1 /*
2  * omap-mcbsp.c  --  OMAP ALSA SoC DAI driver using McBSP port
3  *
4  * Copyright (C) 2008 Nokia Corporation
5  *
6  * Contact: Jarkko Nikula <jarkko.nikula@bitmer.com>
7  *          Peter Ujfalusi <peter.ujfalusi@ti.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
21  * 02110-1301 USA
22  *
23  */
24 
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/initval.h>
35 #include <sound/soc.h>
36 #include <sound/dmaengine_pcm.h>
37 
38 #include <linux/platform_data/asoc-ti-mcbsp.h>
39 #include "mcbsp.h"
40 #include "omap-mcbsp.h"
41 #include "sdma-pcm.h"
42 
43 #define OMAP_MCBSP_RATES	(SNDRV_PCM_RATE_8000_96000)
44 
45 #define OMAP_MCBSP_SOC_SINGLE_S16_EXT(xname, xmin, xmax, \
46 	xhandler_get, xhandler_put) \
47 {	.iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
48 	.info = omap_mcbsp_st_info_volsw, \
49 	.get = xhandler_get, .put = xhandler_put, \
50 	.private_value = (unsigned long) &(struct soc_mixer_control) \
51 	{.min = xmin, .max = xmax} }
52 
53 enum {
54 	OMAP_MCBSP_WORD_8 = 0,
55 	OMAP_MCBSP_WORD_12,
56 	OMAP_MCBSP_WORD_16,
57 	OMAP_MCBSP_WORD_20,
58 	OMAP_MCBSP_WORD_24,
59 	OMAP_MCBSP_WORD_32,
60 };
61 
62 /*
63  * Stream DMA parameters. DMA request line and port address are set runtime
64  * since they are different between OMAP1 and later OMAPs
65  */
omap_mcbsp_set_threshold(struct snd_pcm_substream * substream,unsigned int packet_size)66 static void omap_mcbsp_set_threshold(struct snd_pcm_substream *substream,
67 		unsigned int packet_size)
68 {
69 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
70 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
71 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
72 	int words;
73 
74 	/*
75 	 * Configure McBSP threshold based on either:
76 	 * packet_size, when the sDMA is in packet mode, or based on the
77 	 * period size in THRESHOLD mode, otherwise use McBSP threshold = 1
78 	 * for mono streams.
79 	 */
80 	if (packet_size)
81 		words = packet_size;
82 	else
83 		words = 1;
84 
85 	/* Configure McBSP internal buffer usage */
86 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
87 		omap_mcbsp_set_tx_threshold(mcbsp, words);
88 	else
89 		omap_mcbsp_set_rx_threshold(mcbsp, words);
90 }
91 
omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params * params,struct snd_pcm_hw_rule * rule)92 static int omap_mcbsp_hwrule_min_buffersize(struct snd_pcm_hw_params *params,
93 				    struct snd_pcm_hw_rule *rule)
94 {
95 	struct snd_interval *buffer_size = hw_param_interval(params,
96 					SNDRV_PCM_HW_PARAM_BUFFER_SIZE);
97 	struct snd_interval *channels = hw_param_interval(params,
98 					SNDRV_PCM_HW_PARAM_CHANNELS);
99 	struct omap_mcbsp *mcbsp = rule->private;
100 	struct snd_interval frames;
101 	int size;
102 
103 	snd_interval_any(&frames);
104 	size = mcbsp->pdata->buffer_size;
105 
106 	frames.min = size / channels->min;
107 	frames.integer = 1;
108 	return snd_interval_refine(buffer_size, &frames);
109 }
110 
omap_mcbsp_dai_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)111 static int omap_mcbsp_dai_startup(struct snd_pcm_substream *substream,
112 				  struct snd_soc_dai *cpu_dai)
113 {
114 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
115 	int err = 0;
116 
117 	if (!cpu_dai->active)
118 		err = omap_mcbsp_request(mcbsp);
119 
120 	/*
121 	 * OMAP3 McBSP FIFO is word structured.
122 	 * McBSP2 has 1024 + 256 = 1280 word long buffer,
123 	 * McBSP1,3,4,5 has 128 word long buffer
124 	 * This means that the size of the FIFO depends on the sample format.
125 	 * For example on McBSP3:
126 	 * 16bit samples: size is 128 * 2 = 256 bytes
127 	 * 32bit samples: size is 128 * 4 = 512 bytes
128 	 * It is simpler to place constraint for buffer and period based on
129 	 * channels.
130 	 * McBSP3 as example again (16 or 32 bit samples):
131 	 * 1 channel (mono): size is 128 frames (128 words)
132 	 * 2 channels (stereo): size is 128 / 2 = 64 frames (2 * 64 words)
133 	 * 4 channels: size is 128 / 4 = 32 frames (4 * 32 words)
134 	 */
135 	if (mcbsp->pdata->buffer_size) {
136 		/*
137 		* Rule for the buffer size. We should not allow
138 		* smaller buffer than the FIFO size to avoid underruns.
139 		* This applies only for the playback stream.
140 		*/
141 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
142 			snd_pcm_hw_rule_add(substream->runtime, 0,
143 					    SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
144 					    omap_mcbsp_hwrule_min_buffersize,
145 					    mcbsp,
146 					    SNDRV_PCM_HW_PARAM_CHANNELS, -1);
147 
148 		/* Make sure, that the period size is always even */
149 		snd_pcm_hw_constraint_step(substream->runtime, 0,
150 					   SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 2);
151 	}
152 
153 	return err;
154 }
155 
omap_mcbsp_dai_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)156 static void omap_mcbsp_dai_shutdown(struct snd_pcm_substream *substream,
157 				    struct snd_soc_dai *cpu_dai)
158 {
159 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
160 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
161 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
162 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
163 
164 	if (mcbsp->latency[stream2])
165 		pm_qos_update_request(&mcbsp->pm_qos_req,
166 				      mcbsp->latency[stream2]);
167 	else if (mcbsp->latency[stream1])
168 		pm_qos_remove_request(&mcbsp->pm_qos_req);
169 
170 	mcbsp->latency[stream1] = 0;
171 
172 	if (!cpu_dai->active) {
173 		omap_mcbsp_free(mcbsp);
174 		mcbsp->configured = 0;
175 	}
176 }
177 
omap_mcbsp_dai_prepare(struct snd_pcm_substream * substream,struct snd_soc_dai * cpu_dai)178 static int omap_mcbsp_dai_prepare(struct snd_pcm_substream *substream,
179 				  struct snd_soc_dai *cpu_dai)
180 {
181 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
182 	struct pm_qos_request *pm_qos_req = &mcbsp->pm_qos_req;
183 	int tx = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
184 	int stream1 = tx ? SNDRV_PCM_STREAM_PLAYBACK : SNDRV_PCM_STREAM_CAPTURE;
185 	int stream2 = tx ? SNDRV_PCM_STREAM_CAPTURE : SNDRV_PCM_STREAM_PLAYBACK;
186 	int latency = mcbsp->latency[stream2];
187 
188 	/* Prevent omap hardware from hitting off between FIFO fills */
189 	if (!latency || mcbsp->latency[stream1] < latency)
190 		latency = mcbsp->latency[stream1];
191 
192 	if (pm_qos_request_active(pm_qos_req))
193 		pm_qos_update_request(pm_qos_req, latency);
194 	else if (latency)
195 		pm_qos_add_request(pm_qos_req, PM_QOS_CPU_DMA_LATENCY, latency);
196 
197 	return 0;
198 }
199 
omap_mcbsp_dai_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * cpu_dai)200 static int omap_mcbsp_dai_trigger(struct snd_pcm_substream *substream, int cmd,
201 				  struct snd_soc_dai *cpu_dai)
202 {
203 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
204 	int err = 0, play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
205 
206 	switch (cmd) {
207 	case SNDRV_PCM_TRIGGER_START:
208 	case SNDRV_PCM_TRIGGER_RESUME:
209 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
210 		mcbsp->active++;
211 		omap_mcbsp_start(mcbsp, play, !play);
212 		break;
213 
214 	case SNDRV_PCM_TRIGGER_STOP:
215 	case SNDRV_PCM_TRIGGER_SUSPEND:
216 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
217 		omap_mcbsp_stop(mcbsp, play, !play);
218 		mcbsp->active--;
219 		break;
220 	default:
221 		err = -EINVAL;
222 	}
223 
224 	return err;
225 }
226 
omap_mcbsp_dai_delay(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)227 static snd_pcm_sframes_t omap_mcbsp_dai_delay(
228 			struct snd_pcm_substream *substream,
229 			struct snd_soc_dai *dai)
230 {
231 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
232 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
233 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
234 	u16 fifo_use;
235 	snd_pcm_sframes_t delay;
236 
237 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
238 		fifo_use = omap_mcbsp_get_tx_delay(mcbsp);
239 	else
240 		fifo_use = omap_mcbsp_get_rx_delay(mcbsp);
241 
242 	/*
243 	 * Divide the used locations with the channel count to get the
244 	 * FIFO usage in samples (don't care about partial samples in the
245 	 * buffer).
246 	 */
247 	delay = fifo_use / substream->runtime->channels;
248 
249 	return delay;
250 }
251 
omap_mcbsp_dai_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * cpu_dai)252 static int omap_mcbsp_dai_hw_params(struct snd_pcm_substream *substream,
253 				    struct snd_pcm_hw_params *params,
254 				    struct snd_soc_dai *cpu_dai)
255 {
256 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
257 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
258 	struct snd_dmaengine_dai_dma_data *dma_data;
259 	int wlen, channels, wpf;
260 	int pkt_size = 0;
261 	unsigned int format, div, framesize, master;
262 	unsigned int buffer_size = mcbsp->pdata->buffer_size;
263 
264 	dma_data = snd_soc_dai_get_dma_data(cpu_dai, substream);
265 	channels = params_channels(params);
266 
267 	switch (params_format(params)) {
268 	case SNDRV_PCM_FORMAT_S16_LE:
269 		wlen = 16;
270 		break;
271 	case SNDRV_PCM_FORMAT_S32_LE:
272 		wlen = 32;
273 		break;
274 	default:
275 		return -EINVAL;
276 	}
277 	if (buffer_size) {
278 		int latency;
279 
280 		if (mcbsp->dma_op_mode == MCBSP_DMA_MODE_THRESHOLD) {
281 			int period_words, max_thrsh;
282 			int divider = 0;
283 
284 			period_words = params_period_bytes(params) / (wlen / 8);
285 			if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
286 				max_thrsh = mcbsp->max_tx_thres;
287 			else
288 				max_thrsh = mcbsp->max_rx_thres;
289 			/*
290 			 * Use sDMA packet mode if McBSP is in threshold mode:
291 			 * If period words less than the FIFO size the packet
292 			 * size is set to the number of period words, otherwise
293 			 * Look for the biggest threshold value which divides
294 			 * the period size evenly.
295 			 */
296 			divider = period_words / max_thrsh;
297 			if (period_words % max_thrsh)
298 				divider++;
299 			while (period_words % divider &&
300 				divider < period_words)
301 				divider++;
302 			if (divider == period_words)
303 				return -EINVAL;
304 
305 			pkt_size = period_words / divider;
306 		} else if (channels > 1) {
307 			/* Use packet mode for non mono streams */
308 			pkt_size = channels;
309 		}
310 
311 		latency = ((((buffer_size - pkt_size) / channels) * 1000)
312 				 / (params->rate_num / params->rate_den));
313 
314 		mcbsp->latency[substream->stream] = latency;
315 
316 		omap_mcbsp_set_threshold(substream, pkt_size);
317 	}
318 
319 	dma_data->maxburst = pkt_size;
320 
321 	if (mcbsp->configured) {
322 		/* McBSP already configured by another stream */
323 		return 0;
324 	}
325 
326 	regs->rcr2	&= ~(RPHASE | RFRLEN2(0x7f) | RWDLEN2(7));
327 	regs->xcr2	&= ~(RPHASE | XFRLEN2(0x7f) | XWDLEN2(7));
328 	regs->rcr1	&= ~(RFRLEN1(0x7f) | RWDLEN1(7));
329 	regs->xcr1	&= ~(XFRLEN1(0x7f) | XWDLEN1(7));
330 	format = mcbsp->fmt & SND_SOC_DAIFMT_FORMAT_MASK;
331 	wpf = channels;
332 	if (channels == 2 && (format == SND_SOC_DAIFMT_I2S ||
333 			      format == SND_SOC_DAIFMT_LEFT_J)) {
334 		/* Use dual-phase frames */
335 		regs->rcr2	|= RPHASE;
336 		regs->xcr2	|= XPHASE;
337 		/* Set 1 word per (McBSP) frame for phase1 and phase2 */
338 		wpf--;
339 		regs->rcr2	|= RFRLEN2(wpf - 1);
340 		regs->xcr2	|= XFRLEN2(wpf - 1);
341 	}
342 
343 	regs->rcr1	|= RFRLEN1(wpf - 1);
344 	regs->xcr1	|= XFRLEN1(wpf - 1);
345 
346 	switch (params_format(params)) {
347 	case SNDRV_PCM_FORMAT_S16_LE:
348 		/* Set word lengths */
349 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_16);
350 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_16);
351 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_16);
352 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_16);
353 		break;
354 	case SNDRV_PCM_FORMAT_S32_LE:
355 		/* Set word lengths */
356 		regs->rcr2	|= RWDLEN2(OMAP_MCBSP_WORD_32);
357 		regs->rcr1	|= RWDLEN1(OMAP_MCBSP_WORD_32);
358 		regs->xcr2	|= XWDLEN2(OMAP_MCBSP_WORD_32);
359 		regs->xcr1	|= XWDLEN1(OMAP_MCBSP_WORD_32);
360 		break;
361 	default:
362 		/* Unsupported PCM format */
363 		return -EINVAL;
364 	}
365 
366 	/* In McBSP master modes, FRAME (i.e. sample rate) is generated
367 	 * by _counting_ BCLKs. Calculate frame size in BCLKs */
368 	master = mcbsp->fmt & SND_SOC_DAIFMT_MASTER_MASK;
369 	if (master ==	SND_SOC_DAIFMT_CBS_CFS) {
370 		div = mcbsp->clk_div ? mcbsp->clk_div : 1;
371 		framesize = (mcbsp->in_freq / div) / params_rate(params);
372 
373 		if (framesize < wlen * channels) {
374 			printk(KERN_ERR "%s: not enough bandwidth for desired rate and "
375 					"channels\n", __func__);
376 			return -EINVAL;
377 		}
378 	} else
379 		framesize = wlen * channels;
380 
381 	/* Set FS period and length in terms of bit clock periods */
382 	regs->srgr2	&= ~FPER(0xfff);
383 	regs->srgr1	&= ~FWID(0xff);
384 	switch (format) {
385 	case SND_SOC_DAIFMT_I2S:
386 	case SND_SOC_DAIFMT_LEFT_J:
387 		regs->srgr2	|= FPER(framesize - 1);
388 		regs->srgr1	|= FWID((framesize >> 1) - 1);
389 		break;
390 	case SND_SOC_DAIFMT_DSP_A:
391 	case SND_SOC_DAIFMT_DSP_B:
392 		regs->srgr2	|= FPER(framesize - 1);
393 		regs->srgr1	|= FWID(0);
394 		break;
395 	}
396 
397 	omap_mcbsp_config(mcbsp, &mcbsp->cfg_regs);
398 	mcbsp->wlen = wlen;
399 	mcbsp->configured = 1;
400 
401 	return 0;
402 }
403 
404 /*
405  * This must be called before _set_clkdiv and _set_sysclk since McBSP register
406  * cache is initialized here
407  */
omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai * cpu_dai,unsigned int fmt)408 static int omap_mcbsp_dai_set_dai_fmt(struct snd_soc_dai *cpu_dai,
409 				      unsigned int fmt)
410 {
411 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
412 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
413 	bool inv_fs = false;
414 
415 	if (mcbsp->configured)
416 		return 0;
417 
418 	mcbsp->fmt = fmt;
419 	memset(regs, 0, sizeof(*regs));
420 	/* Generic McBSP register settings */
421 	regs->spcr2	|= XINTM(3) | FREE;
422 	regs->spcr1	|= RINTM(3);
423 	/* RFIG and XFIG are not defined in 2430 and on OMAP3+ */
424 	if (!mcbsp->pdata->has_ccr) {
425 		regs->rcr2	|= RFIG;
426 		regs->xcr2	|= XFIG;
427 	}
428 
429 	/* Configure XCCR/RCCR only for revisions which have ccr registers */
430 	if (mcbsp->pdata->has_ccr) {
431 		regs->xccr = DXENDLY(1) | XDMAEN | XDISABLE;
432 		regs->rccr = RFULL_CYCLE | RDMAEN | RDISABLE;
433 	}
434 
435 	switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
436 	case SND_SOC_DAIFMT_I2S:
437 		/* 1-bit data delay */
438 		regs->rcr2	|= RDATDLY(1);
439 		regs->xcr2	|= XDATDLY(1);
440 		break;
441 	case SND_SOC_DAIFMT_LEFT_J:
442 		/* 0-bit data delay */
443 		regs->rcr2	|= RDATDLY(0);
444 		regs->xcr2	|= XDATDLY(0);
445 		regs->spcr1	|= RJUST(2);
446 		/* Invert FS polarity configuration */
447 		inv_fs = true;
448 		break;
449 	case SND_SOC_DAIFMT_DSP_A:
450 		/* 1-bit data delay */
451 		regs->rcr2      |= RDATDLY(1);
452 		regs->xcr2      |= XDATDLY(1);
453 		/* Invert FS polarity configuration */
454 		inv_fs = true;
455 		break;
456 	case SND_SOC_DAIFMT_DSP_B:
457 		/* 0-bit data delay */
458 		regs->rcr2      |= RDATDLY(0);
459 		regs->xcr2      |= XDATDLY(0);
460 		/* Invert FS polarity configuration */
461 		inv_fs = true;
462 		break;
463 	default:
464 		/* Unsupported data format */
465 		return -EINVAL;
466 	}
467 
468 	switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
469 	case SND_SOC_DAIFMT_CBS_CFS:
470 		/* McBSP master. Set FS and bit clocks as outputs */
471 		regs->pcr0	|= FSXM | FSRM |
472 				   CLKXM | CLKRM;
473 		/* Sample rate generator drives the FS */
474 		regs->srgr2	|= FSGM;
475 		break;
476 	case SND_SOC_DAIFMT_CBM_CFS:
477 		/* McBSP slave. FS clock as output */
478 		regs->srgr2	|= FSGM;
479 		regs->pcr0	|= FSXM | FSRM;
480 		break;
481 	case SND_SOC_DAIFMT_CBM_CFM:
482 		/* McBSP slave */
483 		break;
484 	default:
485 		/* Unsupported master/slave configuration */
486 		return -EINVAL;
487 	}
488 
489 	/* Set bit clock (CLKX/CLKR) and FS polarities */
490 	switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
491 	case SND_SOC_DAIFMT_NB_NF:
492 		/*
493 		 * Normal BCLK + FS.
494 		 * FS active low. TX data driven on falling edge of bit clock
495 		 * and RX data sampled on rising edge of bit clock.
496 		 */
497 		regs->pcr0	|= FSXP | FSRP |
498 				   CLKXP | CLKRP;
499 		break;
500 	case SND_SOC_DAIFMT_NB_IF:
501 		regs->pcr0	|= CLKXP | CLKRP;
502 		break;
503 	case SND_SOC_DAIFMT_IB_NF:
504 		regs->pcr0	|= FSXP | FSRP;
505 		break;
506 	case SND_SOC_DAIFMT_IB_IF:
507 		break;
508 	default:
509 		return -EINVAL;
510 	}
511 	if (inv_fs == true)
512 		regs->pcr0 ^= FSXP | FSRP;
513 
514 	return 0;
515 }
516 
omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai * cpu_dai,int div_id,int div)517 static int omap_mcbsp_dai_set_clkdiv(struct snd_soc_dai *cpu_dai,
518 				     int div_id, int div)
519 {
520 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
521 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
522 
523 	if (div_id != OMAP_MCBSP_CLKGDV)
524 		return -ENODEV;
525 
526 	mcbsp->clk_div = div;
527 	regs->srgr1	&= ~CLKGDV(0xff);
528 	regs->srgr1	|= CLKGDV(div - 1);
529 
530 	return 0;
531 }
532 
omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai * cpu_dai,int clk_id,unsigned int freq,int dir)533 static int omap_mcbsp_dai_set_dai_sysclk(struct snd_soc_dai *cpu_dai,
534 					 int clk_id, unsigned int freq,
535 					 int dir)
536 {
537 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
538 	struct omap_mcbsp_reg_cfg *regs = &mcbsp->cfg_regs;
539 	int err = 0;
540 
541 	if (mcbsp->active) {
542 		if (freq == mcbsp->in_freq)
543 			return 0;
544 		else
545 			return -EBUSY;
546 	}
547 
548 	mcbsp->in_freq = freq;
549 	regs->srgr2 &= ~CLKSM;
550 	regs->pcr0 &= ~SCLKME;
551 
552 	switch (clk_id) {
553 	case OMAP_MCBSP_SYSCLK_CLK:
554 		regs->srgr2	|= CLKSM;
555 		break;
556 	case OMAP_MCBSP_SYSCLK_CLKS_FCLK:
557 		if (mcbsp_omap1()) {
558 			err = -EINVAL;
559 			break;
560 		}
561 		err = omap2_mcbsp_set_clks_src(mcbsp,
562 					       MCBSP_CLKS_PRCM_SRC);
563 		break;
564 	case OMAP_MCBSP_SYSCLK_CLKS_EXT:
565 		if (mcbsp_omap1()) {
566 			err = 0;
567 			break;
568 		}
569 		err = omap2_mcbsp_set_clks_src(mcbsp,
570 					       MCBSP_CLKS_PAD_SRC);
571 		break;
572 
573 	case OMAP_MCBSP_SYSCLK_CLKX_EXT:
574 		regs->srgr2	|= CLKSM;
575 		regs->pcr0	|= SCLKME;
576 		/*
577 		 * If McBSP is master but yet the CLKX/CLKR pin drives the SRG,
578 		 * disable output on those pins. This enables to inject the
579 		 * reference clock through CLKX/CLKR. For this to work
580 		 * set_dai_sysclk() _needs_ to be called after set_dai_fmt().
581 		 */
582 		regs->pcr0	&= ~CLKXM;
583 		break;
584 	case OMAP_MCBSP_SYSCLK_CLKR_EXT:
585 		regs->pcr0	|= SCLKME;
586 		/* Disable ouput on CLKR pin in master mode */
587 		regs->pcr0	&= ~CLKRM;
588 		break;
589 	default:
590 		err = -ENODEV;
591 	}
592 
593 	return err;
594 }
595 
596 static const struct snd_soc_dai_ops mcbsp_dai_ops = {
597 	.startup	= omap_mcbsp_dai_startup,
598 	.shutdown	= omap_mcbsp_dai_shutdown,
599 	.prepare	= omap_mcbsp_dai_prepare,
600 	.trigger	= omap_mcbsp_dai_trigger,
601 	.delay		= omap_mcbsp_dai_delay,
602 	.hw_params	= omap_mcbsp_dai_hw_params,
603 	.set_fmt	= omap_mcbsp_dai_set_dai_fmt,
604 	.set_clkdiv	= omap_mcbsp_dai_set_clkdiv,
605 	.set_sysclk	= omap_mcbsp_dai_set_dai_sysclk,
606 };
607 
omap_mcbsp_probe(struct snd_soc_dai * dai)608 static int omap_mcbsp_probe(struct snd_soc_dai *dai)
609 {
610 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
611 
612 	pm_runtime_enable(mcbsp->dev);
613 
614 	snd_soc_dai_init_dma_data(dai,
615 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_PLAYBACK],
616 				  &mcbsp->dma_data[SNDRV_PCM_STREAM_CAPTURE]);
617 
618 	return 0;
619 }
620 
omap_mcbsp_remove(struct snd_soc_dai * dai)621 static int omap_mcbsp_remove(struct snd_soc_dai *dai)
622 {
623 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(dai);
624 
625 	pm_runtime_disable(mcbsp->dev);
626 
627 	return 0;
628 }
629 
630 static struct snd_soc_dai_driver omap_mcbsp_dai = {
631 	.probe = omap_mcbsp_probe,
632 	.remove = omap_mcbsp_remove,
633 	.playback = {
634 		.channels_min = 1,
635 		.channels_max = 16,
636 		.rates = OMAP_MCBSP_RATES,
637 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
638 	},
639 	.capture = {
640 		.channels_min = 1,
641 		.channels_max = 16,
642 		.rates = OMAP_MCBSP_RATES,
643 		.formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE,
644 	},
645 	.ops = &mcbsp_dai_ops,
646 };
647 
648 static const struct snd_soc_component_driver omap_mcbsp_component = {
649 	.name		= "omap-mcbsp",
650 };
651 
omap_mcbsp_st_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)652 static int omap_mcbsp_st_info_volsw(struct snd_kcontrol *kcontrol,
653 			struct snd_ctl_elem_info *uinfo)
654 {
655 	struct soc_mixer_control *mc =
656 		(struct soc_mixer_control *)kcontrol->private_value;
657 	int max = mc->max;
658 	int min = mc->min;
659 
660 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
661 	uinfo->count = 1;
662 	uinfo->value.integer.min = min;
663 	uinfo->value.integer.max = max;
664 	return 0;
665 }
666 
667 #define OMAP_MCBSP_ST_CHANNEL_VOLUME(channel)				\
668 static int								\
669 omap_mcbsp_set_st_ch##channel##_volume(struct snd_kcontrol *kc,		\
670 					struct snd_ctl_elem_value *uc)	\
671 {									\
672 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kc);		\
673 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);	\
674 	struct soc_mixer_control *mc =					\
675 		(struct soc_mixer_control *)kc->private_value;		\
676 	int max = mc->max;						\
677 	int min = mc->min;						\
678 	int val = uc->value.integer.value[0];				\
679 									\
680 	if (val < min || val > max)					\
681 		return -EINVAL;						\
682 									\
683 	/* OMAP McBSP implementation uses index values 0..4 */		\
684 	return omap_st_set_chgain(mcbsp, channel, val);			\
685 }									\
686 									\
687 static int								\
688 omap_mcbsp_get_st_ch##channel##_volume(struct snd_kcontrol *kc,		\
689 					struct snd_ctl_elem_value *uc)	\
690 {									\
691 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kc);		\
692 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);	\
693 	s16 chgain;							\
694 									\
695 	if (omap_st_get_chgain(mcbsp, channel, &chgain))		\
696 		return -EAGAIN;						\
697 									\
698 	uc->value.integer.value[0] = chgain;				\
699 	return 0;							\
700 }
701 
702 OMAP_MCBSP_ST_CHANNEL_VOLUME(0)
703 OMAP_MCBSP_ST_CHANNEL_VOLUME(1)
704 
omap_mcbsp_st_put_mode(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)705 static int omap_mcbsp_st_put_mode(struct snd_kcontrol *kcontrol,
706 				struct snd_ctl_elem_value *ucontrol)
707 {
708 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
709 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
710 	u8 value = ucontrol->value.integer.value[0];
711 
712 	if (value == omap_st_is_enabled(mcbsp))
713 		return 0;
714 
715 	if (value)
716 		omap_st_enable(mcbsp);
717 	else
718 		omap_st_disable(mcbsp);
719 
720 	return 1;
721 }
722 
omap_mcbsp_st_get_mode(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)723 static int omap_mcbsp_st_get_mode(struct snd_kcontrol *kcontrol,
724 				struct snd_ctl_elem_value *ucontrol)
725 {
726 	struct snd_soc_dai *cpu_dai = snd_kcontrol_chip(kcontrol);
727 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
728 
729 	ucontrol->value.integer.value[0] = omap_st_is_enabled(mcbsp);
730 	return 0;
731 }
732 
733 #define OMAP_MCBSP_ST_CONTROLS(port)					  \
734 static const struct snd_kcontrol_new omap_mcbsp##port##_st_controls[] = { \
735 SOC_SINGLE_EXT("McBSP" #port " Sidetone Switch", 1, 0, 1, 0,		  \
736 	       omap_mcbsp_st_get_mode, omap_mcbsp_st_put_mode),		  \
737 OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP" #port " Sidetone Channel 0 Volume", \
738 			      -32768, 32767,				  \
739 			      omap_mcbsp_get_st_ch0_volume,		  \
740 			      omap_mcbsp_set_st_ch0_volume),		  \
741 OMAP_MCBSP_SOC_SINGLE_S16_EXT("McBSP" #port " Sidetone Channel 1 Volume", \
742 			      -32768, 32767,				  \
743 			      omap_mcbsp_get_st_ch1_volume,		  \
744 			      omap_mcbsp_set_st_ch1_volume),		  \
745 }
746 
747 OMAP_MCBSP_ST_CONTROLS(2);
748 OMAP_MCBSP_ST_CONTROLS(3);
749 
omap_mcbsp_st_add_controls(struct snd_soc_pcm_runtime * rtd,int port_id)750 int omap_mcbsp_st_add_controls(struct snd_soc_pcm_runtime *rtd, int port_id)
751 {
752 	struct snd_soc_dai *cpu_dai = rtd->cpu_dai;
753 	struct omap_mcbsp *mcbsp = snd_soc_dai_get_drvdata(cpu_dai);
754 
755 	if (!mcbsp->st_data) {
756 		dev_warn(mcbsp->dev, "No sidetone data for port\n");
757 		return 0;
758 	}
759 
760 	switch (port_id) {
761 	case 2: /* McBSP 2 */
762 		return snd_soc_add_dai_controls(cpu_dai,
763 					omap_mcbsp2_st_controls,
764 					ARRAY_SIZE(omap_mcbsp2_st_controls));
765 	case 3: /* McBSP 3 */
766 		return snd_soc_add_dai_controls(cpu_dai,
767 					omap_mcbsp3_st_controls,
768 					ARRAY_SIZE(omap_mcbsp3_st_controls));
769 	default:
770 		dev_err(mcbsp->dev, "Port %d not supported\n", port_id);
771 		break;
772 	}
773 
774 	return -EINVAL;
775 }
776 EXPORT_SYMBOL_GPL(omap_mcbsp_st_add_controls);
777 
778 static struct omap_mcbsp_platform_data omap2420_pdata = {
779 	.reg_step = 4,
780 	.reg_size = 2,
781 };
782 
783 static struct omap_mcbsp_platform_data omap2430_pdata = {
784 	.reg_step = 4,
785 	.reg_size = 4,
786 	.has_ccr = true,
787 };
788 
789 static struct omap_mcbsp_platform_data omap3_pdata = {
790 	.reg_step = 4,
791 	.reg_size = 4,
792 	.has_ccr = true,
793 	.has_wakeup = true,
794 };
795 
796 static struct omap_mcbsp_platform_data omap4_pdata = {
797 	.reg_step = 4,
798 	.reg_size = 4,
799 	.has_ccr = true,
800 	.has_wakeup = true,
801 };
802 
803 static const struct of_device_id omap_mcbsp_of_match[] = {
804 	{
805 		.compatible = "ti,omap2420-mcbsp",
806 		.data = &omap2420_pdata,
807 	},
808 	{
809 		.compatible = "ti,omap2430-mcbsp",
810 		.data = &omap2430_pdata,
811 	},
812 	{
813 		.compatible = "ti,omap3-mcbsp",
814 		.data = &omap3_pdata,
815 	},
816 	{
817 		.compatible = "ti,omap4-mcbsp",
818 		.data = &omap4_pdata,
819 	},
820 	{ },
821 };
822 MODULE_DEVICE_TABLE(of, omap_mcbsp_of_match);
823 
asoc_mcbsp_probe(struct platform_device * pdev)824 static int asoc_mcbsp_probe(struct platform_device *pdev)
825 {
826 	struct omap_mcbsp_platform_data *pdata = dev_get_platdata(&pdev->dev);
827 	struct omap_mcbsp *mcbsp;
828 	const struct of_device_id *match;
829 	int ret;
830 
831 	match = of_match_device(omap_mcbsp_of_match, &pdev->dev);
832 	if (match) {
833 		struct device_node *node = pdev->dev.of_node;
834 		struct omap_mcbsp_platform_data *pdata_quirk = pdata;
835 		int buffer_size;
836 
837 		pdata = devm_kzalloc(&pdev->dev,
838 				     sizeof(struct omap_mcbsp_platform_data),
839 				     GFP_KERNEL);
840 		if (!pdata)
841 			return -ENOMEM;
842 
843 		memcpy(pdata, match->data, sizeof(*pdata));
844 		if (!of_property_read_u32(node, "ti,buffer-size", &buffer_size))
845 			pdata->buffer_size = buffer_size;
846 		if (pdata_quirk)
847 			pdata->force_ick_on = pdata_quirk->force_ick_on;
848 	} else if (!pdata) {
849 		dev_err(&pdev->dev, "missing platform data.\n");
850 		return -EINVAL;
851 	}
852 	mcbsp = devm_kzalloc(&pdev->dev, sizeof(struct omap_mcbsp), GFP_KERNEL);
853 	if (!mcbsp)
854 		return -ENOMEM;
855 
856 	mcbsp->id = pdev->id;
857 	mcbsp->pdata = pdata;
858 	mcbsp->dev = &pdev->dev;
859 	platform_set_drvdata(pdev, mcbsp);
860 
861 	ret = omap_mcbsp_init(pdev);
862 	if (ret)
863 		return ret;
864 
865 	ret = devm_snd_soc_register_component(&pdev->dev,
866 					      &omap_mcbsp_component,
867 					      &omap_mcbsp_dai, 1);
868 	if (ret)
869 		return ret;
870 
871 	return sdma_pcm_platform_register(&pdev->dev, NULL, NULL);
872 }
873 
asoc_mcbsp_remove(struct platform_device * pdev)874 static int asoc_mcbsp_remove(struct platform_device *pdev)
875 {
876 	struct omap_mcbsp *mcbsp = platform_get_drvdata(pdev);
877 
878 	if (mcbsp->pdata->ops && mcbsp->pdata->ops->free)
879 		mcbsp->pdata->ops->free(mcbsp->id);
880 
881 	if (pm_qos_request_active(&mcbsp->pm_qos_req))
882 		pm_qos_remove_request(&mcbsp->pm_qos_req);
883 
884 	omap_mcbsp_cleanup(mcbsp);
885 
886 	clk_put(mcbsp->fclk);
887 
888 	return 0;
889 }
890 
891 static struct platform_driver asoc_mcbsp_driver = {
892 	.driver = {
893 			.name = "omap-mcbsp",
894 			.of_match_table = omap_mcbsp_of_match,
895 	},
896 
897 	.probe = asoc_mcbsp_probe,
898 	.remove = asoc_mcbsp_remove,
899 };
900 
901 module_platform_driver(asoc_mcbsp_driver);
902 
903 MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@bitmer.com>");
904 MODULE_DESCRIPTION("OMAP I2S SoC Interface");
905 MODULE_LICENSE("GPL");
906 MODULE_ALIAS("platform:omap-mcbsp");
907