1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
3 #define _ASM_POWERPC_NOHASH_32_PGTABLE_H
4
5 #include <asm-generic/pgtable-nopmd.h>
6
7 #ifndef __ASSEMBLY__
8 #include <linux/sched.h>
9 #include <linux/threads.h>
10 #include <asm/mmu.h> /* For sub-arch specific PPC_PIN_SIZE */
11
12 #ifdef CONFIG_44x
13 extern int icache_44x_need_flush;
14 #endif
15
16 #endif /* __ASSEMBLY__ */
17
18 #define PTE_INDEX_SIZE PTE_SHIFT
19 #define PMD_INDEX_SIZE 0
20 #define PUD_INDEX_SIZE 0
21 #define PGD_INDEX_SIZE (32 - PGDIR_SHIFT)
22
23 #define PMD_CACHE_INDEX PMD_INDEX_SIZE
24 #define PUD_CACHE_INDEX PUD_INDEX_SIZE
25
26 #ifndef __ASSEMBLY__
27 #define PTE_TABLE_SIZE (sizeof(pte_t) << PTE_INDEX_SIZE)
28 #define PMD_TABLE_SIZE 0
29 #define PUD_TABLE_SIZE 0
30 #define PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE)
31
32 #define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
33 #endif /* __ASSEMBLY__ */
34
35 #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE)
36 #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE)
37
38 /*
39 * The normal case is that PTEs are 32-bits and we have a 1-page
40 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages. -- paulus
41 *
42 * For any >32-bit physical address platform, we can use the following
43 * two level page table layout where the pgdir is 8KB and the MS 13 bits
44 * are an index to the second level table. The combined pgdir/pmd first
45 * level has 2048 entries and the second level has 512 64-bit PTE entries.
46 * -Matt
47 */
48 /* PGDIR_SHIFT determines what a top-level page table entry can map */
49 #define PGDIR_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE)
50 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
51 #define PGDIR_MASK (~(PGDIR_SIZE-1))
52
53 /* Bits to mask out from a PGD to get to the PUD page */
54 #define PGD_MASKED_BITS 0
55
56 #define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
57 #define FIRST_USER_ADDRESS 0UL
58
59 #define pte_ERROR(e) \
60 pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
61 (unsigned long long)pte_val(e))
62 #define pgd_ERROR(e) \
63 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
64
65 #ifndef __ASSEMBLY__
66
67 int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
68
69 #endif /* !__ASSEMBLY__ */
70
71
72 /*
73 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
74 * value (for now) on others, from where we can start layout kernel
75 * virtual space that goes below PKMAP and FIXMAP
76 */
77 #include <asm/fixmap.h>
78
79 /*
80 * ioremap_bot starts at that address. Early ioremaps move down from there,
81 * until mem_init() at which point this becomes the top of the vmalloc
82 * and ioremap space
83 */
84 #ifdef CONFIG_HIGHMEM
85 #define IOREMAP_TOP PKMAP_BASE
86 #else
87 #define IOREMAP_TOP FIXADDR_START
88 #endif
89
90 /* PPC32 shares vmalloc area with ioremap */
91 #define IOREMAP_START VMALLOC_START
92 #define IOREMAP_END VMALLOC_END
93
94 /*
95 * Just any arbitrary offset to the start of the vmalloc VM area: the
96 * current 16MB value just means that there will be a 64MB "hole" after the
97 * physical memory until the kernel virtual memory starts. That means that
98 * any out-of-bounds memory accesses will hopefully be caught.
99 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
100 * area for the same reason. ;)
101 *
102 * We no longer map larger than phys RAM with the BATs so we don't have
103 * to worry about the VMALLOC_OFFSET causing problems. We do have to worry
104 * about clashes between our early calls to ioremap() that start growing down
105 * from IOREMAP_TOP being run into the VM area allocations (growing upwards
106 * from VMALLOC_START). For this reason we have ioremap_bot to check when
107 * we actually run into our mappings setup in the early boot with the VM
108 * system. This really does become a problem for machines with good amounts
109 * of RAM. -- Cort
110 */
111 #define VMALLOC_OFFSET (0x1000000) /* 16M */
112 #ifdef PPC_PIN_SIZE
113 #define VMALLOC_START (((ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
114 #else
115 #define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
116 #endif
117
118 #ifdef CONFIG_KASAN_VMALLOC
119 #define VMALLOC_END ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
120 #else
121 #define VMALLOC_END ioremap_bot
122 #endif
123
124 /*
125 * Bits in a linux-style PTE. These match the bits in the
126 * (hardware-defined) PowerPC PTE as closely as possible.
127 */
128
129 #if defined(CONFIG_40x)
130 #include <asm/nohash/32/pte-40x.h>
131 #elif defined(CONFIG_44x)
132 #include <asm/nohash/32/pte-44x.h>
133 #elif defined(CONFIG_FSL_BOOKE) && defined(CONFIG_PTE_64BIT)
134 #include <asm/nohash/pte-book3e.h>
135 #elif defined(CONFIG_FSL_BOOKE)
136 #include <asm/nohash/32/pte-fsl-booke.h>
137 #elif defined(CONFIG_PPC_8xx)
138 #include <asm/nohash/32/pte-8xx.h>
139 #endif
140
141 /*
142 * Location of the PFN in the PTE. Most 32-bit platforms use the same
143 * as _PAGE_SHIFT here (ie, naturally aligned).
144 * Platform who don't just pre-define the value so we don't override it here.
145 */
146 #ifndef PTE_RPN_SHIFT
147 #define PTE_RPN_SHIFT (PAGE_SHIFT)
148 #endif
149
150 /*
151 * The mask covered by the RPN must be a ULL on 32-bit platforms with
152 * 64-bit PTEs.
153 */
154 #if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
155 #define PTE_RPN_MASK (~((1ULL << PTE_RPN_SHIFT) - 1))
156 #define MAX_POSSIBLE_PHYSMEM_BITS 36
157 #else
158 #define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1))
159 #define MAX_POSSIBLE_PHYSMEM_BITS 32
160 #endif
161
162 /*
163 * _PAGE_CHG_MASK masks of bits that are to be preserved across
164 * pgprot changes.
165 */
166 #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
167
168 #ifndef __ASSEMBLY__
169
170 #define pte_clear(mm, addr, ptep) \
171 do { pte_update(mm, addr, ptep, ~0, 0, 0); } while (0)
172
173 #ifndef pte_mkwrite
pte_mkwrite(pte_t pte)174 static inline pte_t pte_mkwrite(pte_t pte)
175 {
176 return __pte(pte_val(pte) | _PAGE_RW);
177 }
178 #endif
179
pte_mkdirty(pte_t pte)180 static inline pte_t pte_mkdirty(pte_t pte)
181 {
182 return __pte(pte_val(pte) | _PAGE_DIRTY);
183 }
184
pte_mkyoung(pte_t pte)185 static inline pte_t pte_mkyoung(pte_t pte)
186 {
187 return __pte(pte_val(pte) | _PAGE_ACCESSED);
188 }
189
190 #ifndef pte_wrprotect
pte_wrprotect(pte_t pte)191 static inline pte_t pte_wrprotect(pte_t pte)
192 {
193 return __pte(pte_val(pte) & ~_PAGE_RW);
194 }
195 #endif
196
pte_mkexec(pte_t pte)197 static inline pte_t pte_mkexec(pte_t pte)
198 {
199 return __pte(pte_val(pte) | _PAGE_EXEC);
200 }
201
202 #define pmd_none(pmd) (!pmd_val(pmd))
203 #define pmd_bad(pmd) (pmd_val(pmd) & _PMD_BAD)
204 #define pmd_present(pmd) (pmd_val(pmd) & _PMD_PRESENT_MASK)
pmd_clear(pmd_t * pmdp)205 static inline void pmd_clear(pmd_t *pmdp)
206 {
207 *pmdp = __pmd(0);
208 }
209
210 /*
211 * PTE updates. This function is called whenever an existing
212 * valid PTE is updated. This does -not- include set_pte_at()
213 * which nowadays only sets a new PTE.
214 *
215 * Depending on the type of MMU, we may need to use atomic updates
216 * and the PTE may be either 32 or 64 bit wide. In the later case,
217 * when using atomic updates, only the low part of the PTE is
218 * accessed atomically.
219 *
220 * In addition, on 44x, we also maintain a global flag indicating
221 * that an executable user mapping was modified, which is needed
222 * to properly flush the virtually tagged instruction cache of
223 * those implementations.
224 *
225 * On the 8xx, the page tables are a bit special. For 16k pages, we have
226 * 4 identical entries. For 512k pages, we have 128 entries as if it was
227 * 4k pages, but they are flagged as 512k pages for the hardware.
228 * For other page sizes, we have a single entry in the table.
229 */
230 #ifdef CONFIG_PPC_8xx
231 static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr);
232 static int hugepd_ok(hugepd_t hpd);
233
number_of_cells_per_pte(pmd_t * pmd,pte_basic_t val,int huge)234 static int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge)
235 {
236 if (!huge)
237 return PAGE_SIZE / SZ_4K;
238 else if (hugepd_ok(*((hugepd_t *)pmd)))
239 return 1;
240 else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE))
241 return SZ_16K / SZ_4K;
242 else
243 return SZ_512K / SZ_4K;
244 }
245
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * p,unsigned long clr,unsigned long set,int huge)246 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
247 unsigned long clr, unsigned long set, int huge)
248 {
249 pte_basic_t *entry = &p->pte;
250 pte_basic_t old = pte_val(*p);
251 pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
252 int num, i;
253 pmd_t *pmd = pmd_off(mm, addr);
254
255 num = number_of_cells_per_pte(pmd, new, huge);
256
257 for (i = 0; i < num; i++, entry++, new += SZ_4K)
258 *entry = new;
259
260 return old;
261 }
262
263 #ifdef CONFIG_PPC_16K_PAGES
264 #define __HAVE_ARCH_PTEP_GET
ptep_get(pte_t * ptep)265 static inline pte_t ptep_get(pte_t *ptep)
266 {
267 pte_basic_t val = READ_ONCE(ptep->pte);
268 pte_t pte = {val, val, val, val};
269
270 return pte;
271 }
272 #endif /* CONFIG_PPC_16K_PAGES */
273
274 #else
pte_update(struct mm_struct * mm,unsigned long addr,pte_t * p,unsigned long clr,unsigned long set,int huge)275 static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
276 unsigned long clr, unsigned long set, int huge)
277 {
278 pte_basic_t old = pte_val(*p);
279 pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
280
281 *p = __pte(new);
282
283 #ifdef CONFIG_44x
284 if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
285 icache_44x_need_flush = 1;
286 #endif
287 return old;
288 }
289 #endif
290
291 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
__ptep_test_and_clear_young(struct mm_struct * mm,unsigned long addr,pte_t * ptep)292 static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
293 unsigned long addr, pte_t *ptep)
294 {
295 unsigned long old;
296 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
297 return (old & _PAGE_ACCESSED) != 0;
298 }
299 #define ptep_test_and_clear_young(__vma, __addr, __ptep) \
300 __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
301
302 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)303 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
304 pte_t *ptep)
305 {
306 return __pte(pte_update(mm, addr, ptep, ~0, 0, 0));
307 }
308
309 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)310 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
311 pte_t *ptep)
312 {
313 unsigned long clr = ~pte_val(pte_wrprotect(__pte(~0)));
314 unsigned long set = pte_val(pte_wrprotect(__pte(0)));
315
316 pte_update(mm, addr, ptep, clr, set, 0);
317 }
318
__ptep_set_access_flags(struct vm_area_struct * vma,pte_t * ptep,pte_t entry,unsigned long address,int psize)319 static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
320 pte_t *ptep, pte_t entry,
321 unsigned long address,
322 int psize)
323 {
324 pte_t pte_set = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(0)))));
325 pte_t pte_clr = pte_mkyoung(pte_mkdirty(pte_mkwrite(pte_mkexec(__pte(~0)))));
326 unsigned long set = pte_val(entry) & pte_val(pte_set);
327 unsigned long clr = ~pte_val(entry) & ~pte_val(pte_clr);
328 int huge = psize > mmu_virtual_psize ? 1 : 0;
329
330 pte_update(vma->vm_mm, address, ptep, clr, set, huge);
331
332 flush_tlb_page(vma, address);
333 }
334
pte_young(pte_t pte)335 static inline int pte_young(pte_t pte)
336 {
337 return pte_val(pte) & _PAGE_ACCESSED;
338 }
339
340 #define __HAVE_ARCH_PTE_SAME
341 #define pte_same(A,B) ((pte_val(A) ^ pte_val(B)) == 0)
342
343 /*
344 * Note that on Book E processors, the pmd contains the kernel virtual
345 * (lowmem) address of the pte page. The physical address is less useful
346 * because everything runs with translation enabled (even the TLB miss
347 * handler). On everything else the pmd contains the physical address
348 * of the pte page. -- paulus
349 */
350 #ifndef CONFIG_BOOKE
351 #define pmd_page(pmd) \
352 pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
353 #else
354 #define pmd_page_vaddr(pmd) \
355 ((unsigned long)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
356 #define pmd_page(pmd) \
357 pfn_to_page((__pa(pmd_val(pmd)) >> PAGE_SHIFT))
358 #endif
359
360 /*
361 * Encode and decode a swap entry.
362 * Note that the bits we use in a PTE for representing a swap entry
363 * must not include the _PAGE_PRESENT bit.
364 * -- paulus
365 */
366 #define __swp_type(entry) ((entry).val & 0x1f)
367 #define __swp_offset(entry) ((entry).val >> 5)
368 #define __swp_entry(type, offset) ((swp_entry_t) { (type) | ((offset) << 5) })
369 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) >> 3 })
370 #define __swp_entry_to_pte(x) ((pte_t) { (x).val << 3 })
371
372 #endif /* !__ASSEMBLY__ */
373
374 #endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */
375