1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
37
38 #define CREATE_TRACE_POINTS
39 #include "trace.h"
40
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
43 #include <asm/mman.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
47 #include <asm/virt.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
54
55 #ifdef REQUIRES_VIRT
56 __asm__(".arch_extension virt");
57 #endif
58
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
61
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
64
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static unsigned int kvm_vmid_bits __read_mostly;
69 static DEFINE_RWLOCK(kvm_vmid_lock);
70
71 static bool vgic_present;
72
73 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
74
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)75 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
76 {
77 __this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 }
79
80 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
81
82 /**
83 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
84 * Must be called from non-preemptible context
85 */
kvm_arm_get_running_vcpu(void)86 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
87 {
88 return __this_cpu_read(kvm_arm_running_vcpu);
89 }
90
91 /**
92 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
93 */
kvm_get_running_vcpus(void)94 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 {
96 return &kvm_arm_running_vcpu;
97 }
98
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)99 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
100 {
101 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
102 }
103
kvm_arch_hardware_setup(void)104 int kvm_arch_hardware_setup(void)
105 {
106 return 0;
107 }
108
kvm_arch_check_processor_compat(void * rtn)109 void kvm_arch_check_processor_compat(void *rtn)
110 {
111 *(int *)rtn = 0;
112 }
113
114
115 /**
116 * kvm_arch_init_vm - initializes a VM data structure
117 * @kvm: pointer to the KVM struct
118 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
120 {
121 int ret, cpu;
122
123 if (type)
124 return -EINVAL;
125
126 kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
127 if (!kvm->arch.last_vcpu_ran)
128 return -ENOMEM;
129
130 for_each_possible_cpu(cpu)
131 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
132
133 ret = kvm_alloc_stage2_pgd(kvm);
134 if (ret)
135 goto out_fail_alloc;
136
137 ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 if (ret)
139 goto out_free_stage2_pgd;
140
141 kvm_vgic_early_init(kvm);
142
143 /* Mark the initial VMID generation invalid */
144 kvm->arch.vmid_gen = 0;
145
146 /* The maximum number of VCPUs is limited by the host's GIC model */
147 kvm->arch.max_vcpus = vgic_present ?
148 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149
150 return ret;
151 out_free_stage2_pgd:
152 kvm_free_stage2_pgd(kvm);
153 out_fail_alloc:
154 free_percpu(kvm->arch.last_vcpu_ran);
155 kvm->arch.last_vcpu_ran = NULL;
156 return ret;
157 }
158
kvm_arch_has_vcpu_debugfs(void)159 bool kvm_arch_has_vcpu_debugfs(void)
160 {
161 return false;
162 }
163
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)164 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
165 {
166 return 0;
167 }
168
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)169 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 {
171 return VM_FAULT_SIGBUS;
172 }
173
174
175 /**
176 * kvm_arch_destroy_vm - destroy the VM data structure
177 * @kvm: pointer to the KVM struct
178 */
kvm_arch_destroy_vm(struct kvm * kvm)179 void kvm_arch_destroy_vm(struct kvm *kvm)
180 {
181 int i;
182
183 kvm_vgic_destroy(kvm);
184
185 free_percpu(kvm->arch.last_vcpu_ran);
186 kvm->arch.last_vcpu_ran = NULL;
187
188 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
189 if (kvm->vcpus[i]) {
190 kvm_arch_vcpu_free(kvm->vcpus[i]);
191 kvm->vcpus[i] = NULL;
192 }
193 }
194 atomic_set(&kvm->online_vcpus, 0);
195 }
196
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)197 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 {
199 int r;
200 switch (ext) {
201 case KVM_CAP_IRQCHIP:
202 r = vgic_present;
203 break;
204 case KVM_CAP_IOEVENTFD:
205 case KVM_CAP_DEVICE_CTRL:
206 case KVM_CAP_USER_MEMORY:
207 case KVM_CAP_SYNC_MMU:
208 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
209 case KVM_CAP_ONE_REG:
210 case KVM_CAP_ARM_PSCI:
211 case KVM_CAP_ARM_PSCI_0_2:
212 case KVM_CAP_READONLY_MEM:
213 case KVM_CAP_MP_STATE:
214 case KVM_CAP_IMMEDIATE_EXIT:
215 r = 1;
216 break;
217 case KVM_CAP_ARM_SET_DEVICE_ADDR:
218 r = 1;
219 break;
220 case KVM_CAP_NR_VCPUS:
221 r = num_online_cpus();
222 break;
223 case KVM_CAP_MAX_VCPUS:
224 r = KVM_MAX_VCPUS;
225 break;
226 case KVM_CAP_NR_MEMSLOTS:
227 r = KVM_USER_MEM_SLOTS;
228 break;
229 case KVM_CAP_MSI_DEVID:
230 if (!kvm)
231 r = -EINVAL;
232 else
233 r = kvm->arch.vgic.msis_require_devid;
234 break;
235 case KVM_CAP_ARM_USER_IRQ:
236 /*
237 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
238 * (bump this number if adding more devices)
239 */
240 r = 1;
241 break;
242 default:
243 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
244 break;
245 }
246 return r;
247 }
248
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)249 long kvm_arch_dev_ioctl(struct file *filp,
250 unsigned int ioctl, unsigned long arg)
251 {
252 return -EINVAL;
253 }
254
kvm_arch_alloc_vm(void)255 struct kvm *kvm_arch_alloc_vm(void)
256 {
257 if (!has_vhe())
258 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
259
260 return vzalloc(sizeof(struct kvm));
261 }
262
kvm_arch_free_vm(struct kvm * kvm)263 void kvm_arch_free_vm(struct kvm *kvm)
264 {
265 if (!has_vhe())
266 kfree(kvm);
267 else
268 vfree(kvm);
269 }
270
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)271 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
272 {
273 int err;
274 struct kvm_vcpu *vcpu;
275
276 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
277 err = -EBUSY;
278 goto out;
279 }
280
281 if (id >= kvm->arch.max_vcpus) {
282 err = -EINVAL;
283 goto out;
284 }
285
286 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
287 if (!vcpu) {
288 err = -ENOMEM;
289 goto out;
290 }
291
292 err = kvm_vcpu_init(vcpu, kvm, id);
293 if (err)
294 goto free_vcpu;
295
296 err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
297 if (err)
298 goto vcpu_uninit;
299
300 return vcpu;
301 vcpu_uninit:
302 kvm_vcpu_uninit(vcpu);
303 free_vcpu:
304 kmem_cache_free(kvm_vcpu_cache, vcpu);
305 out:
306 return ERR_PTR(err);
307 }
308
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)309 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
310 {
311 }
312
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)313 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
314 {
315 if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
316 static_branch_dec(&userspace_irqchip_in_use);
317
318 kvm_mmu_free_memory_caches(vcpu);
319 kvm_timer_vcpu_terminate(vcpu);
320 kvm_pmu_vcpu_destroy(vcpu);
321 kvm_vcpu_uninit(vcpu);
322 kmem_cache_free(kvm_vcpu_cache, vcpu);
323 }
324
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)325 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
326 {
327 kvm_arch_vcpu_free(vcpu);
328 }
329
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)330 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
331 {
332 return kvm_timer_is_pending(vcpu);
333 }
334
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)335 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
336 {
337 kvm_timer_schedule(vcpu);
338 kvm_vgic_v4_enable_doorbell(vcpu);
339 }
340
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)341 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
342 {
343 kvm_timer_unschedule(vcpu);
344 kvm_vgic_v4_disable_doorbell(vcpu);
345 }
346
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)347 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
348 {
349 /* Force users to call KVM_ARM_VCPU_INIT */
350 vcpu->arch.target = -1;
351 bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
352
353 /* Set up the timer */
354 kvm_timer_vcpu_init(vcpu);
355
356 kvm_arm_reset_debug_ptr(vcpu);
357
358 return kvm_vgic_vcpu_init(vcpu);
359 }
360
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)361 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
362 {
363 int *last_ran;
364
365 last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
366
367 /*
368 * We might get preempted before the vCPU actually runs, but
369 * over-invalidation doesn't affect correctness.
370 */
371 if (*last_ran != vcpu->vcpu_id) {
372 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
373 *last_ran = vcpu->vcpu_id;
374 }
375
376 vcpu->cpu = cpu;
377 vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
378
379 kvm_arm_set_running_vcpu(vcpu);
380 kvm_vgic_load(vcpu);
381 kvm_timer_vcpu_load(vcpu);
382 kvm_vcpu_load_sysregs(vcpu);
383 kvm_arch_vcpu_load_fp(vcpu);
384
385 if (single_task_running())
386 vcpu_clear_wfe_traps(vcpu);
387 else
388 vcpu_set_wfe_traps(vcpu);
389 }
390
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)391 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
392 {
393 kvm_arch_vcpu_put_fp(vcpu);
394 kvm_vcpu_put_sysregs(vcpu);
395 kvm_timer_vcpu_put(vcpu);
396 kvm_vgic_put(vcpu);
397
398 vcpu->cpu = -1;
399
400 kvm_arm_set_running_vcpu(NULL);
401 }
402
vcpu_power_off(struct kvm_vcpu * vcpu)403 static void vcpu_power_off(struct kvm_vcpu *vcpu)
404 {
405 vcpu->arch.power_off = true;
406 kvm_make_request(KVM_REQ_SLEEP, vcpu);
407 kvm_vcpu_kick(vcpu);
408 }
409
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)410 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
411 struct kvm_mp_state *mp_state)
412 {
413 if (vcpu->arch.power_off)
414 mp_state->mp_state = KVM_MP_STATE_STOPPED;
415 else
416 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
417
418 return 0;
419 }
420
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)421 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
422 struct kvm_mp_state *mp_state)
423 {
424 int ret = 0;
425
426 switch (mp_state->mp_state) {
427 case KVM_MP_STATE_RUNNABLE:
428 vcpu->arch.power_off = false;
429 break;
430 case KVM_MP_STATE_STOPPED:
431 vcpu_power_off(vcpu);
432 break;
433 default:
434 ret = -EINVAL;
435 }
436
437 return ret;
438 }
439
440 /**
441 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
442 * @v: The VCPU pointer
443 *
444 * If the guest CPU is not waiting for interrupts or an interrupt line is
445 * asserted, the CPU is by definition runnable.
446 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)447 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
448 {
449 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
450 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
451 && !v->arch.power_off && !v->arch.pause);
452 }
453
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)454 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
455 {
456 return vcpu_mode_priv(vcpu);
457 }
458
459 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)460 static void exit_vm_noop(void *info)
461 {
462 }
463
force_vm_exit(const cpumask_t * mask)464 void force_vm_exit(const cpumask_t *mask)
465 {
466 preempt_disable();
467 smp_call_function_many(mask, exit_vm_noop, NULL, true);
468 preempt_enable();
469 }
470
471 /**
472 * need_new_vmid_gen - check that the VMID is still valid
473 * @kvm: The VM's VMID to check
474 *
475 * return true if there is a new generation of VMIDs being used
476 *
477 * The hardware supports only 256 values with the value zero reserved for the
478 * host, so we check if an assigned value belongs to a previous generation,
479 * which which requires us to assign a new value. If we're the first to use a
480 * VMID for the new generation, we must flush necessary caches and TLBs on all
481 * CPUs.
482 */
need_new_vmid_gen(struct kvm * kvm)483 static bool need_new_vmid_gen(struct kvm *kvm)
484 {
485 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
486 }
487
488 /**
489 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
490 * @kvm The guest that we are about to run
491 *
492 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
493 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
494 * caches and TLBs.
495 */
update_vttbr(struct kvm * kvm)496 static void update_vttbr(struct kvm *kvm)
497 {
498 phys_addr_t pgd_phys;
499 u64 vmid;
500 bool new_gen;
501
502 read_lock(&kvm_vmid_lock);
503 new_gen = need_new_vmid_gen(kvm);
504 read_unlock(&kvm_vmid_lock);
505
506 if (!new_gen)
507 return;
508
509 write_lock(&kvm_vmid_lock);
510
511 /*
512 * We need to re-check the vmid_gen here to ensure that if another vcpu
513 * already allocated a valid vmid for this vm, then this vcpu should
514 * use the same vmid.
515 */
516 if (!need_new_vmid_gen(kvm)) {
517 write_unlock(&kvm_vmid_lock);
518 return;
519 }
520
521 /* First user of a new VMID generation? */
522 if (unlikely(kvm_next_vmid == 0)) {
523 atomic64_inc(&kvm_vmid_gen);
524 kvm_next_vmid = 1;
525
526 /*
527 * On SMP we know no other CPUs can use this CPU's or each
528 * other's VMID after force_vm_exit returns since the
529 * kvm_vmid_lock blocks them from reentry to the guest.
530 */
531 force_vm_exit(cpu_all_mask);
532 /*
533 * Now broadcast TLB + ICACHE invalidation over the inner
534 * shareable domain to make sure all data structures are
535 * clean.
536 */
537 kvm_call_hyp(__kvm_flush_vm_context);
538 }
539
540 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
541 kvm->arch.vmid = kvm_next_vmid;
542 kvm_next_vmid++;
543 kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
544
545 /* update vttbr to be used with the new vmid */
546 pgd_phys = virt_to_phys(kvm->arch.pgd);
547 BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
548 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
549 kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
550
551 write_unlock(&kvm_vmid_lock);
552 }
553
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)554 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
555 {
556 struct kvm *kvm = vcpu->kvm;
557 int ret = 0;
558
559 if (likely(vcpu->arch.has_run_once))
560 return 0;
561
562 vcpu->arch.has_run_once = true;
563
564 if (likely(irqchip_in_kernel(kvm))) {
565 /*
566 * Map the VGIC hardware resources before running a vcpu the
567 * first time on this VM.
568 */
569 if (unlikely(!vgic_ready(kvm))) {
570 ret = kvm_vgic_map_resources(kvm);
571 if (ret)
572 return ret;
573 }
574 } else {
575 /*
576 * Tell the rest of the code that there are userspace irqchip
577 * VMs in the wild.
578 */
579 static_branch_inc(&userspace_irqchip_in_use);
580 }
581
582 ret = kvm_timer_enable(vcpu);
583 if (ret)
584 return ret;
585
586 ret = kvm_arm_pmu_v3_enable(vcpu);
587
588 return ret;
589 }
590
kvm_arch_intc_initialized(struct kvm * kvm)591 bool kvm_arch_intc_initialized(struct kvm *kvm)
592 {
593 return vgic_initialized(kvm);
594 }
595
kvm_arm_halt_guest(struct kvm * kvm)596 void kvm_arm_halt_guest(struct kvm *kvm)
597 {
598 int i;
599 struct kvm_vcpu *vcpu;
600
601 kvm_for_each_vcpu(i, vcpu, kvm)
602 vcpu->arch.pause = true;
603 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
604 }
605
kvm_arm_resume_guest(struct kvm * kvm)606 void kvm_arm_resume_guest(struct kvm *kvm)
607 {
608 int i;
609 struct kvm_vcpu *vcpu;
610
611 kvm_for_each_vcpu(i, vcpu, kvm) {
612 vcpu->arch.pause = false;
613 swake_up_one(kvm_arch_vcpu_wq(vcpu));
614 }
615 }
616
vcpu_req_sleep(struct kvm_vcpu * vcpu)617 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
618 {
619 struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
620
621 swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
622 (!vcpu->arch.pause)));
623
624 if (vcpu->arch.power_off || vcpu->arch.pause) {
625 /* Awaken to handle a signal, request we sleep again later. */
626 kvm_make_request(KVM_REQ_SLEEP, vcpu);
627 }
628 }
629
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)630 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
631 {
632 return vcpu->arch.target >= 0;
633 }
634
check_vcpu_requests(struct kvm_vcpu * vcpu)635 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
636 {
637 if (kvm_request_pending(vcpu)) {
638 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
639 vcpu_req_sleep(vcpu);
640
641 /*
642 * Clear IRQ_PENDING requests that were made to guarantee
643 * that a VCPU sees new virtual interrupts.
644 */
645 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
646 }
647 }
648
649 /**
650 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
651 * @vcpu: The VCPU pointer
652 * @run: The kvm_run structure pointer used for userspace state exchange
653 *
654 * This function is called through the VCPU_RUN ioctl called from user space. It
655 * will execute VM code in a loop until the time slice for the process is used
656 * or some emulation is needed from user space in which case the function will
657 * return with return value 0 and with the kvm_run structure filled in with the
658 * required data for the requested emulation.
659 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)660 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
661 {
662 int ret;
663
664 if (unlikely(!kvm_vcpu_initialized(vcpu)))
665 return -ENOEXEC;
666
667 ret = kvm_vcpu_first_run_init(vcpu);
668 if (ret)
669 return ret;
670
671 if (run->exit_reason == KVM_EXIT_MMIO) {
672 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
673 if (ret)
674 return ret;
675 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
676 return 0;
677 }
678
679 if (run->immediate_exit)
680 return -EINTR;
681
682 vcpu_load(vcpu);
683
684 kvm_sigset_activate(vcpu);
685
686 ret = 1;
687 run->exit_reason = KVM_EXIT_UNKNOWN;
688 while (ret > 0) {
689 /*
690 * Check conditions before entering the guest
691 */
692 cond_resched();
693
694 update_vttbr(vcpu->kvm);
695
696 check_vcpu_requests(vcpu);
697
698 /*
699 * Preparing the interrupts to be injected also
700 * involves poking the GIC, which must be done in a
701 * non-preemptible context.
702 */
703 preempt_disable();
704
705 kvm_pmu_flush_hwstate(vcpu);
706
707 local_irq_disable();
708
709 kvm_vgic_flush_hwstate(vcpu);
710
711 /*
712 * Exit if we have a signal pending so that we can deliver the
713 * signal to user space.
714 */
715 if (signal_pending(current)) {
716 ret = -EINTR;
717 run->exit_reason = KVM_EXIT_INTR;
718 }
719
720 /*
721 * If we're using a userspace irqchip, then check if we need
722 * to tell a userspace irqchip about timer or PMU level
723 * changes and if so, exit to userspace (the actual level
724 * state gets updated in kvm_timer_update_run and
725 * kvm_pmu_update_run below).
726 */
727 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
728 if (kvm_timer_should_notify_user(vcpu) ||
729 kvm_pmu_should_notify_user(vcpu)) {
730 ret = -EINTR;
731 run->exit_reason = KVM_EXIT_INTR;
732 }
733 }
734
735 /*
736 * Ensure we set mode to IN_GUEST_MODE after we disable
737 * interrupts and before the final VCPU requests check.
738 * See the comment in kvm_vcpu_exiting_guest_mode() and
739 * Documentation/virtual/kvm/vcpu-requests.rst
740 */
741 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
742
743 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
744 kvm_request_pending(vcpu)) {
745 vcpu->mode = OUTSIDE_GUEST_MODE;
746 isb(); /* Ensure work in x_flush_hwstate is committed */
747 kvm_pmu_sync_hwstate(vcpu);
748 if (static_branch_unlikely(&userspace_irqchip_in_use))
749 kvm_timer_sync_hwstate(vcpu);
750 kvm_vgic_sync_hwstate(vcpu);
751 local_irq_enable();
752 preempt_enable();
753 continue;
754 }
755
756 kvm_arm_setup_debug(vcpu);
757
758 /**************************************************************
759 * Enter the guest
760 */
761 trace_kvm_entry(*vcpu_pc(vcpu));
762 guest_enter_irqoff();
763
764 if (has_vhe()) {
765 kvm_arm_vhe_guest_enter();
766 ret = kvm_vcpu_run_vhe(vcpu);
767 kvm_arm_vhe_guest_exit();
768 } else {
769 ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
770 }
771
772 vcpu->mode = OUTSIDE_GUEST_MODE;
773 vcpu->stat.exits++;
774 /*
775 * Back from guest
776 *************************************************************/
777
778 kvm_arm_clear_debug(vcpu);
779
780 /*
781 * We must sync the PMU state before the vgic state so
782 * that the vgic can properly sample the updated state of the
783 * interrupt line.
784 */
785 kvm_pmu_sync_hwstate(vcpu);
786
787 /*
788 * Sync the vgic state before syncing the timer state because
789 * the timer code needs to know if the virtual timer
790 * interrupts are active.
791 */
792 kvm_vgic_sync_hwstate(vcpu);
793
794 /*
795 * Sync the timer hardware state before enabling interrupts as
796 * we don't want vtimer interrupts to race with syncing the
797 * timer virtual interrupt state.
798 */
799 if (static_branch_unlikely(&userspace_irqchip_in_use))
800 kvm_timer_sync_hwstate(vcpu);
801
802 kvm_arch_vcpu_ctxsync_fp(vcpu);
803
804 /*
805 * We may have taken a host interrupt in HYP mode (ie
806 * while executing the guest). This interrupt is still
807 * pending, as we haven't serviced it yet!
808 *
809 * We're now back in SVC mode, with interrupts
810 * disabled. Enabling the interrupts now will have
811 * the effect of taking the interrupt again, in SVC
812 * mode this time.
813 */
814 local_irq_enable();
815
816 /*
817 * We do local_irq_enable() before calling guest_exit() so
818 * that if a timer interrupt hits while running the guest we
819 * account that tick as being spent in the guest. We enable
820 * preemption after calling guest_exit() so that if we get
821 * preempted we make sure ticks after that is not counted as
822 * guest time.
823 */
824 guest_exit();
825 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
826
827 /* Exit types that need handling before we can be preempted */
828 handle_exit_early(vcpu, run, ret);
829
830 preempt_enable();
831
832 ret = handle_exit(vcpu, run, ret);
833 }
834
835 /* Tell userspace about in-kernel device output levels */
836 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
837 kvm_timer_update_run(vcpu);
838 kvm_pmu_update_run(vcpu);
839 }
840
841 kvm_sigset_deactivate(vcpu);
842
843 vcpu_put(vcpu);
844 return ret;
845 }
846
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)847 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
848 {
849 int bit_index;
850 bool set;
851 unsigned long *hcr;
852
853 if (number == KVM_ARM_IRQ_CPU_IRQ)
854 bit_index = __ffs(HCR_VI);
855 else /* KVM_ARM_IRQ_CPU_FIQ */
856 bit_index = __ffs(HCR_VF);
857
858 hcr = vcpu_hcr(vcpu);
859 if (level)
860 set = test_and_set_bit(bit_index, hcr);
861 else
862 set = test_and_clear_bit(bit_index, hcr);
863
864 /*
865 * If we didn't change anything, no need to wake up or kick other CPUs
866 */
867 if (set == level)
868 return 0;
869
870 /*
871 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
872 * trigger a world-switch round on the running physical CPU to set the
873 * virtual IRQ/FIQ fields in the HCR appropriately.
874 */
875 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
876 kvm_vcpu_kick(vcpu);
877
878 return 0;
879 }
880
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)881 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
882 bool line_status)
883 {
884 u32 irq = irq_level->irq;
885 unsigned int irq_type, vcpu_idx, irq_num;
886 int nrcpus = atomic_read(&kvm->online_vcpus);
887 struct kvm_vcpu *vcpu = NULL;
888 bool level = irq_level->level;
889
890 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
891 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
892 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
893
894 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
895
896 switch (irq_type) {
897 case KVM_ARM_IRQ_TYPE_CPU:
898 if (irqchip_in_kernel(kvm))
899 return -ENXIO;
900
901 if (vcpu_idx >= nrcpus)
902 return -EINVAL;
903
904 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
905 if (!vcpu)
906 return -EINVAL;
907
908 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
909 return -EINVAL;
910
911 return vcpu_interrupt_line(vcpu, irq_num, level);
912 case KVM_ARM_IRQ_TYPE_PPI:
913 if (!irqchip_in_kernel(kvm))
914 return -ENXIO;
915
916 if (vcpu_idx >= nrcpus)
917 return -EINVAL;
918
919 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
920 if (!vcpu)
921 return -EINVAL;
922
923 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
924 return -EINVAL;
925
926 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
927 case KVM_ARM_IRQ_TYPE_SPI:
928 if (!irqchip_in_kernel(kvm))
929 return -ENXIO;
930
931 if (irq_num < VGIC_NR_PRIVATE_IRQS)
932 return -EINVAL;
933
934 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
935 }
936
937 return -EINVAL;
938 }
939
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)940 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
941 const struct kvm_vcpu_init *init)
942 {
943 unsigned int i;
944 int phys_target = kvm_target_cpu();
945
946 if (init->target != phys_target)
947 return -EINVAL;
948
949 /*
950 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
951 * use the same target.
952 */
953 if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
954 return -EINVAL;
955
956 /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
957 for (i = 0; i < sizeof(init->features) * 8; i++) {
958 bool set = (init->features[i / 32] & (1 << (i % 32)));
959
960 if (set && i >= KVM_VCPU_MAX_FEATURES)
961 return -ENOENT;
962
963 /*
964 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
965 * use the same feature set.
966 */
967 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
968 test_bit(i, vcpu->arch.features) != set)
969 return -EINVAL;
970
971 if (set)
972 set_bit(i, vcpu->arch.features);
973 }
974
975 vcpu->arch.target = phys_target;
976
977 /* Now we know what it is, we can reset it. */
978 return kvm_reset_vcpu(vcpu);
979 }
980
981
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)982 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
983 struct kvm_vcpu_init *init)
984 {
985 int ret;
986
987 ret = kvm_vcpu_set_target(vcpu, init);
988 if (ret)
989 return ret;
990
991 /*
992 * Ensure a rebooted VM will fault in RAM pages and detect if the
993 * guest MMU is turned off and flush the caches as needed.
994 */
995 if (vcpu->arch.has_run_once)
996 stage2_unmap_vm(vcpu->kvm);
997
998 vcpu_reset_hcr(vcpu);
999
1000 /*
1001 * Handle the "start in power-off" case.
1002 */
1003 if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1004 vcpu_power_off(vcpu);
1005 else
1006 vcpu->arch.power_off = false;
1007
1008 return 0;
1009 }
1010
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1011 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1012 struct kvm_device_attr *attr)
1013 {
1014 int ret = -ENXIO;
1015
1016 switch (attr->group) {
1017 default:
1018 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1019 break;
1020 }
1021
1022 return ret;
1023 }
1024
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1025 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1026 struct kvm_device_attr *attr)
1027 {
1028 int ret = -ENXIO;
1029
1030 switch (attr->group) {
1031 default:
1032 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1033 break;
1034 }
1035
1036 return ret;
1037 }
1038
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1039 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1040 struct kvm_device_attr *attr)
1041 {
1042 int ret = -ENXIO;
1043
1044 switch (attr->group) {
1045 default:
1046 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1047 break;
1048 }
1049
1050 return ret;
1051 }
1052
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1053 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1054 struct kvm_vcpu_events *events)
1055 {
1056 memset(events, 0, sizeof(*events));
1057
1058 return __kvm_arm_vcpu_get_events(vcpu, events);
1059 }
1060
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1061 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1062 struct kvm_vcpu_events *events)
1063 {
1064 int i;
1065
1066 /* check whether the reserved field is zero */
1067 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1068 if (events->reserved[i])
1069 return -EINVAL;
1070
1071 /* check whether the pad field is zero */
1072 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1073 if (events->exception.pad[i])
1074 return -EINVAL;
1075
1076 return __kvm_arm_vcpu_set_events(vcpu, events);
1077 }
1078
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1079 long kvm_arch_vcpu_ioctl(struct file *filp,
1080 unsigned int ioctl, unsigned long arg)
1081 {
1082 struct kvm_vcpu *vcpu = filp->private_data;
1083 void __user *argp = (void __user *)arg;
1084 struct kvm_device_attr attr;
1085 long r;
1086
1087 switch (ioctl) {
1088 case KVM_ARM_VCPU_INIT: {
1089 struct kvm_vcpu_init init;
1090
1091 r = -EFAULT;
1092 if (copy_from_user(&init, argp, sizeof(init)))
1093 break;
1094
1095 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1096 break;
1097 }
1098 case KVM_SET_ONE_REG:
1099 case KVM_GET_ONE_REG: {
1100 struct kvm_one_reg reg;
1101
1102 r = -ENOEXEC;
1103 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1104 break;
1105
1106 r = -EFAULT;
1107 if (copy_from_user(®, argp, sizeof(reg)))
1108 break;
1109
1110 if (ioctl == KVM_SET_ONE_REG)
1111 r = kvm_arm_set_reg(vcpu, ®);
1112 else
1113 r = kvm_arm_get_reg(vcpu, ®);
1114 break;
1115 }
1116 case KVM_GET_REG_LIST: {
1117 struct kvm_reg_list __user *user_list = argp;
1118 struct kvm_reg_list reg_list;
1119 unsigned n;
1120
1121 r = -ENOEXEC;
1122 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1123 break;
1124
1125 r = -EFAULT;
1126 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1127 break;
1128 n = reg_list.n;
1129 reg_list.n = kvm_arm_num_regs(vcpu);
1130 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1131 break;
1132 r = -E2BIG;
1133 if (n < reg_list.n)
1134 break;
1135 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1136 break;
1137 }
1138 case KVM_SET_DEVICE_ATTR: {
1139 r = -EFAULT;
1140 if (copy_from_user(&attr, argp, sizeof(attr)))
1141 break;
1142 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1143 break;
1144 }
1145 case KVM_GET_DEVICE_ATTR: {
1146 r = -EFAULT;
1147 if (copy_from_user(&attr, argp, sizeof(attr)))
1148 break;
1149 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1150 break;
1151 }
1152 case KVM_HAS_DEVICE_ATTR: {
1153 r = -EFAULT;
1154 if (copy_from_user(&attr, argp, sizeof(attr)))
1155 break;
1156 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1157 break;
1158 }
1159 case KVM_GET_VCPU_EVENTS: {
1160 struct kvm_vcpu_events events;
1161
1162 if (kvm_arm_vcpu_get_events(vcpu, &events))
1163 return -EINVAL;
1164
1165 if (copy_to_user(argp, &events, sizeof(events)))
1166 return -EFAULT;
1167
1168 return 0;
1169 }
1170 case KVM_SET_VCPU_EVENTS: {
1171 struct kvm_vcpu_events events;
1172
1173 if (copy_from_user(&events, argp, sizeof(events)))
1174 return -EFAULT;
1175
1176 return kvm_arm_vcpu_set_events(vcpu, &events);
1177 }
1178 default:
1179 r = -EINVAL;
1180 }
1181
1182 return r;
1183 }
1184
1185 /**
1186 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1187 * @kvm: kvm instance
1188 * @log: slot id and address to which we copy the log
1189 *
1190 * Steps 1-4 below provide general overview of dirty page logging. See
1191 * kvm_get_dirty_log_protect() function description for additional details.
1192 *
1193 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1194 * always flush the TLB (step 4) even if previous step failed and the dirty
1195 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1196 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1197 * writes will be marked dirty for next log read.
1198 *
1199 * 1. Take a snapshot of the bit and clear it if needed.
1200 * 2. Write protect the corresponding page.
1201 * 3. Copy the snapshot to the userspace.
1202 * 4. Flush TLB's if needed.
1203 */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1204 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1205 {
1206 bool is_dirty = false;
1207 int r;
1208
1209 mutex_lock(&kvm->slots_lock);
1210
1211 r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1212
1213 if (is_dirty)
1214 kvm_flush_remote_tlbs(kvm);
1215
1216 mutex_unlock(&kvm->slots_lock);
1217 return r;
1218 }
1219
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1220 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1221 struct kvm_arm_device_addr *dev_addr)
1222 {
1223 unsigned long dev_id, type;
1224
1225 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1226 KVM_ARM_DEVICE_ID_SHIFT;
1227 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1228 KVM_ARM_DEVICE_TYPE_SHIFT;
1229
1230 switch (dev_id) {
1231 case KVM_ARM_DEVICE_VGIC_V2:
1232 if (!vgic_present)
1233 return -ENXIO;
1234 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1235 default:
1236 return -ENODEV;
1237 }
1238 }
1239
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1240 long kvm_arch_vm_ioctl(struct file *filp,
1241 unsigned int ioctl, unsigned long arg)
1242 {
1243 struct kvm *kvm = filp->private_data;
1244 void __user *argp = (void __user *)arg;
1245
1246 switch (ioctl) {
1247 case KVM_CREATE_IRQCHIP: {
1248 int ret;
1249 if (!vgic_present)
1250 return -ENXIO;
1251 mutex_lock(&kvm->lock);
1252 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1253 mutex_unlock(&kvm->lock);
1254 return ret;
1255 }
1256 case KVM_ARM_SET_DEVICE_ADDR: {
1257 struct kvm_arm_device_addr dev_addr;
1258
1259 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1260 return -EFAULT;
1261 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1262 }
1263 case KVM_ARM_PREFERRED_TARGET: {
1264 int err;
1265 struct kvm_vcpu_init init;
1266
1267 err = kvm_vcpu_preferred_target(&init);
1268 if (err)
1269 return err;
1270
1271 if (copy_to_user(argp, &init, sizeof(init)))
1272 return -EFAULT;
1273
1274 return 0;
1275 }
1276 default:
1277 return -EINVAL;
1278 }
1279 }
1280
cpu_init_hyp_mode(void * dummy)1281 static void cpu_init_hyp_mode(void *dummy)
1282 {
1283 phys_addr_t pgd_ptr;
1284 unsigned long hyp_stack_ptr;
1285 unsigned long stack_page;
1286 unsigned long vector_ptr;
1287
1288 /* Switch from the HYP stub to our own HYP init vector */
1289 __hyp_set_vectors(kvm_get_idmap_vector());
1290
1291 pgd_ptr = kvm_mmu_get_httbr();
1292 stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1293 hyp_stack_ptr = stack_page + PAGE_SIZE;
1294 vector_ptr = (unsigned long)kvm_get_hyp_vector();
1295
1296 __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1297 __cpu_init_stage2();
1298
1299 kvm_arm_init_debug();
1300 }
1301
cpu_hyp_reset(void)1302 static void cpu_hyp_reset(void)
1303 {
1304 if (!is_kernel_in_hyp_mode())
1305 __hyp_reset_vectors();
1306 }
1307
cpu_hyp_reinit(void)1308 static void cpu_hyp_reinit(void)
1309 {
1310 cpu_hyp_reset();
1311
1312 if (is_kernel_in_hyp_mode()) {
1313 /*
1314 * __cpu_init_stage2() is safe to call even if the PM
1315 * event was cancelled before the CPU was reset.
1316 */
1317 __cpu_init_stage2();
1318 kvm_timer_init_vhe();
1319 } else {
1320 cpu_init_hyp_mode(NULL);
1321 }
1322
1323 if (vgic_present)
1324 kvm_vgic_init_cpu_hardware();
1325 }
1326
_kvm_arch_hardware_enable(void * discard)1327 static void _kvm_arch_hardware_enable(void *discard)
1328 {
1329 if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1330 cpu_hyp_reinit();
1331 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1332 }
1333 }
1334
kvm_arch_hardware_enable(void)1335 int kvm_arch_hardware_enable(void)
1336 {
1337 _kvm_arch_hardware_enable(NULL);
1338 return 0;
1339 }
1340
_kvm_arch_hardware_disable(void * discard)1341 static void _kvm_arch_hardware_disable(void *discard)
1342 {
1343 if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1344 cpu_hyp_reset();
1345 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1346 }
1347 }
1348
kvm_arch_hardware_disable(void)1349 void kvm_arch_hardware_disable(void)
1350 {
1351 _kvm_arch_hardware_disable(NULL);
1352 }
1353
1354 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1355 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1356 unsigned long cmd,
1357 void *v)
1358 {
1359 /*
1360 * kvm_arm_hardware_enabled is left with its old value over
1361 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1362 * re-enable hyp.
1363 */
1364 switch (cmd) {
1365 case CPU_PM_ENTER:
1366 if (__this_cpu_read(kvm_arm_hardware_enabled))
1367 /*
1368 * don't update kvm_arm_hardware_enabled here
1369 * so that the hardware will be re-enabled
1370 * when we resume. See below.
1371 */
1372 cpu_hyp_reset();
1373
1374 return NOTIFY_OK;
1375 case CPU_PM_ENTER_FAILED:
1376 case CPU_PM_EXIT:
1377 if (__this_cpu_read(kvm_arm_hardware_enabled))
1378 /* The hardware was enabled before suspend. */
1379 cpu_hyp_reinit();
1380
1381 return NOTIFY_OK;
1382
1383 default:
1384 return NOTIFY_DONE;
1385 }
1386 }
1387
1388 static struct notifier_block hyp_init_cpu_pm_nb = {
1389 .notifier_call = hyp_init_cpu_pm_notifier,
1390 };
1391
hyp_cpu_pm_init(void)1392 static void __init hyp_cpu_pm_init(void)
1393 {
1394 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1395 }
hyp_cpu_pm_exit(void)1396 static void __init hyp_cpu_pm_exit(void)
1397 {
1398 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1399 }
1400 #else
hyp_cpu_pm_init(void)1401 static inline void hyp_cpu_pm_init(void)
1402 {
1403 }
hyp_cpu_pm_exit(void)1404 static inline void hyp_cpu_pm_exit(void)
1405 {
1406 }
1407 #endif
1408
init_common_resources(void)1409 static int init_common_resources(void)
1410 {
1411 /* set size of VMID supported by CPU */
1412 kvm_vmid_bits = kvm_get_vmid_bits();
1413 kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1414
1415 return 0;
1416 }
1417
init_subsystems(void)1418 static int init_subsystems(void)
1419 {
1420 int err = 0;
1421
1422 /*
1423 * Enable hardware so that subsystem initialisation can access EL2.
1424 */
1425 on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1426
1427 /*
1428 * Register CPU lower-power notifier
1429 */
1430 hyp_cpu_pm_init();
1431
1432 /*
1433 * Init HYP view of VGIC
1434 */
1435 err = kvm_vgic_hyp_init();
1436 switch (err) {
1437 case 0:
1438 vgic_present = true;
1439 break;
1440 case -ENODEV:
1441 case -ENXIO:
1442 vgic_present = false;
1443 err = 0;
1444 break;
1445 default:
1446 goto out;
1447 }
1448
1449 /*
1450 * Init HYP architected timer support
1451 */
1452 err = kvm_timer_hyp_init(vgic_present);
1453 if (err)
1454 goto out;
1455
1456 kvm_perf_init();
1457 kvm_coproc_table_init();
1458
1459 out:
1460 on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1461
1462 return err;
1463 }
1464
teardown_hyp_mode(void)1465 static void teardown_hyp_mode(void)
1466 {
1467 int cpu;
1468
1469 free_hyp_pgds();
1470 for_each_possible_cpu(cpu)
1471 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1472 hyp_cpu_pm_exit();
1473 }
1474
1475 /**
1476 * Inits Hyp-mode on all online CPUs
1477 */
init_hyp_mode(void)1478 static int init_hyp_mode(void)
1479 {
1480 int cpu;
1481 int err = 0;
1482
1483 /*
1484 * Allocate Hyp PGD and setup Hyp identity mapping
1485 */
1486 err = kvm_mmu_init();
1487 if (err)
1488 goto out_err;
1489
1490 /*
1491 * Allocate stack pages for Hypervisor-mode
1492 */
1493 for_each_possible_cpu(cpu) {
1494 unsigned long stack_page;
1495
1496 stack_page = __get_free_page(GFP_KERNEL);
1497 if (!stack_page) {
1498 err = -ENOMEM;
1499 goto out_err;
1500 }
1501
1502 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1503 }
1504
1505 /*
1506 * Map the Hyp-code called directly from the host
1507 */
1508 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1509 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1510 if (err) {
1511 kvm_err("Cannot map world-switch code\n");
1512 goto out_err;
1513 }
1514
1515 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1516 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1517 if (err) {
1518 kvm_err("Cannot map rodata section\n");
1519 goto out_err;
1520 }
1521
1522 err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1523 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1524 if (err) {
1525 kvm_err("Cannot map bss section\n");
1526 goto out_err;
1527 }
1528
1529 err = kvm_map_vectors();
1530 if (err) {
1531 kvm_err("Cannot map vectors\n");
1532 goto out_err;
1533 }
1534
1535 /*
1536 * Map the Hyp stack pages
1537 */
1538 for_each_possible_cpu(cpu) {
1539 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1540 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1541 PAGE_HYP);
1542
1543 if (err) {
1544 kvm_err("Cannot map hyp stack\n");
1545 goto out_err;
1546 }
1547 }
1548
1549 for_each_possible_cpu(cpu) {
1550 kvm_cpu_context_t *cpu_ctxt;
1551
1552 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1553 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1554
1555 if (err) {
1556 kvm_err("Cannot map host CPU state: %d\n", err);
1557 goto out_err;
1558 }
1559 }
1560
1561 err = hyp_map_aux_data();
1562 if (err)
1563 kvm_err("Cannot map host auxilary data: %d\n", err);
1564
1565 return 0;
1566
1567 out_err:
1568 teardown_hyp_mode();
1569 kvm_err("error initializing Hyp mode: %d\n", err);
1570 return err;
1571 }
1572
check_kvm_target_cpu(void * ret)1573 static void check_kvm_target_cpu(void *ret)
1574 {
1575 *(int *)ret = kvm_target_cpu();
1576 }
1577
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1578 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1579 {
1580 struct kvm_vcpu *vcpu;
1581 int i;
1582
1583 mpidr &= MPIDR_HWID_BITMASK;
1584 kvm_for_each_vcpu(i, vcpu, kvm) {
1585 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1586 return vcpu;
1587 }
1588 return NULL;
1589 }
1590
kvm_arch_has_irq_bypass(void)1591 bool kvm_arch_has_irq_bypass(void)
1592 {
1593 return true;
1594 }
1595
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)1596 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1597 struct irq_bypass_producer *prod)
1598 {
1599 struct kvm_kernel_irqfd *irqfd =
1600 container_of(cons, struct kvm_kernel_irqfd, consumer);
1601
1602 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1603 &irqfd->irq_entry);
1604 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)1605 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1606 struct irq_bypass_producer *prod)
1607 {
1608 struct kvm_kernel_irqfd *irqfd =
1609 container_of(cons, struct kvm_kernel_irqfd, consumer);
1610
1611 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1612 &irqfd->irq_entry);
1613 }
1614
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)1615 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1616 {
1617 struct kvm_kernel_irqfd *irqfd =
1618 container_of(cons, struct kvm_kernel_irqfd, consumer);
1619
1620 kvm_arm_halt_guest(irqfd->kvm);
1621 }
1622
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)1623 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1624 {
1625 struct kvm_kernel_irqfd *irqfd =
1626 container_of(cons, struct kvm_kernel_irqfd, consumer);
1627
1628 kvm_arm_resume_guest(irqfd->kvm);
1629 }
1630
1631 /**
1632 * Initialize Hyp-mode and memory mappings on all CPUs.
1633 */
kvm_arch_init(void * opaque)1634 int kvm_arch_init(void *opaque)
1635 {
1636 int err;
1637 int ret, cpu;
1638 bool in_hyp_mode;
1639
1640 if (!is_hyp_mode_available()) {
1641 kvm_info("HYP mode not available\n");
1642 return -ENODEV;
1643 }
1644
1645 if (!kvm_arch_check_sve_has_vhe()) {
1646 kvm_pr_unimpl("SVE system without VHE unsupported. Broken cpu?");
1647 return -ENODEV;
1648 }
1649
1650 for_each_online_cpu(cpu) {
1651 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1652 if (ret < 0) {
1653 kvm_err("Error, CPU %d not supported!\n", cpu);
1654 return -ENODEV;
1655 }
1656 }
1657
1658 err = init_common_resources();
1659 if (err)
1660 return err;
1661
1662 in_hyp_mode = is_kernel_in_hyp_mode();
1663
1664 if (!in_hyp_mode) {
1665 err = init_hyp_mode();
1666 if (err)
1667 goto out_err;
1668 }
1669
1670 err = init_subsystems();
1671 if (err)
1672 goto out_hyp;
1673
1674 if (in_hyp_mode)
1675 kvm_info("VHE mode initialized successfully\n");
1676 else
1677 kvm_info("Hyp mode initialized successfully\n");
1678
1679 return 0;
1680
1681 out_hyp:
1682 if (!in_hyp_mode)
1683 teardown_hyp_mode();
1684 out_err:
1685 return err;
1686 }
1687
1688 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1689 void kvm_arch_exit(void)
1690 {
1691 kvm_perf_teardown();
1692 }
1693
arm_init(void)1694 static int arm_init(void)
1695 {
1696 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1697 return rc;
1698 }
1699
1700 module_init(arm_init);
1701