1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18 
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include "trace.h"
40 
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
43 #include <asm/mman.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
47 #include <asm/virt.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
54 
55 #ifdef REQUIRES_VIRT
56 __asm__(".arch_extension	virt");
57 #endif
58 
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
61 
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
64 
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static unsigned int kvm_vmid_bits __read_mostly;
69 static DEFINE_RWLOCK(kvm_vmid_lock);
70 
71 static bool vgic_present;
72 
73 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
74 
kvm_arm_set_running_vcpu(struct kvm_vcpu * vcpu)75 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
76 {
77 	__this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 }
79 
80 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
81 
82 /**
83  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
84  * Must be called from non-preemptible context
85  */
kvm_arm_get_running_vcpu(void)86 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
87 {
88 	return __this_cpu_read(kvm_arm_running_vcpu);
89 }
90 
91 /**
92  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
93  */
kvm_get_running_vcpus(void)94 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 {
96 	return &kvm_arm_running_vcpu;
97 }
98 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)99 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
100 {
101 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
102 }
103 
kvm_arch_hardware_setup(void)104 int kvm_arch_hardware_setup(void)
105 {
106 	return 0;
107 }
108 
kvm_arch_check_processor_compat(void * rtn)109 void kvm_arch_check_processor_compat(void *rtn)
110 {
111 	*(int *)rtn = 0;
112 }
113 
114 
115 /**
116  * kvm_arch_init_vm - initializes a VM data structure
117  * @kvm:	pointer to the KVM struct
118  */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
120 {
121 	int ret, cpu;
122 
123 	if (type)
124 		return -EINVAL;
125 
126 	kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
127 	if (!kvm->arch.last_vcpu_ran)
128 		return -ENOMEM;
129 
130 	for_each_possible_cpu(cpu)
131 		*per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
132 
133 	ret = kvm_alloc_stage2_pgd(kvm);
134 	if (ret)
135 		goto out_fail_alloc;
136 
137 	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138 	if (ret)
139 		goto out_free_stage2_pgd;
140 
141 	kvm_vgic_early_init(kvm);
142 
143 	/* Mark the initial VMID generation invalid */
144 	kvm->arch.vmid_gen = 0;
145 
146 	/* The maximum number of VCPUs is limited by the host's GIC model */
147 	kvm->arch.max_vcpus = vgic_present ?
148 				kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149 
150 	return ret;
151 out_free_stage2_pgd:
152 	kvm_free_stage2_pgd(kvm);
153 out_fail_alloc:
154 	free_percpu(kvm->arch.last_vcpu_ran);
155 	kvm->arch.last_vcpu_ran = NULL;
156 	return ret;
157 }
158 
kvm_arch_has_vcpu_debugfs(void)159 bool kvm_arch_has_vcpu_debugfs(void)
160 {
161 	return false;
162 }
163 
kvm_arch_create_vcpu_debugfs(struct kvm_vcpu * vcpu)164 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
165 {
166 	return 0;
167 }
168 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)169 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 {
171 	return VM_FAULT_SIGBUS;
172 }
173 
174 
175 /**
176  * kvm_arch_destroy_vm - destroy the VM data structure
177  * @kvm:	pointer to the KVM struct
178  */
kvm_arch_destroy_vm(struct kvm * kvm)179 void kvm_arch_destroy_vm(struct kvm *kvm)
180 {
181 	int i;
182 
183 	kvm_vgic_destroy(kvm);
184 
185 	free_percpu(kvm->arch.last_vcpu_ran);
186 	kvm->arch.last_vcpu_ran = NULL;
187 
188 	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
189 		if (kvm->vcpus[i]) {
190 			kvm_arch_vcpu_free(kvm->vcpus[i]);
191 			kvm->vcpus[i] = NULL;
192 		}
193 	}
194 	atomic_set(&kvm->online_vcpus, 0);
195 }
196 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)197 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 {
199 	int r;
200 	switch (ext) {
201 	case KVM_CAP_IRQCHIP:
202 		r = vgic_present;
203 		break;
204 	case KVM_CAP_IOEVENTFD:
205 	case KVM_CAP_DEVICE_CTRL:
206 	case KVM_CAP_USER_MEMORY:
207 	case KVM_CAP_SYNC_MMU:
208 	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
209 	case KVM_CAP_ONE_REG:
210 	case KVM_CAP_ARM_PSCI:
211 	case KVM_CAP_ARM_PSCI_0_2:
212 	case KVM_CAP_READONLY_MEM:
213 	case KVM_CAP_MP_STATE:
214 	case KVM_CAP_IMMEDIATE_EXIT:
215 		r = 1;
216 		break;
217 	case KVM_CAP_ARM_SET_DEVICE_ADDR:
218 		r = 1;
219 		break;
220 	case KVM_CAP_NR_VCPUS:
221 		r = num_online_cpus();
222 		break;
223 	case KVM_CAP_MAX_VCPUS:
224 		r = KVM_MAX_VCPUS;
225 		break;
226 	case KVM_CAP_NR_MEMSLOTS:
227 		r = KVM_USER_MEM_SLOTS;
228 		break;
229 	case KVM_CAP_MSI_DEVID:
230 		if (!kvm)
231 			r = -EINVAL;
232 		else
233 			r = kvm->arch.vgic.msis_require_devid;
234 		break;
235 	case KVM_CAP_ARM_USER_IRQ:
236 		/*
237 		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
238 		 * (bump this number if adding more devices)
239 		 */
240 		r = 1;
241 		break;
242 	default:
243 		r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
244 		break;
245 	}
246 	return r;
247 }
248 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)249 long kvm_arch_dev_ioctl(struct file *filp,
250 			unsigned int ioctl, unsigned long arg)
251 {
252 	return -EINVAL;
253 }
254 
kvm_arch_alloc_vm(void)255 struct kvm *kvm_arch_alloc_vm(void)
256 {
257 	if (!has_vhe())
258 		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
259 
260 	return vzalloc(sizeof(struct kvm));
261 }
262 
kvm_arch_free_vm(struct kvm * kvm)263 void kvm_arch_free_vm(struct kvm *kvm)
264 {
265 	if (!has_vhe())
266 		kfree(kvm);
267 	else
268 		vfree(kvm);
269 }
270 
kvm_arch_vcpu_create(struct kvm * kvm,unsigned int id)271 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
272 {
273 	int err;
274 	struct kvm_vcpu *vcpu;
275 
276 	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
277 		err = -EBUSY;
278 		goto out;
279 	}
280 
281 	if (id >= kvm->arch.max_vcpus) {
282 		err = -EINVAL;
283 		goto out;
284 	}
285 
286 	vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
287 	if (!vcpu) {
288 		err = -ENOMEM;
289 		goto out;
290 	}
291 
292 	err = kvm_vcpu_init(vcpu, kvm, id);
293 	if (err)
294 		goto free_vcpu;
295 
296 	err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
297 	if (err)
298 		goto vcpu_uninit;
299 
300 	return vcpu;
301 vcpu_uninit:
302 	kvm_vcpu_uninit(vcpu);
303 free_vcpu:
304 	kmem_cache_free(kvm_vcpu_cache, vcpu);
305 out:
306 	return ERR_PTR(err);
307 }
308 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)309 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
310 {
311 }
312 
kvm_arch_vcpu_free(struct kvm_vcpu * vcpu)313 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
314 {
315 	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
316 		static_branch_dec(&userspace_irqchip_in_use);
317 
318 	kvm_mmu_free_memory_caches(vcpu);
319 	kvm_timer_vcpu_terminate(vcpu);
320 	kvm_pmu_vcpu_destroy(vcpu);
321 	kvm_vcpu_uninit(vcpu);
322 	kmem_cache_free(kvm_vcpu_cache, vcpu);
323 }
324 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)325 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
326 {
327 	kvm_arch_vcpu_free(vcpu);
328 }
329 
kvm_cpu_has_pending_timer(struct kvm_vcpu * vcpu)330 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
331 {
332 	return kvm_timer_is_pending(vcpu);
333 }
334 
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)335 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
336 {
337 	kvm_timer_schedule(vcpu);
338 	kvm_vgic_v4_enable_doorbell(vcpu);
339 }
340 
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)341 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
342 {
343 	kvm_timer_unschedule(vcpu);
344 	kvm_vgic_v4_disable_doorbell(vcpu);
345 }
346 
kvm_arch_vcpu_init(struct kvm_vcpu * vcpu)347 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
348 {
349 	/* Force users to call KVM_ARM_VCPU_INIT */
350 	vcpu->arch.target = -1;
351 	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
352 
353 	/* Set up the timer */
354 	kvm_timer_vcpu_init(vcpu);
355 
356 	kvm_arm_reset_debug_ptr(vcpu);
357 
358 	return kvm_vgic_vcpu_init(vcpu);
359 }
360 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)361 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
362 {
363 	int *last_ran;
364 
365 	last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
366 
367 	/*
368 	 * We might get preempted before the vCPU actually runs, but
369 	 * over-invalidation doesn't affect correctness.
370 	 */
371 	if (*last_ran != vcpu->vcpu_id) {
372 		kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
373 		*last_ran = vcpu->vcpu_id;
374 	}
375 
376 	vcpu->cpu = cpu;
377 	vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
378 
379 	kvm_arm_set_running_vcpu(vcpu);
380 	kvm_vgic_load(vcpu);
381 	kvm_timer_vcpu_load(vcpu);
382 	kvm_vcpu_load_sysregs(vcpu);
383 	kvm_arch_vcpu_load_fp(vcpu);
384 
385 	if (single_task_running())
386 		vcpu_clear_wfe_traps(vcpu);
387 	else
388 		vcpu_set_wfe_traps(vcpu);
389 }
390 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)391 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
392 {
393 	kvm_arch_vcpu_put_fp(vcpu);
394 	kvm_vcpu_put_sysregs(vcpu);
395 	kvm_timer_vcpu_put(vcpu);
396 	kvm_vgic_put(vcpu);
397 
398 	vcpu->cpu = -1;
399 
400 	kvm_arm_set_running_vcpu(NULL);
401 }
402 
vcpu_power_off(struct kvm_vcpu * vcpu)403 static void vcpu_power_off(struct kvm_vcpu *vcpu)
404 {
405 	vcpu->arch.power_off = true;
406 	kvm_make_request(KVM_REQ_SLEEP, vcpu);
407 	kvm_vcpu_kick(vcpu);
408 }
409 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)410 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
411 				    struct kvm_mp_state *mp_state)
412 {
413 	if (vcpu->arch.power_off)
414 		mp_state->mp_state = KVM_MP_STATE_STOPPED;
415 	else
416 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
417 
418 	return 0;
419 }
420 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)421 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
422 				    struct kvm_mp_state *mp_state)
423 {
424 	int ret = 0;
425 
426 	switch (mp_state->mp_state) {
427 	case KVM_MP_STATE_RUNNABLE:
428 		vcpu->arch.power_off = false;
429 		break;
430 	case KVM_MP_STATE_STOPPED:
431 		vcpu_power_off(vcpu);
432 		break;
433 	default:
434 		ret = -EINVAL;
435 	}
436 
437 	return ret;
438 }
439 
440 /**
441  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
442  * @v:		The VCPU pointer
443  *
444  * If the guest CPU is not waiting for interrupts or an interrupt line is
445  * asserted, the CPU is by definition runnable.
446  */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)447 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
448 {
449 	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
450 	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
451 		&& !v->arch.power_off && !v->arch.pause);
452 }
453 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)454 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
455 {
456 	return vcpu_mode_priv(vcpu);
457 }
458 
459 /* Just ensure a guest exit from a particular CPU */
exit_vm_noop(void * info)460 static void exit_vm_noop(void *info)
461 {
462 }
463 
force_vm_exit(const cpumask_t * mask)464 void force_vm_exit(const cpumask_t *mask)
465 {
466 	preempt_disable();
467 	smp_call_function_many(mask, exit_vm_noop, NULL, true);
468 	preempt_enable();
469 }
470 
471 /**
472  * need_new_vmid_gen - check that the VMID is still valid
473  * @kvm: The VM's VMID to check
474  *
475  * return true if there is a new generation of VMIDs being used
476  *
477  * The hardware supports only 256 values with the value zero reserved for the
478  * host, so we check if an assigned value belongs to a previous generation,
479  * which which requires us to assign a new value. If we're the first to use a
480  * VMID for the new generation, we must flush necessary caches and TLBs on all
481  * CPUs.
482  */
need_new_vmid_gen(struct kvm * kvm)483 static bool need_new_vmid_gen(struct kvm *kvm)
484 {
485 	return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
486 }
487 
488 /**
489  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
490  * @kvm	The guest that we are about to run
491  *
492  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
493  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
494  * caches and TLBs.
495  */
update_vttbr(struct kvm * kvm)496 static void update_vttbr(struct kvm *kvm)
497 {
498 	phys_addr_t pgd_phys;
499 	u64 vmid;
500 	bool new_gen;
501 
502 	read_lock(&kvm_vmid_lock);
503 	new_gen = need_new_vmid_gen(kvm);
504 	read_unlock(&kvm_vmid_lock);
505 
506 	if (!new_gen)
507 		return;
508 
509 	write_lock(&kvm_vmid_lock);
510 
511 	/*
512 	 * We need to re-check the vmid_gen here to ensure that if another vcpu
513 	 * already allocated a valid vmid for this vm, then this vcpu should
514 	 * use the same vmid.
515 	 */
516 	if (!need_new_vmid_gen(kvm)) {
517 		write_unlock(&kvm_vmid_lock);
518 		return;
519 	}
520 
521 	/* First user of a new VMID generation? */
522 	if (unlikely(kvm_next_vmid == 0)) {
523 		atomic64_inc(&kvm_vmid_gen);
524 		kvm_next_vmid = 1;
525 
526 		/*
527 		 * On SMP we know no other CPUs can use this CPU's or each
528 		 * other's VMID after force_vm_exit returns since the
529 		 * kvm_vmid_lock blocks them from reentry to the guest.
530 		 */
531 		force_vm_exit(cpu_all_mask);
532 		/*
533 		 * Now broadcast TLB + ICACHE invalidation over the inner
534 		 * shareable domain to make sure all data structures are
535 		 * clean.
536 		 */
537 		kvm_call_hyp(__kvm_flush_vm_context);
538 	}
539 
540 	kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
541 	kvm->arch.vmid = kvm_next_vmid;
542 	kvm_next_vmid++;
543 	kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
544 
545 	/* update vttbr to be used with the new vmid */
546 	pgd_phys = virt_to_phys(kvm->arch.pgd);
547 	BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
548 	vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
549 	kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
550 
551 	write_unlock(&kvm_vmid_lock);
552 }
553 
kvm_vcpu_first_run_init(struct kvm_vcpu * vcpu)554 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
555 {
556 	struct kvm *kvm = vcpu->kvm;
557 	int ret = 0;
558 
559 	if (likely(vcpu->arch.has_run_once))
560 		return 0;
561 
562 	vcpu->arch.has_run_once = true;
563 
564 	if (likely(irqchip_in_kernel(kvm))) {
565 		/*
566 		 * Map the VGIC hardware resources before running a vcpu the
567 		 * first time on this VM.
568 		 */
569 		if (unlikely(!vgic_ready(kvm))) {
570 			ret = kvm_vgic_map_resources(kvm);
571 			if (ret)
572 				return ret;
573 		}
574 	} else {
575 		/*
576 		 * Tell the rest of the code that there are userspace irqchip
577 		 * VMs in the wild.
578 		 */
579 		static_branch_inc(&userspace_irqchip_in_use);
580 	}
581 
582 	ret = kvm_timer_enable(vcpu);
583 	if (ret)
584 		return ret;
585 
586 	ret = kvm_arm_pmu_v3_enable(vcpu);
587 
588 	return ret;
589 }
590 
kvm_arch_intc_initialized(struct kvm * kvm)591 bool kvm_arch_intc_initialized(struct kvm *kvm)
592 {
593 	return vgic_initialized(kvm);
594 }
595 
kvm_arm_halt_guest(struct kvm * kvm)596 void kvm_arm_halt_guest(struct kvm *kvm)
597 {
598 	int i;
599 	struct kvm_vcpu *vcpu;
600 
601 	kvm_for_each_vcpu(i, vcpu, kvm)
602 		vcpu->arch.pause = true;
603 	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
604 }
605 
kvm_arm_resume_guest(struct kvm * kvm)606 void kvm_arm_resume_guest(struct kvm *kvm)
607 {
608 	int i;
609 	struct kvm_vcpu *vcpu;
610 
611 	kvm_for_each_vcpu(i, vcpu, kvm) {
612 		vcpu->arch.pause = false;
613 		swake_up_one(kvm_arch_vcpu_wq(vcpu));
614 	}
615 }
616 
vcpu_req_sleep(struct kvm_vcpu * vcpu)617 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
618 {
619 	struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
620 
621 	swait_event_interruptible_exclusive(*wq, ((!vcpu->arch.power_off) &&
622 				       (!vcpu->arch.pause)));
623 
624 	if (vcpu->arch.power_off || vcpu->arch.pause) {
625 		/* Awaken to handle a signal, request we sleep again later. */
626 		kvm_make_request(KVM_REQ_SLEEP, vcpu);
627 	}
628 }
629 
kvm_vcpu_initialized(struct kvm_vcpu * vcpu)630 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
631 {
632 	return vcpu->arch.target >= 0;
633 }
634 
check_vcpu_requests(struct kvm_vcpu * vcpu)635 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
636 {
637 	if (kvm_request_pending(vcpu)) {
638 		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
639 			vcpu_req_sleep(vcpu);
640 
641 		/*
642 		 * Clear IRQ_PENDING requests that were made to guarantee
643 		 * that a VCPU sees new virtual interrupts.
644 		 */
645 		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
646 	}
647 }
648 
649 /**
650  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
651  * @vcpu:	The VCPU pointer
652  * @run:	The kvm_run structure pointer used for userspace state exchange
653  *
654  * This function is called through the VCPU_RUN ioctl called from user space. It
655  * will execute VM code in a loop until the time slice for the process is used
656  * or some emulation is needed from user space in which case the function will
657  * return with return value 0 and with the kvm_run structure filled in with the
658  * required data for the requested emulation.
659  */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu,struct kvm_run * run)660 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
661 {
662 	int ret;
663 
664 	if (unlikely(!kvm_vcpu_initialized(vcpu)))
665 		return -ENOEXEC;
666 
667 	ret = kvm_vcpu_first_run_init(vcpu);
668 	if (ret)
669 		return ret;
670 
671 	if (run->exit_reason == KVM_EXIT_MMIO) {
672 		ret = kvm_handle_mmio_return(vcpu, vcpu->run);
673 		if (ret)
674 			return ret;
675 		if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
676 			return 0;
677 	}
678 
679 	if (run->immediate_exit)
680 		return -EINTR;
681 
682 	vcpu_load(vcpu);
683 
684 	kvm_sigset_activate(vcpu);
685 
686 	ret = 1;
687 	run->exit_reason = KVM_EXIT_UNKNOWN;
688 	while (ret > 0) {
689 		/*
690 		 * Check conditions before entering the guest
691 		 */
692 		cond_resched();
693 
694 		update_vttbr(vcpu->kvm);
695 
696 		check_vcpu_requests(vcpu);
697 
698 		/*
699 		 * Preparing the interrupts to be injected also
700 		 * involves poking the GIC, which must be done in a
701 		 * non-preemptible context.
702 		 */
703 		preempt_disable();
704 
705 		kvm_pmu_flush_hwstate(vcpu);
706 
707 		local_irq_disable();
708 
709 		kvm_vgic_flush_hwstate(vcpu);
710 
711 		/*
712 		 * Exit if we have a signal pending so that we can deliver the
713 		 * signal to user space.
714 		 */
715 		if (signal_pending(current)) {
716 			ret = -EINTR;
717 			run->exit_reason = KVM_EXIT_INTR;
718 		}
719 
720 		/*
721 		 * If we're using a userspace irqchip, then check if we need
722 		 * to tell a userspace irqchip about timer or PMU level
723 		 * changes and if so, exit to userspace (the actual level
724 		 * state gets updated in kvm_timer_update_run and
725 		 * kvm_pmu_update_run below).
726 		 */
727 		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
728 			if (kvm_timer_should_notify_user(vcpu) ||
729 			    kvm_pmu_should_notify_user(vcpu)) {
730 				ret = -EINTR;
731 				run->exit_reason = KVM_EXIT_INTR;
732 			}
733 		}
734 
735 		/*
736 		 * Ensure we set mode to IN_GUEST_MODE after we disable
737 		 * interrupts and before the final VCPU requests check.
738 		 * See the comment in kvm_vcpu_exiting_guest_mode() and
739 		 * Documentation/virtual/kvm/vcpu-requests.rst
740 		 */
741 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
742 
743 		if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
744 		    kvm_request_pending(vcpu)) {
745 			vcpu->mode = OUTSIDE_GUEST_MODE;
746 			isb(); /* Ensure work in x_flush_hwstate is committed */
747 			kvm_pmu_sync_hwstate(vcpu);
748 			if (static_branch_unlikely(&userspace_irqchip_in_use))
749 				kvm_timer_sync_hwstate(vcpu);
750 			kvm_vgic_sync_hwstate(vcpu);
751 			local_irq_enable();
752 			preempt_enable();
753 			continue;
754 		}
755 
756 		kvm_arm_setup_debug(vcpu);
757 
758 		/**************************************************************
759 		 * Enter the guest
760 		 */
761 		trace_kvm_entry(*vcpu_pc(vcpu));
762 		guest_enter_irqoff();
763 
764 		if (has_vhe()) {
765 			kvm_arm_vhe_guest_enter();
766 			ret = kvm_vcpu_run_vhe(vcpu);
767 			kvm_arm_vhe_guest_exit();
768 		} else {
769 			ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
770 		}
771 
772 		vcpu->mode = OUTSIDE_GUEST_MODE;
773 		vcpu->stat.exits++;
774 		/*
775 		 * Back from guest
776 		 *************************************************************/
777 
778 		kvm_arm_clear_debug(vcpu);
779 
780 		/*
781 		 * We must sync the PMU state before the vgic state so
782 		 * that the vgic can properly sample the updated state of the
783 		 * interrupt line.
784 		 */
785 		kvm_pmu_sync_hwstate(vcpu);
786 
787 		/*
788 		 * Sync the vgic state before syncing the timer state because
789 		 * the timer code needs to know if the virtual timer
790 		 * interrupts are active.
791 		 */
792 		kvm_vgic_sync_hwstate(vcpu);
793 
794 		/*
795 		 * Sync the timer hardware state before enabling interrupts as
796 		 * we don't want vtimer interrupts to race with syncing the
797 		 * timer virtual interrupt state.
798 		 */
799 		if (static_branch_unlikely(&userspace_irqchip_in_use))
800 			kvm_timer_sync_hwstate(vcpu);
801 
802 		kvm_arch_vcpu_ctxsync_fp(vcpu);
803 
804 		/*
805 		 * We may have taken a host interrupt in HYP mode (ie
806 		 * while executing the guest). This interrupt is still
807 		 * pending, as we haven't serviced it yet!
808 		 *
809 		 * We're now back in SVC mode, with interrupts
810 		 * disabled.  Enabling the interrupts now will have
811 		 * the effect of taking the interrupt again, in SVC
812 		 * mode this time.
813 		 */
814 		local_irq_enable();
815 
816 		/*
817 		 * We do local_irq_enable() before calling guest_exit() so
818 		 * that if a timer interrupt hits while running the guest we
819 		 * account that tick as being spent in the guest.  We enable
820 		 * preemption after calling guest_exit() so that if we get
821 		 * preempted we make sure ticks after that is not counted as
822 		 * guest time.
823 		 */
824 		guest_exit();
825 		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
826 
827 		/* Exit types that need handling before we can be preempted */
828 		handle_exit_early(vcpu, run, ret);
829 
830 		preempt_enable();
831 
832 		ret = handle_exit(vcpu, run, ret);
833 	}
834 
835 	/* Tell userspace about in-kernel device output levels */
836 	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
837 		kvm_timer_update_run(vcpu);
838 		kvm_pmu_update_run(vcpu);
839 	}
840 
841 	kvm_sigset_deactivate(vcpu);
842 
843 	vcpu_put(vcpu);
844 	return ret;
845 }
846 
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)847 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
848 {
849 	int bit_index;
850 	bool set;
851 	unsigned long *hcr;
852 
853 	if (number == KVM_ARM_IRQ_CPU_IRQ)
854 		bit_index = __ffs(HCR_VI);
855 	else /* KVM_ARM_IRQ_CPU_FIQ */
856 		bit_index = __ffs(HCR_VF);
857 
858 	hcr = vcpu_hcr(vcpu);
859 	if (level)
860 		set = test_and_set_bit(bit_index, hcr);
861 	else
862 		set = test_and_clear_bit(bit_index, hcr);
863 
864 	/*
865 	 * If we didn't change anything, no need to wake up or kick other CPUs
866 	 */
867 	if (set == level)
868 		return 0;
869 
870 	/*
871 	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
872 	 * trigger a world-switch round on the running physical CPU to set the
873 	 * virtual IRQ/FIQ fields in the HCR appropriately.
874 	 */
875 	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
876 	kvm_vcpu_kick(vcpu);
877 
878 	return 0;
879 }
880 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)881 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
882 			  bool line_status)
883 {
884 	u32 irq = irq_level->irq;
885 	unsigned int irq_type, vcpu_idx, irq_num;
886 	int nrcpus = atomic_read(&kvm->online_vcpus);
887 	struct kvm_vcpu *vcpu = NULL;
888 	bool level = irq_level->level;
889 
890 	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
891 	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
892 	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
893 
894 	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
895 
896 	switch (irq_type) {
897 	case KVM_ARM_IRQ_TYPE_CPU:
898 		if (irqchip_in_kernel(kvm))
899 			return -ENXIO;
900 
901 		if (vcpu_idx >= nrcpus)
902 			return -EINVAL;
903 
904 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
905 		if (!vcpu)
906 			return -EINVAL;
907 
908 		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
909 			return -EINVAL;
910 
911 		return vcpu_interrupt_line(vcpu, irq_num, level);
912 	case KVM_ARM_IRQ_TYPE_PPI:
913 		if (!irqchip_in_kernel(kvm))
914 			return -ENXIO;
915 
916 		if (vcpu_idx >= nrcpus)
917 			return -EINVAL;
918 
919 		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
920 		if (!vcpu)
921 			return -EINVAL;
922 
923 		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
924 			return -EINVAL;
925 
926 		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
927 	case KVM_ARM_IRQ_TYPE_SPI:
928 		if (!irqchip_in_kernel(kvm))
929 			return -ENXIO;
930 
931 		if (irq_num < VGIC_NR_PRIVATE_IRQS)
932 			return -EINVAL;
933 
934 		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
935 	}
936 
937 	return -EINVAL;
938 }
939 
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)940 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
941 			       const struct kvm_vcpu_init *init)
942 {
943 	unsigned int i;
944 	int phys_target = kvm_target_cpu();
945 
946 	if (init->target != phys_target)
947 		return -EINVAL;
948 
949 	/*
950 	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
951 	 * use the same target.
952 	 */
953 	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
954 		return -EINVAL;
955 
956 	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
957 	for (i = 0; i < sizeof(init->features) * 8; i++) {
958 		bool set = (init->features[i / 32] & (1 << (i % 32)));
959 
960 		if (set && i >= KVM_VCPU_MAX_FEATURES)
961 			return -ENOENT;
962 
963 		/*
964 		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
965 		 * use the same feature set.
966 		 */
967 		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
968 		    test_bit(i, vcpu->arch.features) != set)
969 			return -EINVAL;
970 
971 		if (set)
972 			set_bit(i, vcpu->arch.features);
973 	}
974 
975 	vcpu->arch.target = phys_target;
976 
977 	/* Now we know what it is, we can reset it. */
978 	return kvm_reset_vcpu(vcpu);
979 }
980 
981 
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)982 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
983 					 struct kvm_vcpu_init *init)
984 {
985 	int ret;
986 
987 	ret = kvm_vcpu_set_target(vcpu, init);
988 	if (ret)
989 		return ret;
990 
991 	/*
992 	 * Ensure a rebooted VM will fault in RAM pages and detect if the
993 	 * guest MMU is turned off and flush the caches as needed.
994 	 */
995 	if (vcpu->arch.has_run_once)
996 		stage2_unmap_vm(vcpu->kvm);
997 
998 	vcpu_reset_hcr(vcpu);
999 
1000 	/*
1001 	 * Handle the "start in power-off" case.
1002 	 */
1003 	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1004 		vcpu_power_off(vcpu);
1005 	else
1006 		vcpu->arch.power_off = false;
1007 
1008 	return 0;
1009 }
1010 
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1011 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1012 				 struct kvm_device_attr *attr)
1013 {
1014 	int ret = -ENXIO;
1015 
1016 	switch (attr->group) {
1017 	default:
1018 		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1019 		break;
1020 	}
1021 
1022 	return ret;
1023 }
1024 
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1025 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1026 				 struct kvm_device_attr *attr)
1027 {
1028 	int ret = -ENXIO;
1029 
1030 	switch (attr->group) {
1031 	default:
1032 		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1033 		break;
1034 	}
1035 
1036 	return ret;
1037 }
1038 
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1039 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1040 				 struct kvm_device_attr *attr)
1041 {
1042 	int ret = -ENXIO;
1043 
1044 	switch (attr->group) {
1045 	default:
1046 		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1047 		break;
1048 	}
1049 
1050 	return ret;
1051 }
1052 
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1053 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1054 				   struct kvm_vcpu_events *events)
1055 {
1056 	memset(events, 0, sizeof(*events));
1057 
1058 	return __kvm_arm_vcpu_get_events(vcpu, events);
1059 }
1060 
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1061 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1062 				   struct kvm_vcpu_events *events)
1063 {
1064 	int i;
1065 
1066 	/* check whether the reserved field is zero */
1067 	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1068 		if (events->reserved[i])
1069 			return -EINVAL;
1070 
1071 	/* check whether the pad field is zero */
1072 	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1073 		if (events->exception.pad[i])
1074 			return -EINVAL;
1075 
1076 	return __kvm_arm_vcpu_set_events(vcpu, events);
1077 }
1078 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1079 long kvm_arch_vcpu_ioctl(struct file *filp,
1080 			 unsigned int ioctl, unsigned long arg)
1081 {
1082 	struct kvm_vcpu *vcpu = filp->private_data;
1083 	void __user *argp = (void __user *)arg;
1084 	struct kvm_device_attr attr;
1085 	long r;
1086 
1087 	switch (ioctl) {
1088 	case KVM_ARM_VCPU_INIT: {
1089 		struct kvm_vcpu_init init;
1090 
1091 		r = -EFAULT;
1092 		if (copy_from_user(&init, argp, sizeof(init)))
1093 			break;
1094 
1095 		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1096 		break;
1097 	}
1098 	case KVM_SET_ONE_REG:
1099 	case KVM_GET_ONE_REG: {
1100 		struct kvm_one_reg reg;
1101 
1102 		r = -ENOEXEC;
1103 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1104 			break;
1105 
1106 		r = -EFAULT;
1107 		if (copy_from_user(&reg, argp, sizeof(reg)))
1108 			break;
1109 
1110 		if (ioctl == KVM_SET_ONE_REG)
1111 			r = kvm_arm_set_reg(vcpu, &reg);
1112 		else
1113 			r = kvm_arm_get_reg(vcpu, &reg);
1114 		break;
1115 	}
1116 	case KVM_GET_REG_LIST: {
1117 		struct kvm_reg_list __user *user_list = argp;
1118 		struct kvm_reg_list reg_list;
1119 		unsigned n;
1120 
1121 		r = -ENOEXEC;
1122 		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1123 			break;
1124 
1125 		r = -EFAULT;
1126 		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1127 			break;
1128 		n = reg_list.n;
1129 		reg_list.n = kvm_arm_num_regs(vcpu);
1130 		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1131 			break;
1132 		r = -E2BIG;
1133 		if (n < reg_list.n)
1134 			break;
1135 		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1136 		break;
1137 	}
1138 	case KVM_SET_DEVICE_ATTR: {
1139 		r = -EFAULT;
1140 		if (copy_from_user(&attr, argp, sizeof(attr)))
1141 			break;
1142 		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1143 		break;
1144 	}
1145 	case KVM_GET_DEVICE_ATTR: {
1146 		r = -EFAULT;
1147 		if (copy_from_user(&attr, argp, sizeof(attr)))
1148 			break;
1149 		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1150 		break;
1151 	}
1152 	case KVM_HAS_DEVICE_ATTR: {
1153 		r = -EFAULT;
1154 		if (copy_from_user(&attr, argp, sizeof(attr)))
1155 			break;
1156 		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1157 		break;
1158 	}
1159 	case KVM_GET_VCPU_EVENTS: {
1160 		struct kvm_vcpu_events events;
1161 
1162 		if (kvm_arm_vcpu_get_events(vcpu, &events))
1163 			return -EINVAL;
1164 
1165 		if (copy_to_user(argp, &events, sizeof(events)))
1166 			return -EFAULT;
1167 
1168 		return 0;
1169 	}
1170 	case KVM_SET_VCPU_EVENTS: {
1171 		struct kvm_vcpu_events events;
1172 
1173 		if (copy_from_user(&events, argp, sizeof(events)))
1174 			return -EFAULT;
1175 
1176 		return kvm_arm_vcpu_set_events(vcpu, &events);
1177 	}
1178 	default:
1179 		r = -EINVAL;
1180 	}
1181 
1182 	return r;
1183 }
1184 
1185 /**
1186  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1187  * @kvm: kvm instance
1188  * @log: slot id and address to which we copy the log
1189  *
1190  * Steps 1-4 below provide general overview of dirty page logging. See
1191  * kvm_get_dirty_log_protect() function description for additional details.
1192  *
1193  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1194  * always flush the TLB (step 4) even if previous step failed  and the dirty
1195  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1196  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1197  * writes will be marked dirty for next log read.
1198  *
1199  *   1. Take a snapshot of the bit and clear it if needed.
1200  *   2. Write protect the corresponding page.
1201  *   3. Copy the snapshot to the userspace.
1202  *   4. Flush TLB's if needed.
1203  */
kvm_vm_ioctl_get_dirty_log(struct kvm * kvm,struct kvm_dirty_log * log)1204 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1205 {
1206 	bool is_dirty = false;
1207 	int r;
1208 
1209 	mutex_lock(&kvm->slots_lock);
1210 
1211 	r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1212 
1213 	if (is_dirty)
1214 		kvm_flush_remote_tlbs(kvm);
1215 
1216 	mutex_unlock(&kvm->slots_lock);
1217 	return r;
1218 }
1219 
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1220 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1221 					struct kvm_arm_device_addr *dev_addr)
1222 {
1223 	unsigned long dev_id, type;
1224 
1225 	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1226 		KVM_ARM_DEVICE_ID_SHIFT;
1227 	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1228 		KVM_ARM_DEVICE_TYPE_SHIFT;
1229 
1230 	switch (dev_id) {
1231 	case KVM_ARM_DEVICE_VGIC_V2:
1232 		if (!vgic_present)
1233 			return -ENXIO;
1234 		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1235 	default:
1236 		return -ENODEV;
1237 	}
1238 }
1239 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1240 long kvm_arch_vm_ioctl(struct file *filp,
1241 		       unsigned int ioctl, unsigned long arg)
1242 {
1243 	struct kvm *kvm = filp->private_data;
1244 	void __user *argp = (void __user *)arg;
1245 
1246 	switch (ioctl) {
1247 	case KVM_CREATE_IRQCHIP: {
1248 		int ret;
1249 		if (!vgic_present)
1250 			return -ENXIO;
1251 		mutex_lock(&kvm->lock);
1252 		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1253 		mutex_unlock(&kvm->lock);
1254 		return ret;
1255 	}
1256 	case KVM_ARM_SET_DEVICE_ADDR: {
1257 		struct kvm_arm_device_addr dev_addr;
1258 
1259 		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1260 			return -EFAULT;
1261 		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1262 	}
1263 	case KVM_ARM_PREFERRED_TARGET: {
1264 		int err;
1265 		struct kvm_vcpu_init init;
1266 
1267 		err = kvm_vcpu_preferred_target(&init);
1268 		if (err)
1269 			return err;
1270 
1271 		if (copy_to_user(argp, &init, sizeof(init)))
1272 			return -EFAULT;
1273 
1274 		return 0;
1275 	}
1276 	default:
1277 		return -EINVAL;
1278 	}
1279 }
1280 
cpu_init_hyp_mode(void * dummy)1281 static void cpu_init_hyp_mode(void *dummy)
1282 {
1283 	phys_addr_t pgd_ptr;
1284 	unsigned long hyp_stack_ptr;
1285 	unsigned long stack_page;
1286 	unsigned long vector_ptr;
1287 
1288 	/* Switch from the HYP stub to our own HYP init vector */
1289 	__hyp_set_vectors(kvm_get_idmap_vector());
1290 
1291 	pgd_ptr = kvm_mmu_get_httbr();
1292 	stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1293 	hyp_stack_ptr = stack_page + PAGE_SIZE;
1294 	vector_ptr = (unsigned long)kvm_get_hyp_vector();
1295 
1296 	__cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1297 	__cpu_init_stage2();
1298 
1299 	kvm_arm_init_debug();
1300 }
1301 
cpu_hyp_reset(void)1302 static void cpu_hyp_reset(void)
1303 {
1304 	if (!is_kernel_in_hyp_mode())
1305 		__hyp_reset_vectors();
1306 }
1307 
cpu_hyp_reinit(void)1308 static void cpu_hyp_reinit(void)
1309 {
1310 	cpu_hyp_reset();
1311 
1312 	if (is_kernel_in_hyp_mode()) {
1313 		/*
1314 		 * __cpu_init_stage2() is safe to call even if the PM
1315 		 * event was cancelled before the CPU was reset.
1316 		 */
1317 		__cpu_init_stage2();
1318 		kvm_timer_init_vhe();
1319 	} else {
1320 		cpu_init_hyp_mode(NULL);
1321 	}
1322 
1323 	if (vgic_present)
1324 		kvm_vgic_init_cpu_hardware();
1325 }
1326 
_kvm_arch_hardware_enable(void * discard)1327 static void _kvm_arch_hardware_enable(void *discard)
1328 {
1329 	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1330 		cpu_hyp_reinit();
1331 		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1332 	}
1333 }
1334 
kvm_arch_hardware_enable(void)1335 int kvm_arch_hardware_enable(void)
1336 {
1337 	_kvm_arch_hardware_enable(NULL);
1338 	return 0;
1339 }
1340 
_kvm_arch_hardware_disable(void * discard)1341 static void _kvm_arch_hardware_disable(void *discard)
1342 {
1343 	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1344 		cpu_hyp_reset();
1345 		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1346 	}
1347 }
1348 
kvm_arch_hardware_disable(void)1349 void kvm_arch_hardware_disable(void)
1350 {
1351 	_kvm_arch_hardware_disable(NULL);
1352 }
1353 
1354 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)1355 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1356 				    unsigned long cmd,
1357 				    void *v)
1358 {
1359 	/*
1360 	 * kvm_arm_hardware_enabled is left with its old value over
1361 	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1362 	 * re-enable hyp.
1363 	 */
1364 	switch (cmd) {
1365 	case CPU_PM_ENTER:
1366 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1367 			/*
1368 			 * don't update kvm_arm_hardware_enabled here
1369 			 * so that the hardware will be re-enabled
1370 			 * when we resume. See below.
1371 			 */
1372 			cpu_hyp_reset();
1373 
1374 		return NOTIFY_OK;
1375 	case CPU_PM_ENTER_FAILED:
1376 	case CPU_PM_EXIT:
1377 		if (__this_cpu_read(kvm_arm_hardware_enabled))
1378 			/* The hardware was enabled before suspend. */
1379 			cpu_hyp_reinit();
1380 
1381 		return NOTIFY_OK;
1382 
1383 	default:
1384 		return NOTIFY_DONE;
1385 	}
1386 }
1387 
1388 static struct notifier_block hyp_init_cpu_pm_nb = {
1389 	.notifier_call = hyp_init_cpu_pm_notifier,
1390 };
1391 
hyp_cpu_pm_init(void)1392 static void __init hyp_cpu_pm_init(void)
1393 {
1394 	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1395 }
hyp_cpu_pm_exit(void)1396 static void __init hyp_cpu_pm_exit(void)
1397 {
1398 	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1399 }
1400 #else
hyp_cpu_pm_init(void)1401 static inline void hyp_cpu_pm_init(void)
1402 {
1403 }
hyp_cpu_pm_exit(void)1404 static inline void hyp_cpu_pm_exit(void)
1405 {
1406 }
1407 #endif
1408 
init_common_resources(void)1409 static int init_common_resources(void)
1410 {
1411 	/* set size of VMID supported by CPU */
1412 	kvm_vmid_bits = kvm_get_vmid_bits();
1413 	kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1414 
1415 	return 0;
1416 }
1417 
init_subsystems(void)1418 static int init_subsystems(void)
1419 {
1420 	int err = 0;
1421 
1422 	/*
1423 	 * Enable hardware so that subsystem initialisation can access EL2.
1424 	 */
1425 	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1426 
1427 	/*
1428 	 * Register CPU lower-power notifier
1429 	 */
1430 	hyp_cpu_pm_init();
1431 
1432 	/*
1433 	 * Init HYP view of VGIC
1434 	 */
1435 	err = kvm_vgic_hyp_init();
1436 	switch (err) {
1437 	case 0:
1438 		vgic_present = true;
1439 		break;
1440 	case -ENODEV:
1441 	case -ENXIO:
1442 		vgic_present = false;
1443 		err = 0;
1444 		break;
1445 	default:
1446 		goto out;
1447 	}
1448 
1449 	/*
1450 	 * Init HYP architected timer support
1451 	 */
1452 	err = kvm_timer_hyp_init(vgic_present);
1453 	if (err)
1454 		goto out;
1455 
1456 	kvm_perf_init();
1457 	kvm_coproc_table_init();
1458 
1459 out:
1460 	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1461 
1462 	return err;
1463 }
1464 
teardown_hyp_mode(void)1465 static void teardown_hyp_mode(void)
1466 {
1467 	int cpu;
1468 
1469 	free_hyp_pgds();
1470 	for_each_possible_cpu(cpu)
1471 		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1472 	hyp_cpu_pm_exit();
1473 }
1474 
1475 /**
1476  * Inits Hyp-mode on all online CPUs
1477  */
init_hyp_mode(void)1478 static int init_hyp_mode(void)
1479 {
1480 	int cpu;
1481 	int err = 0;
1482 
1483 	/*
1484 	 * Allocate Hyp PGD and setup Hyp identity mapping
1485 	 */
1486 	err = kvm_mmu_init();
1487 	if (err)
1488 		goto out_err;
1489 
1490 	/*
1491 	 * Allocate stack pages for Hypervisor-mode
1492 	 */
1493 	for_each_possible_cpu(cpu) {
1494 		unsigned long stack_page;
1495 
1496 		stack_page = __get_free_page(GFP_KERNEL);
1497 		if (!stack_page) {
1498 			err = -ENOMEM;
1499 			goto out_err;
1500 		}
1501 
1502 		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1503 	}
1504 
1505 	/*
1506 	 * Map the Hyp-code called directly from the host
1507 	 */
1508 	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1509 				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1510 	if (err) {
1511 		kvm_err("Cannot map world-switch code\n");
1512 		goto out_err;
1513 	}
1514 
1515 	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1516 				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1517 	if (err) {
1518 		kvm_err("Cannot map rodata section\n");
1519 		goto out_err;
1520 	}
1521 
1522 	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1523 				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1524 	if (err) {
1525 		kvm_err("Cannot map bss section\n");
1526 		goto out_err;
1527 	}
1528 
1529 	err = kvm_map_vectors();
1530 	if (err) {
1531 		kvm_err("Cannot map vectors\n");
1532 		goto out_err;
1533 	}
1534 
1535 	/*
1536 	 * Map the Hyp stack pages
1537 	 */
1538 	for_each_possible_cpu(cpu) {
1539 		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1540 		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1541 					  PAGE_HYP);
1542 
1543 		if (err) {
1544 			kvm_err("Cannot map hyp stack\n");
1545 			goto out_err;
1546 		}
1547 	}
1548 
1549 	for_each_possible_cpu(cpu) {
1550 		kvm_cpu_context_t *cpu_ctxt;
1551 
1552 		cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1553 		err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1554 
1555 		if (err) {
1556 			kvm_err("Cannot map host CPU state: %d\n", err);
1557 			goto out_err;
1558 		}
1559 	}
1560 
1561 	err = hyp_map_aux_data();
1562 	if (err)
1563 		kvm_err("Cannot map host auxilary data: %d\n", err);
1564 
1565 	return 0;
1566 
1567 out_err:
1568 	teardown_hyp_mode();
1569 	kvm_err("error initializing Hyp mode: %d\n", err);
1570 	return err;
1571 }
1572 
check_kvm_target_cpu(void * ret)1573 static void check_kvm_target_cpu(void *ret)
1574 {
1575 	*(int *)ret = kvm_target_cpu();
1576 }
1577 
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)1578 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1579 {
1580 	struct kvm_vcpu *vcpu;
1581 	int i;
1582 
1583 	mpidr &= MPIDR_HWID_BITMASK;
1584 	kvm_for_each_vcpu(i, vcpu, kvm) {
1585 		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1586 			return vcpu;
1587 	}
1588 	return NULL;
1589 }
1590 
kvm_arch_has_irq_bypass(void)1591 bool kvm_arch_has_irq_bypass(void)
1592 {
1593 	return true;
1594 }
1595 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)1596 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1597 				      struct irq_bypass_producer *prod)
1598 {
1599 	struct kvm_kernel_irqfd *irqfd =
1600 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1601 
1602 	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1603 					  &irqfd->irq_entry);
1604 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)1605 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1606 				      struct irq_bypass_producer *prod)
1607 {
1608 	struct kvm_kernel_irqfd *irqfd =
1609 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1610 
1611 	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1612 				     &irqfd->irq_entry);
1613 }
1614 
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)1615 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1616 {
1617 	struct kvm_kernel_irqfd *irqfd =
1618 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1619 
1620 	kvm_arm_halt_guest(irqfd->kvm);
1621 }
1622 
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)1623 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1624 {
1625 	struct kvm_kernel_irqfd *irqfd =
1626 		container_of(cons, struct kvm_kernel_irqfd, consumer);
1627 
1628 	kvm_arm_resume_guest(irqfd->kvm);
1629 }
1630 
1631 /**
1632  * Initialize Hyp-mode and memory mappings on all CPUs.
1633  */
kvm_arch_init(void * opaque)1634 int kvm_arch_init(void *opaque)
1635 {
1636 	int err;
1637 	int ret, cpu;
1638 	bool in_hyp_mode;
1639 
1640 	if (!is_hyp_mode_available()) {
1641 		kvm_info("HYP mode not available\n");
1642 		return -ENODEV;
1643 	}
1644 
1645 	if (!kvm_arch_check_sve_has_vhe()) {
1646 		kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
1647 		return -ENODEV;
1648 	}
1649 
1650 	for_each_online_cpu(cpu) {
1651 		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1652 		if (ret < 0) {
1653 			kvm_err("Error, CPU %d not supported!\n", cpu);
1654 			return -ENODEV;
1655 		}
1656 	}
1657 
1658 	err = init_common_resources();
1659 	if (err)
1660 		return err;
1661 
1662 	in_hyp_mode = is_kernel_in_hyp_mode();
1663 
1664 	if (!in_hyp_mode) {
1665 		err = init_hyp_mode();
1666 		if (err)
1667 			goto out_err;
1668 	}
1669 
1670 	err = init_subsystems();
1671 	if (err)
1672 		goto out_hyp;
1673 
1674 	if (in_hyp_mode)
1675 		kvm_info("VHE mode initialized successfully\n");
1676 	else
1677 		kvm_info("Hyp mode initialized successfully\n");
1678 
1679 	return 0;
1680 
1681 out_hyp:
1682 	if (!in_hyp_mode)
1683 		teardown_hyp_mode();
1684 out_err:
1685 	return err;
1686 }
1687 
1688 /* NOP: Compiling as a module not supported */
kvm_arch_exit(void)1689 void kvm_arch_exit(void)
1690 {
1691 	kvm_perf_teardown();
1692 }
1693 
arm_init(void)1694 static int arm_init(void)
1695 {
1696 	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1697 	return rc;
1698 }
1699 
1700 module_init(arm_init);
1701