1 /*
2 * intel_pt.c: Intel Processor Trace support
3 * Copyright (c) 2013-2015, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 */
15
16 #include <inttypes.h>
17 #include <stdio.h>
18 #include <stdbool.h>
19 #include <errno.h>
20 #include <linux/kernel.h>
21 #include <linux/types.h>
22
23 #include "../perf.h"
24 #include "session.h"
25 #include "machine.h"
26 #include "memswap.h"
27 #include "sort.h"
28 #include "tool.h"
29 #include "event.h"
30 #include "evlist.h"
31 #include "evsel.h"
32 #include "map.h"
33 #include "color.h"
34 #include "util.h"
35 #include "thread.h"
36 #include "thread-stack.h"
37 #include "symbol.h"
38 #include "callchain.h"
39 #include "dso.h"
40 #include "debug.h"
41 #include "auxtrace.h"
42 #include "tsc.h"
43 #include "intel-pt.h"
44 #include "config.h"
45
46 #include "intel-pt-decoder/intel-pt-log.h"
47 #include "intel-pt-decoder/intel-pt-decoder.h"
48 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
49 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
50
51 #define MAX_TIMESTAMP (~0ULL)
52
53 struct intel_pt {
54 struct auxtrace auxtrace;
55 struct auxtrace_queues queues;
56 struct auxtrace_heap heap;
57 u32 auxtrace_type;
58 struct perf_session *session;
59 struct machine *machine;
60 struct perf_evsel *switch_evsel;
61 struct thread *unknown_thread;
62 bool timeless_decoding;
63 bool sampling_mode;
64 bool snapshot_mode;
65 bool per_cpu_mmaps;
66 bool have_tsc;
67 bool data_queued;
68 bool est_tsc;
69 bool sync_switch;
70 bool mispred_all;
71 int have_sched_switch;
72 u32 pmu_type;
73 u64 kernel_start;
74 u64 switch_ip;
75 u64 ptss_ip;
76
77 struct perf_tsc_conversion tc;
78 bool cap_user_time_zero;
79
80 struct itrace_synth_opts synth_opts;
81
82 bool sample_instructions;
83 u64 instructions_sample_type;
84 u64 instructions_id;
85
86 bool sample_branches;
87 u32 branches_filter;
88 u64 branches_sample_type;
89 u64 branches_id;
90
91 bool sample_transactions;
92 u64 transactions_sample_type;
93 u64 transactions_id;
94
95 bool sample_ptwrites;
96 u64 ptwrites_sample_type;
97 u64 ptwrites_id;
98
99 bool sample_pwr_events;
100 u64 pwr_events_sample_type;
101 u64 mwait_id;
102 u64 pwre_id;
103 u64 exstop_id;
104 u64 pwrx_id;
105 u64 cbr_id;
106
107 u64 tsc_bit;
108 u64 mtc_bit;
109 u64 mtc_freq_bits;
110 u32 tsc_ctc_ratio_n;
111 u32 tsc_ctc_ratio_d;
112 u64 cyc_bit;
113 u64 noretcomp_bit;
114 unsigned max_non_turbo_ratio;
115 unsigned cbr2khz;
116
117 unsigned long num_events;
118
119 char *filter;
120 struct addr_filters filts;
121 };
122
123 enum switch_state {
124 INTEL_PT_SS_NOT_TRACING,
125 INTEL_PT_SS_UNKNOWN,
126 INTEL_PT_SS_TRACING,
127 INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
128 INTEL_PT_SS_EXPECTING_SWITCH_IP,
129 };
130
131 struct intel_pt_queue {
132 struct intel_pt *pt;
133 unsigned int queue_nr;
134 struct auxtrace_buffer *buffer;
135 struct auxtrace_buffer *old_buffer;
136 void *decoder;
137 const struct intel_pt_state *state;
138 struct ip_callchain *chain;
139 struct branch_stack *last_branch;
140 struct branch_stack *last_branch_rb;
141 size_t last_branch_pos;
142 union perf_event *event_buf;
143 bool on_heap;
144 bool stop;
145 bool step_through_buffers;
146 bool use_buffer_pid_tid;
147 bool sync_switch;
148 pid_t pid, tid;
149 int cpu;
150 int switch_state;
151 pid_t next_tid;
152 struct thread *thread;
153 bool exclude_kernel;
154 bool have_sample;
155 u64 time;
156 u64 timestamp;
157 u32 flags;
158 u16 insn_len;
159 u64 last_insn_cnt;
160 char insn[INTEL_PT_INSN_BUF_SZ];
161 };
162
intel_pt_dump(struct intel_pt * pt __maybe_unused,unsigned char * buf,size_t len)163 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
164 unsigned char *buf, size_t len)
165 {
166 struct intel_pt_pkt packet;
167 size_t pos = 0;
168 int ret, pkt_len, i;
169 char desc[INTEL_PT_PKT_DESC_MAX];
170 const char *color = PERF_COLOR_BLUE;
171
172 color_fprintf(stdout, color,
173 ". ... Intel Processor Trace data: size %zu bytes\n",
174 len);
175
176 while (len) {
177 ret = intel_pt_get_packet(buf, len, &packet);
178 if (ret > 0)
179 pkt_len = ret;
180 else
181 pkt_len = 1;
182 printf(".");
183 color_fprintf(stdout, color, " %08x: ", pos);
184 for (i = 0; i < pkt_len; i++)
185 color_fprintf(stdout, color, " %02x", buf[i]);
186 for (; i < 16; i++)
187 color_fprintf(stdout, color, " ");
188 if (ret > 0) {
189 ret = intel_pt_pkt_desc(&packet, desc,
190 INTEL_PT_PKT_DESC_MAX);
191 if (ret > 0)
192 color_fprintf(stdout, color, " %s\n", desc);
193 } else {
194 color_fprintf(stdout, color, " Bad packet!\n");
195 }
196 pos += pkt_len;
197 buf += pkt_len;
198 len -= pkt_len;
199 }
200 }
201
intel_pt_dump_event(struct intel_pt * pt,unsigned char * buf,size_t len)202 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
203 size_t len)
204 {
205 printf(".\n");
206 intel_pt_dump(pt, buf, len);
207 }
208
intel_pt_do_fix_overlap(struct intel_pt * pt,struct auxtrace_buffer * a,struct auxtrace_buffer * b)209 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
210 struct auxtrace_buffer *b)
211 {
212 bool consecutive = false;
213 void *start;
214
215 start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
216 pt->have_tsc, &consecutive);
217 if (!start)
218 return -EINVAL;
219 b->use_size = b->data + b->size - start;
220 b->use_data = start;
221 if (b->use_size && consecutive)
222 b->consecutive = true;
223 return 0;
224 }
225
226 /* This function assumes data is processed sequentially only */
intel_pt_get_trace(struct intel_pt_buffer * b,void * data)227 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
228 {
229 struct intel_pt_queue *ptq = data;
230 struct auxtrace_buffer *buffer = ptq->buffer;
231 struct auxtrace_buffer *old_buffer = ptq->old_buffer;
232 struct auxtrace_queue *queue;
233 bool might_overlap;
234
235 if (ptq->stop) {
236 b->len = 0;
237 return 0;
238 }
239
240 queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
241
242 buffer = auxtrace_buffer__next(queue, buffer);
243 if (!buffer) {
244 if (old_buffer)
245 auxtrace_buffer__drop_data(old_buffer);
246 b->len = 0;
247 return 0;
248 }
249
250 ptq->buffer = buffer;
251
252 if (!buffer->data) {
253 int fd = perf_data__fd(ptq->pt->session->data);
254
255 buffer->data = auxtrace_buffer__get_data(buffer, fd);
256 if (!buffer->data)
257 return -ENOMEM;
258 }
259
260 might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
261 if (might_overlap && !buffer->consecutive && old_buffer &&
262 intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
263 return -ENOMEM;
264
265 if (buffer->use_data) {
266 b->len = buffer->use_size;
267 b->buf = buffer->use_data;
268 } else {
269 b->len = buffer->size;
270 b->buf = buffer->data;
271 }
272 b->ref_timestamp = buffer->reference;
273
274 if (!old_buffer || (might_overlap && !buffer->consecutive)) {
275 b->consecutive = false;
276 b->trace_nr = buffer->buffer_nr + 1;
277 } else {
278 b->consecutive = true;
279 }
280
281 if (ptq->step_through_buffers)
282 ptq->stop = true;
283
284 if (b->len) {
285 if (old_buffer)
286 auxtrace_buffer__drop_data(old_buffer);
287 ptq->old_buffer = buffer;
288 } else {
289 auxtrace_buffer__drop_data(buffer);
290 return intel_pt_get_trace(b, data);
291 }
292
293 return 0;
294 }
295
296 struct intel_pt_cache_entry {
297 struct auxtrace_cache_entry entry;
298 u64 insn_cnt;
299 u64 byte_cnt;
300 enum intel_pt_insn_op op;
301 enum intel_pt_insn_branch branch;
302 int length;
303 int32_t rel;
304 char insn[INTEL_PT_INSN_BUF_SZ];
305 };
306
intel_pt_config_div(const char * var,const char * value,void * data)307 static int intel_pt_config_div(const char *var, const char *value, void *data)
308 {
309 int *d = data;
310 long val;
311
312 if (!strcmp(var, "intel-pt.cache-divisor")) {
313 val = strtol(value, NULL, 0);
314 if (val > 0 && val <= INT_MAX)
315 *d = val;
316 }
317
318 return 0;
319 }
320
intel_pt_cache_divisor(void)321 static int intel_pt_cache_divisor(void)
322 {
323 static int d;
324
325 if (d)
326 return d;
327
328 perf_config(intel_pt_config_div, &d);
329
330 if (!d)
331 d = 64;
332
333 return d;
334 }
335
intel_pt_cache_size(struct dso * dso,struct machine * machine)336 static unsigned int intel_pt_cache_size(struct dso *dso,
337 struct machine *machine)
338 {
339 off_t size;
340
341 size = dso__data_size(dso, machine);
342 size /= intel_pt_cache_divisor();
343 if (size < 1000)
344 return 10;
345 if (size > (1 << 21))
346 return 21;
347 return 32 - __builtin_clz(size);
348 }
349
intel_pt_cache(struct dso * dso,struct machine * machine)350 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
351 struct machine *machine)
352 {
353 struct auxtrace_cache *c;
354 unsigned int bits;
355
356 if (dso->auxtrace_cache)
357 return dso->auxtrace_cache;
358
359 bits = intel_pt_cache_size(dso, machine);
360
361 /* Ignoring cache creation failure */
362 c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
363
364 dso->auxtrace_cache = c;
365
366 return c;
367 }
368
intel_pt_cache_add(struct dso * dso,struct machine * machine,u64 offset,u64 insn_cnt,u64 byte_cnt,struct intel_pt_insn * intel_pt_insn)369 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
370 u64 offset, u64 insn_cnt, u64 byte_cnt,
371 struct intel_pt_insn *intel_pt_insn)
372 {
373 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
374 struct intel_pt_cache_entry *e;
375 int err;
376
377 if (!c)
378 return -ENOMEM;
379
380 e = auxtrace_cache__alloc_entry(c);
381 if (!e)
382 return -ENOMEM;
383
384 e->insn_cnt = insn_cnt;
385 e->byte_cnt = byte_cnt;
386 e->op = intel_pt_insn->op;
387 e->branch = intel_pt_insn->branch;
388 e->length = intel_pt_insn->length;
389 e->rel = intel_pt_insn->rel;
390 memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
391
392 err = auxtrace_cache__add(c, offset, &e->entry);
393 if (err)
394 auxtrace_cache__free_entry(c, e);
395
396 return err;
397 }
398
399 static struct intel_pt_cache_entry *
intel_pt_cache_lookup(struct dso * dso,struct machine * machine,u64 offset)400 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
401 {
402 struct auxtrace_cache *c = intel_pt_cache(dso, machine);
403
404 if (!c)
405 return NULL;
406
407 return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
408 }
409
intel_pt_walk_next_insn(struct intel_pt_insn * intel_pt_insn,uint64_t * insn_cnt_ptr,uint64_t * ip,uint64_t to_ip,uint64_t max_insn_cnt,void * data)410 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
411 uint64_t *insn_cnt_ptr, uint64_t *ip,
412 uint64_t to_ip, uint64_t max_insn_cnt,
413 void *data)
414 {
415 struct intel_pt_queue *ptq = data;
416 struct machine *machine = ptq->pt->machine;
417 struct thread *thread;
418 struct addr_location al;
419 unsigned char buf[INTEL_PT_INSN_BUF_SZ];
420 ssize_t len;
421 int x86_64;
422 u8 cpumode;
423 u64 offset, start_offset, start_ip;
424 u64 insn_cnt = 0;
425 bool one_map = true;
426
427 intel_pt_insn->length = 0;
428
429 if (to_ip && *ip == to_ip)
430 goto out_no_cache;
431
432 if (*ip >= ptq->pt->kernel_start)
433 cpumode = PERF_RECORD_MISC_KERNEL;
434 else
435 cpumode = PERF_RECORD_MISC_USER;
436
437 thread = ptq->thread;
438 if (!thread) {
439 if (cpumode != PERF_RECORD_MISC_KERNEL)
440 return -EINVAL;
441 thread = ptq->pt->unknown_thread;
442 }
443
444 while (1) {
445 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso)
446 return -EINVAL;
447
448 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
449 dso__data_status_seen(al.map->dso,
450 DSO_DATA_STATUS_SEEN_ITRACE))
451 return -ENOENT;
452
453 offset = al.map->map_ip(al.map, *ip);
454
455 if (!to_ip && one_map) {
456 struct intel_pt_cache_entry *e;
457
458 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
459 if (e &&
460 (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
461 *insn_cnt_ptr = e->insn_cnt;
462 *ip += e->byte_cnt;
463 intel_pt_insn->op = e->op;
464 intel_pt_insn->branch = e->branch;
465 intel_pt_insn->length = e->length;
466 intel_pt_insn->rel = e->rel;
467 memcpy(intel_pt_insn->buf, e->insn,
468 INTEL_PT_INSN_BUF_SZ);
469 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
470 return 0;
471 }
472 }
473
474 start_offset = offset;
475 start_ip = *ip;
476
477 /* Load maps to ensure dso->is_64_bit has been updated */
478 map__load(al.map);
479
480 x86_64 = al.map->dso->is_64_bit;
481
482 while (1) {
483 len = dso__data_read_offset(al.map->dso, machine,
484 offset, buf,
485 INTEL_PT_INSN_BUF_SZ);
486 if (len <= 0)
487 return -EINVAL;
488
489 if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
490 return -EINVAL;
491
492 intel_pt_log_insn(intel_pt_insn, *ip);
493
494 insn_cnt += 1;
495
496 if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH)
497 goto out;
498
499 if (max_insn_cnt && insn_cnt >= max_insn_cnt)
500 goto out_no_cache;
501
502 *ip += intel_pt_insn->length;
503
504 if (to_ip && *ip == to_ip)
505 goto out_no_cache;
506
507 if (*ip >= al.map->end)
508 break;
509
510 offset += intel_pt_insn->length;
511 }
512 one_map = false;
513 }
514 out:
515 *insn_cnt_ptr = insn_cnt;
516
517 if (!one_map)
518 goto out_no_cache;
519
520 /*
521 * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
522 * entries.
523 */
524 if (to_ip) {
525 struct intel_pt_cache_entry *e;
526
527 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
528 if (e)
529 return 0;
530 }
531
532 /* Ignore cache errors */
533 intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
534 *ip - start_ip, intel_pt_insn);
535
536 return 0;
537
538 out_no_cache:
539 *insn_cnt_ptr = insn_cnt;
540 return 0;
541 }
542
intel_pt_match_pgd_ip(struct intel_pt * pt,uint64_t ip,uint64_t offset,const char * filename)543 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
544 uint64_t offset, const char *filename)
545 {
546 struct addr_filter *filt;
547 bool have_filter = false;
548 bool hit_tracestop = false;
549 bool hit_filter = false;
550
551 list_for_each_entry(filt, &pt->filts.head, list) {
552 if (filt->start)
553 have_filter = true;
554
555 if ((filename && !filt->filename) ||
556 (!filename && filt->filename) ||
557 (filename && strcmp(filename, filt->filename)))
558 continue;
559
560 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
561 continue;
562
563 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
564 ip, offset, filename ? filename : "[kernel]",
565 filt->start ? "filter" : "stop",
566 filt->addr, filt->size);
567
568 if (filt->start)
569 hit_filter = true;
570 else
571 hit_tracestop = true;
572 }
573
574 if (!hit_tracestop && !hit_filter)
575 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
576 ip, offset, filename ? filename : "[kernel]");
577
578 return hit_tracestop || (have_filter && !hit_filter);
579 }
580
__intel_pt_pgd_ip(uint64_t ip,void * data)581 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
582 {
583 struct intel_pt_queue *ptq = data;
584 struct thread *thread;
585 struct addr_location al;
586 u8 cpumode;
587 u64 offset;
588
589 if (ip >= ptq->pt->kernel_start)
590 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
591
592 cpumode = PERF_RECORD_MISC_USER;
593
594 thread = ptq->thread;
595 if (!thread)
596 return -EINVAL;
597
598 if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
599 return -EINVAL;
600
601 offset = al.map->map_ip(al.map, ip);
602
603 return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
604 al.map->dso->long_name);
605 }
606
intel_pt_pgd_ip(uint64_t ip,void * data)607 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
608 {
609 return __intel_pt_pgd_ip(ip, data) > 0;
610 }
611
intel_pt_get_config(struct intel_pt * pt,struct perf_event_attr * attr,u64 * config)612 static bool intel_pt_get_config(struct intel_pt *pt,
613 struct perf_event_attr *attr, u64 *config)
614 {
615 if (attr->type == pt->pmu_type) {
616 if (config)
617 *config = attr->config;
618 return true;
619 }
620
621 return false;
622 }
623
intel_pt_exclude_kernel(struct intel_pt * pt)624 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
625 {
626 struct perf_evsel *evsel;
627
628 evlist__for_each_entry(pt->session->evlist, evsel) {
629 if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
630 !evsel->attr.exclude_kernel)
631 return false;
632 }
633 return true;
634 }
635
intel_pt_return_compression(struct intel_pt * pt)636 static bool intel_pt_return_compression(struct intel_pt *pt)
637 {
638 struct perf_evsel *evsel;
639 u64 config;
640
641 if (!pt->noretcomp_bit)
642 return true;
643
644 evlist__for_each_entry(pt->session->evlist, evsel) {
645 if (intel_pt_get_config(pt, &evsel->attr, &config) &&
646 (config & pt->noretcomp_bit))
647 return false;
648 }
649 return true;
650 }
651
intel_pt_branch_enable(struct intel_pt * pt)652 static bool intel_pt_branch_enable(struct intel_pt *pt)
653 {
654 struct perf_evsel *evsel;
655 u64 config;
656
657 evlist__for_each_entry(pt->session->evlist, evsel) {
658 if (intel_pt_get_config(pt, &evsel->attr, &config) &&
659 (config & 1) && !(config & 0x2000))
660 return false;
661 }
662 return true;
663 }
664
intel_pt_mtc_period(struct intel_pt * pt)665 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
666 {
667 struct perf_evsel *evsel;
668 unsigned int shift;
669 u64 config;
670
671 if (!pt->mtc_freq_bits)
672 return 0;
673
674 for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
675 config >>= 1;
676
677 evlist__for_each_entry(pt->session->evlist, evsel) {
678 if (intel_pt_get_config(pt, &evsel->attr, &config))
679 return (config & pt->mtc_freq_bits) >> shift;
680 }
681 return 0;
682 }
683
intel_pt_timeless_decoding(struct intel_pt * pt)684 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
685 {
686 struct perf_evsel *evsel;
687 bool timeless_decoding = true;
688 u64 config;
689
690 if (!pt->tsc_bit || !pt->cap_user_time_zero)
691 return true;
692
693 evlist__for_each_entry(pt->session->evlist, evsel) {
694 if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME))
695 return true;
696 if (intel_pt_get_config(pt, &evsel->attr, &config)) {
697 if (config & pt->tsc_bit)
698 timeless_decoding = false;
699 else
700 return true;
701 }
702 }
703 return timeless_decoding;
704 }
705
intel_pt_tracing_kernel(struct intel_pt * pt)706 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
707 {
708 struct perf_evsel *evsel;
709
710 evlist__for_each_entry(pt->session->evlist, evsel) {
711 if (intel_pt_get_config(pt, &evsel->attr, NULL) &&
712 !evsel->attr.exclude_kernel)
713 return true;
714 }
715 return false;
716 }
717
intel_pt_have_tsc(struct intel_pt * pt)718 static bool intel_pt_have_tsc(struct intel_pt *pt)
719 {
720 struct perf_evsel *evsel;
721 bool have_tsc = false;
722 u64 config;
723
724 if (!pt->tsc_bit)
725 return false;
726
727 evlist__for_each_entry(pt->session->evlist, evsel) {
728 if (intel_pt_get_config(pt, &evsel->attr, &config)) {
729 if (config & pt->tsc_bit)
730 have_tsc = true;
731 else
732 return false;
733 }
734 }
735 return have_tsc;
736 }
737
intel_pt_ns_to_ticks(const struct intel_pt * pt,u64 ns)738 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
739 {
740 u64 quot, rem;
741
742 quot = ns / pt->tc.time_mult;
743 rem = ns % pt->tc.time_mult;
744 return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
745 pt->tc.time_mult;
746 }
747
intel_pt_alloc_queue(struct intel_pt * pt,unsigned int queue_nr)748 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
749 unsigned int queue_nr)
750 {
751 struct intel_pt_params params = { .get_trace = 0, };
752 struct perf_env *env = pt->machine->env;
753 struct intel_pt_queue *ptq;
754
755 ptq = zalloc(sizeof(struct intel_pt_queue));
756 if (!ptq)
757 return NULL;
758
759 if (pt->synth_opts.callchain) {
760 size_t sz = sizeof(struct ip_callchain);
761
762 sz += pt->synth_opts.callchain_sz * sizeof(u64);
763 ptq->chain = zalloc(sz);
764 if (!ptq->chain)
765 goto out_free;
766 }
767
768 if (pt->synth_opts.last_branch) {
769 size_t sz = sizeof(struct branch_stack);
770
771 sz += pt->synth_opts.last_branch_sz *
772 sizeof(struct branch_entry);
773 ptq->last_branch = zalloc(sz);
774 if (!ptq->last_branch)
775 goto out_free;
776 ptq->last_branch_rb = zalloc(sz);
777 if (!ptq->last_branch_rb)
778 goto out_free;
779 }
780
781 ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
782 if (!ptq->event_buf)
783 goto out_free;
784
785 ptq->pt = pt;
786 ptq->queue_nr = queue_nr;
787 ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
788 ptq->pid = -1;
789 ptq->tid = -1;
790 ptq->cpu = -1;
791 ptq->next_tid = -1;
792
793 params.get_trace = intel_pt_get_trace;
794 params.walk_insn = intel_pt_walk_next_insn;
795 params.data = ptq;
796 params.return_compression = intel_pt_return_compression(pt);
797 params.branch_enable = intel_pt_branch_enable(pt);
798 params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
799 params.mtc_period = intel_pt_mtc_period(pt);
800 params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
801 params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
802
803 if (pt->filts.cnt > 0)
804 params.pgd_ip = intel_pt_pgd_ip;
805
806 if (pt->synth_opts.instructions) {
807 if (pt->synth_opts.period) {
808 switch (pt->synth_opts.period_type) {
809 case PERF_ITRACE_PERIOD_INSTRUCTIONS:
810 params.period_type =
811 INTEL_PT_PERIOD_INSTRUCTIONS;
812 params.period = pt->synth_opts.period;
813 break;
814 case PERF_ITRACE_PERIOD_TICKS:
815 params.period_type = INTEL_PT_PERIOD_TICKS;
816 params.period = pt->synth_opts.period;
817 break;
818 case PERF_ITRACE_PERIOD_NANOSECS:
819 params.period_type = INTEL_PT_PERIOD_TICKS;
820 params.period = intel_pt_ns_to_ticks(pt,
821 pt->synth_opts.period);
822 break;
823 default:
824 break;
825 }
826 }
827
828 if (!params.period) {
829 params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
830 params.period = 1;
831 }
832 }
833
834 if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
835 params.flags |= INTEL_PT_FUP_WITH_NLIP;
836
837 ptq->decoder = intel_pt_decoder_new(¶ms);
838 if (!ptq->decoder)
839 goto out_free;
840
841 return ptq;
842
843 out_free:
844 zfree(&ptq->event_buf);
845 zfree(&ptq->last_branch);
846 zfree(&ptq->last_branch_rb);
847 zfree(&ptq->chain);
848 free(ptq);
849 return NULL;
850 }
851
intel_pt_free_queue(void * priv)852 static void intel_pt_free_queue(void *priv)
853 {
854 struct intel_pt_queue *ptq = priv;
855
856 if (!ptq)
857 return;
858 thread__zput(ptq->thread);
859 intel_pt_decoder_free(ptq->decoder);
860 zfree(&ptq->event_buf);
861 zfree(&ptq->last_branch);
862 zfree(&ptq->last_branch_rb);
863 zfree(&ptq->chain);
864 free(ptq);
865 }
866
intel_pt_set_pid_tid_cpu(struct intel_pt * pt,struct auxtrace_queue * queue)867 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
868 struct auxtrace_queue *queue)
869 {
870 struct intel_pt_queue *ptq = queue->priv;
871
872 if (queue->tid == -1 || pt->have_sched_switch) {
873 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
874 thread__zput(ptq->thread);
875 }
876
877 if (!ptq->thread && ptq->tid != -1)
878 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
879
880 if (ptq->thread) {
881 ptq->pid = ptq->thread->pid_;
882 if (queue->cpu == -1)
883 ptq->cpu = ptq->thread->cpu;
884 }
885 }
886
intel_pt_sample_flags(struct intel_pt_queue * ptq)887 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
888 {
889 if (ptq->state->flags & INTEL_PT_ABORT_TX) {
890 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
891 } else if (ptq->state->flags & INTEL_PT_ASYNC) {
892 if (ptq->state->to_ip)
893 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
894 PERF_IP_FLAG_ASYNC |
895 PERF_IP_FLAG_INTERRUPT;
896 else
897 ptq->flags = PERF_IP_FLAG_BRANCH |
898 PERF_IP_FLAG_TRACE_END;
899 ptq->insn_len = 0;
900 } else {
901 if (ptq->state->from_ip)
902 ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
903 else
904 ptq->flags = PERF_IP_FLAG_BRANCH |
905 PERF_IP_FLAG_TRACE_BEGIN;
906 if (ptq->state->flags & INTEL_PT_IN_TX)
907 ptq->flags |= PERF_IP_FLAG_IN_TX;
908 ptq->insn_len = ptq->state->insn_len;
909 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
910 }
911 }
912
intel_pt_setup_queue(struct intel_pt * pt,struct auxtrace_queue * queue,unsigned int queue_nr)913 static int intel_pt_setup_queue(struct intel_pt *pt,
914 struct auxtrace_queue *queue,
915 unsigned int queue_nr)
916 {
917 struct intel_pt_queue *ptq = queue->priv;
918
919 if (list_empty(&queue->head))
920 return 0;
921
922 if (!ptq) {
923 ptq = intel_pt_alloc_queue(pt, queue_nr);
924 if (!ptq)
925 return -ENOMEM;
926 queue->priv = ptq;
927
928 if (queue->cpu != -1)
929 ptq->cpu = queue->cpu;
930 ptq->tid = queue->tid;
931
932 if (pt->sampling_mode && !pt->snapshot_mode &&
933 pt->timeless_decoding)
934 ptq->step_through_buffers = true;
935
936 ptq->sync_switch = pt->sync_switch;
937 }
938
939 if (!ptq->on_heap &&
940 (!ptq->sync_switch ||
941 ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
942 const struct intel_pt_state *state;
943 int ret;
944
945 if (pt->timeless_decoding)
946 return 0;
947
948 intel_pt_log("queue %u getting timestamp\n", queue_nr);
949 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
950 queue_nr, ptq->cpu, ptq->pid, ptq->tid);
951 while (1) {
952 state = intel_pt_decode(ptq->decoder);
953 if (state->err) {
954 if (state->err == INTEL_PT_ERR_NODATA) {
955 intel_pt_log("queue %u has no timestamp\n",
956 queue_nr);
957 return 0;
958 }
959 continue;
960 }
961 if (state->timestamp)
962 break;
963 }
964
965 ptq->timestamp = state->timestamp;
966 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
967 queue_nr, ptq->timestamp);
968 ptq->state = state;
969 ptq->have_sample = true;
970 intel_pt_sample_flags(ptq);
971 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
972 if (ret)
973 return ret;
974 ptq->on_heap = true;
975 }
976
977 return 0;
978 }
979
intel_pt_setup_queues(struct intel_pt * pt)980 static int intel_pt_setup_queues(struct intel_pt *pt)
981 {
982 unsigned int i;
983 int ret;
984
985 for (i = 0; i < pt->queues.nr_queues; i++) {
986 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
987 if (ret)
988 return ret;
989 }
990 return 0;
991 }
992
intel_pt_copy_last_branch_rb(struct intel_pt_queue * ptq)993 static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq)
994 {
995 struct branch_stack *bs_src = ptq->last_branch_rb;
996 struct branch_stack *bs_dst = ptq->last_branch;
997 size_t nr = 0;
998
999 bs_dst->nr = bs_src->nr;
1000
1001 if (!bs_src->nr)
1002 return;
1003
1004 nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos;
1005 memcpy(&bs_dst->entries[0],
1006 &bs_src->entries[ptq->last_branch_pos],
1007 sizeof(struct branch_entry) * nr);
1008
1009 if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) {
1010 memcpy(&bs_dst->entries[nr],
1011 &bs_src->entries[0],
1012 sizeof(struct branch_entry) * ptq->last_branch_pos);
1013 }
1014 }
1015
intel_pt_reset_last_branch_rb(struct intel_pt_queue * ptq)1016 static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq)
1017 {
1018 ptq->last_branch_pos = 0;
1019 ptq->last_branch_rb->nr = 0;
1020 }
1021
intel_pt_update_last_branch_rb(struct intel_pt_queue * ptq)1022 static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq)
1023 {
1024 const struct intel_pt_state *state = ptq->state;
1025 struct branch_stack *bs = ptq->last_branch_rb;
1026 struct branch_entry *be;
1027
1028 if (!ptq->last_branch_pos)
1029 ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz;
1030
1031 ptq->last_branch_pos -= 1;
1032
1033 be = &bs->entries[ptq->last_branch_pos];
1034 be->from = state->from_ip;
1035 be->to = state->to_ip;
1036 be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX);
1037 be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX);
1038 /* No support for mispredict */
1039 be->flags.mispred = ptq->pt->mispred_all;
1040
1041 if (bs->nr < ptq->pt->synth_opts.last_branch_sz)
1042 bs->nr += 1;
1043 }
1044
intel_pt_skip_event(struct intel_pt * pt)1045 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1046 {
1047 return pt->synth_opts.initial_skip &&
1048 pt->num_events++ < pt->synth_opts.initial_skip;
1049 }
1050
intel_pt_prep_b_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1051 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1052 struct intel_pt_queue *ptq,
1053 union perf_event *event,
1054 struct perf_sample *sample)
1055 {
1056 event->sample.header.type = PERF_RECORD_SAMPLE;
1057 event->sample.header.misc = PERF_RECORD_MISC_USER;
1058 event->sample.header.size = sizeof(struct perf_event_header);
1059
1060 if (!pt->timeless_decoding)
1061 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1062
1063 sample->cpumode = PERF_RECORD_MISC_USER;
1064 sample->ip = ptq->state->from_ip;
1065 sample->pid = ptq->pid;
1066 sample->tid = ptq->tid;
1067 sample->addr = ptq->state->to_ip;
1068 sample->period = 1;
1069 sample->cpu = ptq->cpu;
1070 sample->flags = ptq->flags;
1071 sample->insn_len = ptq->insn_len;
1072 memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1073 }
1074
intel_pt_inject_event(union perf_event * event,struct perf_sample * sample,u64 type)1075 static int intel_pt_inject_event(union perf_event *event,
1076 struct perf_sample *sample, u64 type)
1077 {
1078 event->header.size = perf_event__sample_event_size(sample, type, 0);
1079 return perf_event__synthesize_sample(event, type, 0, sample);
1080 }
1081
intel_pt_opt_inject(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1082 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1083 union perf_event *event,
1084 struct perf_sample *sample, u64 type)
1085 {
1086 if (!pt->synth_opts.inject)
1087 return 0;
1088
1089 return intel_pt_inject_event(event, sample, type);
1090 }
1091
intel_pt_deliver_synth_b_event(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample,u64 type)1092 static int intel_pt_deliver_synth_b_event(struct intel_pt *pt,
1093 union perf_event *event,
1094 struct perf_sample *sample, u64 type)
1095 {
1096 int ret;
1097
1098 ret = intel_pt_opt_inject(pt, event, sample, type);
1099 if (ret)
1100 return ret;
1101
1102 ret = perf_session__deliver_synth_event(pt->session, event, sample);
1103 if (ret)
1104 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1105
1106 return ret;
1107 }
1108
intel_pt_synth_branch_sample(struct intel_pt_queue * ptq)1109 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1110 {
1111 struct intel_pt *pt = ptq->pt;
1112 union perf_event *event = ptq->event_buf;
1113 struct perf_sample sample = { .ip = 0, };
1114 struct dummy_branch_stack {
1115 u64 nr;
1116 struct branch_entry entries;
1117 } dummy_bs;
1118
1119 if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1120 return 0;
1121
1122 if (intel_pt_skip_event(pt))
1123 return 0;
1124
1125 intel_pt_prep_b_sample(pt, ptq, event, &sample);
1126
1127 sample.id = ptq->pt->branches_id;
1128 sample.stream_id = ptq->pt->branches_id;
1129
1130 /*
1131 * perf report cannot handle events without a branch stack when using
1132 * SORT_MODE__BRANCH so make a dummy one.
1133 */
1134 if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1135 dummy_bs = (struct dummy_branch_stack){
1136 .nr = 1,
1137 .entries = {
1138 .from = sample.ip,
1139 .to = sample.addr,
1140 },
1141 };
1142 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1143 }
1144
1145 return intel_pt_deliver_synth_b_event(pt, event, &sample,
1146 pt->branches_sample_type);
1147 }
1148
intel_pt_prep_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1149 static void intel_pt_prep_sample(struct intel_pt *pt,
1150 struct intel_pt_queue *ptq,
1151 union perf_event *event,
1152 struct perf_sample *sample)
1153 {
1154 intel_pt_prep_b_sample(pt, ptq, event, sample);
1155
1156 if (pt->synth_opts.callchain) {
1157 thread_stack__sample(ptq->thread, ptq->chain,
1158 pt->synth_opts.callchain_sz, sample->ip);
1159 sample->callchain = ptq->chain;
1160 }
1161
1162 if (pt->synth_opts.last_branch) {
1163 intel_pt_copy_last_branch_rb(ptq);
1164 sample->branch_stack = ptq->last_branch;
1165 }
1166 }
1167
intel_pt_deliver_synth_event(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample,u64 type)1168 static inline int intel_pt_deliver_synth_event(struct intel_pt *pt,
1169 struct intel_pt_queue *ptq,
1170 union perf_event *event,
1171 struct perf_sample *sample,
1172 u64 type)
1173 {
1174 int ret;
1175
1176 ret = intel_pt_deliver_synth_b_event(pt, event, sample, type);
1177
1178 if (pt->synth_opts.last_branch)
1179 intel_pt_reset_last_branch_rb(ptq);
1180
1181 return ret;
1182 }
1183
intel_pt_synth_instruction_sample(struct intel_pt_queue * ptq)1184 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1185 {
1186 struct intel_pt *pt = ptq->pt;
1187 union perf_event *event = ptq->event_buf;
1188 struct perf_sample sample = { .ip = 0, };
1189
1190 if (intel_pt_skip_event(pt))
1191 return 0;
1192
1193 intel_pt_prep_sample(pt, ptq, event, &sample);
1194
1195 sample.id = ptq->pt->instructions_id;
1196 sample.stream_id = ptq->pt->instructions_id;
1197 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1198
1199 ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1200
1201 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1202 pt->instructions_sample_type);
1203 }
1204
intel_pt_synth_transaction_sample(struct intel_pt_queue * ptq)1205 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1206 {
1207 struct intel_pt *pt = ptq->pt;
1208 union perf_event *event = ptq->event_buf;
1209 struct perf_sample sample = { .ip = 0, };
1210
1211 if (intel_pt_skip_event(pt))
1212 return 0;
1213
1214 intel_pt_prep_sample(pt, ptq, event, &sample);
1215
1216 sample.id = ptq->pt->transactions_id;
1217 sample.stream_id = ptq->pt->transactions_id;
1218
1219 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1220 pt->transactions_sample_type);
1221 }
1222
intel_pt_prep_p_sample(struct intel_pt * pt,struct intel_pt_queue * ptq,union perf_event * event,struct perf_sample * sample)1223 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1224 struct intel_pt_queue *ptq,
1225 union perf_event *event,
1226 struct perf_sample *sample)
1227 {
1228 intel_pt_prep_sample(pt, ptq, event, sample);
1229
1230 /*
1231 * Zero IP is used to mean "trace start" but that is not the case for
1232 * power or PTWRITE events with no IP, so clear the flags.
1233 */
1234 if (!sample->ip)
1235 sample->flags = 0;
1236 }
1237
intel_pt_synth_ptwrite_sample(struct intel_pt_queue * ptq)1238 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1239 {
1240 struct intel_pt *pt = ptq->pt;
1241 union perf_event *event = ptq->event_buf;
1242 struct perf_sample sample = { .ip = 0, };
1243 struct perf_synth_intel_ptwrite raw;
1244
1245 if (intel_pt_skip_event(pt))
1246 return 0;
1247
1248 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1249
1250 sample.id = ptq->pt->ptwrites_id;
1251 sample.stream_id = ptq->pt->ptwrites_id;
1252
1253 raw.flags = 0;
1254 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1255 raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1256
1257 sample.raw_size = perf_synth__raw_size(raw);
1258 sample.raw_data = perf_synth__raw_data(&raw);
1259
1260 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1261 pt->ptwrites_sample_type);
1262 }
1263
intel_pt_synth_cbr_sample(struct intel_pt_queue * ptq)1264 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1265 {
1266 struct intel_pt *pt = ptq->pt;
1267 union perf_event *event = ptq->event_buf;
1268 struct perf_sample sample = { .ip = 0, };
1269 struct perf_synth_intel_cbr raw;
1270 u32 flags;
1271
1272 if (intel_pt_skip_event(pt))
1273 return 0;
1274
1275 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1276
1277 sample.id = ptq->pt->cbr_id;
1278 sample.stream_id = ptq->pt->cbr_id;
1279
1280 flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1281 raw.flags = cpu_to_le32(flags);
1282 raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1283 raw.reserved3 = 0;
1284
1285 sample.raw_size = perf_synth__raw_size(raw);
1286 sample.raw_data = perf_synth__raw_data(&raw);
1287
1288 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1289 pt->pwr_events_sample_type);
1290 }
1291
intel_pt_synth_mwait_sample(struct intel_pt_queue * ptq)1292 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1293 {
1294 struct intel_pt *pt = ptq->pt;
1295 union perf_event *event = ptq->event_buf;
1296 struct perf_sample sample = { .ip = 0, };
1297 struct perf_synth_intel_mwait raw;
1298
1299 if (intel_pt_skip_event(pt))
1300 return 0;
1301
1302 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1303
1304 sample.id = ptq->pt->mwait_id;
1305 sample.stream_id = ptq->pt->mwait_id;
1306
1307 raw.reserved = 0;
1308 raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1309
1310 sample.raw_size = perf_synth__raw_size(raw);
1311 sample.raw_data = perf_synth__raw_data(&raw);
1312
1313 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1314 pt->pwr_events_sample_type);
1315 }
1316
intel_pt_synth_pwre_sample(struct intel_pt_queue * ptq)1317 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1318 {
1319 struct intel_pt *pt = ptq->pt;
1320 union perf_event *event = ptq->event_buf;
1321 struct perf_sample sample = { .ip = 0, };
1322 struct perf_synth_intel_pwre raw;
1323
1324 if (intel_pt_skip_event(pt))
1325 return 0;
1326
1327 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1328
1329 sample.id = ptq->pt->pwre_id;
1330 sample.stream_id = ptq->pt->pwre_id;
1331
1332 raw.reserved = 0;
1333 raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1334
1335 sample.raw_size = perf_synth__raw_size(raw);
1336 sample.raw_data = perf_synth__raw_data(&raw);
1337
1338 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1339 pt->pwr_events_sample_type);
1340 }
1341
intel_pt_synth_exstop_sample(struct intel_pt_queue * ptq)1342 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1343 {
1344 struct intel_pt *pt = ptq->pt;
1345 union perf_event *event = ptq->event_buf;
1346 struct perf_sample sample = { .ip = 0, };
1347 struct perf_synth_intel_exstop raw;
1348
1349 if (intel_pt_skip_event(pt))
1350 return 0;
1351
1352 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1353
1354 sample.id = ptq->pt->exstop_id;
1355 sample.stream_id = ptq->pt->exstop_id;
1356
1357 raw.flags = 0;
1358 raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1359
1360 sample.raw_size = perf_synth__raw_size(raw);
1361 sample.raw_data = perf_synth__raw_data(&raw);
1362
1363 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1364 pt->pwr_events_sample_type);
1365 }
1366
intel_pt_synth_pwrx_sample(struct intel_pt_queue * ptq)1367 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
1368 {
1369 struct intel_pt *pt = ptq->pt;
1370 union perf_event *event = ptq->event_buf;
1371 struct perf_sample sample = { .ip = 0, };
1372 struct perf_synth_intel_pwrx raw;
1373
1374 if (intel_pt_skip_event(pt))
1375 return 0;
1376
1377 intel_pt_prep_p_sample(pt, ptq, event, &sample);
1378
1379 sample.id = ptq->pt->pwrx_id;
1380 sample.stream_id = ptq->pt->pwrx_id;
1381
1382 raw.reserved = 0;
1383 raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
1384
1385 sample.raw_size = perf_synth__raw_size(raw);
1386 sample.raw_data = perf_synth__raw_data(&raw);
1387
1388 return intel_pt_deliver_synth_event(pt, ptq, event, &sample,
1389 pt->pwr_events_sample_type);
1390 }
1391
intel_pt_synth_error(struct intel_pt * pt,int code,int cpu,pid_t pid,pid_t tid,u64 ip)1392 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
1393 pid_t pid, pid_t tid, u64 ip)
1394 {
1395 union perf_event event;
1396 char msg[MAX_AUXTRACE_ERROR_MSG];
1397 int err;
1398
1399 intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
1400
1401 auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
1402 code, cpu, pid, tid, ip, msg);
1403
1404 err = perf_session__deliver_synth_event(pt->session, &event, NULL);
1405 if (err)
1406 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
1407 err);
1408
1409 return err;
1410 }
1411
intel_pt_next_tid(struct intel_pt * pt,struct intel_pt_queue * ptq)1412 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
1413 {
1414 struct auxtrace_queue *queue;
1415 pid_t tid = ptq->next_tid;
1416 int err;
1417
1418 if (tid == -1)
1419 return 0;
1420
1421 intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
1422
1423 err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
1424
1425 queue = &pt->queues.queue_array[ptq->queue_nr];
1426 intel_pt_set_pid_tid_cpu(pt, queue);
1427
1428 ptq->next_tid = -1;
1429
1430 return err;
1431 }
1432
intel_pt_is_switch_ip(struct intel_pt_queue * ptq,u64 ip)1433 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
1434 {
1435 struct intel_pt *pt = ptq->pt;
1436
1437 return ip == pt->switch_ip &&
1438 (ptq->flags & PERF_IP_FLAG_BRANCH) &&
1439 !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
1440 PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
1441 }
1442
1443 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
1444 INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT | \
1445 INTEL_PT_CBR_CHG)
1446
intel_pt_sample(struct intel_pt_queue * ptq)1447 static int intel_pt_sample(struct intel_pt_queue *ptq)
1448 {
1449 const struct intel_pt_state *state = ptq->state;
1450 struct intel_pt *pt = ptq->pt;
1451 int err;
1452
1453 if (!ptq->have_sample)
1454 return 0;
1455
1456 ptq->have_sample = false;
1457
1458 if (pt->sample_pwr_events && (state->type & INTEL_PT_PWR_EVT)) {
1459 if (state->type & INTEL_PT_CBR_CHG) {
1460 err = intel_pt_synth_cbr_sample(ptq);
1461 if (err)
1462 return err;
1463 }
1464 if (state->type & INTEL_PT_MWAIT_OP) {
1465 err = intel_pt_synth_mwait_sample(ptq);
1466 if (err)
1467 return err;
1468 }
1469 if (state->type & INTEL_PT_PWR_ENTRY) {
1470 err = intel_pt_synth_pwre_sample(ptq);
1471 if (err)
1472 return err;
1473 }
1474 if (state->type & INTEL_PT_EX_STOP) {
1475 err = intel_pt_synth_exstop_sample(ptq);
1476 if (err)
1477 return err;
1478 }
1479 if (state->type & INTEL_PT_PWR_EXIT) {
1480 err = intel_pt_synth_pwrx_sample(ptq);
1481 if (err)
1482 return err;
1483 }
1484 }
1485
1486 if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
1487 err = intel_pt_synth_instruction_sample(ptq);
1488 if (err)
1489 return err;
1490 }
1491
1492 if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
1493 err = intel_pt_synth_transaction_sample(ptq);
1494 if (err)
1495 return err;
1496 }
1497
1498 if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
1499 err = intel_pt_synth_ptwrite_sample(ptq);
1500 if (err)
1501 return err;
1502 }
1503
1504 if (!(state->type & INTEL_PT_BRANCH))
1505 return 0;
1506
1507 if (pt->synth_opts.callchain || pt->synth_opts.thread_stack)
1508 thread_stack__event(ptq->thread, ptq->flags, state->from_ip,
1509 state->to_ip, ptq->insn_len,
1510 state->trace_nr);
1511 else
1512 thread_stack__set_trace_nr(ptq->thread, state->trace_nr);
1513
1514 if (pt->sample_branches) {
1515 err = intel_pt_synth_branch_sample(ptq);
1516 if (err)
1517 return err;
1518 }
1519
1520 if (pt->synth_opts.last_branch)
1521 intel_pt_update_last_branch_rb(ptq);
1522
1523 if (!ptq->sync_switch)
1524 return 0;
1525
1526 if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
1527 switch (ptq->switch_state) {
1528 case INTEL_PT_SS_NOT_TRACING:
1529 case INTEL_PT_SS_UNKNOWN:
1530 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1531 err = intel_pt_next_tid(pt, ptq);
1532 if (err)
1533 return err;
1534 ptq->switch_state = INTEL_PT_SS_TRACING;
1535 break;
1536 default:
1537 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
1538 return 1;
1539 }
1540 } else if (!state->to_ip) {
1541 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
1542 } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
1543 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
1544 } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1545 state->to_ip == pt->ptss_ip &&
1546 (ptq->flags & PERF_IP_FLAG_CALL)) {
1547 ptq->switch_state = INTEL_PT_SS_TRACING;
1548 }
1549
1550 return 0;
1551 }
1552
intel_pt_switch_ip(struct intel_pt * pt,u64 * ptss_ip)1553 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
1554 {
1555 struct machine *machine = pt->machine;
1556 struct map *map;
1557 struct symbol *sym, *start;
1558 u64 ip, switch_ip = 0;
1559 const char *ptss;
1560
1561 if (ptss_ip)
1562 *ptss_ip = 0;
1563
1564 map = machine__kernel_map(machine);
1565 if (!map)
1566 return 0;
1567
1568 if (map__load(map))
1569 return 0;
1570
1571 start = dso__first_symbol(map->dso);
1572
1573 for (sym = start; sym; sym = dso__next_symbol(sym)) {
1574 if (sym->binding == STB_GLOBAL &&
1575 !strcmp(sym->name, "__switch_to")) {
1576 ip = map->unmap_ip(map, sym->start);
1577 if (ip >= map->start && ip < map->end) {
1578 switch_ip = ip;
1579 break;
1580 }
1581 }
1582 }
1583
1584 if (!switch_ip || !ptss_ip)
1585 return 0;
1586
1587 if (pt->have_sched_switch == 1)
1588 ptss = "perf_trace_sched_switch";
1589 else
1590 ptss = "__perf_event_task_sched_out";
1591
1592 for (sym = start; sym; sym = dso__next_symbol(sym)) {
1593 if (!strcmp(sym->name, ptss)) {
1594 ip = map->unmap_ip(map, sym->start);
1595 if (ip >= map->start && ip < map->end) {
1596 *ptss_ip = ip;
1597 break;
1598 }
1599 }
1600 }
1601
1602 return switch_ip;
1603 }
1604
intel_pt_enable_sync_switch(struct intel_pt * pt)1605 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
1606 {
1607 unsigned int i;
1608
1609 pt->sync_switch = true;
1610
1611 for (i = 0; i < pt->queues.nr_queues; i++) {
1612 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1613 struct intel_pt_queue *ptq = queue->priv;
1614
1615 if (ptq)
1616 ptq->sync_switch = true;
1617 }
1618 }
1619
intel_pt_run_decoder(struct intel_pt_queue * ptq,u64 * timestamp)1620 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
1621 {
1622 const struct intel_pt_state *state = ptq->state;
1623 struct intel_pt *pt = ptq->pt;
1624 int err;
1625
1626 if (!pt->kernel_start) {
1627 pt->kernel_start = machine__kernel_start(pt->machine);
1628 if (pt->per_cpu_mmaps &&
1629 (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
1630 !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
1631 !pt->sampling_mode) {
1632 pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
1633 if (pt->switch_ip) {
1634 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
1635 pt->switch_ip, pt->ptss_ip);
1636 intel_pt_enable_sync_switch(pt);
1637 }
1638 }
1639 }
1640
1641 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1642 ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1643 while (1) {
1644 err = intel_pt_sample(ptq);
1645 if (err)
1646 return err;
1647
1648 state = intel_pt_decode(ptq->decoder);
1649 if (state->err) {
1650 if (state->err == INTEL_PT_ERR_NODATA)
1651 return 1;
1652 if (ptq->sync_switch &&
1653 state->from_ip >= pt->kernel_start) {
1654 ptq->sync_switch = false;
1655 intel_pt_next_tid(pt, ptq);
1656 }
1657 if (pt->synth_opts.errors) {
1658 err = intel_pt_synth_error(pt, state->err,
1659 ptq->cpu, ptq->pid,
1660 ptq->tid,
1661 state->from_ip);
1662 if (err)
1663 return err;
1664 }
1665 continue;
1666 }
1667
1668 ptq->state = state;
1669 ptq->have_sample = true;
1670 intel_pt_sample_flags(ptq);
1671
1672 /* Use estimated TSC upon return to user space */
1673 if (pt->est_tsc &&
1674 (state->from_ip >= pt->kernel_start || !state->from_ip) &&
1675 state->to_ip && state->to_ip < pt->kernel_start) {
1676 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1677 state->timestamp, state->est_timestamp);
1678 ptq->timestamp = state->est_timestamp;
1679 /* Use estimated TSC in unknown switch state */
1680 } else if (ptq->sync_switch &&
1681 ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
1682 intel_pt_is_switch_ip(ptq, state->to_ip) &&
1683 ptq->next_tid == -1) {
1684 intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
1685 state->timestamp, state->est_timestamp);
1686 ptq->timestamp = state->est_timestamp;
1687 } else if (state->timestamp > ptq->timestamp) {
1688 ptq->timestamp = state->timestamp;
1689 }
1690
1691 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
1692 *timestamp = ptq->timestamp;
1693 return 0;
1694 }
1695 }
1696 return 0;
1697 }
1698
intel_pt_update_queues(struct intel_pt * pt)1699 static inline int intel_pt_update_queues(struct intel_pt *pt)
1700 {
1701 if (pt->queues.new_data) {
1702 pt->queues.new_data = false;
1703 return intel_pt_setup_queues(pt);
1704 }
1705 return 0;
1706 }
1707
intel_pt_process_queues(struct intel_pt * pt,u64 timestamp)1708 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
1709 {
1710 unsigned int queue_nr;
1711 u64 ts;
1712 int ret;
1713
1714 while (1) {
1715 struct auxtrace_queue *queue;
1716 struct intel_pt_queue *ptq;
1717
1718 if (!pt->heap.heap_cnt)
1719 return 0;
1720
1721 if (pt->heap.heap_array[0].ordinal >= timestamp)
1722 return 0;
1723
1724 queue_nr = pt->heap.heap_array[0].queue_nr;
1725 queue = &pt->queues.queue_array[queue_nr];
1726 ptq = queue->priv;
1727
1728 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
1729 queue_nr, pt->heap.heap_array[0].ordinal,
1730 timestamp);
1731
1732 auxtrace_heap__pop(&pt->heap);
1733
1734 if (pt->heap.heap_cnt) {
1735 ts = pt->heap.heap_array[0].ordinal + 1;
1736 if (ts > timestamp)
1737 ts = timestamp;
1738 } else {
1739 ts = timestamp;
1740 }
1741
1742 intel_pt_set_pid_tid_cpu(pt, queue);
1743
1744 ret = intel_pt_run_decoder(ptq, &ts);
1745
1746 if (ret < 0) {
1747 auxtrace_heap__add(&pt->heap, queue_nr, ts);
1748 return ret;
1749 }
1750
1751 if (!ret) {
1752 ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
1753 if (ret < 0)
1754 return ret;
1755 } else {
1756 ptq->on_heap = false;
1757 }
1758 }
1759
1760 return 0;
1761 }
1762
intel_pt_process_timeless_queues(struct intel_pt * pt,pid_t tid,u64 time_)1763 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
1764 u64 time_)
1765 {
1766 struct auxtrace_queues *queues = &pt->queues;
1767 unsigned int i;
1768 u64 ts = 0;
1769
1770 for (i = 0; i < queues->nr_queues; i++) {
1771 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1772 struct intel_pt_queue *ptq = queue->priv;
1773
1774 if (ptq && (tid == -1 || ptq->tid == tid)) {
1775 ptq->time = time_;
1776 intel_pt_set_pid_tid_cpu(pt, queue);
1777 intel_pt_run_decoder(ptq, &ts);
1778 }
1779 }
1780 return 0;
1781 }
1782
intel_pt_lost(struct intel_pt * pt,struct perf_sample * sample)1783 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
1784 {
1785 return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
1786 sample->pid, sample->tid, 0);
1787 }
1788
intel_pt_cpu_to_ptq(struct intel_pt * pt,int cpu)1789 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
1790 {
1791 unsigned i, j;
1792
1793 if (cpu < 0 || !pt->queues.nr_queues)
1794 return NULL;
1795
1796 if ((unsigned)cpu >= pt->queues.nr_queues)
1797 i = pt->queues.nr_queues - 1;
1798 else
1799 i = cpu;
1800
1801 if (pt->queues.queue_array[i].cpu == cpu)
1802 return pt->queues.queue_array[i].priv;
1803
1804 for (j = 0; i > 0; j++) {
1805 if (pt->queues.queue_array[--i].cpu == cpu)
1806 return pt->queues.queue_array[i].priv;
1807 }
1808
1809 for (; j < pt->queues.nr_queues; j++) {
1810 if (pt->queues.queue_array[j].cpu == cpu)
1811 return pt->queues.queue_array[j].priv;
1812 }
1813
1814 return NULL;
1815 }
1816
intel_pt_sync_switch(struct intel_pt * pt,int cpu,pid_t tid,u64 timestamp)1817 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
1818 u64 timestamp)
1819 {
1820 struct intel_pt_queue *ptq;
1821 int err;
1822
1823 if (!pt->sync_switch)
1824 return 1;
1825
1826 ptq = intel_pt_cpu_to_ptq(pt, cpu);
1827 if (!ptq || !ptq->sync_switch)
1828 return 1;
1829
1830 switch (ptq->switch_state) {
1831 case INTEL_PT_SS_NOT_TRACING:
1832 ptq->next_tid = -1;
1833 break;
1834 case INTEL_PT_SS_UNKNOWN:
1835 case INTEL_PT_SS_TRACING:
1836 ptq->next_tid = tid;
1837 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
1838 return 0;
1839 case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
1840 if (!ptq->on_heap) {
1841 ptq->timestamp = perf_time_to_tsc(timestamp,
1842 &pt->tc);
1843 err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
1844 ptq->timestamp);
1845 if (err)
1846 return err;
1847 ptq->on_heap = true;
1848 }
1849 ptq->switch_state = INTEL_PT_SS_TRACING;
1850 break;
1851 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
1852 ptq->next_tid = tid;
1853 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
1854 break;
1855 default:
1856 break;
1857 }
1858
1859 return 1;
1860 }
1861
intel_pt_process_switch(struct intel_pt * pt,struct perf_sample * sample)1862 static int intel_pt_process_switch(struct intel_pt *pt,
1863 struct perf_sample *sample)
1864 {
1865 struct perf_evsel *evsel;
1866 pid_t tid;
1867 int cpu, ret;
1868
1869 evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id);
1870 if (evsel != pt->switch_evsel)
1871 return 0;
1872
1873 tid = perf_evsel__intval(evsel, sample, "next_pid");
1874 cpu = sample->cpu;
1875
1876 intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1877 cpu, tid, sample->time, perf_time_to_tsc(sample->time,
1878 &pt->tc));
1879
1880 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1881 if (ret <= 0)
1882 return ret;
1883
1884 return machine__set_current_tid(pt->machine, cpu, -1, tid);
1885 }
1886
intel_pt_context_switch(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)1887 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
1888 struct perf_sample *sample)
1889 {
1890 bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
1891 pid_t pid, tid;
1892 int cpu, ret;
1893
1894 cpu = sample->cpu;
1895
1896 if (pt->have_sched_switch == 3) {
1897 if (!out)
1898 return 0;
1899 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
1900 pr_err("Expecting CPU-wide context switch event\n");
1901 return -EINVAL;
1902 }
1903 pid = event->context_switch.next_prev_pid;
1904 tid = event->context_switch.next_prev_tid;
1905 } else {
1906 if (out)
1907 return 0;
1908 pid = sample->pid;
1909 tid = sample->tid;
1910 }
1911
1912 if (tid == -1) {
1913 pr_err("context_switch event has no tid\n");
1914 return -EINVAL;
1915 }
1916
1917 intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1918 cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time,
1919 &pt->tc));
1920
1921 ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
1922 if (ret <= 0)
1923 return ret;
1924
1925 return machine__set_current_tid(pt->machine, cpu, pid, tid);
1926 }
1927
intel_pt_process_itrace_start(struct intel_pt * pt,union perf_event * event,struct perf_sample * sample)1928 static int intel_pt_process_itrace_start(struct intel_pt *pt,
1929 union perf_event *event,
1930 struct perf_sample *sample)
1931 {
1932 if (!pt->per_cpu_mmaps)
1933 return 0;
1934
1935 intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
1936 sample->cpu, event->itrace_start.pid,
1937 event->itrace_start.tid, sample->time,
1938 perf_time_to_tsc(sample->time, &pt->tc));
1939
1940 return machine__set_current_tid(pt->machine, sample->cpu,
1941 event->itrace_start.pid,
1942 event->itrace_start.tid);
1943 }
1944
intel_pt_process_event(struct perf_session * session,union perf_event * event,struct perf_sample * sample,struct perf_tool * tool)1945 static int intel_pt_process_event(struct perf_session *session,
1946 union perf_event *event,
1947 struct perf_sample *sample,
1948 struct perf_tool *tool)
1949 {
1950 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
1951 auxtrace);
1952 u64 timestamp;
1953 int err = 0;
1954
1955 if (dump_trace)
1956 return 0;
1957
1958 if (!tool->ordered_events) {
1959 pr_err("Intel Processor Trace requires ordered events\n");
1960 return -EINVAL;
1961 }
1962
1963 if (sample->time && sample->time != (u64)-1)
1964 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
1965 else
1966 timestamp = 0;
1967
1968 if (timestamp || pt->timeless_decoding) {
1969 err = intel_pt_update_queues(pt);
1970 if (err)
1971 return err;
1972 }
1973
1974 if (pt->timeless_decoding) {
1975 if (event->header.type == PERF_RECORD_EXIT) {
1976 err = intel_pt_process_timeless_queues(pt,
1977 event->fork.tid,
1978 sample->time);
1979 }
1980 } else if (timestamp) {
1981 err = intel_pt_process_queues(pt, timestamp);
1982 }
1983 if (err)
1984 return err;
1985
1986 if (event->header.type == PERF_RECORD_AUX &&
1987 (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
1988 pt->synth_opts.errors) {
1989 err = intel_pt_lost(pt, sample);
1990 if (err)
1991 return err;
1992 }
1993
1994 if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
1995 err = intel_pt_process_switch(pt, sample);
1996 else if (event->header.type == PERF_RECORD_ITRACE_START)
1997 err = intel_pt_process_itrace_start(pt, event, sample);
1998 else if (event->header.type == PERF_RECORD_SWITCH ||
1999 event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
2000 err = intel_pt_context_switch(pt, event, sample);
2001
2002 intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n",
2003 perf_event__name(event->header.type), event->header.type,
2004 sample->cpu, sample->time, timestamp);
2005
2006 return err;
2007 }
2008
intel_pt_flush(struct perf_session * session,struct perf_tool * tool)2009 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
2010 {
2011 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2012 auxtrace);
2013 int ret;
2014
2015 if (dump_trace)
2016 return 0;
2017
2018 if (!tool->ordered_events)
2019 return -EINVAL;
2020
2021 ret = intel_pt_update_queues(pt);
2022 if (ret < 0)
2023 return ret;
2024
2025 if (pt->timeless_decoding)
2026 return intel_pt_process_timeless_queues(pt, -1,
2027 MAX_TIMESTAMP - 1);
2028
2029 return intel_pt_process_queues(pt, MAX_TIMESTAMP);
2030 }
2031
intel_pt_free_events(struct perf_session * session)2032 static void intel_pt_free_events(struct perf_session *session)
2033 {
2034 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2035 auxtrace);
2036 struct auxtrace_queues *queues = &pt->queues;
2037 unsigned int i;
2038
2039 for (i = 0; i < queues->nr_queues; i++) {
2040 intel_pt_free_queue(queues->queue_array[i].priv);
2041 queues->queue_array[i].priv = NULL;
2042 }
2043 intel_pt_log_disable();
2044 auxtrace_queues__free(queues);
2045 }
2046
intel_pt_free(struct perf_session * session)2047 static void intel_pt_free(struct perf_session *session)
2048 {
2049 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2050 auxtrace);
2051
2052 auxtrace_heap__free(&pt->heap);
2053 intel_pt_free_events(session);
2054 session->auxtrace = NULL;
2055 thread__put(pt->unknown_thread);
2056 addr_filters__exit(&pt->filts);
2057 zfree(&pt->filter);
2058 free(pt);
2059 }
2060
intel_pt_process_auxtrace_event(struct perf_session * session,union perf_event * event,struct perf_tool * tool __maybe_unused)2061 static int intel_pt_process_auxtrace_event(struct perf_session *session,
2062 union perf_event *event,
2063 struct perf_tool *tool __maybe_unused)
2064 {
2065 struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
2066 auxtrace);
2067
2068 if (!pt->data_queued) {
2069 struct auxtrace_buffer *buffer;
2070 off_t data_offset;
2071 int fd = perf_data__fd(session->data);
2072 int err;
2073
2074 if (perf_data__is_pipe(session->data)) {
2075 data_offset = 0;
2076 } else {
2077 data_offset = lseek(fd, 0, SEEK_CUR);
2078 if (data_offset == -1)
2079 return -errno;
2080 }
2081
2082 err = auxtrace_queues__add_event(&pt->queues, session, event,
2083 data_offset, &buffer);
2084 if (err)
2085 return err;
2086
2087 /* Dump here now we have copied a piped trace out of the pipe */
2088 if (dump_trace) {
2089 if (auxtrace_buffer__get_data(buffer, fd)) {
2090 intel_pt_dump_event(pt, buffer->data,
2091 buffer->size);
2092 auxtrace_buffer__put_data(buffer);
2093 }
2094 }
2095 }
2096
2097 return 0;
2098 }
2099
2100 struct intel_pt_synth {
2101 struct perf_tool dummy_tool;
2102 struct perf_session *session;
2103 };
2104
intel_pt_event_synth(struct perf_tool * tool,union perf_event * event,struct perf_sample * sample __maybe_unused,struct machine * machine __maybe_unused)2105 static int intel_pt_event_synth(struct perf_tool *tool,
2106 union perf_event *event,
2107 struct perf_sample *sample __maybe_unused,
2108 struct machine *machine __maybe_unused)
2109 {
2110 struct intel_pt_synth *intel_pt_synth =
2111 container_of(tool, struct intel_pt_synth, dummy_tool);
2112
2113 return perf_session__deliver_synth_event(intel_pt_synth->session, event,
2114 NULL);
2115 }
2116
intel_pt_synth_event(struct perf_session * session,const char * name,struct perf_event_attr * attr,u64 id)2117 static int intel_pt_synth_event(struct perf_session *session, const char *name,
2118 struct perf_event_attr *attr, u64 id)
2119 {
2120 struct intel_pt_synth intel_pt_synth;
2121 int err;
2122
2123 pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
2124 name, id, (u64)attr->sample_type);
2125
2126 memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
2127 intel_pt_synth.session = session;
2128
2129 err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
2130 &id, intel_pt_event_synth);
2131 if (err)
2132 pr_err("%s: failed to synthesize '%s' event type\n",
2133 __func__, name);
2134
2135 return err;
2136 }
2137
intel_pt_set_event_name(struct perf_evlist * evlist,u64 id,const char * name)2138 static void intel_pt_set_event_name(struct perf_evlist *evlist, u64 id,
2139 const char *name)
2140 {
2141 struct perf_evsel *evsel;
2142
2143 evlist__for_each_entry(evlist, evsel) {
2144 if (evsel->id && evsel->id[0] == id) {
2145 if (evsel->name)
2146 zfree(&evsel->name);
2147 evsel->name = strdup(name);
2148 break;
2149 }
2150 }
2151 }
2152
intel_pt_evsel(struct intel_pt * pt,struct perf_evlist * evlist)2153 static struct perf_evsel *intel_pt_evsel(struct intel_pt *pt,
2154 struct perf_evlist *evlist)
2155 {
2156 struct perf_evsel *evsel;
2157
2158 evlist__for_each_entry(evlist, evsel) {
2159 if (evsel->attr.type == pt->pmu_type && evsel->ids)
2160 return evsel;
2161 }
2162
2163 return NULL;
2164 }
2165
intel_pt_synth_events(struct intel_pt * pt,struct perf_session * session)2166 static int intel_pt_synth_events(struct intel_pt *pt,
2167 struct perf_session *session)
2168 {
2169 struct perf_evlist *evlist = session->evlist;
2170 struct perf_evsel *evsel = intel_pt_evsel(pt, evlist);
2171 struct perf_event_attr attr;
2172 u64 id;
2173 int err;
2174
2175 if (!evsel) {
2176 pr_debug("There are no selected events with Intel Processor Trace data\n");
2177 return 0;
2178 }
2179
2180 memset(&attr, 0, sizeof(struct perf_event_attr));
2181 attr.size = sizeof(struct perf_event_attr);
2182 attr.type = PERF_TYPE_HARDWARE;
2183 attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK;
2184 attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
2185 PERF_SAMPLE_PERIOD;
2186 if (pt->timeless_decoding)
2187 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
2188 else
2189 attr.sample_type |= PERF_SAMPLE_TIME;
2190 if (!pt->per_cpu_mmaps)
2191 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
2192 attr.exclude_user = evsel->attr.exclude_user;
2193 attr.exclude_kernel = evsel->attr.exclude_kernel;
2194 attr.exclude_hv = evsel->attr.exclude_hv;
2195 attr.exclude_host = evsel->attr.exclude_host;
2196 attr.exclude_guest = evsel->attr.exclude_guest;
2197 attr.sample_id_all = evsel->attr.sample_id_all;
2198 attr.read_format = evsel->attr.read_format;
2199
2200 id = evsel->id[0] + 1000000000;
2201 if (!id)
2202 id = 1;
2203
2204 if (pt->synth_opts.branches) {
2205 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
2206 attr.sample_period = 1;
2207 attr.sample_type |= PERF_SAMPLE_ADDR;
2208 err = intel_pt_synth_event(session, "branches", &attr, id);
2209 if (err)
2210 return err;
2211 pt->sample_branches = true;
2212 pt->branches_sample_type = attr.sample_type;
2213 pt->branches_id = id;
2214 id += 1;
2215 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
2216 }
2217
2218 if (pt->synth_opts.callchain)
2219 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
2220 if (pt->synth_opts.last_branch)
2221 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
2222
2223 if (pt->synth_opts.instructions) {
2224 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2225 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
2226 attr.sample_period =
2227 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
2228 else
2229 attr.sample_period = pt->synth_opts.period;
2230 err = intel_pt_synth_event(session, "instructions", &attr, id);
2231 if (err)
2232 return err;
2233 pt->sample_instructions = true;
2234 pt->instructions_sample_type = attr.sample_type;
2235 pt->instructions_id = id;
2236 id += 1;
2237 }
2238
2239 attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
2240 attr.sample_period = 1;
2241
2242 if (pt->synth_opts.transactions) {
2243 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
2244 err = intel_pt_synth_event(session, "transactions", &attr, id);
2245 if (err)
2246 return err;
2247 pt->sample_transactions = true;
2248 pt->transactions_sample_type = attr.sample_type;
2249 pt->transactions_id = id;
2250 intel_pt_set_event_name(evlist, id, "transactions");
2251 id += 1;
2252 }
2253
2254 attr.type = PERF_TYPE_SYNTH;
2255 attr.sample_type |= PERF_SAMPLE_RAW;
2256
2257 if (pt->synth_opts.ptwrites) {
2258 attr.config = PERF_SYNTH_INTEL_PTWRITE;
2259 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
2260 if (err)
2261 return err;
2262 pt->sample_ptwrites = true;
2263 pt->ptwrites_sample_type = attr.sample_type;
2264 pt->ptwrites_id = id;
2265 intel_pt_set_event_name(evlist, id, "ptwrite");
2266 id += 1;
2267 }
2268
2269 if (pt->synth_opts.pwr_events) {
2270 pt->sample_pwr_events = true;
2271 pt->pwr_events_sample_type = attr.sample_type;
2272
2273 attr.config = PERF_SYNTH_INTEL_CBR;
2274 err = intel_pt_synth_event(session, "cbr", &attr, id);
2275 if (err)
2276 return err;
2277 pt->cbr_id = id;
2278 intel_pt_set_event_name(evlist, id, "cbr");
2279 id += 1;
2280 }
2281
2282 if (pt->synth_opts.pwr_events && (evsel->attr.config & 0x10)) {
2283 attr.config = PERF_SYNTH_INTEL_MWAIT;
2284 err = intel_pt_synth_event(session, "mwait", &attr, id);
2285 if (err)
2286 return err;
2287 pt->mwait_id = id;
2288 intel_pt_set_event_name(evlist, id, "mwait");
2289 id += 1;
2290
2291 attr.config = PERF_SYNTH_INTEL_PWRE;
2292 err = intel_pt_synth_event(session, "pwre", &attr, id);
2293 if (err)
2294 return err;
2295 pt->pwre_id = id;
2296 intel_pt_set_event_name(evlist, id, "pwre");
2297 id += 1;
2298
2299 attr.config = PERF_SYNTH_INTEL_EXSTOP;
2300 err = intel_pt_synth_event(session, "exstop", &attr, id);
2301 if (err)
2302 return err;
2303 pt->exstop_id = id;
2304 intel_pt_set_event_name(evlist, id, "exstop");
2305 id += 1;
2306
2307 attr.config = PERF_SYNTH_INTEL_PWRX;
2308 err = intel_pt_synth_event(session, "pwrx", &attr, id);
2309 if (err)
2310 return err;
2311 pt->pwrx_id = id;
2312 intel_pt_set_event_name(evlist, id, "pwrx");
2313 id += 1;
2314 }
2315
2316 return 0;
2317 }
2318
intel_pt_find_sched_switch(struct perf_evlist * evlist)2319 static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist)
2320 {
2321 struct perf_evsel *evsel;
2322
2323 evlist__for_each_entry_reverse(evlist, evsel) {
2324 const char *name = perf_evsel__name(evsel);
2325
2326 if (!strcmp(name, "sched:sched_switch"))
2327 return evsel;
2328 }
2329
2330 return NULL;
2331 }
2332
intel_pt_find_switch(struct perf_evlist * evlist)2333 static bool intel_pt_find_switch(struct perf_evlist *evlist)
2334 {
2335 struct perf_evsel *evsel;
2336
2337 evlist__for_each_entry(evlist, evsel) {
2338 if (evsel->attr.context_switch)
2339 return true;
2340 }
2341
2342 return false;
2343 }
2344
intel_pt_perf_config(const char * var,const char * value,void * data)2345 static int intel_pt_perf_config(const char *var, const char *value, void *data)
2346 {
2347 struct intel_pt *pt = data;
2348
2349 if (!strcmp(var, "intel-pt.mispred-all"))
2350 pt->mispred_all = perf_config_bool(var, value);
2351
2352 return 0;
2353 }
2354
2355 static const char * const intel_pt_info_fmts[] = {
2356 [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n",
2357 [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n",
2358 [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n",
2359 [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n",
2360 [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n",
2361 [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n",
2362 [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n",
2363 [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n",
2364 [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n",
2365 [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n",
2366 [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n",
2367 [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n",
2368 [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n",
2369 [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n",
2370 [INTEL_PT_MAX_NONTURBO_RATIO] = " Max non-turbo ratio %"PRIu64"\n",
2371 [INTEL_PT_FILTER_STR_LEN] = " Filter string len. %"PRIu64"\n",
2372 };
2373
intel_pt_print_info(u64 * arr,int start,int finish)2374 static void intel_pt_print_info(u64 *arr, int start, int finish)
2375 {
2376 int i;
2377
2378 if (!dump_trace)
2379 return;
2380
2381 for (i = start; i <= finish; i++)
2382 fprintf(stdout, intel_pt_info_fmts[i], arr[i]);
2383 }
2384
intel_pt_print_info_str(const char * name,const char * str)2385 static void intel_pt_print_info_str(const char *name, const char *str)
2386 {
2387 if (!dump_trace)
2388 return;
2389
2390 fprintf(stdout, " %-20s%s\n", name, str ? str : "");
2391 }
2392
intel_pt_has(struct auxtrace_info_event * auxtrace_info,int pos)2393 static bool intel_pt_has(struct auxtrace_info_event *auxtrace_info, int pos)
2394 {
2395 return auxtrace_info->header.size >=
2396 sizeof(struct auxtrace_info_event) + (sizeof(u64) * (pos + 1));
2397 }
2398
intel_pt_process_auxtrace_info(union perf_event * event,struct perf_session * session)2399 int intel_pt_process_auxtrace_info(union perf_event *event,
2400 struct perf_session *session)
2401 {
2402 struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info;
2403 size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
2404 struct intel_pt *pt;
2405 void *info_end;
2406 u64 *info;
2407 int err;
2408
2409 if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) +
2410 min_sz)
2411 return -EINVAL;
2412
2413 pt = zalloc(sizeof(struct intel_pt));
2414 if (!pt)
2415 return -ENOMEM;
2416
2417 addr_filters__init(&pt->filts);
2418
2419 err = perf_config(intel_pt_perf_config, pt);
2420 if (err)
2421 goto err_free;
2422
2423 err = auxtrace_queues__init(&pt->queues);
2424 if (err)
2425 goto err_free;
2426
2427 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
2428
2429 pt->session = session;
2430 pt->machine = &session->machines.host; /* No kvm support */
2431 pt->auxtrace_type = auxtrace_info->type;
2432 pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
2433 pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
2434 pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
2435 pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
2436 pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
2437 pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
2438 pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
2439 pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
2440 pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
2441 pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
2442 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
2443 INTEL_PT_PER_CPU_MMAPS);
2444
2445 if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
2446 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
2447 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
2448 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
2449 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
2450 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
2451 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
2452 INTEL_PT_CYC_BIT);
2453 }
2454
2455 if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
2456 pt->max_non_turbo_ratio =
2457 auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
2458 intel_pt_print_info(&auxtrace_info->priv[0],
2459 INTEL_PT_MAX_NONTURBO_RATIO,
2460 INTEL_PT_MAX_NONTURBO_RATIO);
2461 }
2462
2463 info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
2464 info_end = (void *)info + auxtrace_info->header.size;
2465
2466 if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
2467 size_t len;
2468
2469 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
2470 intel_pt_print_info(&auxtrace_info->priv[0],
2471 INTEL_PT_FILTER_STR_LEN,
2472 INTEL_PT_FILTER_STR_LEN);
2473 if (len) {
2474 const char *filter = (const char *)info;
2475
2476 len = roundup(len + 1, 8);
2477 info += len >> 3;
2478 if ((void *)info > info_end) {
2479 pr_err("%s: bad filter string length\n", __func__);
2480 err = -EINVAL;
2481 goto err_free_queues;
2482 }
2483 pt->filter = memdup(filter, len);
2484 if (!pt->filter) {
2485 err = -ENOMEM;
2486 goto err_free_queues;
2487 }
2488 if (session->header.needs_swap)
2489 mem_bswap_64(pt->filter, len);
2490 if (pt->filter[len - 1]) {
2491 pr_err("%s: filter string not null terminated\n", __func__);
2492 err = -EINVAL;
2493 goto err_free_queues;
2494 }
2495 err = addr_filters__parse_bare_filter(&pt->filts,
2496 filter);
2497 if (err)
2498 goto err_free_queues;
2499 }
2500 intel_pt_print_info_str("Filter string", pt->filter);
2501 }
2502
2503 pt->timeless_decoding = intel_pt_timeless_decoding(pt);
2504 pt->have_tsc = intel_pt_have_tsc(pt);
2505 pt->sampling_mode = false;
2506 pt->est_tsc = !pt->timeless_decoding;
2507
2508 pt->unknown_thread = thread__new(999999999, 999999999);
2509 if (!pt->unknown_thread) {
2510 err = -ENOMEM;
2511 goto err_free_queues;
2512 }
2513
2514 /*
2515 * Since this thread will not be kept in any rbtree not in a
2516 * list, initialize its list node so that at thread__put() the
2517 * current thread lifetime assuption is kept and we don't segfault
2518 * at list_del_init().
2519 */
2520 INIT_LIST_HEAD(&pt->unknown_thread->node);
2521
2522 err = thread__set_comm(pt->unknown_thread, "unknown", 0);
2523 if (err)
2524 goto err_delete_thread;
2525 if (thread__init_map_groups(pt->unknown_thread, pt->machine)) {
2526 err = -ENOMEM;
2527 goto err_delete_thread;
2528 }
2529
2530 pt->auxtrace.process_event = intel_pt_process_event;
2531 pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
2532 pt->auxtrace.flush_events = intel_pt_flush;
2533 pt->auxtrace.free_events = intel_pt_free_events;
2534 pt->auxtrace.free = intel_pt_free;
2535 session->auxtrace = &pt->auxtrace;
2536
2537 if (dump_trace)
2538 return 0;
2539
2540 if (pt->have_sched_switch == 1) {
2541 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
2542 if (!pt->switch_evsel) {
2543 pr_err("%s: missing sched_switch event\n", __func__);
2544 err = -EINVAL;
2545 goto err_delete_thread;
2546 }
2547 } else if (pt->have_sched_switch == 2 &&
2548 !intel_pt_find_switch(session->evlist)) {
2549 pr_err("%s: missing context_switch attribute flag\n", __func__);
2550 err = -EINVAL;
2551 goto err_delete_thread;
2552 }
2553
2554 if (session->itrace_synth_opts && session->itrace_synth_opts->set) {
2555 pt->synth_opts = *session->itrace_synth_opts;
2556 } else {
2557 itrace_synth_opts__set_default(&pt->synth_opts);
2558 if (use_browser != -1) {
2559 pt->synth_opts.branches = false;
2560 pt->synth_opts.callchain = true;
2561 }
2562 if (session->itrace_synth_opts)
2563 pt->synth_opts.thread_stack =
2564 session->itrace_synth_opts->thread_stack;
2565 }
2566
2567 if (pt->synth_opts.log)
2568 intel_pt_log_enable();
2569
2570 /* Maximum non-turbo ratio is TSC freq / 100 MHz */
2571 if (pt->tc.time_mult) {
2572 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
2573
2574 if (!pt->max_non_turbo_ratio)
2575 pt->max_non_turbo_ratio =
2576 (tsc_freq + 50000000) / 100000000;
2577 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
2578 intel_pt_log("Maximum non-turbo ratio %u\n",
2579 pt->max_non_turbo_ratio);
2580 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
2581 }
2582
2583 if (pt->synth_opts.calls)
2584 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
2585 PERF_IP_FLAG_TRACE_END;
2586 if (pt->synth_opts.returns)
2587 pt->branches_filter |= PERF_IP_FLAG_RETURN |
2588 PERF_IP_FLAG_TRACE_BEGIN;
2589
2590 if (pt->synth_opts.callchain && !symbol_conf.use_callchain) {
2591 symbol_conf.use_callchain = true;
2592 if (callchain_register_param(&callchain_param) < 0) {
2593 symbol_conf.use_callchain = false;
2594 pt->synth_opts.callchain = false;
2595 }
2596 }
2597
2598 err = intel_pt_synth_events(pt, session);
2599 if (err)
2600 goto err_delete_thread;
2601
2602 err = auxtrace_queues__process_index(&pt->queues, session);
2603 if (err)
2604 goto err_delete_thread;
2605
2606 if (pt->queues.populated)
2607 pt->data_queued = true;
2608
2609 if (pt->timeless_decoding)
2610 pr_debug2("Intel PT decoding without timestamps\n");
2611
2612 return 0;
2613
2614 err_delete_thread:
2615 thread__zput(pt->unknown_thread);
2616 err_free_queues:
2617 intel_pt_log_disable();
2618 auxtrace_queues__free(&pt->queues);
2619 session->auxtrace = NULL;
2620 err_free:
2621 addr_filters__exit(&pt->filts);
2622 zfree(&pt->filter);
2623 free(pt);
2624 return err;
2625 }
2626