1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Here is where the ball gets rolling as far as the kernel is concerned.
4 * When control is transferred to _start, the bootload has already
5 * loaded us to the correct address.  All that's left to do here is
6 * to set up the kernel's global pointer and jump to the kernel
7 * entry point.
8 *
9 * Copyright (C) 1998-2001, 2003, 2005 Hewlett-Packard Co
10 *	David Mosberger-Tang <davidm@hpl.hp.com>
11 *	Stephane Eranian <eranian@hpl.hp.com>
12 * Copyright (C) 1999 VA Linux Systems
13 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
14 * Copyright (C) 1999 Intel Corp.
15 * Copyright (C) 1999 Asit Mallick <Asit.K.Mallick@intel.com>
16 * Copyright (C) 1999 Don Dugger <Don.Dugger@intel.com>
17 * Copyright (C) 2002 Fenghua Yu <fenghua.yu@intel.com>
18 *   -Optimize __ia64_save_fpu() and __ia64_load_fpu() for Itanium 2.
19 * Copyright (C) 2004 Ashok Raj <ashok.raj@intel.com>
20 *   Support for CPU Hotplug
21 */
22
23
24#include <linux/pgtable.h>
25#include <asm/asmmacro.h>
26#include <asm/fpu.h>
27#include <asm/kregs.h>
28#include <asm/mmu_context.h>
29#include <asm/asm-offsets.h>
30#include <asm/pal.h>
31#include <asm/processor.h>
32#include <asm/ptrace.h>
33#include <asm/mca_asm.h>
34#include <linux/init.h>
35#include <linux/linkage.h>
36#include <linux/pgtable.h>
37#include <asm/export.h>
38
39#ifdef CONFIG_HOTPLUG_CPU
40#define SAL_PSR_BITS_TO_SET				\
41	(IA64_PSR_AC | IA64_PSR_BN | IA64_PSR_MFH | IA64_PSR_MFL)
42
43#define SAVE_FROM_REG(src, ptr, dest)	\
44	mov dest=src;;						\
45	st8 [ptr]=dest,0x08
46
47#define RESTORE_REG(reg, ptr, _tmp)		\
48	ld8 _tmp=[ptr],0x08;;				\
49	mov reg=_tmp
50
51#define SAVE_BREAK_REGS(ptr, _idx, _breg, _dest)\
52	mov ar.lc=IA64_NUM_DBG_REGS-1;; 			\
53	mov _idx=0;; 								\
541: 												\
55	SAVE_FROM_REG(_breg[_idx], ptr, _dest);;	\
56	add _idx=1,_idx;;							\
57	br.cloop.sptk.many 1b
58
59#define RESTORE_BREAK_REGS(ptr, _idx, _breg, _tmp, _lbl)\
60	mov ar.lc=IA64_NUM_DBG_REGS-1;;			\
61	mov _idx=0;;							\
62_lbl:  RESTORE_REG(_breg[_idx], ptr, _tmp);;	\
63	add _idx=1, _idx;;						\
64	br.cloop.sptk.many _lbl
65
66#define SAVE_ONE_RR(num, _reg, _tmp) \
67	movl _tmp=(num<<61);;	\
68	mov _reg=rr[_tmp]
69
70#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
71	SAVE_ONE_RR(0,_r0, _tmp);; \
72	SAVE_ONE_RR(1,_r1, _tmp);; \
73	SAVE_ONE_RR(2,_r2, _tmp);; \
74	SAVE_ONE_RR(3,_r3, _tmp);; \
75	SAVE_ONE_RR(4,_r4, _tmp);; \
76	SAVE_ONE_RR(5,_r5, _tmp);; \
77	SAVE_ONE_RR(6,_r6, _tmp);; \
78	SAVE_ONE_RR(7,_r7, _tmp);;
79
80#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7) \
81	st8 [ptr]=_r0, 8;; \
82	st8 [ptr]=_r1, 8;; \
83	st8 [ptr]=_r2, 8;; \
84	st8 [ptr]=_r3, 8;; \
85	st8 [ptr]=_r4, 8;; \
86	st8 [ptr]=_r5, 8;; \
87	st8 [ptr]=_r6, 8;; \
88	st8 [ptr]=_r7, 8;;
89
90#define RESTORE_REGION_REGS(ptr, _idx1, _idx2, _tmp) \
91	mov		ar.lc=0x08-1;;						\
92	movl	_idx1=0x00;;						\
93RestRR:											\
94	dep.z	_idx2=_idx1,61,3;;					\
95	ld8		_tmp=[ptr],8;;						\
96	mov		rr[_idx2]=_tmp;;					\
97	srlz.d;;									\
98	add		_idx1=1,_idx1;;						\
99	br.cloop.sptk.few	RestRR
100
101#define SET_AREA_FOR_BOOTING_CPU(reg1, reg2) \
102	movl reg1=sal_state_for_booting_cpu;;	\
103	ld8 reg2=[reg1];;
104
105/*
106 * Adjust region registers saved before starting to save
107 * break regs and rest of the states that need to be preserved.
108 */
109#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(_reg1,_reg2,_pred)  \
110	SAVE_FROM_REG(b0,_reg1,_reg2);;						\
111	SAVE_FROM_REG(b1,_reg1,_reg2);;						\
112	SAVE_FROM_REG(b2,_reg1,_reg2);;						\
113	SAVE_FROM_REG(b3,_reg1,_reg2);;						\
114	SAVE_FROM_REG(b4,_reg1,_reg2);;						\
115	SAVE_FROM_REG(b5,_reg1,_reg2);;						\
116	st8 [_reg1]=r1,0x08;;								\
117	st8 [_reg1]=r12,0x08;;								\
118	st8 [_reg1]=r13,0x08;;								\
119	SAVE_FROM_REG(ar.fpsr,_reg1,_reg2);;				\
120	SAVE_FROM_REG(ar.pfs,_reg1,_reg2);;					\
121	SAVE_FROM_REG(ar.rnat,_reg1,_reg2);;				\
122	SAVE_FROM_REG(ar.unat,_reg1,_reg2);;				\
123	SAVE_FROM_REG(ar.bspstore,_reg1,_reg2);;			\
124	SAVE_FROM_REG(cr.dcr,_reg1,_reg2);;					\
125	SAVE_FROM_REG(cr.iva,_reg1,_reg2);;					\
126	SAVE_FROM_REG(cr.pta,_reg1,_reg2);;					\
127	SAVE_FROM_REG(cr.itv,_reg1,_reg2);;					\
128	SAVE_FROM_REG(cr.pmv,_reg1,_reg2);;					\
129	SAVE_FROM_REG(cr.cmcv,_reg1,_reg2);;				\
130	SAVE_FROM_REG(cr.lrr0,_reg1,_reg2);;				\
131	SAVE_FROM_REG(cr.lrr1,_reg1,_reg2);;				\
132	st8 [_reg1]=r4,0x08;;								\
133	st8 [_reg1]=r5,0x08;;								\
134	st8 [_reg1]=r6,0x08;;								\
135	st8 [_reg1]=r7,0x08;;								\
136	st8 [_reg1]=_pred,0x08;;							\
137	SAVE_FROM_REG(ar.lc, _reg1, _reg2);;				\
138	stf.spill.nta [_reg1]=f2,16;;						\
139	stf.spill.nta [_reg1]=f3,16;;						\
140	stf.spill.nta [_reg1]=f4,16;;						\
141	stf.spill.nta [_reg1]=f5,16;;						\
142	stf.spill.nta [_reg1]=f16,16;;						\
143	stf.spill.nta [_reg1]=f17,16;;						\
144	stf.spill.nta [_reg1]=f18,16;;						\
145	stf.spill.nta [_reg1]=f19,16;;						\
146	stf.spill.nta [_reg1]=f20,16;;						\
147	stf.spill.nta [_reg1]=f21,16;;						\
148	stf.spill.nta [_reg1]=f22,16;;						\
149	stf.spill.nta [_reg1]=f23,16;;						\
150	stf.spill.nta [_reg1]=f24,16;;						\
151	stf.spill.nta [_reg1]=f25,16;;						\
152	stf.spill.nta [_reg1]=f26,16;;						\
153	stf.spill.nta [_reg1]=f27,16;;						\
154	stf.spill.nta [_reg1]=f28,16;;						\
155	stf.spill.nta [_reg1]=f29,16;;						\
156	stf.spill.nta [_reg1]=f30,16;;						\
157	stf.spill.nta [_reg1]=f31,16;;
158
159#else
160#define SET_AREA_FOR_BOOTING_CPU(a1, a2)
161#define SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(a1,a2, a3)
162#define SAVE_REGION_REGS(_tmp, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
163#define STORE_REGION_REGS(ptr, _r0, _r1, _r2, _r3, _r4, _r5, _r6, _r7)
164#endif
165
166#define SET_ONE_RR(num, pgsize, _tmp1, _tmp2, vhpt) \
167	movl _tmp1=(num << 61);;	\
168	mov _tmp2=((ia64_rid(IA64_REGION_ID_KERNEL, (num<<61)) << 8) | (pgsize << 2) | vhpt);; \
169	mov rr[_tmp1]=_tmp2
170
171	__PAGE_ALIGNED_DATA
172
173	.global empty_zero_page
174EXPORT_DATA_SYMBOL_GPL(empty_zero_page)
175empty_zero_page:
176	.skip PAGE_SIZE
177
178	.global swapper_pg_dir
179swapper_pg_dir:
180	.skip PAGE_SIZE
181
182	.rodata
183halt_msg:
184	stringz "Halting kernel\n"
185
186	__REF
187
188	.global start_ap
189
190	/*
191	 * Start the kernel.  When the bootloader passes control to _start(), r28
192	 * points to the address of the boot parameter area.  Execution reaches
193	 * here in physical mode.
194	 */
195GLOBAL_ENTRY(_start)
196start_ap:
197	.prologue
198	.save rp, r0		// terminate unwind chain with a NULL rp
199	.body
200
201	rsm psr.i | psr.ic
202	;;
203	srlz.i
204	;;
205 {
206	flushrs				// must be first insn in group
207	srlz.i
208 }
209	;;
210	/*
211	 * Save the region registers, predicate before they get clobbered
212	 */
213	SAVE_REGION_REGS(r2, r8,r9,r10,r11,r12,r13,r14,r15);
214	mov r25=pr;;
215
216	/*
217	 * Initialize kernel region registers:
218	 *	rr[0]: VHPT enabled, page size = PAGE_SHIFT
219	 *	rr[1]: VHPT enabled, page size = PAGE_SHIFT
220	 *	rr[2]: VHPT enabled, page size = PAGE_SHIFT
221	 *	rr[3]: VHPT enabled, page size = PAGE_SHIFT
222	 *	rr[4]: VHPT enabled, page size = PAGE_SHIFT
223	 *	rr[5]: VHPT enabled, page size = PAGE_SHIFT
224	 *	rr[6]: VHPT disabled, page size = IA64_GRANULE_SHIFT
225	 *	rr[7]: VHPT disabled, page size = IA64_GRANULE_SHIFT
226	 * We initialize all of them to prevent inadvertently assuming
227	 * something about the state of address translation early in boot.
228	 */
229	SET_ONE_RR(0, PAGE_SHIFT, r2, r16, 1);;
230	SET_ONE_RR(1, PAGE_SHIFT, r2, r16, 1);;
231	SET_ONE_RR(2, PAGE_SHIFT, r2, r16, 1);;
232	SET_ONE_RR(3, PAGE_SHIFT, r2, r16, 1);;
233	SET_ONE_RR(4, PAGE_SHIFT, r2, r16, 1);;
234	SET_ONE_RR(5, PAGE_SHIFT, r2, r16, 1);;
235	SET_ONE_RR(6, IA64_GRANULE_SHIFT, r2, r16, 0);;
236	SET_ONE_RR(7, IA64_GRANULE_SHIFT, r2, r16, 0);;
237	/*
238	 * Now pin mappings into the TLB for kernel text and data
239	 */
240	mov r18=KERNEL_TR_PAGE_SHIFT<<2
241	movl r17=KERNEL_START
242	;;
243	mov cr.itir=r18
244	mov cr.ifa=r17
245	mov r16=IA64_TR_KERNEL
246	mov r3=ip
247	movl r18=PAGE_KERNEL
248	;;
249	dep r2=0,r3,0,KERNEL_TR_PAGE_SHIFT
250	;;
251	or r18=r2,r18
252	;;
253	srlz.i
254	;;
255	itr.i itr[r16]=r18
256	;;
257	itr.d dtr[r16]=r18
258	;;
259	srlz.i
260
261	/*
262	 * Switch into virtual mode:
263	 */
264	movl r16=(IA64_PSR_IT|IA64_PSR_IC|IA64_PSR_DT|IA64_PSR_RT|IA64_PSR_DFH|IA64_PSR_BN \
265		  |IA64_PSR_DI)
266	;;
267	mov cr.ipsr=r16
268	movl r17=1f
269	;;
270	mov cr.iip=r17
271	mov cr.ifs=r0
272	;;
273	rfi
274	;;
2751:	// now we are in virtual mode
276
277	SET_AREA_FOR_BOOTING_CPU(r2, r16);
278
279	STORE_REGION_REGS(r16, r8,r9,r10,r11,r12,r13,r14,r15);
280	SAL_TO_OS_BOOT_HANDOFF_STATE_SAVE(r16,r17,r25)
281	;;
282
283	// set IVT entry point---can't access I/O ports without it
284	movl r3=ia64_ivt
285	;;
286	mov cr.iva=r3
287	movl r2=FPSR_DEFAULT
288	;;
289	srlz.i
290	movl gp=__gp
291
292	mov ar.fpsr=r2
293	;;
294
295#define isAP	p2	// are we an Application Processor?
296#define isBP	p3	// are we the Bootstrap Processor?
297
298#ifdef CONFIG_SMP
299	/*
300	 * Find the init_task for the currently booting CPU.  At poweron, and in
301	 * UP mode, task_for_booting_cpu is NULL.
302	 */
303	movl r3=task_for_booting_cpu
304 	;;
305	ld8 r3=[r3]
306	movl r2=init_task
307	;;
308	cmp.eq isBP,isAP=r3,r0
309	;;
310(isAP)	mov r2=r3
311#else
312	movl r2=init_task
313	cmp.eq isBP,isAP=r0,r0
314#endif
315	;;
316	tpa r3=r2		// r3 == phys addr of task struct
317	mov r16=-1
318(isBP)	br.cond.dpnt .load_current // BP stack is on region 5 --- no need to map it
319
320	// load mapping for stack (virtaddr in r2, physaddr in r3)
321	rsm psr.ic
322	movl r17=PAGE_KERNEL
323	;;
324	srlz.d
325	dep r18=0,r3,0,12
326	;;
327	or r18=r17,r18
328	dep r2=-1,r3,61,3	// IMVA of task
329	;;
330	mov r17=rr[r2]
331	shr.u r16=r3,IA64_GRANULE_SHIFT
332	;;
333	dep r17=0,r17,8,24
334	;;
335	mov cr.itir=r17
336	mov cr.ifa=r2
337
338	mov r19=IA64_TR_CURRENT_STACK
339	;;
340	itr.d dtr[r19]=r18
341	;;
342	ssm psr.ic
343	srlz.d
344  	;;
345
346.load_current:
347	// load the "current" pointer (r13) and ar.k6 with the current task
348	mov IA64_KR(CURRENT)=r2		// virtual address
349	mov IA64_KR(CURRENT_STACK)=r16
350	mov r13=r2
351	/*
352	 * Reserve space at the top of the stack for "struct pt_regs".  Kernel
353	 * threads don't store interesting values in that structure, but the space
354	 * still needs to be there because time-critical stuff such as the context
355	 * switching can be implemented more efficiently (for example, __switch_to()
356	 * always sets the psr.dfh bit of the task it is switching to).
357	 */
358
359	addl r12=IA64_STK_OFFSET-IA64_PT_REGS_SIZE-16,r2
360	addl r2=IA64_RBS_OFFSET,r2	// initialize the RSE
361	mov ar.rsc=0		// place RSE in enforced lazy mode
362	;;
363	loadrs			// clear the dirty partition
364	movl r19=__phys_per_cpu_start
365	mov r18=PERCPU_PAGE_SIZE
366	;;
367#ifndef CONFIG_SMP
368	add r19=r19,r18
369	;;
370#else
371(isAP)	br.few 2f
372	movl r20=__cpu0_per_cpu
373	;;
374	shr.u r18=r18,3
3751:
376	ld8 r21=[r19],8;;
377	st8[r20]=r21,8
378	adds r18=-1,r18;;
379	cmp4.lt p7,p6=0,r18
380(p7)	br.cond.dptk.few 1b
381	mov r19=r20
382	;;
3832:
384#endif
385	tpa r19=r19
386	;;
387	.pred.rel.mutex isBP,isAP
388(isBP)	mov IA64_KR(PER_CPU_DATA)=r19	// per-CPU base for cpu0
389(isAP)	mov IA64_KR(PER_CPU_DATA)=r0	// clear physical per-CPU base
390	;;
391	mov ar.bspstore=r2	// establish the new RSE stack
392	;;
393	mov ar.rsc=0x3		// place RSE in eager mode
394
395(isBP)	dep r28=-1,r28,61,3	// make address virtual
396(isBP)	movl r2=ia64_boot_param
397	;;
398(isBP)	st8 [r2]=r28		// save the address of the boot param area passed by the bootloader
399
400#ifdef CONFIG_SMP
401(isAP)	br.call.sptk.many rp=start_secondary
402.ret0:
403(isAP)	br.cond.sptk self
404#endif
405
406	// This is executed by the bootstrap processor (bsp) only:
407
408#ifdef CONFIG_IA64_FW_EMU
409	// initialize PAL & SAL emulator:
410	br.call.sptk.many rp=sys_fw_init
411.ret1:
412#endif
413	br.call.sptk.many rp=start_kernel
414.ret2:	addl r3=@ltoff(halt_msg),gp
415	;;
416	alloc r2=ar.pfs,8,0,2,0
417	;;
418	ld8 out0=[r3]
419	br.call.sptk.many b0=console_print
420
421self:	hint @pause
422	br.sptk.many self		// endless loop
423END(_start)
424
425	.text
426
427GLOBAL_ENTRY(ia64_save_debug_regs)
428	alloc r16=ar.pfs,1,0,0,0
429	mov r20=ar.lc			// preserve ar.lc
430	mov ar.lc=IA64_NUM_DBG_REGS-1
431	mov r18=0
432	add r19=IA64_NUM_DBG_REGS*8,in0
433	;;
4341:	mov r16=dbr[r18]
435#ifdef CONFIG_ITANIUM
436	;;
437	srlz.d
438#endif
439	mov r17=ibr[r18]
440	add r18=1,r18
441	;;
442	st8.nta [in0]=r16,8
443	st8.nta [r19]=r17,8
444	br.cloop.sptk.many 1b
445	;;
446	mov ar.lc=r20			// restore ar.lc
447	br.ret.sptk.many rp
448END(ia64_save_debug_regs)
449
450GLOBAL_ENTRY(ia64_load_debug_regs)
451	alloc r16=ar.pfs,1,0,0,0
452	lfetch.nta [in0]
453	mov r20=ar.lc			// preserve ar.lc
454	add r19=IA64_NUM_DBG_REGS*8,in0
455	mov ar.lc=IA64_NUM_DBG_REGS-1
456	mov r18=-1
457	;;
4581:	ld8.nta r16=[in0],8
459	ld8.nta r17=[r19],8
460	add r18=1,r18
461	;;
462	mov dbr[r18]=r16
463#ifdef CONFIG_ITANIUM
464	;;
465	srlz.d				// Errata 132 (NoFix status)
466#endif
467	mov ibr[r18]=r17
468	br.cloop.sptk.many 1b
469	;;
470	mov ar.lc=r20			// restore ar.lc
471	br.ret.sptk.many rp
472END(ia64_load_debug_regs)
473
474GLOBAL_ENTRY(__ia64_save_fpu)
475	alloc r2=ar.pfs,1,4,0,0
476	adds loc0=96*16-16,in0
477	adds loc1=96*16-16-128,in0
478	;;
479	stf.spill.nta [loc0]=f127,-256
480	stf.spill.nta [loc1]=f119,-256
481	;;
482	stf.spill.nta [loc0]=f111,-256
483	stf.spill.nta [loc1]=f103,-256
484	;;
485	stf.spill.nta [loc0]=f95,-256
486	stf.spill.nta [loc1]=f87,-256
487	;;
488	stf.spill.nta [loc0]=f79,-256
489	stf.spill.nta [loc1]=f71,-256
490	;;
491	stf.spill.nta [loc0]=f63,-256
492	stf.spill.nta [loc1]=f55,-256
493	adds loc2=96*16-32,in0
494	;;
495	stf.spill.nta [loc0]=f47,-256
496	stf.spill.nta [loc1]=f39,-256
497	adds loc3=96*16-32-128,in0
498	;;
499	stf.spill.nta [loc2]=f126,-256
500	stf.spill.nta [loc3]=f118,-256
501	;;
502	stf.spill.nta [loc2]=f110,-256
503	stf.spill.nta [loc3]=f102,-256
504	;;
505	stf.spill.nta [loc2]=f94,-256
506	stf.spill.nta [loc3]=f86,-256
507	;;
508	stf.spill.nta [loc2]=f78,-256
509	stf.spill.nta [loc3]=f70,-256
510	;;
511	stf.spill.nta [loc2]=f62,-256
512	stf.spill.nta [loc3]=f54,-256
513	adds loc0=96*16-48,in0
514	;;
515	stf.spill.nta [loc2]=f46,-256
516	stf.spill.nta [loc3]=f38,-256
517	adds loc1=96*16-48-128,in0
518	;;
519	stf.spill.nta [loc0]=f125,-256
520	stf.spill.nta [loc1]=f117,-256
521	;;
522	stf.spill.nta [loc0]=f109,-256
523	stf.spill.nta [loc1]=f101,-256
524	;;
525	stf.spill.nta [loc0]=f93,-256
526	stf.spill.nta [loc1]=f85,-256
527	;;
528	stf.spill.nta [loc0]=f77,-256
529	stf.spill.nta [loc1]=f69,-256
530	;;
531	stf.spill.nta [loc0]=f61,-256
532	stf.spill.nta [loc1]=f53,-256
533	adds loc2=96*16-64,in0
534	;;
535	stf.spill.nta [loc0]=f45,-256
536	stf.spill.nta [loc1]=f37,-256
537	adds loc3=96*16-64-128,in0
538	;;
539	stf.spill.nta [loc2]=f124,-256
540	stf.spill.nta [loc3]=f116,-256
541	;;
542	stf.spill.nta [loc2]=f108,-256
543	stf.spill.nta [loc3]=f100,-256
544	;;
545	stf.spill.nta [loc2]=f92,-256
546	stf.spill.nta [loc3]=f84,-256
547	;;
548	stf.spill.nta [loc2]=f76,-256
549	stf.spill.nta [loc3]=f68,-256
550	;;
551	stf.spill.nta [loc2]=f60,-256
552	stf.spill.nta [loc3]=f52,-256
553	adds loc0=96*16-80,in0
554	;;
555	stf.spill.nta [loc2]=f44,-256
556	stf.spill.nta [loc3]=f36,-256
557	adds loc1=96*16-80-128,in0
558	;;
559	stf.spill.nta [loc0]=f123,-256
560	stf.spill.nta [loc1]=f115,-256
561	;;
562	stf.spill.nta [loc0]=f107,-256
563	stf.spill.nta [loc1]=f99,-256
564	;;
565	stf.spill.nta [loc0]=f91,-256
566	stf.spill.nta [loc1]=f83,-256
567	;;
568	stf.spill.nta [loc0]=f75,-256
569	stf.spill.nta [loc1]=f67,-256
570	;;
571	stf.spill.nta [loc0]=f59,-256
572	stf.spill.nta [loc1]=f51,-256
573	adds loc2=96*16-96,in0
574	;;
575	stf.spill.nta [loc0]=f43,-256
576	stf.spill.nta [loc1]=f35,-256
577	adds loc3=96*16-96-128,in0
578	;;
579	stf.spill.nta [loc2]=f122,-256
580	stf.spill.nta [loc3]=f114,-256
581	;;
582	stf.spill.nta [loc2]=f106,-256
583	stf.spill.nta [loc3]=f98,-256
584	;;
585	stf.spill.nta [loc2]=f90,-256
586	stf.spill.nta [loc3]=f82,-256
587	;;
588	stf.spill.nta [loc2]=f74,-256
589	stf.spill.nta [loc3]=f66,-256
590	;;
591	stf.spill.nta [loc2]=f58,-256
592	stf.spill.nta [loc3]=f50,-256
593	adds loc0=96*16-112,in0
594	;;
595	stf.spill.nta [loc2]=f42,-256
596	stf.spill.nta [loc3]=f34,-256
597	adds loc1=96*16-112-128,in0
598	;;
599	stf.spill.nta [loc0]=f121,-256
600	stf.spill.nta [loc1]=f113,-256
601	;;
602	stf.spill.nta [loc0]=f105,-256
603	stf.spill.nta [loc1]=f97,-256
604	;;
605	stf.spill.nta [loc0]=f89,-256
606	stf.spill.nta [loc1]=f81,-256
607	;;
608	stf.spill.nta [loc0]=f73,-256
609	stf.spill.nta [loc1]=f65,-256
610	;;
611	stf.spill.nta [loc0]=f57,-256
612	stf.spill.nta [loc1]=f49,-256
613	adds loc2=96*16-128,in0
614	;;
615	stf.spill.nta [loc0]=f41,-256
616	stf.spill.nta [loc1]=f33,-256
617	adds loc3=96*16-128-128,in0
618	;;
619	stf.spill.nta [loc2]=f120,-256
620	stf.spill.nta [loc3]=f112,-256
621	;;
622	stf.spill.nta [loc2]=f104,-256
623	stf.spill.nta [loc3]=f96,-256
624	;;
625	stf.spill.nta [loc2]=f88,-256
626	stf.spill.nta [loc3]=f80,-256
627	;;
628	stf.spill.nta [loc2]=f72,-256
629	stf.spill.nta [loc3]=f64,-256
630	;;
631	stf.spill.nta [loc2]=f56,-256
632	stf.spill.nta [loc3]=f48,-256
633	;;
634	stf.spill.nta [loc2]=f40
635	stf.spill.nta [loc3]=f32
636	br.ret.sptk.many rp
637END(__ia64_save_fpu)
638
639GLOBAL_ENTRY(__ia64_load_fpu)
640	alloc r2=ar.pfs,1,2,0,0
641	adds r3=128,in0
642	adds r14=256,in0
643	adds r15=384,in0
644	mov loc0=512
645	mov loc1=-1024+16
646	;;
647	ldf.fill.nta f32=[in0],loc0
648	ldf.fill.nta f40=[ r3],loc0
649	ldf.fill.nta f48=[r14],loc0
650	ldf.fill.nta f56=[r15],loc0
651	;;
652	ldf.fill.nta f64=[in0],loc0
653	ldf.fill.nta f72=[ r3],loc0
654	ldf.fill.nta f80=[r14],loc0
655	ldf.fill.nta f88=[r15],loc0
656	;;
657	ldf.fill.nta f96=[in0],loc1
658	ldf.fill.nta f104=[ r3],loc1
659	ldf.fill.nta f112=[r14],loc1
660	ldf.fill.nta f120=[r15],loc1
661	;;
662	ldf.fill.nta f33=[in0],loc0
663	ldf.fill.nta f41=[ r3],loc0
664	ldf.fill.nta f49=[r14],loc0
665	ldf.fill.nta f57=[r15],loc0
666	;;
667	ldf.fill.nta f65=[in0],loc0
668	ldf.fill.nta f73=[ r3],loc0
669	ldf.fill.nta f81=[r14],loc0
670	ldf.fill.nta f89=[r15],loc0
671	;;
672	ldf.fill.nta f97=[in0],loc1
673	ldf.fill.nta f105=[ r3],loc1
674	ldf.fill.nta f113=[r14],loc1
675	ldf.fill.nta f121=[r15],loc1
676	;;
677	ldf.fill.nta f34=[in0],loc0
678	ldf.fill.nta f42=[ r3],loc0
679	ldf.fill.nta f50=[r14],loc0
680	ldf.fill.nta f58=[r15],loc0
681	;;
682	ldf.fill.nta f66=[in0],loc0
683	ldf.fill.nta f74=[ r3],loc0
684	ldf.fill.nta f82=[r14],loc0
685	ldf.fill.nta f90=[r15],loc0
686	;;
687	ldf.fill.nta f98=[in0],loc1
688	ldf.fill.nta f106=[ r3],loc1
689	ldf.fill.nta f114=[r14],loc1
690	ldf.fill.nta f122=[r15],loc1
691	;;
692	ldf.fill.nta f35=[in0],loc0
693	ldf.fill.nta f43=[ r3],loc0
694	ldf.fill.nta f51=[r14],loc0
695	ldf.fill.nta f59=[r15],loc0
696	;;
697	ldf.fill.nta f67=[in0],loc0
698	ldf.fill.nta f75=[ r3],loc0
699	ldf.fill.nta f83=[r14],loc0
700	ldf.fill.nta f91=[r15],loc0
701	;;
702	ldf.fill.nta f99=[in0],loc1
703	ldf.fill.nta f107=[ r3],loc1
704	ldf.fill.nta f115=[r14],loc1
705	ldf.fill.nta f123=[r15],loc1
706	;;
707	ldf.fill.nta f36=[in0],loc0
708	ldf.fill.nta f44=[ r3],loc0
709	ldf.fill.nta f52=[r14],loc0
710	ldf.fill.nta f60=[r15],loc0
711	;;
712	ldf.fill.nta f68=[in0],loc0
713	ldf.fill.nta f76=[ r3],loc0
714	ldf.fill.nta f84=[r14],loc0
715	ldf.fill.nta f92=[r15],loc0
716	;;
717	ldf.fill.nta f100=[in0],loc1
718	ldf.fill.nta f108=[ r3],loc1
719	ldf.fill.nta f116=[r14],loc1
720	ldf.fill.nta f124=[r15],loc1
721	;;
722	ldf.fill.nta f37=[in0],loc0
723	ldf.fill.nta f45=[ r3],loc0
724	ldf.fill.nta f53=[r14],loc0
725	ldf.fill.nta f61=[r15],loc0
726	;;
727	ldf.fill.nta f69=[in0],loc0
728	ldf.fill.nta f77=[ r3],loc0
729	ldf.fill.nta f85=[r14],loc0
730	ldf.fill.nta f93=[r15],loc0
731	;;
732	ldf.fill.nta f101=[in0],loc1
733	ldf.fill.nta f109=[ r3],loc1
734	ldf.fill.nta f117=[r14],loc1
735	ldf.fill.nta f125=[r15],loc1
736	;;
737	ldf.fill.nta f38 =[in0],loc0
738	ldf.fill.nta f46 =[ r3],loc0
739	ldf.fill.nta f54 =[r14],loc0
740	ldf.fill.nta f62 =[r15],loc0
741	;;
742	ldf.fill.nta f70 =[in0],loc0
743	ldf.fill.nta f78 =[ r3],loc0
744	ldf.fill.nta f86 =[r14],loc0
745	ldf.fill.nta f94 =[r15],loc0
746	;;
747	ldf.fill.nta f102=[in0],loc1
748	ldf.fill.nta f110=[ r3],loc1
749	ldf.fill.nta f118=[r14],loc1
750	ldf.fill.nta f126=[r15],loc1
751	;;
752	ldf.fill.nta f39 =[in0],loc0
753	ldf.fill.nta f47 =[ r3],loc0
754	ldf.fill.nta f55 =[r14],loc0
755	ldf.fill.nta f63 =[r15],loc0
756	;;
757	ldf.fill.nta f71 =[in0],loc0
758	ldf.fill.nta f79 =[ r3],loc0
759	ldf.fill.nta f87 =[r14],loc0
760	ldf.fill.nta f95 =[r15],loc0
761	;;
762	ldf.fill.nta f103=[in0]
763	ldf.fill.nta f111=[ r3]
764	ldf.fill.nta f119=[r14]
765	ldf.fill.nta f127=[r15]
766	br.ret.sptk.many rp
767END(__ia64_load_fpu)
768
769GLOBAL_ENTRY(__ia64_init_fpu)
770	stf.spill [sp]=f0		// M3
771	mov	 f32=f0			// F
772	nop.b	 0
773
774	ldfps	 f33,f34=[sp]		// M0
775	ldfps	 f35,f36=[sp]		// M1
776	mov      f37=f0			// F
777	;;
778
779	setf.s	 f38=r0			// M2
780	setf.s	 f39=r0			// M3
781	mov      f40=f0			// F
782
783	ldfps	 f41,f42=[sp]		// M0
784	ldfps	 f43,f44=[sp]		// M1
785	mov      f45=f0			// F
786
787	setf.s	 f46=r0			// M2
788	setf.s	 f47=r0			// M3
789	mov      f48=f0			// F
790
791	ldfps	 f49,f50=[sp]		// M0
792	ldfps	 f51,f52=[sp]		// M1
793	mov      f53=f0			// F
794
795	setf.s	 f54=r0			// M2
796	setf.s	 f55=r0			// M3
797	mov      f56=f0			// F
798
799	ldfps	 f57,f58=[sp]		// M0
800	ldfps	 f59,f60=[sp]		// M1
801	mov      f61=f0			// F
802
803	setf.s	 f62=r0			// M2
804	setf.s	 f63=r0			// M3
805	mov      f64=f0			// F
806
807	ldfps	 f65,f66=[sp]		// M0
808	ldfps	 f67,f68=[sp]		// M1
809	mov      f69=f0			// F
810
811	setf.s	 f70=r0			// M2
812	setf.s	 f71=r0			// M3
813	mov      f72=f0			// F
814
815	ldfps	 f73,f74=[sp]		// M0
816	ldfps	 f75,f76=[sp]		// M1
817	mov      f77=f0			// F
818
819	setf.s	 f78=r0			// M2
820	setf.s	 f79=r0			// M3
821	mov      f80=f0			// F
822
823	ldfps	 f81,f82=[sp]		// M0
824	ldfps	 f83,f84=[sp]		// M1
825	mov      f85=f0			// F
826
827	setf.s	 f86=r0			// M2
828	setf.s	 f87=r0			// M3
829	mov      f88=f0			// F
830
831	/*
832	 * When the instructions are cached, it would be faster to initialize
833	 * the remaining registers with simply mov instructions (F-unit).
834	 * This gets the time down to ~29 cycles.  However, this would use up
835	 * 33 bundles, whereas continuing with the above pattern yields
836	 * 10 bundles and ~30 cycles.
837	 */
838
839	ldfps	 f89,f90=[sp]		// M0
840	ldfps	 f91,f92=[sp]		// M1
841	mov      f93=f0			// F
842
843	setf.s	 f94=r0			// M2
844	setf.s	 f95=r0			// M3
845	mov      f96=f0			// F
846
847	ldfps	 f97,f98=[sp]		// M0
848	ldfps	 f99,f100=[sp]		// M1
849	mov      f101=f0		// F
850
851	setf.s	 f102=r0		// M2
852	setf.s	 f103=r0		// M3
853	mov      f104=f0		// F
854
855	ldfps	 f105,f106=[sp]		// M0
856	ldfps	 f107,f108=[sp]		// M1
857	mov      f109=f0		// F
858
859	setf.s	 f110=r0		// M2
860	setf.s	 f111=r0		// M3
861	mov      f112=f0		// F
862
863	ldfps	 f113,f114=[sp]		// M0
864	ldfps	 f115,f116=[sp]		// M1
865	mov      f117=f0		// F
866
867	setf.s	 f118=r0		// M2
868	setf.s	 f119=r0		// M3
869	mov      f120=f0		// F
870
871	ldfps	 f121,f122=[sp]		// M0
872	ldfps	 f123,f124=[sp]		// M1
873	mov      f125=f0		// F
874
875	setf.s	 f126=r0		// M2
876	setf.s	 f127=r0		// M3
877	br.ret.sptk.many rp		// F
878END(__ia64_init_fpu)
879
880/*
881 * Switch execution mode from virtual to physical
882 *
883 * Inputs:
884 *	r16 = new psr to establish
885 * Output:
886 *	r19 = old virtual address of ar.bsp
887 *	r20 = old virtual address of sp
888 *
889 * Note: RSE must already be in enforced lazy mode
890 */
891GLOBAL_ENTRY(ia64_switch_mode_phys)
892 {
893	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
894	mov r15=ip
895 }
896	;;
897 {
898	flushrs				// must be first insn in group
899	srlz.i
900 }
901	;;
902	mov cr.ipsr=r16			// set new PSR
903	add r3=1f-ia64_switch_mode_phys,r15
904
905	mov r19=ar.bsp
906	mov r20=sp
907	mov r14=rp			// get return address into a general register
908	;;
909
910	// going to physical mode, use tpa to translate virt->phys
911	tpa r17=r19
912	tpa r3=r3
913	tpa sp=sp
914	tpa r14=r14
915	;;
916
917	mov r18=ar.rnat			// save ar.rnat
918	mov ar.bspstore=r17		// this steps on ar.rnat
919	mov cr.iip=r3
920	mov cr.ifs=r0
921	;;
922	mov ar.rnat=r18			// restore ar.rnat
923	rfi				// must be last insn in group
924	;;
9251:	mov rp=r14
926	br.ret.sptk.many rp
927END(ia64_switch_mode_phys)
928
929/*
930 * Switch execution mode from physical to virtual
931 *
932 * Inputs:
933 *	r16 = new psr to establish
934 *	r19 = new bspstore to establish
935 *	r20 = new sp to establish
936 *
937 * Note: RSE must already be in enforced lazy mode
938 */
939GLOBAL_ENTRY(ia64_switch_mode_virt)
940 {
941	rsm psr.i | psr.ic		// disable interrupts and interrupt collection
942	mov r15=ip
943 }
944	;;
945 {
946	flushrs				// must be first insn in group
947	srlz.i
948 }
949	;;
950	mov cr.ipsr=r16			// set new PSR
951	add r3=1f-ia64_switch_mode_virt,r15
952
953	mov r14=rp			// get return address into a general register
954	;;
955
956	// going to virtual
957	//   - for code addresses, set upper bits of addr to KERNEL_START
958	//   - for stack addresses, copy from input argument
959	movl r18=KERNEL_START
960	dep r3=0,r3,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
961	dep r14=0,r14,KERNEL_TR_PAGE_SHIFT,64-KERNEL_TR_PAGE_SHIFT
962	mov sp=r20
963	;;
964	or r3=r3,r18
965	or r14=r14,r18
966	;;
967
968	mov r18=ar.rnat			// save ar.rnat
969	mov ar.bspstore=r19		// this steps on ar.rnat
970	mov cr.iip=r3
971	mov cr.ifs=r0
972	;;
973	mov ar.rnat=r18			// restore ar.rnat
974	rfi				// must be last insn in group
975	;;
9761:	mov rp=r14
977	br.ret.sptk.many rp
978END(ia64_switch_mode_virt)
979
980GLOBAL_ENTRY(ia64_delay_loop)
981	.prologue
982{	nop 0			// work around GAS unwind info generation bug...
983	.save ar.lc,r2
984	mov r2=ar.lc
985	.body
986	;;
987	mov ar.lc=r32
988}
989	;;
990	// force loop to be 32-byte aligned (GAS bug means we cannot use .align
991	// inside function body without corrupting unwind info).
992{	nop 0 }
9931:	br.cloop.sptk.few 1b
994	;;
995	mov ar.lc=r2
996	br.ret.sptk.many rp
997END(ia64_delay_loop)
998
999/*
1000 * Return a CPU-local timestamp in nano-seconds.  This timestamp is
1001 * NOT synchronized across CPUs its return value must never be
1002 * compared against the values returned on another CPU.  The usage in
1003 * kernel/sched/core.c ensures that.
1004 *
1005 * The return-value of sched_clock() is NOT supposed to wrap-around.
1006 * If it did, it would cause some scheduling hiccups (at the worst).
1007 * Fortunately, with a 64-bit cycle-counter ticking at 100GHz, even
1008 * that would happen only once every 5+ years.
1009 *
1010 * The code below basically calculates:
1011 *
1012 *   (ia64_get_itc() * local_cpu_data->nsec_per_cyc) >> IA64_NSEC_PER_CYC_SHIFT
1013 *
1014 * except that the multiplication and the shift are done with 128-bit
1015 * intermediate precision so that we can produce a full 64-bit result.
1016 */
1017GLOBAL_ENTRY(ia64_native_sched_clock)
1018	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1019	mov.m r9=ar.itc		// fetch cycle-counter				(35 cyc)
1020	;;
1021	ldf8 f8=[r8]
1022	;;
1023	setf.sig f9=r9		// certain to stall, so issue it _after_ ldf8...
1024	;;
1025	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1026	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1027	;;
1028	getf.sig r8=f10		//						(5 cyc)
1029	getf.sig r9=f11
1030	;;
1031	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1032	br.ret.sptk.many rp
1033END(ia64_native_sched_clock)
1034
1035#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1036GLOBAL_ENTRY(cycle_to_nsec)
1037	alloc r16=ar.pfs,1,0,0,0
1038	addl r8=THIS_CPU(ia64_cpu_info) + IA64_CPUINFO_NSEC_PER_CYC_OFFSET,r0
1039	;;
1040	ldf8 f8=[r8]
1041	;;
1042	setf.sig f9=r32
1043	;;
1044	xmpy.lu f10=f9,f8	// calculate low 64 bits of 128-bit product	(4 cyc)
1045	xmpy.hu f11=f9,f8	// calculate high 64 bits of 128-bit product
1046	;;
1047	getf.sig r8=f10		//						(5 cyc)
1048	getf.sig r9=f11
1049	;;
1050	shrp r8=r9,r8,IA64_NSEC_PER_CYC_SHIFT
1051	br.ret.sptk.many rp
1052END(cycle_to_nsec)
1053#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
1054
1055#ifdef CONFIG_IA64_BRL_EMU
1056
1057/*
1058 *  Assembly routines used by brl_emu.c to set preserved register state.
1059 */
1060
1061#define SET_REG(reg)				\
1062 GLOBAL_ENTRY(ia64_set_##reg);			\
1063	alloc r16=ar.pfs,1,0,0,0;		\
1064	mov reg=r32;				\
1065	;;					\
1066	br.ret.sptk.many rp;			\
1067 END(ia64_set_##reg)
1068
1069SET_REG(b1);
1070SET_REG(b2);
1071SET_REG(b3);
1072SET_REG(b4);
1073SET_REG(b5);
1074
1075#endif /* CONFIG_IA64_BRL_EMU */
1076
1077#ifdef CONFIG_SMP
1078
1079#ifdef CONFIG_HOTPLUG_CPU
1080GLOBAL_ENTRY(ia64_jump_to_sal)
1081	alloc r16=ar.pfs,1,0,0,0;;
1082	rsm psr.i  | psr.ic
1083{
1084	flushrs
1085	srlz.i
1086}
1087	tpa r25=in0
1088	movl r18=tlb_purge_done;;
1089	DATA_VA_TO_PA(r18);;
1090	mov b1=r18 	// Return location
1091	movl r18=ia64_do_tlb_purge;;
1092	DATA_VA_TO_PA(r18);;
1093	mov b2=r18 	// doing tlb_flush work
1094	mov ar.rsc=0  // Put RSE  in enforced lazy, LE mode
1095	movl r17=1f;;
1096	DATA_VA_TO_PA(r17);;
1097	mov cr.iip=r17
1098	movl r16=SAL_PSR_BITS_TO_SET;;
1099	mov cr.ipsr=r16
1100	mov cr.ifs=r0;;
1101	rfi;;			// note: this unmask MCA/INIT (psr.mc)
11021:
1103	/*
1104	 * Invalidate all TLB data/inst
1105	 */
1106	br.sptk.many b2;; // jump to tlb purge code
1107
1108tlb_purge_done:
1109	RESTORE_REGION_REGS(r25, r17,r18,r19);;
1110	RESTORE_REG(b0, r25, r17);;
1111	RESTORE_REG(b1, r25, r17);;
1112	RESTORE_REG(b2, r25, r17);;
1113	RESTORE_REG(b3, r25, r17);;
1114	RESTORE_REG(b4, r25, r17);;
1115	RESTORE_REG(b5, r25, r17);;
1116	ld8 r1=[r25],0x08;;
1117	ld8 r12=[r25],0x08;;
1118	ld8 r13=[r25],0x08;;
1119	RESTORE_REG(ar.fpsr, r25, r17);;
1120	RESTORE_REG(ar.pfs, r25, r17);;
1121	RESTORE_REG(ar.rnat, r25, r17);;
1122	RESTORE_REG(ar.unat, r25, r17);;
1123	RESTORE_REG(ar.bspstore, r25, r17);;
1124	RESTORE_REG(cr.dcr, r25, r17);;
1125	RESTORE_REG(cr.iva, r25, r17);;
1126	RESTORE_REG(cr.pta, r25, r17);;
1127	srlz.d;;	// required not to violate RAW dependency
1128	RESTORE_REG(cr.itv, r25, r17);;
1129	RESTORE_REG(cr.pmv, r25, r17);;
1130	RESTORE_REG(cr.cmcv, r25, r17);;
1131	RESTORE_REG(cr.lrr0, r25, r17);;
1132	RESTORE_REG(cr.lrr1, r25, r17);;
1133	ld8 r4=[r25],0x08;;
1134	ld8 r5=[r25],0x08;;
1135	ld8 r6=[r25],0x08;;
1136	ld8 r7=[r25],0x08;;
1137	ld8 r17=[r25],0x08;;
1138	mov pr=r17,-1;;
1139	RESTORE_REG(ar.lc, r25, r17);;
1140	/*
1141	 * Now Restore floating point regs
1142	 */
1143	ldf.fill.nta f2=[r25],16;;
1144	ldf.fill.nta f3=[r25],16;;
1145	ldf.fill.nta f4=[r25],16;;
1146	ldf.fill.nta f5=[r25],16;;
1147	ldf.fill.nta f16=[r25],16;;
1148	ldf.fill.nta f17=[r25],16;;
1149	ldf.fill.nta f18=[r25],16;;
1150	ldf.fill.nta f19=[r25],16;;
1151	ldf.fill.nta f20=[r25],16;;
1152	ldf.fill.nta f21=[r25],16;;
1153	ldf.fill.nta f22=[r25],16;;
1154	ldf.fill.nta f23=[r25],16;;
1155	ldf.fill.nta f24=[r25],16;;
1156	ldf.fill.nta f25=[r25],16;;
1157	ldf.fill.nta f26=[r25],16;;
1158	ldf.fill.nta f27=[r25],16;;
1159	ldf.fill.nta f28=[r25],16;;
1160	ldf.fill.nta f29=[r25],16;;
1161	ldf.fill.nta f30=[r25],16;;
1162	ldf.fill.nta f31=[r25],16;;
1163
1164	/*
1165	 * Now that we have done all the register restores
1166	 * we are now ready for the big DIVE to SAL Land
1167	 */
1168	ssm psr.ic;;
1169	srlz.d;;
1170	br.ret.sptk.many b0;;
1171END(ia64_jump_to_sal)
1172#endif /* CONFIG_HOTPLUG_CPU */
1173
1174#endif /* CONFIG_SMP */
1175