1 /*
2  * Freescale DMA ALSA SoC PCM driver
3  *
4  * Author: Timur Tabi <timur@freescale.com>
5  *
6  * Copyright 2007-2010 Freescale Semiconductor, Inc.
7  *
8  * This file is licensed under the terms of the GNU General Public License
9  * version 2.  This program is licensed "as is" without any warranty of any
10  * kind, whether express or implied.
11  *
12  * This driver implements ASoC support for the Elo DMA controller, which is
13  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
14  * the PCM driver is what handles the DMA buffer.
15  */
16 
17 #include <linux/module.h>
18 #include <linux/init.h>
19 #include <linux/platform_device.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/interrupt.h>
22 #include <linux/delay.h>
23 #include <linux/gfp.h>
24 #include <linux/of_address.h>
25 #include <linux/of_irq.h>
26 #include <linux/of_platform.h>
27 #include <linux/list.h>
28 #include <linux/slab.h>
29 
30 #include <sound/core.h>
31 #include <sound/pcm.h>
32 #include <sound/pcm_params.h>
33 #include <sound/soc.h>
34 
35 #include <asm/io.h>
36 
37 #include "fsl_dma.h"
38 #include "fsl_ssi.h"	/* For the offset of stx0 and srx0 */
39 
40 #define DRV_NAME "fsl_dma"
41 
42 /*
43  * The formats that the DMA controller supports, which is anything
44  * that is 8, 16, or 32 bits.
45  */
46 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
47 			    SNDRV_PCM_FMTBIT_U8 	| \
48 			    SNDRV_PCM_FMTBIT_S16_LE     | \
49 			    SNDRV_PCM_FMTBIT_S16_BE     | \
50 			    SNDRV_PCM_FMTBIT_U16_LE     | \
51 			    SNDRV_PCM_FMTBIT_U16_BE     | \
52 			    SNDRV_PCM_FMTBIT_S24_LE     | \
53 			    SNDRV_PCM_FMTBIT_S24_BE     | \
54 			    SNDRV_PCM_FMTBIT_U24_LE     | \
55 			    SNDRV_PCM_FMTBIT_U24_BE     | \
56 			    SNDRV_PCM_FMTBIT_S32_LE     | \
57 			    SNDRV_PCM_FMTBIT_S32_BE     | \
58 			    SNDRV_PCM_FMTBIT_U32_LE     | \
59 			    SNDRV_PCM_FMTBIT_U32_BE)
60 struct dma_object {
61 	struct snd_soc_component_driver dai;
62 	dma_addr_t ssi_stx_phys;
63 	dma_addr_t ssi_srx_phys;
64 	unsigned int ssi_fifo_depth;
65 	struct ccsr_dma_channel __iomem *channel;
66 	unsigned int irq;
67 	bool assigned;
68 };
69 
70 /*
71  * The number of DMA links to use.  Two is the bare minimum, but if you
72  * have really small links you might need more.
73  */
74 #define NUM_DMA_LINKS   2
75 
76 /** fsl_dma_private: p-substream DMA data
77  *
78  * Each substream has a 1-to-1 association with a DMA channel.
79  *
80  * The link[] array is first because it needs to be aligned on a 32-byte
81  * boundary, so putting it first will ensure alignment without padding the
82  * structure.
83  *
84  * @link[]: array of link descriptors
85  * @dma_channel: pointer to the DMA channel's registers
86  * @irq: IRQ for this DMA channel
87  * @substream: pointer to the substream object, needed by the ISR
88  * @ssi_sxx_phys: bus address of the STX or SRX register to use
89  * @ld_buf_phys: physical address of the LD buffer
90  * @current_link: index into link[] of the link currently being processed
91  * @dma_buf_phys: physical address of the DMA buffer
92  * @dma_buf_next: physical address of the next period to process
93  * @dma_buf_end: physical address of the byte after the end of the DMA
94  * @buffer period_size: the size of a single period
95  * @num_periods: the number of periods in the DMA buffer
96  */
97 struct fsl_dma_private {
98 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
99 	struct ccsr_dma_channel __iomem *dma_channel;
100 	unsigned int irq;
101 	struct snd_pcm_substream *substream;
102 	dma_addr_t ssi_sxx_phys;
103 	unsigned int ssi_fifo_depth;
104 	dma_addr_t ld_buf_phys;
105 	unsigned int current_link;
106 	dma_addr_t dma_buf_phys;
107 	dma_addr_t dma_buf_next;
108 	dma_addr_t dma_buf_end;
109 	size_t period_size;
110 	unsigned int num_periods;
111 };
112 
113 /**
114  * fsl_dma_hardare: define characteristics of the PCM hardware.
115  *
116  * The PCM hardware is the Freescale DMA controller.  This structure defines
117  * the capabilities of that hardware.
118  *
119  * Since the sampling rate and data format are not controlled by the DMA
120  * controller, we specify no limits for those values.  The only exception is
121  * period_bytes_min, which is set to a reasonably low value to prevent the
122  * DMA controller from generating too many interrupts per second.
123  *
124  * Since each link descriptor has a 32-bit byte count field, we set
125  * period_bytes_max to the largest 32-bit number.  We also have no maximum
126  * number of periods.
127  *
128  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
129  * limitation in the SSI driver requires the sample rates for playback and
130  * capture to be the same.
131  */
132 static const struct snd_pcm_hardware fsl_dma_hardware = {
133 
134 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
135 				  SNDRV_PCM_INFO_MMAP |
136 				  SNDRV_PCM_INFO_MMAP_VALID |
137 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
138 				  SNDRV_PCM_INFO_PAUSE,
139 	.formats		= FSLDMA_PCM_FORMATS,
140 	.period_bytes_min       = 512,  	/* A reasonable limit */
141 	.period_bytes_max       = (u32) -1,
142 	.periods_min    	= NUM_DMA_LINKS,
143 	.periods_max    	= (unsigned int) -1,
144 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
145 };
146 
147 /**
148  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
149  *
150  * This function should be called by the ISR whenever the DMA controller
151  * halts data transfer.
152  */
fsl_dma_abort_stream(struct snd_pcm_substream * substream)153 static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
154 {
155 	snd_pcm_stop_xrun(substream);
156 }
157 
158 /**
159  * fsl_dma_update_pointers - update LD pointers to point to the next period
160  *
161  * As each period is completed, this function changes the the link
162  * descriptor pointers for that period to point to the next period.
163  */
fsl_dma_update_pointers(struct fsl_dma_private * dma_private)164 static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
165 {
166 	struct fsl_dma_link_descriptor *link =
167 		&dma_private->link[dma_private->current_link];
168 
169 	/* Update our link descriptors to point to the next period. On a 36-bit
170 	 * system, we also need to update the ESAD bits.  We also set (keep) the
171 	 * snoop bits.  See the comments in fsl_dma_hw_params() about snooping.
172 	 */
173 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
174 		link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
175 #ifdef CONFIG_PHYS_64BIT
176 		link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
177 			upper_32_bits(dma_private->dma_buf_next));
178 #endif
179 	} else {
180 		link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
181 #ifdef CONFIG_PHYS_64BIT
182 		link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
183 			upper_32_bits(dma_private->dma_buf_next));
184 #endif
185 	}
186 
187 	/* Update our variables for next time */
188 	dma_private->dma_buf_next += dma_private->period_size;
189 
190 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
191 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
192 
193 	if (++dma_private->current_link >= NUM_DMA_LINKS)
194 		dma_private->current_link = 0;
195 }
196 
197 /**
198  * fsl_dma_isr: interrupt handler for the DMA controller
199  *
200  * @irq: IRQ of the DMA channel
201  * @dev_id: pointer to the dma_private structure for this DMA channel
202  */
fsl_dma_isr(int irq,void * dev_id)203 static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
204 {
205 	struct fsl_dma_private *dma_private = dev_id;
206 	struct snd_pcm_substream *substream = dma_private->substream;
207 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
208 	struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
209 	struct device *dev = component->dev;
210 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
211 	irqreturn_t ret = IRQ_NONE;
212 	u32 sr, sr2 = 0;
213 
214 	/* We got an interrupt, so read the status register to see what we
215 	   were interrupted for.
216 	 */
217 	sr = in_be32(&dma_channel->sr);
218 
219 	if (sr & CCSR_DMA_SR_TE) {
220 		dev_err(dev, "dma transmit error\n");
221 		fsl_dma_abort_stream(substream);
222 		sr2 |= CCSR_DMA_SR_TE;
223 		ret = IRQ_HANDLED;
224 	}
225 
226 	if (sr & CCSR_DMA_SR_CH)
227 		ret = IRQ_HANDLED;
228 
229 	if (sr & CCSR_DMA_SR_PE) {
230 		dev_err(dev, "dma programming error\n");
231 		fsl_dma_abort_stream(substream);
232 		sr2 |= CCSR_DMA_SR_PE;
233 		ret = IRQ_HANDLED;
234 	}
235 
236 	if (sr & CCSR_DMA_SR_EOLNI) {
237 		sr2 |= CCSR_DMA_SR_EOLNI;
238 		ret = IRQ_HANDLED;
239 	}
240 
241 	if (sr & CCSR_DMA_SR_CB)
242 		ret = IRQ_HANDLED;
243 
244 	if (sr & CCSR_DMA_SR_EOSI) {
245 		/* Tell ALSA we completed a period. */
246 		snd_pcm_period_elapsed(substream);
247 
248 		/*
249 		 * Update our link descriptors to point to the next period. We
250 		 * only need to do this if the number of periods is not equal to
251 		 * the number of links.
252 		 */
253 		if (dma_private->num_periods != NUM_DMA_LINKS)
254 			fsl_dma_update_pointers(dma_private);
255 
256 		sr2 |= CCSR_DMA_SR_EOSI;
257 		ret = IRQ_HANDLED;
258 	}
259 
260 	if (sr & CCSR_DMA_SR_EOLSI) {
261 		sr2 |= CCSR_DMA_SR_EOLSI;
262 		ret = IRQ_HANDLED;
263 	}
264 
265 	/* Clear the bits that we set */
266 	if (sr2)
267 		out_be32(&dma_channel->sr, sr2);
268 
269 	return ret;
270 }
271 
272 /**
273  * fsl_dma_new: initialize this PCM driver.
274  *
275  * This function is called when the codec driver calls snd_soc_new_pcms(),
276  * once for each .dai_link in the machine driver's snd_soc_card
277  * structure.
278  *
279  * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
280  * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
281  * is specified. Therefore, any DMA buffers we allocate will always be in low
282  * memory, but we support for 36-bit physical addresses anyway.
283  *
284  * Regardless of where the memory is actually allocated, since the device can
285  * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
286  */
fsl_dma_new(struct snd_soc_pcm_runtime * rtd)287 static int fsl_dma_new(struct snd_soc_pcm_runtime *rtd)
288 {
289 	struct snd_card *card = rtd->card->snd_card;
290 	struct snd_pcm *pcm = rtd->pcm;
291 	int ret;
292 
293 	ret = dma_coerce_mask_and_coherent(card->dev, DMA_BIT_MASK(36));
294 	if (ret)
295 		return ret;
296 
297 	/* Some codecs have separate DAIs for playback and capture, so we
298 	 * should allocate a DMA buffer only for the streams that are valid.
299 	 */
300 
301 	if (pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream) {
302 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
303 			fsl_dma_hardware.buffer_bytes_max,
304 			&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
305 		if (ret) {
306 			dev_err(card->dev, "can't alloc playback dma buffer\n");
307 			return ret;
308 		}
309 	}
310 
311 	if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) {
312 		ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
313 			fsl_dma_hardware.buffer_bytes_max,
314 			&pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream->dma_buffer);
315 		if (ret) {
316 			dev_err(card->dev, "can't alloc capture dma buffer\n");
317 			snd_dma_free_pages(&pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream->dma_buffer);
318 			return ret;
319 		}
320 	}
321 
322 	return 0;
323 }
324 
325 /**
326  * fsl_dma_open: open a new substream.
327  *
328  * Each substream has its own DMA buffer.
329  *
330  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
331  * descriptors that ping-pong from one period to the next.  For example, if
332  * there are six periods and two link descriptors, this is how they look
333  * before playback starts:
334  *
335  *      	   The last link descriptor
336  *   ____________  points back to the first
337  *  |   	 |
338  *  V   	 |
339  *  ___    ___   |
340  * |   |->|   |->|
341  * |___|  |___|
342  *   |      |
343  *   |      |
344  *   V      V
345  *  _________________________________________
346  * |      |      |      |      |      |      |  The DMA buffer is
347  * |      |      |      |      |      |      |    divided into 6 parts
348  * |______|______|______|______|______|______|
349  *
350  * and here's how they look after the first period is finished playing:
351  *
352  *   ____________
353  *  |   	 |
354  *  V   	 |
355  *  ___    ___   |
356  * |   |->|   |->|
357  * |___|  |___|
358  *   |      |
359  *   |______________
360  *          |       |
361  *          V       V
362  *  _________________________________________
363  * |      |      |      |      |      |      |
364  * |      |      |      |      |      |      |
365  * |______|______|______|______|______|______|
366  *
367  * The first link descriptor now points to the third period.  The DMA
368  * controller is currently playing the second period.  When it finishes, it
369  * will jump back to the first descriptor and play the third period.
370  *
371  * There are four reasons we do this:
372  *
373  * 1. The only way to get the DMA controller to automatically restart the
374  *    transfer when it gets to the end of the buffer is to use chaining
375  *    mode.  Basic direct mode doesn't offer that feature.
376  * 2. We need to receive an interrupt at the end of every period.  The DMA
377  *    controller can generate an interrupt at the end of every link transfer
378  *    (aka segment).  Making each period into a DMA segment will give us the
379  *    interrupts we need.
380  * 3. By creating only two link descriptors, regardless of the number of
381  *    periods, we do not need to reallocate the link descriptors if the
382  *    number of periods changes.
383  * 4. All of the audio data is still stored in a single, contiguous DMA
384  *    buffer, which is what ALSA expects.  We're just dividing it into
385  *    contiguous parts, and creating a link descriptor for each one.
386  */
fsl_dma_open(struct snd_pcm_substream * substream)387 static int fsl_dma_open(struct snd_pcm_substream *substream)
388 {
389 	struct snd_pcm_runtime *runtime = substream->runtime;
390 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
391 	struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
392 	struct device *dev = component->dev;
393 	struct dma_object *dma =
394 		container_of(component->driver, struct dma_object, dai);
395 	struct fsl_dma_private *dma_private;
396 	struct ccsr_dma_channel __iomem *dma_channel;
397 	dma_addr_t ld_buf_phys;
398 	u64 temp_link;  	/* Pointer to next link descriptor */
399 	u32 mr;
400 	unsigned int channel;
401 	int ret = 0;
402 	unsigned int i;
403 
404 	/*
405 	 * Reject any DMA buffer whose size is not a multiple of the period
406 	 * size.  We need to make sure that the DMA buffer can be evenly divided
407 	 * into periods.
408 	 */
409 	ret = snd_pcm_hw_constraint_integer(runtime,
410 		SNDRV_PCM_HW_PARAM_PERIODS);
411 	if (ret < 0) {
412 		dev_err(dev, "invalid buffer size\n");
413 		return ret;
414 	}
415 
416 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
417 
418 	if (dma->assigned) {
419 		dev_err(dev, "dma channel already assigned\n");
420 		return -EBUSY;
421 	}
422 
423 	dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
424 					 &ld_buf_phys, GFP_KERNEL);
425 	if (!dma_private) {
426 		dev_err(dev, "can't allocate dma private data\n");
427 		return -ENOMEM;
428 	}
429 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
430 		dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
431 	else
432 		dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
433 
434 	dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
435 	dma_private->dma_channel = dma->channel;
436 	dma_private->irq = dma->irq;
437 	dma_private->substream = substream;
438 	dma_private->ld_buf_phys = ld_buf_phys;
439 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
440 
441 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
442 			  dma_private);
443 	if (ret) {
444 		dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
445 			dma_private->irq, ret);
446 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
447 			dma_private, dma_private->ld_buf_phys);
448 		return ret;
449 	}
450 
451 	dma->assigned = true;
452 
453 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
454 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
455 	runtime->private_data = dma_private;
456 
457 	/* Program the fixed DMA controller parameters */
458 
459 	dma_channel = dma_private->dma_channel;
460 
461 	temp_link = dma_private->ld_buf_phys +
462 		sizeof(struct fsl_dma_link_descriptor);
463 
464 	for (i = 0; i < NUM_DMA_LINKS; i++) {
465 		dma_private->link[i].next = cpu_to_be64(temp_link);
466 
467 		temp_link += sizeof(struct fsl_dma_link_descriptor);
468 	}
469 	/* The last link descriptor points to the first */
470 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
471 
472 	/* Tell the DMA controller where the first link descriptor is */
473 	out_be32(&dma_channel->clndar,
474 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
475 	out_be32(&dma_channel->eclndar,
476 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
477 
478 	/* The manual says the BCR must be clear before enabling EMP */
479 	out_be32(&dma_channel->bcr, 0);
480 
481 	/*
482 	 * Program the mode register for interrupts, external master control,
483 	 * and source/destination hold.  Also clear the Channel Abort bit.
484 	 */
485 	mr = in_be32(&dma_channel->mr) &
486 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
487 
488 	/*
489 	 * We want External Master Start and External Master Pause enabled,
490 	 * because the SSI is controlling the DMA controller.  We want the DMA
491 	 * controller to be set up in advance, and then we signal only the SSI
492 	 * to start transferring.
493 	 *
494 	 * We want End-Of-Segment Interrupts enabled, because this will generate
495 	 * an interrupt at the end of each segment (each link descriptor
496 	 * represents one segment).  Each DMA segment is the same thing as an
497 	 * ALSA period, so this is how we get an interrupt at the end of every
498 	 * period.
499 	 *
500 	 * We want Error Interrupt enabled, so that we can get an error if
501 	 * the DMA controller is mis-programmed somehow.
502 	 */
503 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
504 		CCSR_DMA_MR_EMS_EN;
505 
506 	/* For playback, we want the destination address to be held.  For
507 	   capture, set the source address to be held. */
508 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
509 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
510 
511 	out_be32(&dma_channel->mr, mr);
512 
513 	return 0;
514 }
515 
516 /**
517  * fsl_dma_hw_params: continue initializing the DMA links
518  *
519  * This function obtains hardware parameters about the opened stream and
520  * programs the DMA controller accordingly.
521  *
522  * One drawback of big-endian is that when copying integers of different
523  * sizes to a fixed-sized register, the address to which the integer must be
524  * copied is dependent on the size of the integer.
525  *
526  * For example, if P is the address of a 32-bit register, and X is a 32-bit
527  * integer, then X should be copied to address P.  However, if X is a 16-bit
528  * integer, then it should be copied to P+2.  If X is an 8-bit register,
529  * then it should be copied to P+3.
530  *
531  * So for playback of 8-bit samples, the DMA controller must transfer single
532  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
533  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
534  *
535  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
536  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
537  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
538  * 24-bit data must be padded to 32 bits.
539  */
fsl_dma_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * hw_params)540 static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
541 	struct snd_pcm_hw_params *hw_params)
542 {
543 	struct snd_pcm_runtime *runtime = substream->runtime;
544 	struct fsl_dma_private *dma_private = runtime->private_data;
545 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
546 	struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
547 	struct device *dev = component->dev;
548 
549 	/* Number of bits per sample */
550 	unsigned int sample_bits =
551 		snd_pcm_format_physical_width(params_format(hw_params));
552 
553 	/* Number of bytes per frame */
554 	unsigned int sample_bytes = sample_bits / 8;
555 
556 	/* Bus address of SSI STX register */
557 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
558 
559 	/* Size of the DMA buffer, in bytes */
560 	size_t buffer_size = params_buffer_bytes(hw_params);
561 
562 	/* Number of bytes per period */
563 	size_t period_size = params_period_bytes(hw_params);
564 
565 	/* Pointer to next period */
566 	dma_addr_t temp_addr = substream->dma_buffer.addr;
567 
568 	/* Pointer to DMA controller */
569 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
570 
571 	u32 mr; /* DMA Mode Register */
572 
573 	unsigned int i;
574 
575 	/* Initialize our DMA tracking variables */
576 	dma_private->period_size = period_size;
577 	dma_private->num_periods = params_periods(hw_params);
578 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
579 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
580 		(NUM_DMA_LINKS * period_size);
581 
582 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
583 		/* This happens if the number of periods == NUM_DMA_LINKS */
584 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
585 
586 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
587 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
588 
589 	/* Due to a quirk of the SSI's STX register, the target address
590 	 * for the DMA operations depends on the sample size.  So we calculate
591 	 * that offset here.  While we're at it, also tell the DMA controller
592 	 * how much data to transfer per sample.
593 	 */
594 	switch (sample_bits) {
595 	case 8:
596 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
597 		ssi_sxx_phys += 3;
598 		break;
599 	case 16:
600 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
601 		ssi_sxx_phys += 2;
602 		break;
603 	case 32:
604 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
605 		break;
606 	default:
607 		/* We should never get here */
608 		dev_err(dev, "unsupported sample size %u\n", sample_bits);
609 		return -EINVAL;
610 	}
611 
612 	/*
613 	 * BWC determines how many bytes are sent/received before the DMA
614 	 * controller checks the SSI to see if it needs to stop. BWC should
615 	 * always be a multiple of the frame size, so that we always transmit
616 	 * whole frames.  Each frame occupies two slots in the FIFO.  The
617 	 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
618 	 * (MR[BWC] can only represent even powers of two).
619 	 *
620 	 * To simplify the process, we set BWC to the largest value that is
621 	 * less than or equal to the FIFO watermark.  For playback, this ensures
622 	 * that we transfer the maximum amount without overrunning the FIFO.
623 	 * For capture, this ensures that we transfer the maximum amount without
624 	 * underrunning the FIFO.
625 	 *
626 	 * f = SSI FIFO depth
627 	 * w = SSI watermark value (which equals f - 2)
628 	 * b = DMA bandwidth count (in bytes)
629 	 * s = sample size (in bytes, which equals frame_size * 2)
630 	 *
631 	 * For playback, we never transmit more than the transmit FIFO
632 	 * watermark, otherwise we might write more data than the FIFO can hold.
633 	 * The watermark is equal to the FIFO depth minus two.
634 	 *
635 	 * For capture, two equations must hold:
636 	 *	w > f - (b / s)
637 	 *	w >= b / s
638 	 *
639 	 * So, b > 2 * s, but b must also be <= s * w.  To simplify, we set
640 	 * b = s * w, which is equal to
641 	 *      (dma_private->ssi_fifo_depth - 2) * sample_bytes.
642 	 */
643 	mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
644 
645 	out_be32(&dma_channel->mr, mr);
646 
647 	for (i = 0; i < NUM_DMA_LINKS; i++) {
648 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
649 
650 		link->count = cpu_to_be32(period_size);
651 
652 		/* The snoop bit tells the DMA controller whether it should tell
653 		 * the ECM to snoop during a read or write to an address. For
654 		 * audio, we use DMA to transfer data between memory and an I/O
655 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
656 		 * needed if there is a cache, so we need to snoop memory
657 		 * addresses only.  For playback, that means we snoop the source
658 		 * but not the destination.  For capture, we snoop the
659 		 * destination but not the source.
660 		 *
661 		 * Note that failing to snoop properly is unlikely to cause
662 		 * cache incoherency if the period size is larger than the
663 		 * size of L1 cache.  This is because filling in one period will
664 		 * flush out the data for the previous period.  So if you
665 		 * increased period_bytes_min to a large enough size, you might
666 		 * get more performance by not snooping, and you'll still be
667 		 * okay.  You'll need to update fsl_dma_update_pointers() also.
668 		 */
669 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
670 			link->source_addr = cpu_to_be32(temp_addr);
671 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
672 				upper_32_bits(temp_addr));
673 
674 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
675 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
676 				upper_32_bits(ssi_sxx_phys));
677 		} else {
678 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
679 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
680 				upper_32_bits(ssi_sxx_phys));
681 
682 			link->dest_addr = cpu_to_be32(temp_addr);
683 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
684 				upper_32_bits(temp_addr));
685 		}
686 
687 		temp_addr += period_size;
688 	}
689 
690 	return 0;
691 }
692 
693 /**
694  * fsl_dma_pointer: determine the current position of the DMA transfer
695  *
696  * This function is called by ALSA when ALSA wants to know where in the
697  * stream buffer the hardware currently is.
698  *
699  * For playback, the SAR register contains the physical address of the most
700  * recent DMA transfer.  For capture, the value is in the DAR register.
701  *
702  * The base address of the buffer is stored in the source_addr field of the
703  * first link descriptor.
704  */
fsl_dma_pointer(struct snd_pcm_substream * substream)705 static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
706 {
707 	struct snd_pcm_runtime *runtime = substream->runtime;
708 	struct fsl_dma_private *dma_private = runtime->private_data;
709 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
710 	struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
711 	struct device *dev = component->dev;
712 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
713 	dma_addr_t position;
714 	snd_pcm_uframes_t frames;
715 
716 	/* Obtain the current DMA pointer, but don't read the ESAD bits if we
717 	 * only have 32-bit DMA addresses.  This function is typically called
718 	 * in interrupt context, so we need to optimize it.
719 	 */
720 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
721 		position = in_be32(&dma_channel->sar);
722 #ifdef CONFIG_PHYS_64BIT
723 		position |= (u64)(in_be32(&dma_channel->satr) &
724 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
725 #endif
726 	} else {
727 		position = in_be32(&dma_channel->dar);
728 #ifdef CONFIG_PHYS_64BIT
729 		position |= (u64)(in_be32(&dma_channel->datr) &
730 				  CCSR_DMA_ATR_ESAD_MASK) << 32;
731 #endif
732 	}
733 
734 	/*
735 	 * When capture is started, the SSI immediately starts to fill its FIFO.
736 	 * This means that the DMA controller is not started until the FIFO is
737 	 * full.  However, ALSA calls this function before that happens, when
738 	 * MR.DAR is still zero.  In this case, just return zero to indicate
739 	 * that nothing has been received yet.
740 	 */
741 	if (!position)
742 		return 0;
743 
744 	if ((position < dma_private->dma_buf_phys) ||
745 	    (position > dma_private->dma_buf_end)) {
746 		dev_err(dev, "dma pointer is out of range, halting stream\n");
747 		return SNDRV_PCM_POS_XRUN;
748 	}
749 
750 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
751 
752 	/*
753 	 * If the current address is just past the end of the buffer, wrap it
754 	 * around.
755 	 */
756 	if (frames == runtime->buffer_size)
757 		frames = 0;
758 
759 	return frames;
760 }
761 
762 /**
763  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
764  *
765  * Release the resources allocated in fsl_dma_hw_params() and de-program the
766  * registers.
767  *
768  * This function can be called multiple times.
769  */
fsl_dma_hw_free(struct snd_pcm_substream * substream)770 static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
771 {
772 	struct snd_pcm_runtime *runtime = substream->runtime;
773 	struct fsl_dma_private *dma_private = runtime->private_data;
774 
775 	if (dma_private) {
776 		struct ccsr_dma_channel __iomem *dma_channel;
777 
778 		dma_channel = dma_private->dma_channel;
779 
780 		/* Stop the DMA */
781 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
782 		out_be32(&dma_channel->mr, 0);
783 
784 		/* Reset all the other registers */
785 		out_be32(&dma_channel->sr, -1);
786 		out_be32(&dma_channel->clndar, 0);
787 		out_be32(&dma_channel->eclndar, 0);
788 		out_be32(&dma_channel->satr, 0);
789 		out_be32(&dma_channel->sar, 0);
790 		out_be32(&dma_channel->datr, 0);
791 		out_be32(&dma_channel->dar, 0);
792 		out_be32(&dma_channel->bcr, 0);
793 		out_be32(&dma_channel->nlndar, 0);
794 		out_be32(&dma_channel->enlndar, 0);
795 	}
796 
797 	return 0;
798 }
799 
800 /**
801  * fsl_dma_close: close the stream.
802  */
fsl_dma_close(struct snd_pcm_substream * substream)803 static int fsl_dma_close(struct snd_pcm_substream *substream)
804 {
805 	struct snd_pcm_runtime *runtime = substream->runtime;
806 	struct fsl_dma_private *dma_private = runtime->private_data;
807 	struct snd_soc_pcm_runtime *rtd = substream->private_data;
808 	struct snd_soc_component *component = snd_soc_rtdcom_lookup(rtd, DRV_NAME);
809 	struct device *dev = component->dev;
810 	struct dma_object *dma =
811 		container_of(component->driver, struct dma_object, dai);
812 
813 	if (dma_private) {
814 		if (dma_private->irq)
815 			free_irq(dma_private->irq, dma_private);
816 
817 		/* Deallocate the fsl_dma_private structure */
818 		dma_free_coherent(dev, sizeof(struct fsl_dma_private),
819 				  dma_private, dma_private->ld_buf_phys);
820 		substream->runtime->private_data = NULL;
821 	}
822 
823 	dma->assigned = false;
824 
825 	return 0;
826 }
827 
828 /*
829  * Remove this PCM driver.
830  */
fsl_dma_free_dma_buffers(struct snd_pcm * pcm)831 static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
832 {
833 	struct snd_pcm_substream *substream;
834 	unsigned int i;
835 
836 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
837 		substream = pcm->streams[i].substream;
838 		if (substream) {
839 			snd_dma_free_pages(&substream->dma_buffer);
840 			substream->dma_buffer.area = NULL;
841 			substream->dma_buffer.addr = 0;
842 		}
843 	}
844 }
845 
846 /**
847  * find_ssi_node -- returns the SSI node that points to its DMA channel node
848  *
849  * Although this DMA driver attempts to operate independently of the other
850  * devices, it still needs to determine some information about the SSI device
851  * that it's working with.  Unfortunately, the device tree does not contain
852  * a pointer from the DMA channel node to the SSI node -- the pointer goes the
853  * other way.  So we need to scan the device tree for SSI nodes until we find
854  * the one that points to the given DMA channel node.  It's ugly, but at least
855  * it's contained in this one function.
856  */
find_ssi_node(struct device_node * dma_channel_np)857 static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
858 {
859 	struct device_node *ssi_np, *np;
860 
861 	for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
862 		/* Check each DMA phandle to see if it points to us.  We
863 		 * assume that device_node pointers are a valid comparison.
864 		 */
865 		np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
866 		of_node_put(np);
867 		if (np == dma_channel_np)
868 			return ssi_np;
869 
870 		np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
871 		of_node_put(np);
872 		if (np == dma_channel_np)
873 			return ssi_np;
874 	}
875 
876 	return NULL;
877 }
878 
879 static const struct snd_pcm_ops fsl_dma_ops = {
880 	.open   	= fsl_dma_open,
881 	.close  	= fsl_dma_close,
882 	.ioctl  	= snd_pcm_lib_ioctl,
883 	.hw_params      = fsl_dma_hw_params,
884 	.hw_free	= fsl_dma_hw_free,
885 	.pointer	= fsl_dma_pointer,
886 };
887 
fsl_soc_dma_probe(struct platform_device * pdev)888 static int fsl_soc_dma_probe(struct platform_device *pdev)
889 {
890 	struct dma_object *dma;
891 	struct device_node *np = pdev->dev.of_node;
892 	struct device_node *ssi_np;
893 	struct resource res;
894 	const uint32_t *iprop;
895 	int ret;
896 
897 	/* Find the SSI node that points to us. */
898 	ssi_np = find_ssi_node(np);
899 	if (!ssi_np) {
900 		dev_err(&pdev->dev, "cannot find parent SSI node\n");
901 		return -ENODEV;
902 	}
903 
904 	ret = of_address_to_resource(ssi_np, 0, &res);
905 	if (ret) {
906 		dev_err(&pdev->dev, "could not determine resources for %pOF\n",
907 			ssi_np);
908 		of_node_put(ssi_np);
909 		return ret;
910 	}
911 
912 	dma = kzalloc(sizeof(*dma), GFP_KERNEL);
913 	if (!dma) {
914 		of_node_put(ssi_np);
915 		return -ENOMEM;
916 	}
917 
918 	dma->dai.name = DRV_NAME;
919 	dma->dai.ops = &fsl_dma_ops;
920 	dma->dai.pcm_new = fsl_dma_new;
921 	dma->dai.pcm_free = fsl_dma_free_dma_buffers;
922 
923 	/* Store the SSI-specific information that we need */
924 	dma->ssi_stx_phys = res.start + REG_SSI_STX0;
925 	dma->ssi_srx_phys = res.start + REG_SSI_SRX0;
926 
927 	iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
928 	if (iprop)
929 		dma->ssi_fifo_depth = be32_to_cpup(iprop);
930 	else
931                 /* Older 8610 DTs didn't have the fifo-depth property */
932 		dma->ssi_fifo_depth = 8;
933 
934 	of_node_put(ssi_np);
935 
936 	ret = devm_snd_soc_register_component(&pdev->dev, &dma->dai, NULL, 0);
937 	if (ret) {
938 		dev_err(&pdev->dev, "could not register platform\n");
939 		kfree(dma);
940 		return ret;
941 	}
942 
943 	dma->channel = of_iomap(np, 0);
944 	dma->irq = irq_of_parse_and_map(np, 0);
945 
946 	dev_set_drvdata(&pdev->dev, dma);
947 
948 	return 0;
949 }
950 
fsl_soc_dma_remove(struct platform_device * pdev)951 static int fsl_soc_dma_remove(struct platform_device *pdev)
952 {
953 	struct dma_object *dma = dev_get_drvdata(&pdev->dev);
954 
955 	iounmap(dma->channel);
956 	irq_dispose_mapping(dma->irq);
957 	kfree(dma);
958 
959 	return 0;
960 }
961 
962 static const struct of_device_id fsl_soc_dma_ids[] = {
963 	{ .compatible = "fsl,ssi-dma-channel", },
964 	{}
965 };
966 MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
967 
968 static struct platform_driver fsl_soc_dma_driver = {
969 	.driver = {
970 		.name = "fsl-pcm-audio",
971 		.of_match_table = fsl_soc_dma_ids,
972 	},
973 	.probe = fsl_soc_dma_probe,
974 	.remove = fsl_soc_dma_remove,
975 };
976 
977 module_platform_driver(fsl_soc_dma_driver);
978 
979 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
980 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
981 MODULE_LICENSE("GPL v2");
982