1 /*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License version 2 as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program. If not, see <http://www.gnu.org/licenses/>.
13 */
14
15 #include <linux/irqchip/arm-gic-v3.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/arm_vgic.h>
19 #include <asm/kvm_hyp.h>
20 #include <asm/kvm_mmu.h>
21 #include <asm/kvm_asm.h>
22
23 #include "vgic.h"
24
25 static bool group0_trap;
26 static bool group1_trap;
27 static bool common_trap;
28 static bool gicv4_enable;
29
vgic_v3_set_underflow(struct kvm_vcpu * vcpu)30 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
31 {
32 struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
33
34 cpuif->vgic_hcr |= ICH_HCR_UIE;
35 }
36
lr_signals_eoi_mi(u64 lr_val)37 static bool lr_signals_eoi_mi(u64 lr_val)
38 {
39 return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
40 !(lr_val & ICH_LR_HW);
41 }
42
vgic_v3_fold_lr_state(struct kvm_vcpu * vcpu)43 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
44 {
45 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
46 struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
47 u32 model = vcpu->kvm->arch.vgic.vgic_model;
48 int lr;
49
50 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
51
52 cpuif->vgic_hcr &= ~ICH_HCR_UIE;
53
54 for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
55 u64 val = cpuif->vgic_lr[lr];
56 u32 intid, cpuid;
57 struct vgic_irq *irq;
58 bool is_v2_sgi = false;
59
60 cpuid = val & GICH_LR_PHYSID_CPUID;
61 cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
62
63 if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
64 intid = val & ICH_LR_VIRTUAL_ID_MASK;
65 } else {
66 intid = val & GICH_LR_VIRTUALID;
67 is_v2_sgi = vgic_irq_is_sgi(intid);
68 }
69
70 /* Notify fds when the guest EOI'ed a level-triggered IRQ */
71 if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
72 kvm_notify_acked_irq(vcpu->kvm, 0,
73 intid - VGIC_NR_PRIVATE_IRQS);
74
75 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
76 if (!irq) /* An LPI could have been unmapped. */
77 continue;
78
79 spin_lock(&irq->irq_lock);
80
81 /* Always preserve the active bit */
82 irq->active = !!(val & ICH_LR_ACTIVE_BIT);
83
84 if (irq->active && is_v2_sgi)
85 irq->active_source = cpuid;
86
87 /* Edge is the only case where we preserve the pending bit */
88 if (irq->config == VGIC_CONFIG_EDGE &&
89 (val & ICH_LR_PENDING_BIT)) {
90 irq->pending_latch = true;
91
92 if (is_v2_sgi)
93 irq->source |= (1 << cpuid);
94 }
95
96 /*
97 * Clear soft pending state when level irqs have been acked.
98 */
99 if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
100 irq->pending_latch = false;
101
102 /*
103 * Level-triggered mapped IRQs are special because we only
104 * observe rising edges as input to the VGIC.
105 *
106 * If the guest never acked the interrupt we have to sample
107 * the physical line and set the line level, because the
108 * device state could have changed or we simply need to
109 * process the still pending interrupt later.
110 *
111 * If this causes us to lower the level, we have to also clear
112 * the physical active state, since we will otherwise never be
113 * told when the interrupt becomes asserted again.
114 */
115 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
116 irq->line_level = vgic_get_phys_line_level(irq);
117
118 if (!irq->line_level)
119 vgic_irq_set_phys_active(irq, false);
120 }
121
122 spin_unlock(&irq->irq_lock);
123 vgic_put_irq(vcpu->kvm, irq);
124 }
125
126 vgic_cpu->used_lrs = 0;
127 }
128
129 /* Requires the irq to be locked already */
vgic_v3_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)130 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
131 {
132 u32 model = vcpu->kvm->arch.vgic.vgic_model;
133 u64 val = irq->intid;
134 bool allow_pending = true, is_v2_sgi;
135
136 is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
137 model == KVM_DEV_TYPE_ARM_VGIC_V2);
138
139 if (irq->active) {
140 val |= ICH_LR_ACTIVE_BIT;
141 if (is_v2_sgi)
142 val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
143 if (vgic_irq_is_multi_sgi(irq)) {
144 allow_pending = false;
145 val |= ICH_LR_EOI;
146 }
147 }
148
149 if (irq->hw) {
150 val |= ICH_LR_HW;
151 val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
152 /*
153 * Never set pending+active on a HW interrupt, as the
154 * pending state is kept at the physical distributor
155 * level.
156 */
157 if (irq->active)
158 allow_pending = false;
159 } else {
160 if (irq->config == VGIC_CONFIG_LEVEL) {
161 val |= ICH_LR_EOI;
162
163 /*
164 * Software resampling doesn't work very well
165 * if we allow P+A, so let's not do that.
166 */
167 if (irq->active)
168 allow_pending = false;
169 }
170 }
171
172 if (allow_pending && irq_is_pending(irq)) {
173 val |= ICH_LR_PENDING_BIT;
174
175 if (irq->config == VGIC_CONFIG_EDGE)
176 irq->pending_latch = false;
177
178 if (vgic_irq_is_sgi(irq->intid) &&
179 model == KVM_DEV_TYPE_ARM_VGIC_V2) {
180 u32 src = ffs(irq->source);
181
182 BUG_ON(!src);
183 val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
184 irq->source &= ~(1 << (src - 1));
185 if (irq->source) {
186 irq->pending_latch = true;
187 val |= ICH_LR_EOI;
188 }
189 }
190 }
191
192 /*
193 * Level-triggered mapped IRQs are special because we only observe
194 * rising edges as input to the VGIC. We therefore lower the line
195 * level here, so that we can take new virtual IRQs. See
196 * vgic_v3_fold_lr_state for more info.
197 */
198 if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
199 irq->line_level = false;
200
201 if (irq->group)
202 val |= ICH_LR_GROUP;
203
204 val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
205
206 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
207 }
208
vgic_v3_clear_lr(struct kvm_vcpu * vcpu,int lr)209 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
210 {
211 vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
212 }
213
vgic_v3_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)214 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
215 {
216 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
217 u32 model = vcpu->kvm->arch.vgic.vgic_model;
218 u32 vmcr;
219
220 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
221 vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
222 ICH_VMCR_ACK_CTL_MASK;
223 vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
224 ICH_VMCR_FIQ_EN_MASK;
225 } else {
226 /*
227 * When emulating GICv3 on GICv3 with SRE=1 on the
228 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
229 */
230 vmcr = ICH_VMCR_FIQ_EN_MASK;
231 }
232
233 vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
234 vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
235 vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
236 vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
237 vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
238 vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
239 vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
240
241 cpu_if->vgic_vmcr = vmcr;
242 }
243
vgic_v3_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)244 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
245 {
246 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
247 u32 model = vcpu->kvm->arch.vgic.vgic_model;
248 u32 vmcr;
249
250 vmcr = cpu_if->vgic_vmcr;
251
252 if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
253 vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
254 ICH_VMCR_ACK_CTL_SHIFT;
255 vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
256 ICH_VMCR_FIQ_EN_SHIFT;
257 } else {
258 /*
259 * When emulating GICv3 on GICv3 with SRE=1 on the
260 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
261 */
262 vmcrp->fiqen = 1;
263 vmcrp->ackctl = 0;
264 }
265
266 vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
267 vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
268 vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
269 vmcrp->bpr = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
270 vmcrp->pmr = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
271 vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
272 vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
273 }
274
275 #define INITIAL_PENDBASER_VALUE \
276 (GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb) | \
277 GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner) | \
278 GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
279
vgic_v3_enable(struct kvm_vcpu * vcpu)280 void vgic_v3_enable(struct kvm_vcpu *vcpu)
281 {
282 struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
283
284 /*
285 * By forcing VMCR to zero, the GIC will restore the binary
286 * points to their reset values. Anything else resets to zero
287 * anyway.
288 */
289 vgic_v3->vgic_vmcr = 0;
290
291 /*
292 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
293 * way, so we force SRE to 1 to demonstrate this to the guest.
294 * Also, we don't support any form of IRQ/FIQ bypass.
295 * This goes with the spec allowing the value to be RAO/WI.
296 */
297 if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
298 vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
299 ICC_SRE_EL1_DFB |
300 ICC_SRE_EL1_SRE);
301 vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
302 } else {
303 vgic_v3->vgic_sre = 0;
304 }
305
306 vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
307 ICH_VTR_ID_BITS_MASK) >>
308 ICH_VTR_ID_BITS_SHIFT;
309 vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
310 ICH_VTR_PRI_BITS_MASK) >>
311 ICH_VTR_PRI_BITS_SHIFT) + 1;
312
313 /* Get the show on the road... */
314 vgic_v3->vgic_hcr = ICH_HCR_EN;
315 if (group0_trap)
316 vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
317 if (group1_trap)
318 vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
319 if (common_trap)
320 vgic_v3->vgic_hcr |= ICH_HCR_TC;
321 }
322
vgic_v3_lpi_sync_pending_status(struct kvm * kvm,struct vgic_irq * irq)323 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
324 {
325 struct kvm_vcpu *vcpu;
326 int byte_offset, bit_nr;
327 gpa_t pendbase, ptr;
328 bool status;
329 u8 val;
330 int ret;
331 unsigned long flags;
332
333 retry:
334 vcpu = irq->target_vcpu;
335 if (!vcpu)
336 return 0;
337
338 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
339
340 byte_offset = irq->intid / BITS_PER_BYTE;
341 bit_nr = irq->intid % BITS_PER_BYTE;
342 ptr = pendbase + byte_offset;
343
344 ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
345 if (ret)
346 return ret;
347
348 status = val & (1 << bit_nr);
349
350 spin_lock_irqsave(&irq->irq_lock, flags);
351 if (irq->target_vcpu != vcpu) {
352 spin_unlock_irqrestore(&irq->irq_lock, flags);
353 goto retry;
354 }
355 irq->pending_latch = status;
356 vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
357
358 if (status) {
359 /* clear consumed data */
360 val &= ~(1 << bit_nr);
361 ret = kvm_write_guest(kvm, ptr, &val, 1);
362 if (ret)
363 return ret;
364 }
365 return 0;
366 }
367
368 /**
369 * vgic_its_save_pending_tables - Save the pending tables into guest RAM
370 * kvm lock and all vcpu lock must be held
371 */
vgic_v3_save_pending_tables(struct kvm * kvm)372 int vgic_v3_save_pending_tables(struct kvm *kvm)
373 {
374 struct vgic_dist *dist = &kvm->arch.vgic;
375 int last_byte_offset = -1;
376 struct vgic_irq *irq;
377 int ret;
378 u8 val;
379
380 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
381 int byte_offset, bit_nr;
382 struct kvm_vcpu *vcpu;
383 gpa_t pendbase, ptr;
384 bool stored;
385
386 vcpu = irq->target_vcpu;
387 if (!vcpu)
388 continue;
389
390 pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
391
392 byte_offset = irq->intid / BITS_PER_BYTE;
393 bit_nr = irq->intid % BITS_PER_BYTE;
394 ptr = pendbase + byte_offset;
395
396 if (byte_offset != last_byte_offset) {
397 ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
398 if (ret)
399 return ret;
400 last_byte_offset = byte_offset;
401 }
402
403 stored = val & (1U << bit_nr);
404 if (stored == irq->pending_latch)
405 continue;
406
407 if (irq->pending_latch)
408 val |= 1 << bit_nr;
409 else
410 val &= ~(1 << bit_nr);
411
412 ret = kvm_write_guest(kvm, ptr, &val, 1);
413 if (ret)
414 return ret;
415 }
416 return 0;
417 }
418
419 /**
420 * vgic_v3_rdist_overlap - check if a region overlaps with any
421 * existing redistributor region
422 *
423 * @kvm: kvm handle
424 * @base: base of the region
425 * @size: size of region
426 *
427 * Return: true if there is an overlap
428 */
vgic_v3_rdist_overlap(struct kvm * kvm,gpa_t base,size_t size)429 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
430 {
431 struct vgic_dist *d = &kvm->arch.vgic;
432 struct vgic_redist_region *rdreg;
433
434 list_for_each_entry(rdreg, &d->rd_regions, list) {
435 if ((base + size > rdreg->base) &&
436 (base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
437 return true;
438 }
439 return false;
440 }
441
442 /*
443 * Check for overlapping regions and for regions crossing the end of memory
444 * for base addresses which have already been set.
445 */
vgic_v3_check_base(struct kvm * kvm)446 bool vgic_v3_check_base(struct kvm *kvm)
447 {
448 struct vgic_dist *d = &kvm->arch.vgic;
449 struct vgic_redist_region *rdreg;
450
451 if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
452 d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
453 return false;
454
455 list_for_each_entry(rdreg, &d->rd_regions, list) {
456 if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
457 rdreg->base)
458 return false;
459 }
460
461 if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
462 return true;
463
464 return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
465 KVM_VGIC_V3_DIST_SIZE);
466 }
467
468 /**
469 * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
470 * which has free space to put a new rdist region.
471 *
472 * @rd_regions: redistributor region list head
473 *
474 * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
475 * Stride between redistributors is 0 and regions are filled in the index order.
476 *
477 * Return: the redist region handle, if any, that has space to map a new rdist
478 * region.
479 */
vgic_v3_rdist_free_slot(struct list_head * rd_regions)480 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
481 {
482 struct vgic_redist_region *rdreg;
483
484 list_for_each_entry(rdreg, rd_regions, list) {
485 if (!vgic_v3_redist_region_full(rdreg))
486 return rdreg;
487 }
488 return NULL;
489 }
490
vgic_v3_rdist_region_from_index(struct kvm * kvm,u32 index)491 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
492 u32 index)
493 {
494 struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
495 struct vgic_redist_region *rdreg;
496
497 list_for_each_entry(rdreg, rd_regions, list) {
498 if (rdreg->index == index)
499 return rdreg;
500 }
501 return NULL;
502 }
503
504
vgic_v3_map_resources(struct kvm * kvm)505 int vgic_v3_map_resources(struct kvm *kvm)
506 {
507 struct vgic_dist *dist = &kvm->arch.vgic;
508 struct kvm_vcpu *vcpu;
509 int ret = 0;
510 int c;
511
512 if (vgic_ready(kvm))
513 goto out;
514
515 kvm_for_each_vcpu(c, vcpu, kvm) {
516 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
517
518 if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
519 kvm_debug("vcpu %d redistributor base not set\n", c);
520 ret = -ENXIO;
521 goto out;
522 }
523 }
524
525 if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
526 kvm_err("Need to set vgic distributor addresses first\n");
527 ret = -ENXIO;
528 goto out;
529 }
530
531 if (!vgic_v3_check_base(kvm)) {
532 kvm_err("VGIC redist and dist frames overlap\n");
533 ret = -EINVAL;
534 goto out;
535 }
536
537 /*
538 * For a VGICv3 we require the userland to explicitly initialize
539 * the VGIC before we need to use it.
540 */
541 if (!vgic_initialized(kvm)) {
542 ret = -EBUSY;
543 goto out;
544 }
545
546 ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
547 if (ret) {
548 kvm_err("Unable to register VGICv3 dist MMIO regions\n");
549 goto out;
550 }
551
552 dist->ready = true;
553
554 out:
555 return ret;
556 }
557
558 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
559
early_group0_trap_cfg(char * buf)560 static int __init early_group0_trap_cfg(char *buf)
561 {
562 return strtobool(buf, &group0_trap);
563 }
564 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
565
early_group1_trap_cfg(char * buf)566 static int __init early_group1_trap_cfg(char *buf)
567 {
568 return strtobool(buf, &group1_trap);
569 }
570 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
571
early_common_trap_cfg(char * buf)572 static int __init early_common_trap_cfg(char *buf)
573 {
574 return strtobool(buf, &common_trap);
575 }
576 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
577
early_gicv4_enable(char * buf)578 static int __init early_gicv4_enable(char *buf)
579 {
580 return strtobool(buf, &gicv4_enable);
581 }
582 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
583
584 /**
585 * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
586 * @node: pointer to the DT node
587 *
588 * Returns 0 if a GICv3 has been found, returns an error code otherwise
589 */
vgic_v3_probe(const struct gic_kvm_info * info)590 int vgic_v3_probe(const struct gic_kvm_info *info)
591 {
592 u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
593 int ret;
594
595 /*
596 * The ListRegs field is 5 bits, but there is a architectural
597 * maximum of 16 list registers. Just ignore bit 4...
598 */
599 kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
600 kvm_vgic_global_state.can_emulate_gicv2 = false;
601 kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
602
603 /* GICv4 support? */
604 if (info->has_v4) {
605 kvm_vgic_global_state.has_gicv4 = gicv4_enable;
606 kvm_info("GICv4 support %sabled\n",
607 gicv4_enable ? "en" : "dis");
608 }
609
610 if (!info->vcpu.start) {
611 kvm_info("GICv3: no GICV resource entry\n");
612 kvm_vgic_global_state.vcpu_base = 0;
613 } else if (!PAGE_ALIGNED(info->vcpu.start)) {
614 pr_warn("GICV physical address 0x%llx not page aligned\n",
615 (unsigned long long)info->vcpu.start);
616 kvm_vgic_global_state.vcpu_base = 0;
617 } else {
618 kvm_vgic_global_state.vcpu_base = info->vcpu.start;
619 kvm_vgic_global_state.can_emulate_gicv2 = true;
620 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
621 if (ret) {
622 kvm_err("Cannot register GICv2 KVM device.\n");
623 return ret;
624 }
625 kvm_info("vgic-v2@%llx\n", info->vcpu.start);
626 }
627 ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
628 if (ret) {
629 kvm_err("Cannot register GICv3 KVM device.\n");
630 kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
631 return ret;
632 }
633
634 if (kvm_vgic_global_state.vcpu_base == 0)
635 kvm_info("disabling GICv2 emulation\n");
636
637 #ifdef CONFIG_ARM64
638 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
639 group0_trap = true;
640 group1_trap = true;
641 }
642 #endif
643
644 if (group0_trap || group1_trap || common_trap) {
645 kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
646 group0_trap ? "G0" : "",
647 group1_trap ? "G1" : "",
648 common_trap ? "C" : "");
649 static_branch_enable(&vgic_v3_cpuif_trap);
650 }
651
652 kvm_vgic_global_state.vctrl_base = NULL;
653 kvm_vgic_global_state.type = VGIC_V3;
654 kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
655
656 return 0;
657 }
658
vgic_v3_load(struct kvm_vcpu * vcpu)659 void vgic_v3_load(struct kvm_vcpu *vcpu)
660 {
661 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
662
663 /*
664 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
665 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
666 * VMCR_EL2 save/restore in the world switch.
667 */
668 if (likely(cpu_if->vgic_sre))
669 kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
670
671 kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
672
673 if (has_vhe())
674 __vgic_v3_activate_traps(vcpu);
675 }
676
vgic_v3_put(struct kvm_vcpu * vcpu)677 void vgic_v3_put(struct kvm_vcpu *vcpu)
678 {
679 struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
680
681 if (likely(cpu_if->vgic_sre))
682 cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr);
683
684 kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
685
686 if (has_vhe())
687 __vgic_v3_deactivate_traps(vcpu);
688 }
689