1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License version 2 as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program. If not, see <http://www.gnu.org/licenses/>.
13  */
14 
15 #include <linux/irqchip/arm-gic-v3.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/arm_vgic.h>
19 #include <asm/kvm_hyp.h>
20 #include <asm/kvm_mmu.h>
21 #include <asm/kvm_asm.h>
22 
23 #include "vgic.h"
24 
25 static bool group0_trap;
26 static bool group1_trap;
27 static bool common_trap;
28 static bool gicv4_enable;
29 
vgic_v3_set_underflow(struct kvm_vcpu * vcpu)30 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
31 {
32 	struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
33 
34 	cpuif->vgic_hcr |= ICH_HCR_UIE;
35 }
36 
lr_signals_eoi_mi(u64 lr_val)37 static bool lr_signals_eoi_mi(u64 lr_val)
38 {
39 	return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
40 	       !(lr_val & ICH_LR_HW);
41 }
42 
vgic_v3_fold_lr_state(struct kvm_vcpu * vcpu)43 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
44 {
45 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
46 	struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
47 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
48 	int lr;
49 
50 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
51 
52 	cpuif->vgic_hcr &= ~ICH_HCR_UIE;
53 
54 	for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
55 		u64 val = cpuif->vgic_lr[lr];
56 		u32 intid, cpuid;
57 		struct vgic_irq *irq;
58 		bool is_v2_sgi = false;
59 
60 		cpuid = val & GICH_LR_PHYSID_CPUID;
61 		cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
62 
63 		if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
64 			intid = val & ICH_LR_VIRTUAL_ID_MASK;
65 		} else {
66 			intid = val & GICH_LR_VIRTUALID;
67 			is_v2_sgi = vgic_irq_is_sgi(intid);
68 		}
69 
70 		/* Notify fds when the guest EOI'ed a level-triggered IRQ */
71 		if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
72 			kvm_notify_acked_irq(vcpu->kvm, 0,
73 					     intid - VGIC_NR_PRIVATE_IRQS);
74 
75 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
76 		if (!irq)	/* An LPI could have been unmapped. */
77 			continue;
78 
79 		spin_lock(&irq->irq_lock);
80 
81 		/* Always preserve the active bit */
82 		irq->active = !!(val & ICH_LR_ACTIVE_BIT);
83 
84 		if (irq->active && is_v2_sgi)
85 			irq->active_source = cpuid;
86 
87 		/* Edge is the only case where we preserve the pending bit */
88 		if (irq->config == VGIC_CONFIG_EDGE &&
89 		    (val & ICH_LR_PENDING_BIT)) {
90 			irq->pending_latch = true;
91 
92 			if (is_v2_sgi)
93 				irq->source |= (1 << cpuid);
94 		}
95 
96 		/*
97 		 * Clear soft pending state when level irqs have been acked.
98 		 */
99 		if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
100 			irq->pending_latch = false;
101 
102 		/*
103 		 * Level-triggered mapped IRQs are special because we only
104 		 * observe rising edges as input to the VGIC.
105 		 *
106 		 * If the guest never acked the interrupt we have to sample
107 		 * the physical line and set the line level, because the
108 		 * device state could have changed or we simply need to
109 		 * process the still pending interrupt later.
110 		 *
111 		 * If this causes us to lower the level, we have to also clear
112 		 * the physical active state, since we will otherwise never be
113 		 * told when the interrupt becomes asserted again.
114 		 */
115 		if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
116 			irq->line_level = vgic_get_phys_line_level(irq);
117 
118 			if (!irq->line_level)
119 				vgic_irq_set_phys_active(irq, false);
120 		}
121 
122 		spin_unlock(&irq->irq_lock);
123 		vgic_put_irq(vcpu->kvm, irq);
124 	}
125 
126 	vgic_cpu->used_lrs = 0;
127 }
128 
129 /* Requires the irq to be locked already */
vgic_v3_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)130 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
131 {
132 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
133 	u64 val = irq->intid;
134 	bool allow_pending = true, is_v2_sgi;
135 
136 	is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
137 		     model == KVM_DEV_TYPE_ARM_VGIC_V2);
138 
139 	if (irq->active) {
140 		val |= ICH_LR_ACTIVE_BIT;
141 		if (is_v2_sgi)
142 			val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
143 		if (vgic_irq_is_multi_sgi(irq)) {
144 			allow_pending = false;
145 			val |= ICH_LR_EOI;
146 		}
147 	}
148 
149 	if (irq->hw) {
150 		val |= ICH_LR_HW;
151 		val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
152 		/*
153 		 * Never set pending+active on a HW interrupt, as the
154 		 * pending state is kept at the physical distributor
155 		 * level.
156 		 */
157 		if (irq->active)
158 			allow_pending = false;
159 	} else {
160 		if (irq->config == VGIC_CONFIG_LEVEL) {
161 			val |= ICH_LR_EOI;
162 
163 			/*
164 			 * Software resampling doesn't work very well
165 			 * if we allow P+A, so let's not do that.
166 			 */
167 			if (irq->active)
168 				allow_pending = false;
169 		}
170 	}
171 
172 	if (allow_pending && irq_is_pending(irq)) {
173 		val |= ICH_LR_PENDING_BIT;
174 
175 		if (irq->config == VGIC_CONFIG_EDGE)
176 			irq->pending_latch = false;
177 
178 		if (vgic_irq_is_sgi(irq->intid) &&
179 		    model == KVM_DEV_TYPE_ARM_VGIC_V2) {
180 			u32 src = ffs(irq->source);
181 
182 			BUG_ON(!src);
183 			val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
184 			irq->source &= ~(1 << (src - 1));
185 			if (irq->source) {
186 				irq->pending_latch = true;
187 				val |= ICH_LR_EOI;
188 			}
189 		}
190 	}
191 
192 	/*
193 	 * Level-triggered mapped IRQs are special because we only observe
194 	 * rising edges as input to the VGIC.  We therefore lower the line
195 	 * level here, so that we can take new virtual IRQs.  See
196 	 * vgic_v3_fold_lr_state for more info.
197 	 */
198 	if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
199 		irq->line_level = false;
200 
201 	if (irq->group)
202 		val |= ICH_LR_GROUP;
203 
204 	val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
205 
206 	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
207 }
208 
vgic_v3_clear_lr(struct kvm_vcpu * vcpu,int lr)209 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
210 {
211 	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
212 }
213 
vgic_v3_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)214 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
215 {
216 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
217 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
218 	u32 vmcr;
219 
220 	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
221 		vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
222 			ICH_VMCR_ACK_CTL_MASK;
223 		vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
224 			ICH_VMCR_FIQ_EN_MASK;
225 	} else {
226 		/*
227 		 * When emulating GICv3 on GICv3 with SRE=1 on the
228 		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
229 		 */
230 		vmcr = ICH_VMCR_FIQ_EN_MASK;
231 	}
232 
233 	vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
234 	vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
235 	vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
236 	vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
237 	vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
238 	vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
239 	vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
240 
241 	cpu_if->vgic_vmcr = vmcr;
242 }
243 
vgic_v3_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)244 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
245 {
246 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
247 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
248 	u32 vmcr;
249 
250 	vmcr = cpu_if->vgic_vmcr;
251 
252 	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
253 		vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
254 			ICH_VMCR_ACK_CTL_SHIFT;
255 		vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
256 			ICH_VMCR_FIQ_EN_SHIFT;
257 	} else {
258 		/*
259 		 * When emulating GICv3 on GICv3 with SRE=1 on the
260 		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
261 		 */
262 		vmcrp->fiqen = 1;
263 		vmcrp->ackctl = 0;
264 	}
265 
266 	vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
267 	vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
268 	vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
269 	vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
270 	vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
271 	vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
272 	vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
273 }
274 
275 #define INITIAL_PENDBASER_VALUE						  \
276 	(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)		| \
277 	GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)	| \
278 	GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
279 
vgic_v3_enable(struct kvm_vcpu * vcpu)280 void vgic_v3_enable(struct kvm_vcpu *vcpu)
281 {
282 	struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
283 
284 	/*
285 	 * By forcing VMCR to zero, the GIC will restore the binary
286 	 * points to their reset values. Anything else resets to zero
287 	 * anyway.
288 	 */
289 	vgic_v3->vgic_vmcr = 0;
290 
291 	/*
292 	 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
293 	 * way, so we force SRE to 1 to demonstrate this to the guest.
294 	 * Also, we don't support any form of IRQ/FIQ bypass.
295 	 * This goes with the spec allowing the value to be RAO/WI.
296 	 */
297 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
298 		vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
299 				     ICC_SRE_EL1_DFB |
300 				     ICC_SRE_EL1_SRE);
301 		vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
302 	} else {
303 		vgic_v3->vgic_sre = 0;
304 	}
305 
306 	vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
307 					   ICH_VTR_ID_BITS_MASK) >>
308 					   ICH_VTR_ID_BITS_SHIFT;
309 	vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
310 					    ICH_VTR_PRI_BITS_MASK) >>
311 					    ICH_VTR_PRI_BITS_SHIFT) + 1;
312 
313 	/* Get the show on the road... */
314 	vgic_v3->vgic_hcr = ICH_HCR_EN;
315 	if (group0_trap)
316 		vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
317 	if (group1_trap)
318 		vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
319 	if (common_trap)
320 		vgic_v3->vgic_hcr |= ICH_HCR_TC;
321 }
322 
vgic_v3_lpi_sync_pending_status(struct kvm * kvm,struct vgic_irq * irq)323 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
324 {
325 	struct kvm_vcpu *vcpu;
326 	int byte_offset, bit_nr;
327 	gpa_t pendbase, ptr;
328 	bool status;
329 	u8 val;
330 	int ret;
331 	unsigned long flags;
332 
333 retry:
334 	vcpu = irq->target_vcpu;
335 	if (!vcpu)
336 		return 0;
337 
338 	pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
339 
340 	byte_offset = irq->intid / BITS_PER_BYTE;
341 	bit_nr = irq->intid % BITS_PER_BYTE;
342 	ptr = pendbase + byte_offset;
343 
344 	ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
345 	if (ret)
346 		return ret;
347 
348 	status = val & (1 << bit_nr);
349 
350 	spin_lock_irqsave(&irq->irq_lock, flags);
351 	if (irq->target_vcpu != vcpu) {
352 		spin_unlock_irqrestore(&irq->irq_lock, flags);
353 		goto retry;
354 	}
355 	irq->pending_latch = status;
356 	vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
357 
358 	if (status) {
359 		/* clear consumed data */
360 		val &= ~(1 << bit_nr);
361 		ret = kvm_write_guest(kvm, ptr, &val, 1);
362 		if (ret)
363 			return ret;
364 	}
365 	return 0;
366 }
367 
368 /**
369  * vgic_its_save_pending_tables - Save the pending tables into guest RAM
370  * kvm lock and all vcpu lock must be held
371  */
vgic_v3_save_pending_tables(struct kvm * kvm)372 int vgic_v3_save_pending_tables(struct kvm *kvm)
373 {
374 	struct vgic_dist *dist = &kvm->arch.vgic;
375 	int last_byte_offset = -1;
376 	struct vgic_irq *irq;
377 	int ret;
378 	u8 val;
379 
380 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
381 		int byte_offset, bit_nr;
382 		struct kvm_vcpu *vcpu;
383 		gpa_t pendbase, ptr;
384 		bool stored;
385 
386 		vcpu = irq->target_vcpu;
387 		if (!vcpu)
388 			continue;
389 
390 		pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
391 
392 		byte_offset = irq->intid / BITS_PER_BYTE;
393 		bit_nr = irq->intid % BITS_PER_BYTE;
394 		ptr = pendbase + byte_offset;
395 
396 		if (byte_offset != last_byte_offset) {
397 			ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
398 			if (ret)
399 				return ret;
400 			last_byte_offset = byte_offset;
401 		}
402 
403 		stored = val & (1U << bit_nr);
404 		if (stored == irq->pending_latch)
405 			continue;
406 
407 		if (irq->pending_latch)
408 			val |= 1 << bit_nr;
409 		else
410 			val &= ~(1 << bit_nr);
411 
412 		ret = kvm_write_guest(kvm, ptr, &val, 1);
413 		if (ret)
414 			return ret;
415 	}
416 	return 0;
417 }
418 
419 /**
420  * vgic_v3_rdist_overlap - check if a region overlaps with any
421  * existing redistributor region
422  *
423  * @kvm: kvm handle
424  * @base: base of the region
425  * @size: size of region
426  *
427  * Return: true if there is an overlap
428  */
vgic_v3_rdist_overlap(struct kvm * kvm,gpa_t base,size_t size)429 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
430 {
431 	struct vgic_dist *d = &kvm->arch.vgic;
432 	struct vgic_redist_region *rdreg;
433 
434 	list_for_each_entry(rdreg, &d->rd_regions, list) {
435 		if ((base + size > rdreg->base) &&
436 			(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
437 			return true;
438 	}
439 	return false;
440 }
441 
442 /*
443  * Check for overlapping regions and for regions crossing the end of memory
444  * for base addresses which have already been set.
445  */
vgic_v3_check_base(struct kvm * kvm)446 bool vgic_v3_check_base(struct kvm *kvm)
447 {
448 	struct vgic_dist *d = &kvm->arch.vgic;
449 	struct vgic_redist_region *rdreg;
450 
451 	if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
452 	    d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
453 		return false;
454 
455 	list_for_each_entry(rdreg, &d->rd_regions, list) {
456 		if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
457 			rdreg->base)
458 			return false;
459 	}
460 
461 	if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
462 		return true;
463 
464 	return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
465 				      KVM_VGIC_V3_DIST_SIZE);
466 }
467 
468 /**
469  * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
470  * which has free space to put a new rdist region.
471  *
472  * @rd_regions: redistributor region list head
473  *
474  * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
475  * Stride between redistributors is 0 and regions are filled in the index order.
476  *
477  * Return: the redist region handle, if any, that has space to map a new rdist
478  * region.
479  */
vgic_v3_rdist_free_slot(struct list_head * rd_regions)480 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
481 {
482 	struct vgic_redist_region *rdreg;
483 
484 	list_for_each_entry(rdreg, rd_regions, list) {
485 		if (!vgic_v3_redist_region_full(rdreg))
486 			return rdreg;
487 	}
488 	return NULL;
489 }
490 
vgic_v3_rdist_region_from_index(struct kvm * kvm,u32 index)491 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
492 							   u32 index)
493 {
494 	struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
495 	struct vgic_redist_region *rdreg;
496 
497 	list_for_each_entry(rdreg, rd_regions, list) {
498 		if (rdreg->index == index)
499 			return rdreg;
500 	}
501 	return NULL;
502 }
503 
504 
vgic_v3_map_resources(struct kvm * kvm)505 int vgic_v3_map_resources(struct kvm *kvm)
506 {
507 	struct vgic_dist *dist = &kvm->arch.vgic;
508 	struct kvm_vcpu *vcpu;
509 	int ret = 0;
510 	int c;
511 
512 	if (vgic_ready(kvm))
513 		goto out;
514 
515 	kvm_for_each_vcpu(c, vcpu, kvm) {
516 		struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
517 
518 		if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
519 			kvm_debug("vcpu %d redistributor base not set\n", c);
520 			ret = -ENXIO;
521 			goto out;
522 		}
523 	}
524 
525 	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
526 		kvm_err("Need to set vgic distributor addresses first\n");
527 		ret = -ENXIO;
528 		goto out;
529 	}
530 
531 	if (!vgic_v3_check_base(kvm)) {
532 		kvm_err("VGIC redist and dist frames overlap\n");
533 		ret = -EINVAL;
534 		goto out;
535 	}
536 
537 	/*
538 	 * For a VGICv3 we require the userland to explicitly initialize
539 	 * the VGIC before we need to use it.
540 	 */
541 	if (!vgic_initialized(kvm)) {
542 		ret = -EBUSY;
543 		goto out;
544 	}
545 
546 	ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
547 	if (ret) {
548 		kvm_err("Unable to register VGICv3 dist MMIO regions\n");
549 		goto out;
550 	}
551 
552 	dist->ready = true;
553 
554 out:
555 	return ret;
556 }
557 
558 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
559 
early_group0_trap_cfg(char * buf)560 static int __init early_group0_trap_cfg(char *buf)
561 {
562 	return strtobool(buf, &group0_trap);
563 }
564 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
565 
early_group1_trap_cfg(char * buf)566 static int __init early_group1_trap_cfg(char *buf)
567 {
568 	return strtobool(buf, &group1_trap);
569 }
570 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
571 
early_common_trap_cfg(char * buf)572 static int __init early_common_trap_cfg(char *buf)
573 {
574 	return strtobool(buf, &common_trap);
575 }
576 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
577 
early_gicv4_enable(char * buf)578 static int __init early_gicv4_enable(char *buf)
579 {
580 	return strtobool(buf, &gicv4_enable);
581 }
582 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
583 
584 /**
585  * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
586  * @node:	pointer to the DT node
587  *
588  * Returns 0 if a GICv3 has been found, returns an error code otherwise
589  */
vgic_v3_probe(const struct gic_kvm_info * info)590 int vgic_v3_probe(const struct gic_kvm_info *info)
591 {
592 	u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
593 	int ret;
594 
595 	/*
596 	 * The ListRegs field is 5 bits, but there is a architectural
597 	 * maximum of 16 list registers. Just ignore bit 4...
598 	 */
599 	kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
600 	kvm_vgic_global_state.can_emulate_gicv2 = false;
601 	kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
602 
603 	/* GICv4 support? */
604 	if (info->has_v4) {
605 		kvm_vgic_global_state.has_gicv4 = gicv4_enable;
606 		kvm_info("GICv4 support %sabled\n",
607 			 gicv4_enable ? "en" : "dis");
608 	}
609 
610 	if (!info->vcpu.start) {
611 		kvm_info("GICv3: no GICV resource entry\n");
612 		kvm_vgic_global_state.vcpu_base = 0;
613 	} else if (!PAGE_ALIGNED(info->vcpu.start)) {
614 		pr_warn("GICV physical address 0x%llx not page aligned\n",
615 			(unsigned long long)info->vcpu.start);
616 		kvm_vgic_global_state.vcpu_base = 0;
617 	} else {
618 		kvm_vgic_global_state.vcpu_base = info->vcpu.start;
619 		kvm_vgic_global_state.can_emulate_gicv2 = true;
620 		ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
621 		if (ret) {
622 			kvm_err("Cannot register GICv2 KVM device.\n");
623 			return ret;
624 		}
625 		kvm_info("vgic-v2@%llx\n", info->vcpu.start);
626 	}
627 	ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
628 	if (ret) {
629 		kvm_err("Cannot register GICv3 KVM device.\n");
630 		kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
631 		return ret;
632 	}
633 
634 	if (kvm_vgic_global_state.vcpu_base == 0)
635 		kvm_info("disabling GICv2 emulation\n");
636 
637 #ifdef CONFIG_ARM64
638 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
639 		group0_trap = true;
640 		group1_trap = true;
641 	}
642 #endif
643 
644 	if (group0_trap || group1_trap || common_trap) {
645 		kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
646 			 group0_trap ? "G0" : "",
647 			 group1_trap ? "G1" : "",
648 			 common_trap ? "C"  : "");
649 		static_branch_enable(&vgic_v3_cpuif_trap);
650 	}
651 
652 	kvm_vgic_global_state.vctrl_base = NULL;
653 	kvm_vgic_global_state.type = VGIC_V3;
654 	kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
655 
656 	return 0;
657 }
658 
vgic_v3_load(struct kvm_vcpu * vcpu)659 void vgic_v3_load(struct kvm_vcpu *vcpu)
660 {
661 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
662 
663 	/*
664 	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
665 	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
666 	 * VMCR_EL2 save/restore in the world switch.
667 	 */
668 	if (likely(cpu_if->vgic_sre))
669 		kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
670 
671 	kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
672 
673 	if (has_vhe())
674 		__vgic_v3_activate_traps(vcpu);
675 }
676 
vgic_v3_put(struct kvm_vcpu * vcpu)677 void vgic_v3_put(struct kvm_vcpu *vcpu)
678 {
679 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
680 
681 	if (likely(cpu_if->vgic_sre))
682 		cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr);
683 
684 	kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
685 
686 	if (has_vhe())
687 		__vgic_v3_deactivate_traps(vcpu);
688 }
689