1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * OpenRISC Linux
4 *
5 * Linux architectural port borrowing liberally from similar works of
6 * others. All original copyrights apply as per the original source
7 * declaration.
8 *
9 * OpenRISC implementation:
10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12 * et al.
13 */
14
15 /* or32 pgtable.h - macros and functions to manipulate page tables
16 *
17 * Based on:
18 * include/asm-cris/pgtable.h
19 */
20
21 #ifndef __ASM_OPENRISC_PGTABLE_H
22 #define __ASM_OPENRISC_PGTABLE_H
23
24 #include <asm-generic/pgtable-nopmd.h>
25
26 #ifndef __ASSEMBLY__
27 #include <asm/mmu.h>
28 #include <asm/fixmap.h>
29
30 /*
31 * The Linux memory management assumes a three-level page table setup. On
32 * or32, we use that, but "fold" the mid level into the top-level page
33 * table. Since the MMU TLB is software loaded through an interrupt, it
34 * supports any page table structure, so we could have used a three-level
35 * setup, but for the amounts of memory we normally use, a two-level is
36 * probably more efficient.
37 *
38 * This file contains the functions and defines necessary to modify and use
39 * the or32 page table tree.
40 */
41
42 extern void paging_init(void);
43
44 /* Certain architectures need to do special things when pte's
45 * within a page table are directly modified. Thus, the following
46 * hook is made available.
47 */
48 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
49 #define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval)
50 /*
51 * (pmds are folded into pgds so this doesn't get actually called,
52 * but the define is needed for a generic inline function.)
53 */
54 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
55
56 #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
57 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
58 #define PGDIR_MASK (~(PGDIR_SIZE-1))
59
60 /*
61 * entries per page directory level: we use a two-level, so
62 * we don't really have any PMD directory physically.
63 * pointers are 4 bytes so we can use the page size and
64 * divide it by 4 (shift by 2).
65 */
66 #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
67
68 #define PTRS_PER_PGD (1UL << (32-PGDIR_SHIFT))
69
70 /* calculate how many PGD entries a user-level program can use
71 * the first mappable virtual address is 0
72 * (TASK_SIZE is the maximum virtual address space)
73 */
74
75 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
76 #define FIRST_USER_ADDRESS 0UL
77
78 /*
79 * Kernels own virtual memory area.
80 */
81
82 /*
83 * The size and location of the vmalloc area are chosen so that modules
84 * placed in this area aren't more than a 28-bit signed offset from any
85 * kernel functions that they may need. This greatly simplifies handling
86 * of the relocations for l.j and l.jal instructions as we don't need to
87 * introduce any trampolines for reaching "distant" code.
88 *
89 * 64 MB of vmalloc area is comparable to what's available on other arches.
90 */
91
92 #define VMALLOC_START (PAGE_OFFSET-0x04000000UL)
93 #define VMALLOC_END (PAGE_OFFSET)
94 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
95
96 /* Define some higher level generic page attributes.
97 *
98 * If you change _PAGE_CI definition be sure to change it in
99 * io.h for ioremap() too.
100 */
101
102 /*
103 * An OR32 PTE looks like this:
104 *
105 * | 31 ... 10 | 9 | 8 ... 6 | 5 | 4 | 3 | 2 | 1 | 0 |
106 * Phys pg.num L PP Index D A WOM WBC CI CC
107 *
108 * L : link
109 * PPI: Page protection index
110 * D : Dirty
111 * A : Accessed
112 * WOM: Weakly ordered memory
113 * WBC: Write-back cache
114 * CI : Cache inhibit
115 * CC : Cache coherent
116 *
117 * The protection bits below should correspond to the layout of the actual
118 * PTE as per above
119 */
120
121 #define _PAGE_CC 0x001 /* software: pte contains a translation */
122 #define _PAGE_CI 0x002 /* cache inhibit */
123 #define _PAGE_WBC 0x004 /* write back cache */
124 #define _PAGE_WOM 0x008 /* weakly ordered memory */
125
126 #define _PAGE_A 0x010 /* accessed */
127 #define _PAGE_D 0x020 /* dirty */
128 #define _PAGE_URE 0x040 /* user read enable */
129 #define _PAGE_UWE 0x080 /* user write enable */
130
131 #define _PAGE_SRE 0x100 /* superuser read enable */
132 #define _PAGE_SWE 0x200 /* superuser write enable */
133 #define _PAGE_EXEC 0x400 /* software: page is executable */
134 #define _PAGE_U_SHARED 0x800 /* software: page is shared in user space */
135
136 /* 0x001 is cache coherency bit, which should always be set to
137 * 1 - for SMP (when we support it)
138 * 0 - otherwise
139 *
140 * we just reuse this bit in software for _PAGE_PRESENT and
141 * force it to 0 when loading it into TLB.
142 */
143 #define _PAGE_PRESENT _PAGE_CC
144 #define _PAGE_USER _PAGE_URE
145 #define _PAGE_WRITE (_PAGE_UWE | _PAGE_SWE)
146 #define _PAGE_DIRTY _PAGE_D
147 #define _PAGE_ACCESSED _PAGE_A
148 #define _PAGE_NO_CACHE _PAGE_CI
149 #define _PAGE_SHARED _PAGE_U_SHARED
150 #define _PAGE_READ (_PAGE_URE | _PAGE_SRE)
151
152 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
153 #define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED)
154 #define _PAGE_ALL (_PAGE_PRESENT | _PAGE_ACCESSED)
155 #define _KERNPG_TABLE \
156 (_PAGE_BASE | _PAGE_SRE | _PAGE_SWE | _PAGE_ACCESSED | _PAGE_DIRTY)
157
158 #define PAGE_NONE __pgprot(_PAGE_ALL)
159 #define PAGE_READONLY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
160 #define PAGE_READONLY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
161 #define PAGE_SHARED \
162 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
163 | _PAGE_SHARED)
164 #define PAGE_SHARED_X \
165 __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_UWE | _PAGE_SWE \
166 | _PAGE_SHARED | _PAGE_EXEC)
167 #define PAGE_COPY __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE)
168 #define PAGE_COPY_X __pgprot(_PAGE_ALL | _PAGE_URE | _PAGE_SRE | _PAGE_EXEC)
169
170 #define PAGE_KERNEL \
171 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
172 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
173 #define PAGE_KERNEL_RO \
174 __pgprot(_PAGE_ALL | _PAGE_SRE \
175 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC)
176 #define PAGE_KERNEL_NOCACHE \
177 __pgprot(_PAGE_ALL | _PAGE_SRE | _PAGE_SWE \
178 | _PAGE_SHARED | _PAGE_DIRTY | _PAGE_EXEC | _PAGE_CI)
179
180 #define __P000 PAGE_NONE
181 #define __P001 PAGE_READONLY_X
182 #define __P010 PAGE_COPY
183 #define __P011 PAGE_COPY_X
184 #define __P100 PAGE_READONLY
185 #define __P101 PAGE_READONLY_X
186 #define __P110 PAGE_COPY
187 #define __P111 PAGE_COPY_X
188
189 #define __S000 PAGE_NONE
190 #define __S001 PAGE_READONLY_X
191 #define __S010 PAGE_SHARED
192 #define __S011 PAGE_SHARED_X
193 #define __S100 PAGE_READONLY
194 #define __S101 PAGE_READONLY_X
195 #define __S110 PAGE_SHARED
196 #define __S111 PAGE_SHARED_X
197
198 /* zero page used for uninitialized stuff */
199 extern unsigned long empty_zero_page[2048];
200 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
201
202 /* number of bits that fit into a memory pointer */
203 #define BITS_PER_PTR (8*sizeof(unsigned long))
204
205 /* to align the pointer to a pointer address */
206 #define PTR_MASK (~(sizeof(void *)-1))
207
208 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
209 /* 64-bit machines, beware! SRB. */
210 #define SIZEOF_PTR_LOG2 2
211
212 /* to find an entry in a page-table */
213 #define PAGE_PTR(address) \
214 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
215
216 /* to set the page-dir */
217 #define SET_PAGE_DIR(tsk, pgdir)
218
219 #define pte_none(x) (!pte_val(x))
220 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
221 #define pte_clear(mm, addr, xp) do { pte_val(*(xp)) = 0; } while (0)
222
223 #define pmd_none(x) (!pmd_val(x))
224 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK)) != _KERNPG_TABLE)
225 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
226 #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
227
228 /*
229 * The following only work if pte_present() is true.
230 * Undefined behaviour if not..
231 */
232
pte_read(pte_t pte)233 static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
pte_write(pte_t pte)234 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
pte_exec(pte_t pte)235 static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXEC; }
pte_dirty(pte_t pte)236 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
pte_young(pte_t pte)237 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
238
pte_wrprotect(pte_t pte)239 static inline pte_t pte_wrprotect(pte_t pte)
240 {
241 pte_val(pte) &= ~(_PAGE_WRITE);
242 return pte;
243 }
244
pte_rdprotect(pte_t pte)245 static inline pte_t pte_rdprotect(pte_t pte)
246 {
247 pte_val(pte) &= ~(_PAGE_READ);
248 return pte;
249 }
250
pte_exprotect(pte_t pte)251 static inline pte_t pte_exprotect(pte_t pte)
252 {
253 pte_val(pte) &= ~(_PAGE_EXEC);
254 return pte;
255 }
256
pte_mkclean(pte_t pte)257 static inline pte_t pte_mkclean(pte_t pte)
258 {
259 pte_val(pte) &= ~(_PAGE_DIRTY);
260 return pte;
261 }
262
pte_mkold(pte_t pte)263 static inline pte_t pte_mkold(pte_t pte)
264 {
265 pte_val(pte) &= ~(_PAGE_ACCESSED);
266 return pte;
267 }
268
pte_mkwrite(pte_t pte)269 static inline pte_t pte_mkwrite(pte_t pte)
270 {
271 pte_val(pte) |= _PAGE_WRITE;
272 return pte;
273 }
274
pte_mkread(pte_t pte)275 static inline pte_t pte_mkread(pte_t pte)
276 {
277 pte_val(pte) |= _PAGE_READ;
278 return pte;
279 }
280
pte_mkexec(pte_t pte)281 static inline pte_t pte_mkexec(pte_t pte)
282 {
283 pte_val(pte) |= _PAGE_EXEC;
284 return pte;
285 }
286
pte_mkdirty(pte_t pte)287 static inline pte_t pte_mkdirty(pte_t pte)
288 {
289 pte_val(pte) |= _PAGE_DIRTY;
290 return pte;
291 }
292
pte_mkyoung(pte_t pte)293 static inline pte_t pte_mkyoung(pte_t pte)
294 {
295 pte_val(pte) |= _PAGE_ACCESSED;
296 return pte;
297 }
298
299 /*
300 * Conversion functions: convert a page and protection to a page entry,
301 * and a page entry and page directory to the page they refer to.
302 */
303
304 /* What actually goes as arguments to the various functions is less than
305 * obvious, but a rule of thumb is that struct page's goes as struct page *,
306 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
307 * addresses (the 0xc0xxxxxx's) goes as void *'s.
308 */
309
__mk_pte(void * page,pgprot_t pgprot)310 static inline pte_t __mk_pte(void *page, pgprot_t pgprot)
311 {
312 pte_t pte;
313 /* the PTE needs a physical address */
314 pte_val(pte) = __pa(page) | pgprot_val(pgprot);
315 return pte;
316 }
317
318 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
319
320 #define mk_pte_phys(physpage, pgprot) \
321 ({ \
322 pte_t __pte; \
323 \
324 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
325 __pte; \
326 })
327
pte_modify(pte_t pte,pgprot_t newprot)328 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
329 {
330 pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
331 return pte;
332 }
333
334
335 /*
336 * pte_val refers to a page in the 0x0xxxxxxx physical DRAM interval
337 * __pte_page(pte_val) refers to the "virtual" DRAM interval
338 * pte_pagenr refers to the page-number counted starting from the virtual
339 * DRAM start
340 */
341
__pte_page(pte_t pte)342 static inline unsigned long __pte_page(pte_t pte)
343 {
344 /* the PTE contains a physical address */
345 return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
346 }
347
348 #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
349
350 /* permanent address of a page */
351
352 #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
353 #define pte_page(pte) (mem_map+pte_pagenr(pte))
354
355 /*
356 * only the pte's themselves need to point to physical DRAM (see above)
357 * the pagetable links are purely handled within the kernel SW and thus
358 * don't need the __pa and __va transformations.
359 */
pmd_set(pmd_t * pmdp,pte_t * ptep)360 static inline void pmd_set(pmd_t *pmdp, pte_t *ptep)
361 {
362 pmd_val(*pmdp) = _KERNPG_TABLE | (unsigned long) ptep;
363 }
364
365 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
366
pmd_page_vaddr(pmd_t pmd)367 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
368 {
369 return ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK));
370 }
371
372 #define __pmd_offset(address) \
373 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
374
375 #define pte_pfn(x) ((unsigned long)(((x).pte)) >> PAGE_SHIFT)
376 #define pfn_pte(pfn, prot) __pte((((pfn) << PAGE_SHIFT)) | pgprot_val(prot))
377
378 #define pte_ERROR(e) \
379 printk(KERN_ERR "%s:%d: bad pte %p(%08lx).\n", \
380 __FILE__, __LINE__, &(e), pte_val(e))
381 #define pgd_ERROR(e) \
382 printk(KERN_ERR "%s:%d: bad pgd %p(%08lx).\n", \
383 __FILE__, __LINE__, &(e), pgd_val(e))
384
385 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
386
387 struct vm_area_struct;
388
update_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * pte)389 static inline void update_tlb(struct vm_area_struct *vma,
390 unsigned long address, pte_t *pte)
391 {
392 }
393
394 extern void update_cache(struct vm_area_struct *vma,
395 unsigned long address, pte_t *pte);
396
update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * pte)397 static inline void update_mmu_cache(struct vm_area_struct *vma,
398 unsigned long address, pte_t *pte)
399 {
400 update_tlb(vma, address, pte);
401 update_cache(vma, address, pte);
402 }
403
404 /* __PHX__ FIXME, SWAP, this probably doesn't work */
405
406 /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
407 /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
408
409 #define __swp_type(x) (((x).val >> 5) & 0x7f)
410 #define __swp_offset(x) ((x).val >> 12)
411 #define __swp_entry(type, offset) \
412 ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
413 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
414 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
415
416 #define kern_addr_valid(addr) (1)
417
418 typedef pte_t *pte_addr_t;
419
420 #endif /* __ASSEMBLY__ */
421 #endif /* __ASM_OPENRISC_PGTABLE_H */
422