 dbgirq_ctx[i] = sp;
699 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
700
701 sp = alloc_stack(ULONG_MAX, i);
702 mcheckirq_ctx[i] = sp;
703 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
704 }
705
706 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
707 patch_exception(0x040, exc_debug_debug_book3e);
708 }
709 #endif
710
711 /*
712 * Stack space used when we detect a bad kernel stack pointer, and
713 * early in SMP boots before relocation is enabled. Exclusive emergency
714 * stack for machine checks.
715 */
emergency_stack_init(void)716 void __init emergency_stack_init(void)
717 {
718 u64 limit, mce_limit;
719 unsigned int i;
720
721 /*
722 * Emergency stacks must be under 256MB, we cannot afford to take
723 * SLB misses on them. The ABI also requires them to be 128-byte
724 * aligned.
725 *
726 * Since we use these as temporary stacks during secondary CPU
727 * bringup, machine check, system reset, and HMI, we need to get
728 * at them in real mode. This means they must also be within the RMO
729 * region.
730 *
731 * The IRQ stacks allocated elsewhere in this file are zeroed and
732 * initialized in kernel/irq.c. These are initialized here in order
733 * to have emergency stacks available as early as possible.
734 */
735 limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
736
737 /*
738 * Machine check on pseries calls rtas, but can't use the static
739 * rtas_args due to a machine check hitting while the lock is held.
740 * rtas args have to be under 4GB, so the machine check stack is
741 * limited to 4GB so args can be put on stack.
742 */
743 if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
744 mce_limit = SZ_4G;
745
746 for_each_possible_cpu(i) {
747 paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
748
749 #ifdef CONFIG_PPC_BOOK3S_64
750 /* emergency stack for NMI exception handling. */
751 paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
752
753 /* emergency stack for machine check exception handling. */
754 paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
755 #endif
756 }
757 }
758
759 #ifdef CONFIG_SMP
760 /**
761 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
762 * @cpu: cpu to allocate for
763 * @size: size allocation in bytes
764 * @align: alignment
765 *
766 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
767 * does the right thing for NUMA regardless of the current
768 * configuration.
769 *
770 * RETURNS:
771 * Pointer to the allocated area on success, NULL on failure.
772 */
pcpu_alloc_bootmem(unsigned int cpu,size_t size,size_t align)773 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
774 size_t align)
775 {
776 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
777 #ifdef CONFIG_NEED_MULTIPLE_NODES
778 int node = early_cpu_to_node(cpu);
779 void *ptr;
780
781 if (!node_online(node) || !NODE_DATA(node)) {
782 ptr = memblock_alloc_from(size, align, goal);
783 pr_info("cpu %d has no node %d or node-local memory\n",
784 cpu, node);
785 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
786 cpu, size, __pa(ptr));
787 } else {
788 ptr = memblock_alloc_try_nid(size, align, goal,
789 MEMBLOCK_ALLOC_ACCESSIBLE, node);
790 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
791 "%016lx\n", cpu, size, node, __pa(ptr));
792 }
793 return ptr;
794 #else
795 return memblock_alloc_from(size, align, goal);
796 #endif
797 }
798
pcpu_free_bootmem(void * ptr,size_t size)799 static void __init pcpu_free_bootmem(void *ptr, size_t size)
800 {
801 memblock_free(__pa(ptr), size);
802 }
803
pcpu_cpu_distance(unsigned int from,unsigned int to)804 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
805 {
806 if (early_cpu_to_node(from) == early_cpu_to_node(to))
807 return LOCAL_DISTANCE;
808 else
809 return REMOTE_DISTANCE;
810 }
811
812 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
813 EXPORT_SYMBOL(__per_cpu_offset);
814
pcpu_populate_pte(unsigned long addr)815 static void __init pcpu_populate_pte(unsigned long addr)
816 {
817 pgd_t *pgd = pgd_offset_k(addr);
818 p4d_t *p4d;
819 pud_t *pud;
820 pmd_t *pmd;
821
822 p4d = p4d_offset(pgd, addr);
823 if (p4d_none(*p4d)) {
824 pud_t *new;
825
826 new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
827 if (!new)
828 goto err_alloc;
829 p4d_populate(&init_mm, p4d, new);
830 }
831
832 pud = pud_offset(p4d, addr);
833 if (pud_none(*pud)) {
834 pmd_t *new;
835
836 new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
837 if (!new)
838 goto err_alloc;
839 pud_populate(&init_mm, pud, new);
840 }
841
842 pmd = pmd_offset(pud, addr);
843 if (!pmd_present(*pmd)) {
844 pte_t *new;
845
846 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
847 if (!new)
848 goto err_alloc;
849 pmd_populate_kernel(&init_mm, pmd, new);
850 }
851
852 return;
853
854 err_alloc:
855 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
856 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
857 }
858
859
setup_per_cpu_areas(void)860 void __init setup_per_cpu_areas(void)
861 {
862 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
863 size_t atom_size;
864 unsigned long delta;
865 unsigned int cpu;
866 int rc = -EINVAL;
867
868 /*
869 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
870 * to group units. For larger mappings, use 1M atom which
871 * should be large enough to contain a number of units.
872 */
873 if (mmu_linear_psize == MMU_PAGE_4K)
874 atom_size = PAGE_SIZE;
875 else
876 atom_size = 1 << 20;
877
878 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
879 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
880 pcpu_alloc_bootmem, pcpu_free_bootmem);
881 if (rc)
882 pr_warn("PERCPU: %s allocator failed (%d), "
883 "falling back to page size\n",
884 pcpu_fc_names[pcpu_chosen_fc], rc);
885 }
886
887 if (rc < 0)
888 rc = pcpu_page_first_chunk(0, pcpu_alloc_bootmem, pcpu_free_bootmem,
889 pcpu_populate_pte);
890 if (rc < 0)
891 panic("cannot initialize percpu area (err=%d)", rc);
892
893 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
894 for_each_possible_cpu(cpu) {
895 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
896 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
897 }
898 }
899 #endif
900
901 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
memory_block_size_bytes(void)902 unsigned long memory_block_size_bytes(void)
903 {
904 if (ppc_md.memory_block_size)
905 return ppc_md.memory_block_size();
906
907 return MIN_MEMORY_BLOCK_SIZE;
908 }
909 #endif
910
911 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
912 struct ppc_pci_io ppc_pci_io;
913 EXPORT_SYMBOL(ppc_pci_io);
914 #endif
915
916 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
hw_nmi_get_sample_period(int watchdog_thresh)917 u64 hw_nmi_get_sample_period(int watchdog_thresh)
918 {
919 return ppc_proc_freq * watchdog_thresh;
920 }
921 #endif
922
923 /*
924 * The perf based hardlockup detector breaks PMU event based branches, so
925 * disable it by default. Book3S has a soft-nmi hardlockup detector based
926 * on the decrementer interrupt, so it does not suffer from this problem.
927 *
928 * It is likely to get false positives in VM guests, so disable it there
929 * by default too.
930 */
disable_hardlockup_detector(void)931 static int __init disable_hardlockup_detector(void)
932 {
933 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
934 hardlockup_detector_disable();
935 #else
936 if (firmware_has_feature(FW_FEATURE_LPAR))
937 hardlockup_detector_disable();
938 #endif
939
940 return 0;
941 }
942 early_initcall(disable_hardlockup_detector);
943
944 #ifdef CONFIG_PPC_BOOK3S_64
945 static enum l1d_flush_type enabled_flush_types;
946 static void *l1d_flush_fallback_area;
947 static bool no_rfi_flush;
948 static bool no_entry_flush;
949 static bool no_uaccess_flush;
950 bool rfi_flush;
951 bool entry_flush;
952 bool uaccess_flush;
953 DEFINE_STATIC_KEY_FALSE(uaccess_flush_key);
954 EXPORT_SYMBOL(uaccess_flush_key);
955
handle_no_rfi_flush(char * p)956 static int __init handle_no_rfi_flush(char *p)
957 {
958 pr_info("rfi-flush: disabled on command line.");
959 no_rfi_flush = true;
960 return 0;
961 }
962 early_param("no_rfi_flush", handle_no_rfi_flush);
963
handle_no_entry_flush(char * p)964 static int __init handle_no_entry_flush(char *p)
965 {
966 pr_info("entry-flush: disabled on command line.");
967 no_entry_flush = true;
968 return 0;
969 }
970 early_param("no_entry_flush", handle_no_entry_flush);
971
handle_no_uaccess_flush(char * p)972 static int __init handle_no_uaccess_flush(char *p)
973 {
974 pr_info("uaccess-flush: disabled on command line.");
975 no_uaccess_flush = true;
976 return 0;
977 }
978 early_param("no_uaccess_flush", handle_no_uaccess_flush);
979
980 /*
981 * The RFI flush is not KPTI, but because users will see doco that says to use
982 * nopti we hijack that option here to also disable the RFI flush.
983 */
handle_no_pti(char * p)984 static int __init handle_no_pti(char *p)
985 {
986 pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
987 handle_no_rfi_flush(NULL);
988 return 0;
989 }
990 early_param("nopti", handle_no_pti);
991
do_nothing(void * unused)992 static void do_nothing(void *unused)
993 {
994 /*
995 * We don't need to do the flush explicitly, just enter+exit kernel is
996 * sufficient, the RFI exit handlers will do the right thing.
997 */
998 }
999
rfi_flush_enable(bool enable)1000 void rfi_flush_enable(bool enable)
1001 {
1002 if (enable) {
1003 do_rfi_flush_fixups(enabled_flush_types);
1004 on_each_cpu(do_nothing, NULL, 1);
1005 } else
1006 do_rfi_flush_fixups(L1D_FLUSH_NONE);
1007
1008 rfi_flush = enable;
1009 }
1010
entry_flush_enable(bool enable)1011 void entry_flush_enable(bool enable)
1012 {
1013 if (enable) {
1014 do_entry_flush_fixups(enabled_flush_types);
1015 on_each_cpu(do_nothing, NULL, 1);
1016 } else {
1017 do_entry_flush_fixups(L1D_FLUSH_NONE);
1018 }
1019
1020 entry_flush = enable;
1021 }
1022
uaccess_flush_enable(bool enable)1023 void uaccess_flush_enable(bool enable)
1024 {
1025 if (enable) {
1026 do_uaccess_flush_fixups(enabled_flush_types);
1027 static_branch_enable(&uaccess_flush_key);
1028 on_each_cpu(do_nothing, NULL, 1);
1029 } else {
1030 static_branch_disable(&uaccess_flush_key);
1031 do_uaccess_flush_fixups(L1D_FLUSH_NONE);
1032 }
1033
1034 uaccess_flush = enable;
1035 }
1036
init_fallback_flush(void)1037 static void __ref init_fallback_flush(void)
1038 {
1039 u64 l1d_size, limit;
1040 int cpu;
1041
1042 /* Only allocate the fallback flush area once (at boot time). */
1043 if (l1d_flush_fallback_area)
1044 return;
1045
1046 l1d_size = ppc64_caches.l1d.size;
1047
1048 /*
1049 * If there is no d-cache-size property in the device tree, l1d_size
1050 * could be zero. That leads to the loop in the asm wrapping around to
1051 * 2^64-1, and then walking off the end of the fallback area and
1052 * eventually causing a page fault which is fatal. Just default to
1053 * something vaguely sane.
1054 */
1055 if (!l1d_size)
1056 l1d_size = (64 * 1024);
1057
1058 limit = min(ppc64_bolted_size(), ppc64_rma_size);
1059
1060 /*
1061 * Align to L1d size, and size it at 2x L1d size, to catch possible
1062 * hardware prefetch runoff. We don't have a recipe for load patterns to
1063 * reliably avoid the prefetcher.
1064 */
1065 l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
1066 l1d_size, MEMBLOCK_LOW_LIMIT,
1067 limit, NUMA_NO_NODE);
1068 if (!l1d_flush_fallback_area)
1069 panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
1070 __func__, l1d_size * 2, l1d_size, &limit);
1071
1072
1073 for_each_possible_cpu(cpu) {
1074 struct paca_struct *paca = paca_ptrs[cpu];
1075 paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
1076 paca->l1d_flush_size = l1d_size;
1077 }
1078 }
1079
setup_rfi_flush(enum l1d_flush_type types,bool enable)1080 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
1081 {
1082 if (types & L1D_FLUSH_FALLBACK) {
1083 pr_info("rfi-flush: fallback displacement flush available\n");
1084 init_fallback_flush();
1085 }
1086
1087 if (types & L1D_FLUSH_ORI)
1088 pr_info("rfi-flush: ori type flush available\n");
1089
1090 if (types & L1D_FLUSH_MTTRIG)
1091 pr_info("rfi-flush: mttrig type flush available\n");
1092
1093 enabled_flush_types = types;
1094
1095 if (!cpu_mitigations_off() && !no_rfi_flush)
1096 rfi_flush_enable(enable);
1097 }
1098
setup_entry_flush(bool enable)1099 void setup_entry_flush(bool enable)
1100 {
1101 if (cpu_mitigations_off())
1102 return;
1103
1104 if (!no_entry_flush)
1105 entry_flush_enable(enable);
1106 }
1107
setup_uaccess_flush(bool enable)1108 void setup_uaccess_flush(bool enable)
1109 {
1110 if (cpu_mitigations_off())
1111 return;
1112
1113 if (!no_uaccess_flush)
1114 uaccess_flush_enable(enable);
1115 }
1116
1117 #ifdef CONFIG_DEBUG_FS
rfi_flush_set(void * data,u64 val)1118 static int rfi_flush_set(void *data, u64 val)
1119 {
1120 bool enable;
1121
1122 if (val == 1)
1123 enable = true;
1124 else if (val == 0)
1125 enable = false;
1126 else
1127 return -EINVAL;
1128
1129 /* Only do anything if we're changing state */
1130 if (enable != rfi_flush)
1131 rfi_flush_enable(enable);
1132
1133 return 0;
1134 }
1135
rfi_flush_get(void * data,u64 * val)1136 static int rfi_flush_get(void *data, u64 *val)
1137 {
1138 *val = rfi_flush ? 1 : 0;
1139 return 0;
1140 }
1141
1142 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
1143
entry_flush_set(void * data,u64 val)1144 static int entry_flush_set(void *data, u64 val)
1145 {
1146 bool enable;
1147
1148 if (val == 1)
1149 enable = true;
1150 else if (val == 0)
1151 enable = false;
1152 else
1153 return -EINVAL;
1154
1155 /* Only do anything if we're changing state */
1156 if (enable != entry_flush)
1157 entry_flush_enable(enable);
1158
1159 return 0;
1160 }
1161
entry_flush_get(void * data,u64 * val)1162 static int entry_flush_get(void *data, u64 *val)
1163 {
1164 *val = entry_flush ? 1 : 0;
1165 return 0;
1166 }
1167
1168 DEFINE_SIMPLE_ATTRIBUTE(fops_entry_flush, entry_flush_get, entry_flush_set, "%llu\n");
1169
uaccess_flush_set(void * data,u64 val)1170 static int uaccess_flush_set(void *data, u64 val)
1171 {
1172 bool enable;
1173
1174 if (val == 1)
1175 enable = true;
1176 else if (val == 0)
1177 enable = false;
1178 else
1179 return -EINVAL;
1180
1181 /* Only do anything if we're changing state */
1182 if (enable != uaccess_flush)
1183 uaccess_flush_enable(enable);
1184
1185 return 0;
1186 }
1187
uaccess_flush_get(void * data,u64 * val)1188 static int uaccess_flush_get(void *data, u64 *val)
1189 {
1190 *val = uaccess_flush ? 1 : 0;
1191 return 0;
1192 }
1193
1194 DEFINE_SIMPLE_ATTRIBUTE(fops_uaccess_flush, uaccess_flush_get, uaccess_flush_set, "%llu\n");
1195
rfi_flush_debugfs_init(void)1196 static __init int rfi_flush_debugfs_init(void)
1197 {
1198 debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
1199 debugfs_create_file("entry_flush", 0600, powerpc_debugfs_root, NULL, &fops_entry_flush);
1200 debugfs_create_file("uaccess_flush", 0600, powerpc_debugfs_root, NULL, &fops_uaccess_flush);
1201 return 0;
1202 }
1203 device_initcall(rfi_flush_debugfs_init);
1204 #endif
1205 #endif /* CONFIG_PPC_BOOK3S_64 */
1206