1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/parisc/kernel/time.c
4  *
5  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
6  *  Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
7  *  Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
8  *
9  * 1994-07-02  Alan Modra
10  *             fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
11  * 1998-12-20  Updated NTP code according to technical memorandum Jan '96
12  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
13  */
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/rtc.h>
17 #include <linux/sched.h>
18 #include <linux/sched/clock.h>
19 #include <linux/sched_clock.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/smp.h>
28 #include <linux/profile.h>
29 #include <linux/clocksource.h>
30 #include <linux/platform_device.h>
31 #include <linux/ftrace.h>
32 
33 #include <linux/uaccess.h>
34 #include <asm/io.h>
35 #include <asm/irq.h>
36 #include <asm/page.h>
37 #include <asm/param.h>
38 #include <asm/pdc.h>
39 #include <asm/led.h>
40 
41 #include <linux/timex.h>
42 
43 static unsigned long clocktick __ro_after_init;	/* timer cycles per tick */
44 
45 /*
46  * We keep time on PA-RISC Linux by using the Interval Timer which is
47  * a pair of registers; one is read-only and one is write-only; both
48  * accessed through CR16.  The read-only register is 32 or 64 bits wide,
49  * and increments by 1 every CPU clock tick.  The architecture only
50  * guarantees us a rate between 0.5 and 2, but all implementations use a
51  * rate of 1.  The write-only register is 32-bits wide.  When the lowest
52  * 32 bits of the read-only register compare equal to the write-only
53  * register, it raises a maskable external interrupt.  Each processor has
54  * an Interval Timer of its own and they are not synchronised.
55  *
56  * We want to generate an interrupt every 1/HZ seconds.  So we program
57  * CR16 to interrupt every @clocktick cycles.  The it_value in cpu_data
58  * is programmed with the intended time of the next tick.  We can be
59  * held off for an arbitrarily long period of time by interrupts being
60  * disabled, so we may miss one or more ticks.
61  */
timer_interrupt(int irq,void * dev_id)62 irqreturn_t __irq_entry timer_interrupt(int irq, void *dev_id)
63 {
64 	unsigned long now;
65 	unsigned long next_tick;
66 	unsigned long ticks_elapsed = 0;
67 	unsigned int cpu = smp_processor_id();
68 	struct cpuinfo_parisc *cpuinfo = &per_cpu(cpu_data, cpu);
69 
70 	/* gcc can optimize for "read-only" case with a local clocktick */
71 	unsigned long cpt = clocktick;
72 
73 	profile_tick(CPU_PROFILING);
74 
75 	/* Initialize next_tick to the old expected tick time. */
76 	next_tick = cpuinfo->it_value;
77 
78 	/* Calculate how many ticks have elapsed. */
79 	now = mfctl(16);
80 	do {
81 		++ticks_elapsed;
82 		next_tick += cpt;
83 	} while (next_tick - now > cpt);
84 
85 	/* Store (in CR16 cycles) up to when we are accounting right now. */
86 	cpuinfo->it_value = next_tick;
87 
88 	/* Go do system house keeping. */
89 	if (cpu == 0)
90 		xtime_update(ticks_elapsed);
91 
92 	update_process_times(user_mode(get_irq_regs()));
93 
94 	/* Skip clockticks on purpose if we know we would miss those.
95 	 * The new CR16 must be "later" than current CR16 otherwise
96 	 * itimer would not fire until CR16 wrapped - e.g 4 seconds
97 	 * later on a 1Ghz processor. We'll account for the missed
98 	 * ticks on the next timer interrupt.
99 	 * We want IT to fire modulo clocktick even if we miss/skip some.
100 	 * But those interrupts don't in fact get delivered that regularly.
101 	 *
102 	 * "next_tick - now" will always give the difference regardless
103 	 * if one or the other wrapped. If "now" is "bigger" we'll end up
104 	 * with a very large unsigned number.
105 	 */
106 	now = mfctl(16);
107 	while (next_tick - now > cpt)
108 		next_tick += cpt;
109 
110 	/* Program the IT when to deliver the next interrupt.
111 	 * Only bottom 32-bits of next_tick are writable in CR16!
112 	 * Timer interrupt will be delivered at least a few hundred cycles
113 	 * after the IT fires, so if we are too close (<= 8000 cycles) to the
114 	 * next cycle, simply skip it.
115 	 */
116 	if (next_tick - now <= 8000)
117 		next_tick += cpt;
118 	mtctl(next_tick, 16);
119 
120 	return IRQ_HANDLED;
121 }
122 
123 
profile_pc(struct pt_regs * regs)124 unsigned long profile_pc(struct pt_regs *regs)
125 {
126 	unsigned long pc = instruction_pointer(regs);
127 
128 	if (regs->gr[0] & PSW_N)
129 		pc -= 4;
130 
131 #ifdef CONFIG_SMP
132 	if (in_lock_functions(pc))
133 		pc = regs->gr[2];
134 #endif
135 
136 	return pc;
137 }
138 EXPORT_SYMBOL(profile_pc);
139 
140 
141 /* clock source code */
142 
read_cr16(struct clocksource * cs)143 static u64 notrace read_cr16(struct clocksource *cs)
144 {
145 	return get_cycles();
146 }
147 
148 static struct clocksource clocksource_cr16 = {
149 	.name			= "cr16",
150 	.rating			= 300,
151 	.read			= read_cr16,
152 	.mask			= CLOCKSOURCE_MASK(BITS_PER_LONG),
153 	.flags			= CLOCK_SOURCE_IS_CONTINUOUS,
154 };
155 
start_cpu_itimer(void)156 void __init start_cpu_itimer(void)
157 {
158 	unsigned int cpu = smp_processor_id();
159 	unsigned long next_tick = mfctl(16) + clocktick;
160 
161 	mtctl(next_tick, 16);		/* kick off Interval Timer (CR16) */
162 
163 	per_cpu(cpu_data, cpu).it_value = next_tick;
164 }
165 
166 #if IS_ENABLED(CONFIG_RTC_DRV_GENERIC)
rtc_generic_get_time(struct device * dev,struct rtc_time * tm)167 static int rtc_generic_get_time(struct device *dev, struct rtc_time *tm)
168 {
169 	struct pdc_tod tod_data;
170 
171 	memset(tm, 0, sizeof(*tm));
172 	if (pdc_tod_read(&tod_data) < 0)
173 		return -EOPNOTSUPP;
174 
175 	/* we treat tod_sec as unsigned, so this can work until year 2106 */
176 	rtc_time64_to_tm(tod_data.tod_sec, tm);
177 	return 0;
178 }
179 
rtc_generic_set_time(struct device * dev,struct rtc_time * tm)180 static int rtc_generic_set_time(struct device *dev, struct rtc_time *tm)
181 {
182 	time64_t secs = rtc_tm_to_time64(tm);
183 	int ret;
184 
185 	/* hppa has Y2K38 problem: pdc_tod_set() takes an u32 value! */
186 	ret = pdc_tod_set(secs, 0);
187 	if (ret != 0) {
188 		pr_warn("pdc_tod_set(%lld) returned error %d\n", secs, ret);
189 		if (ret == PDC_INVALID_ARG)
190 			return -EINVAL;
191 		return -EOPNOTSUPP;
192 	}
193 
194 	return 0;
195 }
196 
197 static const struct rtc_class_ops rtc_generic_ops = {
198 	.read_time = rtc_generic_get_time,
199 	.set_time = rtc_generic_set_time,
200 };
201 
rtc_init(void)202 static int __init rtc_init(void)
203 {
204 	struct platform_device *pdev;
205 
206 	pdev = platform_device_register_data(NULL, "rtc-generic", -1,
207 					     &rtc_generic_ops,
208 					     sizeof(rtc_generic_ops));
209 
210 	return PTR_ERR_OR_ZERO(pdev);
211 }
212 device_initcall(rtc_init);
213 #endif
214 
read_persistent_clock64(struct timespec64 * ts)215 void read_persistent_clock64(struct timespec64 *ts)
216 {
217 	static struct pdc_tod tod_data;
218 	if (pdc_tod_read(&tod_data) == 0) {
219 		ts->tv_sec = tod_data.tod_sec;
220 		ts->tv_nsec = tod_data.tod_usec * 1000;
221 	} else {
222 		printk(KERN_ERR "Error reading tod clock\n");
223 	        ts->tv_sec = 0;
224 		ts->tv_nsec = 0;
225 	}
226 }
227 
228 
read_cr16_sched_clock(void)229 static u64 notrace read_cr16_sched_clock(void)
230 {
231 	return get_cycles();
232 }
233 
234 
235 /*
236  * timer interrupt and sched_clock() initialization
237  */
238 
time_init(void)239 void __init time_init(void)
240 {
241 	unsigned long cr16_hz;
242 
243 	clocktick = (100 * PAGE0->mem_10msec) / HZ;
244 	start_cpu_itimer();	/* get CPU 0 started */
245 
246 	cr16_hz = 100 * PAGE0->mem_10msec;  /* Hz */
247 
248 	/* register as sched_clock source */
249 	sched_clock_register(read_cr16_sched_clock, BITS_PER_LONG, cr16_hz);
250 }
251 
init_cr16_clocksource(void)252 static int __init init_cr16_clocksource(void)
253 {
254 	/*
255 	 * The cr16 interval timers are not syncronized across CPUs on
256 	 * different sockets, so mark them unstable and lower rating on
257 	 * multi-socket SMP systems.
258 	 */
259 	if (num_online_cpus() > 1 && !running_on_qemu) {
260 		int cpu;
261 		unsigned long cpu0_loc;
262 		cpu0_loc = per_cpu(cpu_data, 0).cpu_loc;
263 
264 		for_each_online_cpu(cpu) {
265 			if (cpu == 0)
266 				continue;
267 			if ((cpu0_loc != 0) &&
268 			    (cpu0_loc == per_cpu(cpu_data, cpu).cpu_loc))
269 				continue;
270 
271 			clocksource_cr16.name = "cr16_unstable";
272 			clocksource_cr16.flags = CLOCK_SOURCE_UNSTABLE;
273 			clocksource_cr16.rating = 0;
274 			break;
275 		}
276 	}
277 
278 	/* XXX: We may want to mark sched_clock stable here if cr16 clocks are
279 	 *	in sync:
280 	 *	(clocksource_cr16.flags == CLOCK_SOURCE_IS_CONTINUOUS) */
281 
282 	/* register at clocksource framework */
283 	clocksource_register_hz(&clocksource_cr16,
284 		100 * PAGE0->mem_10msec);
285 
286 	return 0;
287 }
288 
289 device_initcall(init_cr16_clocksource);
290