1 /*
2 * Freescale DMA ALSA SoC PCM driver
3 *
4 * Author: Timur Tabi <timur@freescale.com>
5 *
6 * Copyright 2007-2010 Freescale Semiconductor, Inc.
7 *
8 * This file is licensed under the terms of the GNU General Public License
9 * version 2. This program is licensed "as is" without any warranty of any
10 * kind, whether express or implied.
11 *
12 * This driver implements ASoC support for the Elo DMA controller, which is
13 * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14 * the PCM driver is what handles the DMA buffer.
15 */
16
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/list.h>
28 #include <linux/slab.h>
29
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34
35 #include <asm/io.h>
36
37 #include "fsl_dma.h"
38 #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
39
40 #define DRV_NAME "fsl_dma"
41
42 /*
43 * The formats that the DMA controller supports, which is anything
44 * that is 8, 16, or 32 bits.
45 */
46 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
47 SNDRV_PCM_FMTBIT_U8 | \
48 SNDRV_PCM_FMTBIT_S16_LE | \
49 SNDRV_PCM_FMTBIT_S16_BE | \
50 SNDRV_PCM_FMTBIT_U16_LE | \
51 SNDRV_PCM_FMTBIT_U16_BE | \
52 SNDRV_PCM_FMTBIT_S24_LE | \
53 SNDRV_PCM_FMTBIT_S24_BE | \
54 SNDRV_PCM_FMTBIT_U24_LE | \
55 SNDRV_PCM_FMTBIT_U24_BE | \
56 SNDRV_PCM_FMTBIT_S32_LE | \
57 SNDRV_PCM_FMTBIT_S32_BE | \
58 SNDRV_PCM_FMTBIT_U32_LE | \
59 SNDRV_PCM_FMTBIT_U32_BE)
60 struct dma_object {
61 struct snd_soc_component_driver dai;
62 dma_addr_t ssi_stx_phys;
63 dma_addr_t ssi_srx_phys;
64 unsigned int ssi_fifo_depth;
65 struct ccsr_dma_channel __iomem *channel;
66 unsigned int irq;
67 bool assigned;
68 };
69
70 /*
71 * The number of DMA links to use. Two is the bare minimum, but if you
72 * have really small links you might need more.
73 */
74 #define NUM_DMA_LINKS 2
75
76 /** fsl_dma_private: p-substream DMA data
77 *
78 * Each substream has a 1-to-1 association with a DMA channel.
79 *
80 * The link[] array is first because it needs to be aligned on a 32-byte
81 * boundary, so putting it first will ensure alignment without padding the
82 * structure.
83 *
84 * @link[]: array of link descriptors
85 * @dma_channel: pointer to the DMA channel's registers
86 * @irq: IRQ for this DMA channel
87 * @substream: pointer to the substream object, needed by the ISR
88 * @ssi_sxx_phys: bus address of the STX or SRX register to use
89 * @ld_buf_phys: physical address of the LD buffer
90 * @current_link: index into link[] of the link currently being processed
91 * @dma_buf_phys: physical address of the DMA buffer
92 * @dma_buf_next: physical address of the next period to process
93 * @dma_buf_end: physical address of the byte after the end of the DMA
94 * @buffer period_size: the size of a single period
95 * @num_periods: the number of periods in the DMA buffer
96 */
97 struct fsl_dma_private {
98 struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
99 struct ccsr_dma_channel __iomem *dma_channel;
100 unsigned int irq;
101 struct snd_pcm_substream *substream;
102 dma_addr_t ssi_sxx_phys;
103 unsigned int ssi_fifo_depth;
104 dma_addr_t ld_buf_phys;
105 unsigned int current_link;
106 dma_addr_t dma_buf_phys;
107 dma_addr_t dma_buf_next;
108 dma_addr_t dma_buf_end;
109 size_t period_size;
110 unsigned int num_periods;
111 };
112
113 /**
114 * fsl_dma_hardare: define characteristics of the PCM hardware.
115 *
116 * The PCM hardware is the Freescale DMA controller. This structure defines
117 * the capabilities of that hardware.
118 *
119 * Since the sampling rate and data format are not controlled by the DMA
120 * controller, we specify no limits for those values. The only exception is
121 * period_bytes_min, which is set to a reasonably low value to prevent the
122 * DMA controller from generating too many interrupts per second.
123 *
124 * Since each link descriptor has a 32-bit byte count field, we set
125 * period_bytes_max to the largest 32-bit number. We also have no maximum
126 * number of periods.
127 *
128 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
129 * limitation in the SSI driver requires the sample rates for playback and
130 * capture to be the same.
131 */
132 static const struct snd_pcm_hardware fsl_dma_hardware = {
133
134 .info = SNDRV_PCM_INFO_INTERLEAVED |
135 SNDRV_PCM_INFO_MMAP |
136 SNDRV_PCM_INFO_MMAP_VALID |
137 SNDRV_PCM_INFO_JOINT_DUPLEX |
138 SNDRV_PCM_INFO_PAUSE,
139 .formats = FSLDMA_PCM_FORMATS,
140 .period_bytes_min = 512, /* A reasonable limit */
141 .period_bytes_max = (u32) -1,
142 .periods_min = NUM_DMA_LINKS,
143 .periods_max = (unsigned int) -1,
144 .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
145 };
146
147 /**
148 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
149 *
150 * This function should be called by the ISR whenever the DMA controller
151 * halts data transfer.
152 */
fsl_dma_abort_stream(struct snd_pcm_substream * substream)153 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
154 {
155 snd_pcm_stop_xrun(substream);
156 }
157
158 /**
159 * fsl_dma_update_pointers - update LD pointers to point to the next period
160 *
161 * As each period is completed, this function changes the the link
162 * descriptor pointers for that period to point to the next period.
163 */
fsl_dma_update_pointers(struct fsl_dma_private * dma_private)164 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
165 {
166 struct fsl_dma_link_descriptor *link =
167 &dma_private->link[dma_private->current_link];
168
169 /* Update our link descriptors to point to the next period. On a 36-bit
170 * system, we also need to update the ESAD bits. We also set (keep) the
171 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
172 */
173 if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
174 link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
175 #ifdef CONFIG_PHYS_64BIT
176 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
177 upper_32_bits(dma_private->dma_buf_next));
178 #endif
179 } else {
180 link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
181 #ifdef CONFIG_PHYS_64BIT
182 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
183 upper_32_bits(dma_private->dma_buf_next));
184 #endif
185 }
186
187 /* Update our variables for next time */
188 dma_private->dma_buf_next += dma_private->period_size;
189
190 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
191 dma_private->dma_buf_next = dma_private->dma_buf_phys;
192
193 if (++dma_private->current_link >= NUM_DMA_LINKS)
194 dma_private->current_link = 0;
195 }
196
197 /**
198 * fsl_dma_isr: interrupt handler for the DMA controller
199 *
200 * @irq: IRQ of the DMA channel
201 * @dev_id: pointer to the dma_private structure for this DMA channel
202 */
fsl_dma_isr(int irq,void * dev_id)203 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
204 {
205 struct fsl_dma_private *dma_private = dev_id;
206 struct snd_pcm_substream *substream = dma_private->substream;
207 struct snd_soc_pcm_runtime *rtd = substream->private_data;
208 struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
209 struct device *dev = component->dev;
210 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
211 irqreturn_t ret = IRQ_NONE;
212 u32 sr, sr2 = 0;
213
214 /* We got an interrupt, so read the status register to see what we
215 were interrupted for.
216 */
217 sr = in_be32(&dma_channel->sr);
218
219 if (sr & CCSR_DMA_SR_TE) {
220 dev_err(dev, "dma transmit error\n");
221 fsl_dma_abort_stream(substream);
222 sr2 |= CCSR_DMA_SR_TE;
223 ret = IRQ_HANDLED;
224 }
225
226 if (sr & CCSR_DMA_SR_CH)
227 ret = IRQ_HANDLED;
228
229 if (sr & CCSR_DMA_SR_PE) {
230 dev_err(dev, "dma programming error\n");
231 fsl_dma_abort_stream(substream);
232 sr2 |= CCSR_DMA_SR_PE;
233 ret = IRQ_HANDLED;
234 }
235
236 if (sr & CCSR_DMA_SR_EOLNI) {
237 sr2 |= CCSR_DMA_SR_EOLNI;
238 ret = IRQ_HANDLED;
239 }
240
241 if (sr & CCSR_DMA_SR_CB)
242 ret = IRQ_HANDLED;
243
244 if (sr & CCSR_DMA_SR_EOSI) {
245 /* Tell ALSA we completed a period. */
246 snd_pcm_period_elapsed(substream);
247
248 /*
249 * Update our link descriptors to point to the next period. We
250 * only need to do this if the number of periods is not equal to
251 * the number of links.
252 */
253 if (dma_private->num_periods != NUM_DMA_LINKS)
254 fsl_dma_update_pointers(dma_private);
255
256 sr2 |= CCSR_DMA_SR_EOSI;
257 ret = IRQ_HANDLED;
258 }
259
260 if (sr & CCSR_DMA_SR_EOLSI) {
261 sr2 |= CCSR_DMA_SR_EOLSI;
262 ret = IRQ_HANDLED;
263 }
264
265 /* Clear the bits that we set */
266 if (sr2)
267 out_be32(&dma_channel->sr, sr2);
268
269 return ret;
270 }
271
272 /**
273 * fsl_dma_new: initialize this PCM driver.
274 *
275 * This function is called when the codec driver calls snd_soc_new_pcms(),
276 * once for each .dai_link in the machine driver's snd_soc_card
277 * structure.
278 *
279 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
280 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
281 * is specified. Therefore, any DMA buffers we allocate will always be in low
282 * memory, but we support for 36-bit physical addresses anyway.
283 *
284 * Regardless of where the memory is actually allocated, since the device can
285 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
286 */
fsl_dma_new(struct snd_soc_pcm_runtime * rtd)287 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
288 {
289 struct snd_card *card = rtd->card->snd_card;
290 struct snd_pcm *pcm = rtd->pcm;
291 int ret;
292
293 ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
294 if (ret)
295 return ret;
296
297 /* Some codecs have separate DAIs for playback and capture, so we
298 * should allocate a DMA buffer only for the streams that are valid.
299 */
300
301 if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
302 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
303 fsl_dma_hardware.buffer_bytes_max,
304 &pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
305 if (ret) {
306 dev_err(card->dev, "can't alloc playback dma buffer\n");
307 return ret;
308 }
309 }
310
311 if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
312 ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
313 fsl_dma_hardware.buffer_bytes_max,
314 &pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
315 if (ret) {
316 dev_err(card->dev, "can't alloc capture dma buffer\n");
317 snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
318 return ret;
319 }
320 }
321
322 return 0;
323 }
324
325 /**
326 * fsl_dma_open: open a new substream.
327 *
328 * Each substream has its own DMA buffer.
329 *
330 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
331 * descriptors that ping-pong from one period to the next. For example, if
332 * there are six periods and two link descriptors, this is how they look
333 * before playback starts:
334 *
335 * The last link descriptor
336 * ____________ points back to the first
337 * | |
338 * V |
339 * ___ ___ |
340 * | |->| |->|
341 * |___| |___|
342 * | |
343 * | |
344 * V V
345 * _________________________________________
346 * | | | | | | | The DMA buffer is
347 * | | | | | | | divided into 6 parts
348 * |______|______|______|______|______|______|
349 *
350 * and here's how they look after the first period is finished playing:
351 *
352 * ____________
353 * | |
354 * V |
355 * ___ ___ |
356 * | |->| |->|
357 * |___| |___|
358 * | |
359 * |______________
360 * | |
361 * V V
362 * _________________________________________
363 * | | | | | | |
364 * | | | | | | |
365 * |______|______|______|______|______|______|
366 *
367 * The first link descriptor now points to the third period. The DMA
368 * controller is currently playing the second period. When it finishes, it
369 * will jump back to the first descriptor and play the third period.
370 *
371 * There are four reasons we do this:
372 *
373 * 1. The only way to get the DMA controller to automatically restart the
374 * transfer when it gets to the end of the buffer is to use chaining
375 * mode. Basic direct mode doesn't offer that feature.
376 * 2. We need to receive an interrupt at the end of every period. The DMA
377 * controller can generate an interrupt at the end of every link transfer
378 * (aka segment). Making each period into a DMA segment will give us the
379 * interrupts we need.
380 * 3. By creating only two link descriptors, regardless of the number of
381 * periods, we do not need to reallocate the link descriptors if the
382 * number of periods changes.
383 * 4. All of the audio data is still stored in a single, contiguous DMA
384 * buffer, which is what ALSA expects. We're just dividing it into
385 * contiguous parts, and creating a link descriptor for each one.
386 */
fsl_dma_open(struct snd_pcm_substream * substream)387 static int fsl_dma_open(struct snd_pcm_substream *substream)
388 {
389 struct snd_pcm_runtime *runtime = substream->runtime;
390 struct snd_soc_pcm_runtime *rtd = substream->private_data;
391 struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
392 struct device *dev = component->dev;
393 struct dma_object *dma =
394 container_of(component->driver, struct dma_object, dai);
395 struct fsl_dma_private *dma_private;
396 struct ccsr_dma_channel __iomem *dma_channel;
397 dma_addr_t ld_buf_phys;
398 u64 temp_link; /* Pointer to next link descriptor */
399 u32 mr;
400 unsigned int channel;
401 int ret = 0;
402 unsigned int i;
403
404 /*
405 * Reject any DMA buffer whose size is not a multiple of the period
406 * size. We need to make sure that the DMA buffer can be evenly divided
407 * into periods.
408 */
409 ret = snd_pcm_hw_constraint_integer(runtime,
410 SNDRV_PCM_HW_PARAM_PERIODS);
411 if (ret < 0) {
412 dev_err(dev, "invalid buffer size\n");
413 return ret;
414 }
415
416 channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
417
418 if (dma->assigned) {
419 dev_err(dev, "dma channel already assigned\n");
420 return -EBUSY;
421 }
422
423 dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
424 &ld_buf_phys, GFP_KERNEL);
425 if (!dma_private) {
426 dev_err(dev, "can't allocate dma private data\n");
427 return -ENOMEM;
428 }
429 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
430 dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
431 else
432 dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
433
434 dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
435 dma_private->dma_channel = dma->channel;
436 dma_private->irq = dma->irq;
437 dma_private->substream = substream;
438 dma_private->ld_buf_phys = ld_buf_phys;
439 dma_private->dma_buf_phys = substream->dma_buffer.addr;
440
441 ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
442 dma_private);
443 if (ret) {
444 dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
445 dma_private->irq, ret);
446 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
447 dma_private, dma_private->ld_buf_phys);
448 return ret;
449 }
450
451 dma->assigned = true;
452
453 snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
454 snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
455 runtime->private_data = dma_private;
456
457 /* Program the fixed DMA controller parameters */
458
459 dma_channel = dma_private->dma_channel;
460
461 temp_link = dma_private->ld_buf_phys +
462 sizeof(struct fsl_dma_link_descriptor);
463
464 for (i = 0; i < NUM_DMA_LINKS; i++) {
465 dma_private->link[i].next = cpu_to_be64(temp_link);
466
467 temp_link += sizeof(struct fsl_dma_link_descriptor);
468 }
469 /* The last link descriptor points to the first */
470 dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
471
472 /* Tell the DMA controller where the first link descriptor is */
473 out_be32(&dma_channel->clndar,
474 CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
475 out_be32(&dma_channel->eclndar,
476 CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
477
478 /* The manual says the BCR must be clear before enabling EMP */
479 out_be32(&dma_channel->bcr, 0);
480
481 /*
482 * Program the mode register for interrupts, external master control,
483 * and source/destination hold. Also clear the Channel Abort bit.
484 */
485 mr = in_be32(&dma_channel->mr) &
486 ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
487
488 /*
489 * We want External Master Start and External Master Pause enabled,
490 * because the SSI is controlling the DMA controller. We want the DMA
491 * controller to be set up in advance, and then we signal only the SSI
492 * to start transferring.
493 *
494 * We want End-Of-Segment Interrupts enabled, because this will generate
495 * an interrupt at the end of each segment (each link descriptor
496 * represents one segment). Each DMA segment is the same thing as an
497 * ALSA period, so this is how we get an interrupt at the end of every
498 * period.
499 *
500 * We want Error Interrupt enabled, so that we can get an error if
501 * the DMA controller is mis-programmed somehow.
502 */
503 mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
504 CCSR_DMA_MR_EMS_EN;
505
506 /* For playback, we want the destination address to be held. For
507 capture, set the source address to be held. */
508 mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
509 CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
510
511 out_be32(&dma_channel->mr, mr);
512
513 return 0;
514 }
515
516 /**
517 * fsl_dma_hw_params: continue initializing the DMA links
518 *
519 * This function obtains hardware parameters about the opened stream and
520 * programs the DMA controller accordingly.
521 *
522 * One drawback of big-endian is that when copying integers of different
523 * sizes to a fixed-sized register, the address to which the integer must be
524 * copied is dependent on the size of the integer.
525 *
526 * For example, if P is the address of a 32-bit register, and X is a 32-bit
527 * integer, then X should be copied to address P. However, if X is a 16-bit
528 * integer, then it should be copied to P+2. If X is an 8-bit register,
529 * then it should be copied to P+3.
530 *
531 * So for playback of 8-bit samples, the DMA controller must transfer single
532 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
533 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
534 *
535 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
536 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
537 * and 8 bytes at a time). So we do not support packed 24-bit samples.
538 * 24-bit data must be padded to 32 bits.
539 */
fsl_dma_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)540 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
541 struct snd_pcm_hw_params *hw_params)
542 {
543 struct snd_pcm_runtime *runtime = substream->runtime;
544 struct fsl_dma_private *dma_private = runtime->private_data;
545 struct snd_soc_pcm_runtime *rtd = substream->private_data;
546 struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
547 struct device *dev = component->dev;
548
549 /* Number of bits per sample */
550 unsigned int sample_bits =
551 snd_pcm_format_physical_width(params_format(hw_params));
552
553 /* Number of bytes per frame */
554 unsigned int sample_bytes = sample_bits / 8;
555
556 /* Bus address of SSI STX register */
557 dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
558
559 /* Size of the DMA buffer, in bytes */
560 size_t buffer_size = params_buffer_bytes(hw_params);
561
562 /* Number of bytes per period */
563 size_t period_size = params_period_bytes(hw_params);
564
565 /* Pointer to next period */
566 dma_addr_t temp_addr = substream->dma_buffer.addr;
567
568 /* Pointer to DMA controller */
569 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
570
571 u32 mr; /* DMA Mode Register */
572
573 unsigned int i;
574
575 /* Initialize our DMA tracking variables */
576 dma_private->period_size = period_size;
577 dma_private->num_periods = params_periods(hw_params);
578 dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
579 dma_private->dma_buf_next = dma_private->dma_buf_phys +
580 (NUM_DMA_LINKS * period_size);
581
582 if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
583 /* This happens if the number of periods == NUM_DMA_LINKS */
584 dma_private->dma_buf_next = dma_private->dma_buf_phys;
585
586 mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
587 CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
588
589 /* Due to a quirk of the SSI's STX register, the target address
590 * for the DMA operations depends on the sample size. So we calculate
591 * that offset here. While we're at it, also tell the DMA controller
592 * how much data to transfer per sample.
593 */
594 switch (sample_bits) {
595 case 8:
596 mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
597 ssi_sxx_phys += 3;
598 break;
599 case 16:
600 mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
601 ssi_sxx_phys += 2;
602 break;
603 case 32:
604 mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
605 break;
606 default:
607 /* We should never get here */
608 dev_err(dev, "unsupported sample size %u\n", sample_bits);
609 return -EINVAL;
610 }
611
612 /*
613 * BWC determines how many bytes are sent/received before the DMA
614 * controller checks the SSI to see if it needs to stop. BWC should
615 * always be a multiple of the frame size, so that we always transmit
616 * whole frames. Each frame occupies two slots in the FIFO. The
617 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
618 * (MR[BWC] can only represent even powers of two).
619 *
620 * To simplify the process, we set BWC to the largest value that is
621 * less than or equal to the FIFO watermark. For playback, this ensures
622 * that we transfer the maximum amount without overrunning the FIFO.
623 * For capture, this ensures that we transfer the maximum amount without
624 * underrunning the FIFO.
625 *
626 * f = SSI FIFO depth
627 * w = SSI watermark value (which equals f - 2)
628 * b = DMA bandwidth count (in bytes)
629 * s = sample size (in bytes, which equals frame_size * 2)
630 *
631 * For playback, we never transmit more than the transmit FIFO
632 * watermark, otherwise we might write more data than the FIFO can hold.
633 * The watermark is equal to the FIFO depth minus two.
634 *
635 * For capture, two equations must hold:
636 * w > f - (b / s)
637 * w >= b / s
638 *
639 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
640 * b = s * w, which is equal to
641 * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
642 */
643 mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
644
645 out_be32(&dma_channel->mr, mr);
646
647 for (i = 0; i < NUM_DMA_LINKS; i++) {
648 struct fsl_dma_link_descriptor *link = &dma_private->link[i];
649
650 link->count = cpu_to_be32(period_size);
651
652 /* The snoop bit tells the DMA controller whether it should tell
653 * the ECM to snoop during a read or write to an address. For
654 * audio, we use DMA to transfer data between memory and an I/O
655 * device (the SSI's STX0 or SRX0 register). Snooping is only
656 * needed if there is a cache, so we need to snoop memory
657 * addresses only. For playback, that means we snoop the source
658 * but not the destination. For capture, we snoop the
659 * destination but not the source.
660 *
661 * Note that failing to snoop properly is unlikely to cause
662 * cache incoherency if the period size is larger than the
663 * size of L1 cache. This is because filling in one period will
664 * flush out the data for the previous period. So if you
665 * increased period_bytes_min to a large enough size, you might
666 * get more performance by not snooping, and you'll still be
667 * okay. You'll need to update fsl_dma_update_pointers() also.
668 */
669 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
670 link->source_addr = cpu_to_be32(temp_addr);
671 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
672 upper_32_bits(temp_addr));
673
674 link->dest_addr = cpu_to_be32(ssi_sxx_phys);
675 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
676 upper_32_bits(ssi_sxx_phys));
677 } else {
678 link->source_addr = cpu_to_be32(ssi_sxx_phys);
679 link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
680 upper_32_bits(ssi_sxx_phys));
681
682 link->dest_addr = cpu_to_be32(temp_addr);
683 link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
684 upper_32_bits(temp_addr));
685 }
686
687 temp_addr += period_size;
688 }
689
690 return 0;
691 }
692
693 /**
694 * fsl_dma_pointer: determine the current position of the DMA transfer
695 *
696 * This function is called by ALSA when ALSA wants to know where in the
697 * stream buffer the hardware currently is.
698 *
699 * For playback, the SAR register contains the physical address of the most
700 * recent DMA transfer. For capture, the value is in the DAR register.
701 *
702 * The base address of the buffer is stored in the source_addr field of the
703 * first link descriptor.
704 */
fsl_dma_pointer(struct snd_pcm_substream * substream)705 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
706 {
707 struct snd_pcm_runtime *runtime = substream->runtime;
708 struct fsl_dma_private *dma_private = runtime->private_data;
709 struct snd_soc_pcm_runtime *rtd = substream->private_data;
710 struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
711 struct device *dev = component->dev;
712 struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
713 dma_addr_t position;
714 snd_pcm_uframes_t frames;
715
716 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
717 * only have 32-bit DMA addresses. This function is typically called
718 * in interrupt context, so we need to optimize it.
719 */
720 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
721 position = in_be32(&dma_channel->sar);
722 #ifdef CONFIG_PHYS_64BIT
723 position |= (u64)(in_be32(&dma_channel->satr) &
724 CCSR_DMA_ATR_ESAD_MASK) << 32;
725 #endif
726 } else {
727 position = in_be32(&dma_channel->dar);
728 #ifdef CONFIG_PHYS_64BIT
729 position |= (u64)(in_be32(&dma_channel->datr) &
730 CCSR_DMA_ATR_ESAD_MASK) << 32;
731 #endif
732 }
733
734 /*
735 * When capture is started, the SSI immediately starts to fill its FIFO.
736 * This means that the DMA controller is not started until the FIFO is
737 * full. However, ALSA calls this function before that happens, when
738 * MR.DAR is still zero. In this case, just return zero to indicate
739 * that nothing has been received yet.
740 */
741 if (!position)
742 return 0;
743
744 if ((position < dma_private->dma_buf_phys) ||
745 (position > dma_private->dma_buf_end)) {
746 dev_err(dev, "dma pointer is out of range, halting stream\n");
747 return SNDRV_PCM_POS_XRUN;
748 }
749
750 frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
751
752 /*
753 * If the current address is just past the end of the buffer, wrap it
754 * around.
755 */
756 if (frames == runtime->buffer_size)
757 frames = 0;
758
759 return frames;
760 }
761
762 /**
763 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
764 *
765 * Release the resources allocated in fsl_dma_hw_params() and de-program the
766 * registers.
767 *
768 * This function can be called multiple times.
769 */
fsl_dma_hw_free(struct snd_pcm_substream * substream)770 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
771 {
772 struct snd_pcm_runtime *runtime = substream->runtime;
773 struct fsl_dma_private *dma_private = runtime->private_data;
774
775 if (dma_private) {
776 struct ccsr_dma_channel __iomem *dma_channel;
777
778 dma_channel = dma_private->dma_channel;
779
780 /* Stop the DMA */
781 out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
782 out_be32(&dma_channel->mr, 0);
783
784 /* Reset all the other registers */
785 out_be32(&dma_channel->sr, -1);
786 out_be32(&dma_channel->clndar, 0);
787 out_be32(&dma_channel->eclndar, 0);
788 out_be32(&dma_channel->satr, 0);
789 out_be32(&dma_channel->sar, 0);
790 out_be32(&dma_channel->datr, 0);
791 out_be32(&dma_channel->dar, 0);
792 out_be32(&dma_channel->bcr, 0);
793 out_be32(&dma_channel->nlndar, 0);
794 out_be32(&dma_channel->enlndar, 0);
795 }
796
797 return 0;
798 }
799
800 /**
801 * fsl_dma_close: close the stream.
802 */
fsl_dma_close(struct snd_pcm_substream * substream)803 static int fsl_dma_close(struct snd_pcm_substream *substream)
804 {
805 struct snd_pcm_runtime *runtime = substream->runtime;
806 struct fsl_dma_private *dma_private = runtime->private_data;
807 struct snd_soc_pcm_runtime *rtd = substream->private_data;
808 struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
809 struct device *dev = component->dev;
810 struct dma_object *dma =
811 container_of(component->driver, struct dma_object, dai);
812
813 if (dma_private) {
814 if (dma_private->irq)
815 free_irq(dma_private->irq, dma_private);
816
817 /* Deallocate the fsl_dma_private structure */
818 dma_free_coherent(dev, sizeof(struct fsl_dma_private),
819 dma_private, dma_private->ld_buf_phys);
820 substream->runtime->private_data = NULL;
821 }
822
823 dma->assigned = false;
824
825 return 0;
826 }
827
828 /*
829 * Remove this PCM driver.
830 */
fsl_dma_free_dma_buffers(struct snd_pcm * pcm)831 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
832 {
833 struct snd_pcm_substream *substream;
834 unsigned int i;
835
836 for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
837 substream = pcm->streams[i].substream;
838 if (substream) {
839 snd_dma_free_pages(&substream->dma_buffer);
840 substream->dma_buffer.area = NULL;
841 substream->dma_buffer.addr = 0;
842 }
843 }
844 }
845
846 /**
847 * find_ssi_node -- returns the SSI node that points to its DMA channel node
848 *
849 * Although this DMA driver attempts to operate independently of the other
850 * devices, it still needs to determine some information about the SSI device
851 * that it's working with. Unfortunately, the device tree does not contain
852 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
853 * other way. So we need to scan the device tree for SSI nodes until we find
854 * the one that points to the given DMA channel node. It's ugly, but at least
855 * it's contained in this one function.
856 */
find_ssi_node(struct device_node * dma_channel_np)857 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
858 {
859 struct device_node *ssi_np, *np;
860
861 for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
862 /* Check each DMA phandle to see if it points to us. We
863 * assume that device_node pointers are a valid comparison.
864 */
865 np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
866 of_node_put(np);
867 if (np == dma_channel_np)
868 return ssi_np;
869
870 np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
871 of_node_put(np);
872 if (np == dma_channel_np)
873 return ssi_np;
874 }
875
876 return NULL;
877 }
878
879 static const struct snd_pcm_ops fsl_dma_ops = {
880 .open = fsl_dma_open,
881 .close = fsl_dma_close,
882 .ioctl = snd_pcm_lib_ioctl,
883 .hw_params = fsl_dma_hw_params,
884 .hw_free = fsl_dma_hw_free,
885 .pointer = fsl_dma_pointer,
886 };
887
fsl_soc_dma_probe(struct platform_device * pdev)888 static int fsl_soc_dma_probe(struct platform_device *pdev)
889 {
890 struct dma_object *dma;
891 struct device_node *np = pdev->dev.of_node;
892 struct device_node *ssi_np;
893 struct resource res;
894 const uint32_t *iprop;
895 int ret;
896
897 /* Find the SSI node that points to us. */
898 ssi_np = find_ssi_node(np);
899 if (!ssi_np) {
900 dev_err(&pdev->dev, "cannot find parent SSI node\n");
901 return -ENODEV;
902 }
903
904 ret = of_address_to_resource(ssi_np, 0, &res);
905 if (ret) {
906 dev_err(&pdev->dev, "could not determine resources for %pOF\n",
907 ssi_np);
908 of_node_put(ssi_np);
909 return ret;
910 }
911
912 dma = kzalloc(sizeof(*dma), GFP_KERNEL);
913 if (!dma) {
914 of_node_put(ssi_np);
915 return -ENOMEM;
916 }
917
918 dma->dai.name = DRV_NAME;
919 dma->dai.ops = &fsl_dma_ops;
920 dma->dai.pcm_new = fsl_dma_new;
921 dma->dai.pcm_free = fsl_dma_free_dma_buffers;
922
923 /* Store the SSI-specific information that we need */
924 dma->ssi_stx_phys = res.start + REG_SSI_STX0;
925 dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
926
927 iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
928 if (iprop)
929 dma->ssi_fifo_depth = be32_to_cpup(iprop);
930 else
931 /* Older 8610 DTs didn't have the fifo-depth property */
932 dma->ssi_fifo_depth = 8;
933
934 of_node_put(ssi_np);
935
936 ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
937 if (ret) {
938 dev_err(&pdev->dev, "could not register platform\n");
939 kfree(dma);
940 return ret;
941 }
942
943 dma->channel = of_iomap(np, 0);
944 dma->irq = irq_of_parse_and_map(np, 0);
945
946 dev_set_drvdata(&pdev->dev, dma);
947
948 return 0;
949 }
950
fsl_soc_dma_remove(struct platform_device * pdev)951 static int fsl_soc_dma_remove(struct platform_device *pdev)
952 {
953 struct dma_object *dma = dev_get_drvdata(&pdev->dev);
954
955 iounmap(dma->channel);
956 irq_dispose_mapping(dma->irq);
957 kfree(dma);
958
959 return 0;
960 }
961
962 static const struct of_device_id fsl_soc_dma_ids[] = {
963 { .compatible = "fsl,ssi-dma-channel", },
964 {}
965 };
966 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
967
968 static struct platform_driver fsl_soc_dma_driver = {
969 .driver = {
970 .name = "fsl-pcm-audio",
971 .of_match_table = fsl_soc_dma_ids,
972 },
973 .probe = fsl_soc_dma_probe,
974 .remove = fsl_soc_dma_remove,
975 };
976
977 module_platform_driver(fsl_soc_dma_driver);
978
979 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
980 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
981 MODULE_LICENSE("GPL v2");
982