1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // sgtl5000.c -- SGTL5000 ALSA SoC Audio driver
4 //
5 // Copyright 2010-2011 Freescale Semiconductor, Inc. All Rights Reserved.
6
7 #include <linux/module.h>
8 #include <linux/moduleparam.h>
9 #include <linux/init.h>
10 #include <linux/delay.h>
11 #include <linux/slab.h>
12 #include <linux/pm.h>
13 #include <linux/i2c.h>
14 #include <linux/clk.h>
15 #include <linux/log2.h>
16 #include <linux/regmap.h>
17 #include <linux/regulator/driver.h>
18 #include <linux/regulator/machine.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/of_device.h>
21 #include <sound/core.h>
22 #include <sound/tlv.h>
23 #include <sound/pcm.h>
24 #include <sound/pcm_params.h>
25 #include <sound/soc.h>
26 #include <sound/soc-dapm.h>
27 #include <sound/initval.h>
28
29 #include "sgtl5000.h"
30
31 #define SGTL5000_DAP_REG_OFFSET 0x0100
32 #define SGTL5000_MAX_REG_OFFSET 0x013A
33
34 /* default value of sgtl5000 registers */
35 static const struct reg_default sgtl5000_reg_defaults[] = {
36 { SGTL5000_CHIP_DIG_POWER, 0x0000 },
37 { SGTL5000_CHIP_I2S_CTRL, 0x0010 },
38 { SGTL5000_CHIP_SSS_CTRL, 0x0010 },
39 { SGTL5000_CHIP_ADCDAC_CTRL, 0x020c },
40 { SGTL5000_CHIP_DAC_VOL, 0x3c3c },
41 { SGTL5000_CHIP_PAD_STRENGTH, 0x015f },
42 { SGTL5000_CHIP_ANA_ADC_CTRL, 0x0000 },
43 { SGTL5000_CHIP_ANA_HP_CTRL, 0x1818 },
44 { SGTL5000_CHIP_ANA_CTRL, 0x0111 },
45 { SGTL5000_CHIP_REF_CTRL, 0x0000 },
46 { SGTL5000_CHIP_MIC_CTRL, 0x0000 },
47 { SGTL5000_CHIP_LINE_OUT_CTRL, 0x0000 },
48 { SGTL5000_CHIP_LINE_OUT_VOL, 0x0404 },
49 { SGTL5000_CHIP_PLL_CTRL, 0x5000 },
50 { SGTL5000_CHIP_CLK_TOP_CTRL, 0x0000 },
51 { SGTL5000_CHIP_ANA_STATUS, 0x0000 },
52 { SGTL5000_CHIP_SHORT_CTRL, 0x0000 },
53 { SGTL5000_CHIP_ANA_TEST2, 0x0000 },
54 { SGTL5000_DAP_CTRL, 0x0000 },
55 { SGTL5000_DAP_PEQ, 0x0000 },
56 { SGTL5000_DAP_BASS_ENHANCE, 0x0040 },
57 { SGTL5000_DAP_BASS_ENHANCE_CTRL, 0x051f },
58 { SGTL5000_DAP_AUDIO_EQ, 0x0000 },
59 { SGTL5000_DAP_SURROUND, 0x0040 },
60 { SGTL5000_DAP_EQ_BASS_BAND0, 0x002f },
61 { SGTL5000_DAP_EQ_BASS_BAND1, 0x002f },
62 { SGTL5000_DAP_EQ_BASS_BAND2, 0x002f },
63 { SGTL5000_DAP_EQ_BASS_BAND3, 0x002f },
64 { SGTL5000_DAP_EQ_BASS_BAND4, 0x002f },
65 { SGTL5000_DAP_MAIN_CHAN, 0x8000 },
66 { SGTL5000_DAP_MIX_CHAN, 0x0000 },
67 { SGTL5000_DAP_AVC_CTRL, 0x0510 },
68 { SGTL5000_DAP_AVC_THRESHOLD, 0x1473 },
69 { SGTL5000_DAP_AVC_ATTACK, 0x0028 },
70 { SGTL5000_DAP_AVC_DECAY, 0x0050 },
71 };
72
73 /* AVC: Threshold dB -> register: pre-calculated values */
74 static const u16 avc_thr_db2reg[97] = {
75 0x5168, 0x488E, 0x40AA, 0x39A1, 0x335D, 0x2DC7, 0x28CC, 0x245D, 0x2068,
76 0x1CE2, 0x19BE, 0x16F1, 0x1472, 0x1239, 0x103E, 0x0E7A, 0x0CE6, 0x0B7F,
77 0x0A3F, 0x0922, 0x0824, 0x0741, 0x0677, 0x05C3, 0x0522, 0x0493, 0x0414,
78 0x03A2, 0x033D, 0x02E3, 0x0293, 0x024B, 0x020B, 0x01D2, 0x019F, 0x0172,
79 0x014A, 0x0126, 0x0106, 0x00E9, 0x00D0, 0x00B9, 0x00A5, 0x0093, 0x0083,
80 0x0075, 0x0068, 0x005D, 0x0052, 0x0049, 0x0041, 0x003A, 0x0034, 0x002E,
81 0x0029, 0x0025, 0x0021, 0x001D, 0x001A, 0x0017, 0x0014, 0x0012, 0x0010,
82 0x000E, 0x000D, 0x000B, 0x000A, 0x0009, 0x0008, 0x0007, 0x0006, 0x0005,
83 0x0005, 0x0004, 0x0004, 0x0003, 0x0003, 0x0002, 0x0002, 0x0002, 0x0002,
84 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0001, 0x0000, 0x0000, 0x0000,
85 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000};
86
87 /* regulator supplies for sgtl5000, VDDD is an optional external supply */
88 enum sgtl5000_regulator_supplies {
89 VDDA,
90 VDDIO,
91 VDDD,
92 SGTL5000_SUPPLY_NUM
93 };
94
95 /* vddd is optional supply */
96 static const char *supply_names[SGTL5000_SUPPLY_NUM] = {
97 "VDDA",
98 "VDDIO",
99 "VDDD"
100 };
101
102 #define LDO_VOLTAGE 1200000
103 #define LINREG_VDDD ((1600 - LDO_VOLTAGE / 1000) / 50)
104
105 enum sgtl5000_micbias_resistor {
106 SGTL5000_MICBIAS_OFF = 0,
107 SGTL5000_MICBIAS_2K = 2,
108 SGTL5000_MICBIAS_4K = 4,
109 SGTL5000_MICBIAS_8K = 8,
110 };
111
112 enum {
113 I2S_LRCLK_STRENGTH_DISABLE,
114 I2S_LRCLK_STRENGTH_LOW,
115 I2S_LRCLK_STRENGTH_MEDIUM,
116 I2S_LRCLK_STRENGTH_HIGH,
117 };
118
119 /* sgtl5000 private structure in codec */
120 struct sgtl5000_priv {
121 int sysclk; /* sysclk rate */
122 int master; /* i2s master or not */
123 int fmt; /* i2s data format */
124 struct regulator_bulk_data supplies[SGTL5000_SUPPLY_NUM];
125 int num_supplies;
126 struct regmap *regmap;
127 struct clk *mclk;
128 int revision;
129 u8 micbias_resistor;
130 u8 micbias_voltage;
131 u8 lrclk_strength;
132 };
133
134 /*
135 * mic_bias power on/off share the same register bits with
136 * output impedance of mic bias, when power on mic bias, we
137 * need reclaim it to impedance value.
138 * 0x0 = Powered off
139 * 0x1 = 2Kohm
140 * 0x2 = 4Kohm
141 * 0x3 = 8Kohm
142 */
mic_bias_event(struct snd_soc_dapm_widget * w,struct snd_kcontrol * kcontrol,int event)143 static int mic_bias_event(struct snd_soc_dapm_widget *w,
144 struct snd_kcontrol *kcontrol, int event)
145 {
146 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
147 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
148
149 switch (event) {
150 case SND_SOC_DAPM_POST_PMU:
151 /* change mic bias resistor */
152 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
153 SGTL5000_BIAS_R_MASK,
154 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
155 break;
156
157 case SND_SOC_DAPM_PRE_PMD:
158 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
159 SGTL5000_BIAS_R_MASK, 0);
160 break;
161 }
162 return 0;
163 }
164
165 /*
166 * As manual described, ADC/DAC only works when VAG powerup,
167 * So enabled VAG before ADC/DAC up.
168 * In power down case, we need wait 400ms when vag fully ramped down.
169 */
power_vag_event(struct snd_soc_dapm_widget * w,struct snd_kcontrol * kcontrol,int event)170 static int power_vag_event(struct snd_soc_dapm_widget *w,
171 struct snd_kcontrol *kcontrol, int event)
172 {
173 struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
174 const u32 mask = SGTL5000_DAC_POWERUP | SGTL5000_ADC_POWERUP;
175
176 switch (event) {
177 case SND_SOC_DAPM_POST_PMU:
178 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
179 SGTL5000_VAG_POWERUP, SGTL5000_VAG_POWERUP);
180 msleep(400);
181 break;
182
183 case SND_SOC_DAPM_PRE_PMD:
184 /*
185 * Don't clear VAG_POWERUP, when both DAC and ADC are
186 * operational to prevent inadvertently starving the
187 * other one of them.
188 */
189 if ((snd_soc_component_read32(component, SGTL5000_CHIP_ANA_POWER) &
190 mask) != mask) {
191 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
192 SGTL5000_VAG_POWERUP, 0);
193 msleep(400);
194 }
195 break;
196 default:
197 break;
198 }
199
200 return 0;
201 }
202
203 /* input sources for ADC */
204 static const char *adc_mux_text[] = {
205 "MIC_IN", "LINE_IN"
206 };
207
208 static SOC_ENUM_SINGLE_DECL(adc_enum,
209 SGTL5000_CHIP_ANA_CTRL, 2,
210 adc_mux_text);
211
212 static const struct snd_kcontrol_new adc_mux =
213 SOC_DAPM_ENUM("Capture Mux", adc_enum);
214
215 /* input sources for headphone */
216 static const char *hp_mux_text[] = {
217 "DAC", "LINE_IN"
218 };
219
220 static SOC_ENUM_SINGLE_DECL(hp_enum,
221 SGTL5000_CHIP_ANA_CTRL, 6,
222 hp_mux_text);
223
224 static const struct snd_kcontrol_new hp_mux =
225 SOC_DAPM_ENUM("Headphone Mux", hp_enum);
226
227 /* input sources for DAC */
228 static const char *dac_mux_text[] = {
229 "ADC", "I2S", "Rsvrd", "DAP"
230 };
231
232 static SOC_ENUM_SINGLE_DECL(dac_enum,
233 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAC_SEL_SHIFT,
234 dac_mux_text);
235
236 static const struct snd_kcontrol_new dac_mux =
237 SOC_DAPM_ENUM("Digital Input Mux", dac_enum);
238
239 /* input sources for DAP */
240 static const char *dap_mux_text[] = {
241 "ADC", "I2S"
242 };
243
244 static SOC_ENUM_SINGLE_DECL(dap_enum,
245 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_SEL_SHIFT,
246 dap_mux_text);
247
248 static const struct snd_kcontrol_new dap_mux =
249 SOC_DAPM_ENUM("DAP Mux", dap_enum);
250
251 /* input sources for DAP mix */
252 static const char *dapmix_mux_text[] = {
253 "ADC", "I2S"
254 };
255
256 static SOC_ENUM_SINGLE_DECL(dapmix_enum,
257 SGTL5000_CHIP_SSS_CTRL, SGTL5000_DAP_MIX_SEL_SHIFT,
258 dapmix_mux_text);
259
260 static const struct snd_kcontrol_new dapmix_mux =
261 SOC_DAPM_ENUM("DAP MIX Mux", dapmix_enum);
262
263
264 static const struct snd_soc_dapm_widget sgtl5000_dapm_widgets[] = {
265 SND_SOC_DAPM_INPUT("LINE_IN"),
266 SND_SOC_DAPM_INPUT("MIC_IN"),
267
268 SND_SOC_DAPM_OUTPUT("HP_OUT"),
269 SND_SOC_DAPM_OUTPUT("LINE_OUT"),
270
271 SND_SOC_DAPM_SUPPLY("Mic Bias", SGTL5000_CHIP_MIC_CTRL, 8, 0,
272 mic_bias_event,
273 SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
274
275 SND_SOC_DAPM_PGA("HP", SGTL5000_CHIP_ANA_POWER, 4, 0, NULL, 0),
276 SND_SOC_DAPM_PGA("LO", SGTL5000_CHIP_ANA_POWER, 0, 0, NULL, 0),
277
278 SND_SOC_DAPM_MUX("Capture Mux", SND_SOC_NOPM, 0, 0, &adc_mux),
279 SND_SOC_DAPM_MUX("Headphone Mux", SND_SOC_NOPM, 0, 0, &hp_mux),
280 SND_SOC_DAPM_MUX("Digital Input Mux", SND_SOC_NOPM, 0, 0, &dac_mux),
281 SND_SOC_DAPM_MUX("DAP Mux", SGTL5000_DAP_CTRL, 0, 0, &dap_mux),
282 SND_SOC_DAPM_MUX("DAP MIX Mux", SGTL5000_DAP_CTRL, 4, 0, &dapmix_mux),
283 SND_SOC_DAPM_MIXER("DAP", SGTL5000_CHIP_DIG_POWER, 4, 0, NULL, 0),
284
285
286 /* aif for i2s input */
287 SND_SOC_DAPM_AIF_IN("AIFIN", "Playback",
288 0, SGTL5000_CHIP_DIG_POWER,
289 0, 0),
290
291 /* aif for i2s output */
292 SND_SOC_DAPM_AIF_OUT("AIFOUT", "Capture",
293 0, SGTL5000_CHIP_DIG_POWER,
294 1, 0),
295
296 SND_SOC_DAPM_ADC("ADC", "Capture", SGTL5000_CHIP_ANA_POWER, 1, 0),
297 SND_SOC_DAPM_DAC("DAC", "Playback", SGTL5000_CHIP_ANA_POWER, 3, 0),
298
299 SND_SOC_DAPM_PRE("VAG_POWER_PRE", power_vag_event),
300 SND_SOC_DAPM_POST("VAG_POWER_POST", power_vag_event),
301 };
302
303 /* routes for sgtl5000 */
304 static const struct snd_soc_dapm_route sgtl5000_dapm_routes[] = {
305 {"Capture Mux", "LINE_IN", "LINE_IN"}, /* line_in --> adc_mux */
306 {"Capture Mux", "MIC_IN", "MIC_IN"}, /* mic_in --> adc_mux */
307
308 {"ADC", NULL, "Capture Mux"}, /* adc_mux --> adc */
309 {"AIFOUT", NULL, "ADC"}, /* adc --> i2s_out */
310
311 {"DAP Mux", "ADC", "ADC"}, /* adc --> DAP mux */
312 {"DAP Mux", NULL, "AIFIN"}, /* i2s --> DAP mux */
313 {"DAP", NULL, "DAP Mux"}, /* DAP mux --> dap */
314
315 {"DAP MIX Mux", "ADC", "ADC"}, /* adc --> DAP MIX mux */
316 {"DAP MIX Mux", NULL, "AIFIN"}, /* i2s --> DAP MIX mux */
317 {"DAP", NULL, "DAP MIX Mux"}, /* DAP MIX mux --> dap */
318
319 {"Digital Input Mux", "ADC", "ADC"}, /* adc --> audio mux */
320 {"Digital Input Mux", NULL, "AIFIN"}, /* i2s --> audio mux */
321 {"Digital Input Mux", NULL, "DAP"}, /* dap --> audio mux */
322 {"DAC", NULL, "Digital Input Mux"}, /* audio mux --> dac */
323
324 {"Headphone Mux", "DAC", "DAC"}, /* dac --> hp_mux */
325 {"LO", NULL, "DAC"}, /* dac --> line_out */
326
327 {"Headphone Mux", "LINE_IN", "LINE_IN"},/* line_in --> hp_mux */
328 {"HP", NULL, "Headphone Mux"}, /* hp_mux --> hp */
329
330 {"LINE_OUT", NULL, "LO"},
331 {"HP_OUT", NULL, "HP"},
332 };
333
334 /* custom function to fetch info of PCM playback volume */
dac_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)335 static int dac_info_volsw(struct snd_kcontrol *kcontrol,
336 struct snd_ctl_elem_info *uinfo)
337 {
338 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
339 uinfo->count = 2;
340 uinfo->value.integer.min = 0;
341 uinfo->value.integer.max = 0xfc - 0x3c;
342 return 0;
343 }
344
345 /*
346 * custom function to get of PCM playback volume
347 *
348 * dac volume register
349 * 15-------------8-7--------------0
350 * | R channel vol | L channel vol |
351 * -------------------------------
352 *
353 * PCM volume with 0.5017 dB steps from 0 to -90 dB
354 *
355 * register values map to dB
356 * 0x3B and less = Reserved
357 * 0x3C = 0 dB
358 * 0x3D = -0.5 dB
359 * 0xF0 = -90 dB
360 * 0xFC and greater = Muted
361 *
362 * register value map to userspace value
363 *
364 * register value 0x3c(0dB) 0xf0(-90dB)0xfc
365 * ------------------------------
366 * userspace value 0xc0 0
367 */
dac_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)368 static int dac_get_volsw(struct snd_kcontrol *kcontrol,
369 struct snd_ctl_elem_value *ucontrol)
370 {
371 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
372 int reg;
373 int l;
374 int r;
375
376 reg = snd_soc_component_read32(component, SGTL5000_CHIP_DAC_VOL);
377
378 /* get left channel volume */
379 l = (reg & SGTL5000_DAC_VOL_LEFT_MASK) >> SGTL5000_DAC_VOL_LEFT_SHIFT;
380
381 /* get right channel volume */
382 r = (reg & SGTL5000_DAC_VOL_RIGHT_MASK) >> SGTL5000_DAC_VOL_RIGHT_SHIFT;
383
384 /* make sure value fall in (0x3c,0xfc) */
385 l = clamp(l, 0x3c, 0xfc);
386 r = clamp(r, 0x3c, 0xfc);
387
388 /* invert it and map to userspace value */
389 l = 0xfc - l;
390 r = 0xfc - r;
391
392 ucontrol->value.integer.value[0] = l;
393 ucontrol->value.integer.value[1] = r;
394
395 return 0;
396 }
397
398 /*
399 * custom function to put of PCM playback volume
400 *
401 * dac volume register
402 * 15-------------8-7--------------0
403 * | R channel vol | L channel vol |
404 * -------------------------------
405 *
406 * PCM volume with 0.5017 dB steps from 0 to -90 dB
407 *
408 * register values map to dB
409 * 0x3B and less = Reserved
410 * 0x3C = 0 dB
411 * 0x3D = -0.5 dB
412 * 0xF0 = -90 dB
413 * 0xFC and greater = Muted
414 *
415 * userspace value map to register value
416 *
417 * userspace value 0xc0 0
418 * ------------------------------
419 * register value 0x3c(0dB) 0xf0(-90dB)0xfc
420 */
dac_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)421 static int dac_put_volsw(struct snd_kcontrol *kcontrol,
422 struct snd_ctl_elem_value *ucontrol)
423 {
424 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
425 int reg;
426 int l;
427 int r;
428
429 l = ucontrol->value.integer.value[0];
430 r = ucontrol->value.integer.value[1];
431
432 /* make sure userspace volume fall in (0, 0xfc-0x3c) */
433 l = clamp(l, 0, 0xfc - 0x3c);
434 r = clamp(r, 0, 0xfc - 0x3c);
435
436 /* invert it, get the value can be set to register */
437 l = 0xfc - l;
438 r = 0xfc - r;
439
440 /* shift to get the register value */
441 reg = l << SGTL5000_DAC_VOL_LEFT_SHIFT |
442 r << SGTL5000_DAC_VOL_RIGHT_SHIFT;
443
444 snd_soc_component_write(component, SGTL5000_CHIP_DAC_VOL, reg);
445
446 return 0;
447 }
448
449 /*
450 * custom function to get AVC threshold
451 *
452 * The threshold dB is calculated by rearranging the calculation from the
453 * avc_put_threshold function: register_value = 10^(dB/20) * 0.636 * 2^15 ==>
454 * dB = ( fls(register_value) - 14.347 ) * 6.02
455 *
456 * As this calculation is expensive and the threshold dB values may not exceed
457 * 0 to 96 we use pre-calculated values.
458 */
avc_get_threshold(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)459 static int avc_get_threshold(struct snd_kcontrol *kcontrol,
460 struct snd_ctl_elem_value *ucontrol)
461 {
462 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
463 int db, i;
464 u16 reg = snd_soc_component_read32(component, SGTL5000_DAP_AVC_THRESHOLD);
465
466 /* register value 0 => -96dB */
467 if (!reg) {
468 ucontrol->value.integer.value[0] = 96;
469 ucontrol->value.integer.value[1] = 96;
470 return 0;
471 }
472
473 /* get dB from register value (rounded down) */
474 for (i = 0; avc_thr_db2reg[i] > reg; i++)
475 ;
476 db = i;
477
478 ucontrol->value.integer.value[0] = db;
479 ucontrol->value.integer.value[1] = db;
480
481 return 0;
482 }
483
484 /*
485 * custom function to put AVC threshold
486 *
487 * The register value is calculated by following formula:
488 * register_value = 10^(dB/20) * 0.636 * 2^15
489 * As this calculation is expensive and the threshold dB values may not exceed
490 * 0 to 96 we use pre-calculated values.
491 */
avc_put_threshold(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)492 static int avc_put_threshold(struct snd_kcontrol *kcontrol,
493 struct snd_ctl_elem_value *ucontrol)
494 {
495 struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
496 int db;
497 u16 reg;
498
499 db = (int)ucontrol->value.integer.value[0];
500 if (db < 0 || db > 96)
501 return -EINVAL;
502 reg = avc_thr_db2reg[db];
503 snd_soc_component_write(component, SGTL5000_DAP_AVC_THRESHOLD, reg);
504
505 return 0;
506 }
507
508 static const DECLARE_TLV_DB_SCALE(capture_6db_attenuate, -600, 600, 0);
509
510 /* tlv for mic gain, 0db 20db 30db 40db */
511 static const DECLARE_TLV_DB_RANGE(mic_gain_tlv,
512 0, 0, TLV_DB_SCALE_ITEM(0, 0, 0),
513 1, 3, TLV_DB_SCALE_ITEM(2000, 1000, 0)
514 );
515
516 /* tlv for DAP channels, 0% - 100% - 200% */
517 static const DECLARE_TLV_DB_SCALE(dap_volume, 0, 1, 0);
518
519 /* tlv for bass bands, -11.75db to 12.0db, step .25db */
520 static const DECLARE_TLV_DB_SCALE(bass_band, -1175, 25, 0);
521
522 /* tlv for hp volume, -51.5db to 12.0db, step .5db */
523 static const DECLARE_TLV_DB_SCALE(headphone_volume, -5150, 50, 0);
524
525 /* tlv for lineout volume, 31 steps of .5db each */
526 static const DECLARE_TLV_DB_SCALE(lineout_volume, -1550, 50, 0);
527
528 /* tlv for dap avc max gain, 0db, 6db, 12db */
529 static const DECLARE_TLV_DB_SCALE(avc_max_gain, 0, 600, 0);
530
531 /* tlv for dap avc threshold, */
532 static const DECLARE_TLV_DB_MINMAX(avc_threshold, 0, 9600);
533
534 static const struct snd_kcontrol_new sgtl5000_snd_controls[] = {
535 /* SOC_DOUBLE_S8_TLV with invert */
536 {
537 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
538 .name = "PCM Playback Volume",
539 .access = SNDRV_CTL_ELEM_ACCESS_TLV_READ |
540 SNDRV_CTL_ELEM_ACCESS_READWRITE,
541 .info = dac_info_volsw,
542 .get = dac_get_volsw,
543 .put = dac_put_volsw,
544 },
545
546 SOC_DOUBLE("Capture Volume", SGTL5000_CHIP_ANA_ADC_CTRL, 0, 4, 0xf, 0),
547 SOC_SINGLE_TLV("Capture Attenuate Switch (-6dB)",
548 SGTL5000_CHIP_ANA_ADC_CTRL,
549 8, 1, 0, capture_6db_attenuate),
550 SOC_SINGLE("Capture ZC Switch", SGTL5000_CHIP_ANA_CTRL, 1, 1, 0),
551
552 SOC_DOUBLE_TLV("Headphone Playback Volume",
553 SGTL5000_CHIP_ANA_HP_CTRL,
554 0, 8,
555 0x7f, 1,
556 headphone_volume),
557 SOC_SINGLE("Headphone Playback Switch", SGTL5000_CHIP_ANA_CTRL,
558 4, 1, 1),
559 SOC_SINGLE("Headphone Playback ZC Switch", SGTL5000_CHIP_ANA_CTRL,
560 5, 1, 0),
561
562 SOC_SINGLE_TLV("Mic Volume", SGTL5000_CHIP_MIC_CTRL,
563 0, 3, 0, mic_gain_tlv),
564
565 SOC_DOUBLE_TLV("Lineout Playback Volume",
566 SGTL5000_CHIP_LINE_OUT_VOL,
567 SGTL5000_LINE_OUT_VOL_LEFT_SHIFT,
568 SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT,
569 0x1f, 1,
570 lineout_volume),
571 SOC_SINGLE("Lineout Playback Switch", SGTL5000_CHIP_ANA_CTRL, 8, 1, 1),
572
573 SOC_SINGLE_TLV("DAP Main channel", SGTL5000_DAP_MAIN_CHAN,
574 0, 0xffff, 0, dap_volume),
575
576 SOC_SINGLE_TLV("DAP Mix channel", SGTL5000_DAP_MIX_CHAN,
577 0, 0xffff, 0, dap_volume),
578 /* Automatic Volume Control (DAP AVC) */
579 SOC_SINGLE("AVC Switch", SGTL5000_DAP_AVC_CTRL, 0, 1, 0),
580 SOC_SINGLE("AVC Hard Limiter Switch", SGTL5000_DAP_AVC_CTRL, 5, 1, 0),
581 SOC_SINGLE_TLV("AVC Max Gain Volume", SGTL5000_DAP_AVC_CTRL, 12, 2, 0,
582 avc_max_gain),
583 SOC_SINGLE("AVC Integrator Response", SGTL5000_DAP_AVC_CTRL, 8, 3, 0),
584 SOC_SINGLE_EXT_TLV("AVC Threshold Volume", SGTL5000_DAP_AVC_THRESHOLD,
585 0, 96, 0, avc_get_threshold, avc_put_threshold,
586 avc_threshold),
587
588 SOC_SINGLE_TLV("BASS 0", SGTL5000_DAP_EQ_BASS_BAND0,
589 0, 0x5F, 0, bass_band),
590
591 SOC_SINGLE_TLV("BASS 1", SGTL5000_DAP_EQ_BASS_BAND1,
592 0, 0x5F, 0, bass_band),
593
594 SOC_SINGLE_TLV("BASS 2", SGTL5000_DAP_EQ_BASS_BAND2,
595 0, 0x5F, 0, bass_band),
596
597 SOC_SINGLE_TLV("BASS 3", SGTL5000_DAP_EQ_BASS_BAND3,
598 0, 0x5F, 0, bass_band),
599
600 SOC_SINGLE_TLV("BASS 4", SGTL5000_DAP_EQ_BASS_BAND4,
601 0, 0x5F, 0, bass_band),
602 };
603
604 /* mute the codec used by alsa core */
sgtl5000_digital_mute(struct snd_soc_dai * codec_dai,int mute)605 static int sgtl5000_digital_mute(struct snd_soc_dai *codec_dai, int mute)
606 {
607 struct snd_soc_component *component = codec_dai->component;
608 u16 i2s_pwr = SGTL5000_I2S_IN_POWERUP;
609
610 /*
611 * During 'digital mute' do not mute DAC
612 * because LINE_IN would be muted aswell. We want to mute
613 * only I2S block - this can be done by powering it off
614 */
615 snd_soc_component_update_bits(component, SGTL5000_CHIP_DIG_POWER,
616 i2s_pwr, mute ? 0 : i2s_pwr);
617
618 return 0;
619 }
620
621 /* set codec format */
sgtl5000_set_dai_fmt(struct snd_soc_dai * codec_dai,unsigned int fmt)622 static int sgtl5000_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
623 {
624 struct snd_soc_component *component = codec_dai->component;
625 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
626 u16 i2sctl = 0;
627
628 sgtl5000->master = 0;
629 /*
630 * i2s clock and frame master setting.
631 * ONLY support:
632 * - clock and frame slave,
633 * - clock and frame master
634 */
635 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
636 case SND_SOC_DAIFMT_CBS_CFS:
637 break;
638 case SND_SOC_DAIFMT_CBM_CFM:
639 i2sctl |= SGTL5000_I2S_MASTER;
640 sgtl5000->master = 1;
641 break;
642 default:
643 return -EINVAL;
644 }
645
646 /* setting i2s data format */
647 switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
648 case SND_SOC_DAIFMT_DSP_A:
649 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
650 break;
651 case SND_SOC_DAIFMT_DSP_B:
652 i2sctl |= SGTL5000_I2S_MODE_PCM << SGTL5000_I2S_MODE_SHIFT;
653 i2sctl |= SGTL5000_I2S_LRALIGN;
654 break;
655 case SND_SOC_DAIFMT_I2S:
656 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
657 break;
658 case SND_SOC_DAIFMT_RIGHT_J:
659 i2sctl |= SGTL5000_I2S_MODE_RJ << SGTL5000_I2S_MODE_SHIFT;
660 i2sctl |= SGTL5000_I2S_LRPOL;
661 break;
662 case SND_SOC_DAIFMT_LEFT_J:
663 i2sctl |= SGTL5000_I2S_MODE_I2S_LJ << SGTL5000_I2S_MODE_SHIFT;
664 i2sctl |= SGTL5000_I2S_LRALIGN;
665 break;
666 default:
667 return -EINVAL;
668 }
669
670 sgtl5000->fmt = fmt & SND_SOC_DAIFMT_FORMAT_MASK;
671
672 /* Clock inversion */
673 switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
674 case SND_SOC_DAIFMT_NB_NF:
675 break;
676 case SND_SOC_DAIFMT_IB_NF:
677 i2sctl |= SGTL5000_I2S_SCLK_INV;
678 break;
679 default:
680 return -EINVAL;
681 }
682
683 snd_soc_component_write(component, SGTL5000_CHIP_I2S_CTRL, i2sctl);
684
685 return 0;
686 }
687
688 /* set codec sysclk */
sgtl5000_set_dai_sysclk(struct snd_soc_dai * codec_dai,int clk_id,unsigned int freq,int dir)689 static int sgtl5000_set_dai_sysclk(struct snd_soc_dai *codec_dai,
690 int clk_id, unsigned int freq, int dir)
691 {
692 struct snd_soc_component *component = codec_dai->component;
693 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
694
695 switch (clk_id) {
696 case SGTL5000_SYSCLK:
697 sgtl5000->sysclk = freq;
698 break;
699 default:
700 return -EINVAL;
701 }
702
703 return 0;
704 }
705
706 /*
707 * set clock according to i2s frame clock,
708 * sgtl5000 provides 2 clock sources:
709 * 1. sys_mclk: sample freq can only be configured to
710 * 1/256, 1/384, 1/512 of sys_mclk.
711 * 2. pll: can derive any audio clocks.
712 *
713 * clock setting rules:
714 * 1. in slave mode, only sys_mclk can be used
715 * 2. as constraint by sys_mclk, sample freq should be set to 32 kHz, 44.1 kHz
716 * and above.
717 * 3. usage of sys_mclk is preferred over pll to save power.
718 */
sgtl5000_set_clock(struct snd_soc_component * component,int frame_rate)719 static int sgtl5000_set_clock(struct snd_soc_component *component, int frame_rate)
720 {
721 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
722 int clk_ctl = 0;
723 int sys_fs; /* sample freq */
724
725 /*
726 * sample freq should be divided by frame clock,
727 * if frame clock is lower than 44.1 kHz, sample freq should be set to
728 * 32 kHz or 44.1 kHz.
729 */
730 switch (frame_rate) {
731 case 8000:
732 case 16000:
733 sys_fs = 32000;
734 break;
735 case 11025:
736 case 22050:
737 sys_fs = 44100;
738 break;
739 default:
740 sys_fs = frame_rate;
741 break;
742 }
743
744 /* set divided factor of frame clock */
745 switch (sys_fs / frame_rate) {
746 case 4:
747 clk_ctl |= SGTL5000_RATE_MODE_DIV_4 << SGTL5000_RATE_MODE_SHIFT;
748 break;
749 case 2:
750 clk_ctl |= SGTL5000_RATE_MODE_DIV_2 << SGTL5000_RATE_MODE_SHIFT;
751 break;
752 case 1:
753 clk_ctl |= SGTL5000_RATE_MODE_DIV_1 << SGTL5000_RATE_MODE_SHIFT;
754 break;
755 default:
756 return -EINVAL;
757 }
758
759 /* set the sys_fs according to frame rate */
760 switch (sys_fs) {
761 case 32000:
762 clk_ctl |= SGTL5000_SYS_FS_32k << SGTL5000_SYS_FS_SHIFT;
763 break;
764 case 44100:
765 clk_ctl |= SGTL5000_SYS_FS_44_1k << SGTL5000_SYS_FS_SHIFT;
766 break;
767 case 48000:
768 clk_ctl |= SGTL5000_SYS_FS_48k << SGTL5000_SYS_FS_SHIFT;
769 break;
770 case 96000:
771 clk_ctl |= SGTL5000_SYS_FS_96k << SGTL5000_SYS_FS_SHIFT;
772 break;
773 default:
774 dev_err(component->dev, "frame rate %d not supported\n",
775 frame_rate);
776 return -EINVAL;
777 }
778
779 /*
780 * calculate the divider of mclk/sample_freq,
781 * factor of freq = 96 kHz can only be 256, since mclk is in the range
782 * of 8 MHz - 27 MHz
783 */
784 switch (sgtl5000->sysclk / frame_rate) {
785 case 256:
786 clk_ctl |= SGTL5000_MCLK_FREQ_256FS <<
787 SGTL5000_MCLK_FREQ_SHIFT;
788 break;
789 case 384:
790 clk_ctl |= SGTL5000_MCLK_FREQ_384FS <<
791 SGTL5000_MCLK_FREQ_SHIFT;
792 break;
793 case 512:
794 clk_ctl |= SGTL5000_MCLK_FREQ_512FS <<
795 SGTL5000_MCLK_FREQ_SHIFT;
796 break;
797 default:
798 /* if mclk does not satisfy the divider, use pll */
799 if (sgtl5000->master) {
800 clk_ctl |= SGTL5000_MCLK_FREQ_PLL <<
801 SGTL5000_MCLK_FREQ_SHIFT;
802 } else {
803 dev_err(component->dev,
804 "PLL not supported in slave mode\n");
805 dev_err(component->dev, "%d ratio is not supported. "
806 "SYS_MCLK needs to be 256, 384 or 512 * fs\n",
807 sgtl5000->sysclk / frame_rate);
808 return -EINVAL;
809 }
810 }
811
812 /* if using pll, please check manual 6.4.2 for detail */
813 if ((clk_ctl & SGTL5000_MCLK_FREQ_MASK) == SGTL5000_MCLK_FREQ_PLL) {
814 u64 out, t;
815 int div2;
816 int pll_ctl;
817 unsigned int in, int_div, frac_div;
818
819 if (sgtl5000->sysclk > 17000000) {
820 div2 = 1;
821 in = sgtl5000->sysclk / 2;
822 } else {
823 div2 = 0;
824 in = sgtl5000->sysclk;
825 }
826 if (sys_fs == 44100)
827 out = 180633600;
828 else
829 out = 196608000;
830 t = do_div(out, in);
831 int_div = out;
832 t *= 2048;
833 do_div(t, in);
834 frac_div = t;
835 pll_ctl = int_div << SGTL5000_PLL_INT_DIV_SHIFT |
836 frac_div << SGTL5000_PLL_FRAC_DIV_SHIFT;
837
838 snd_soc_component_write(component, SGTL5000_CHIP_PLL_CTRL, pll_ctl);
839 if (div2)
840 snd_soc_component_update_bits(component,
841 SGTL5000_CHIP_CLK_TOP_CTRL,
842 SGTL5000_INPUT_FREQ_DIV2,
843 SGTL5000_INPUT_FREQ_DIV2);
844 else
845 snd_soc_component_update_bits(component,
846 SGTL5000_CHIP_CLK_TOP_CTRL,
847 SGTL5000_INPUT_FREQ_DIV2,
848 0);
849
850 /* power up pll */
851 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
852 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
853 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP);
854
855 /* if using pll, clk_ctrl must be set after pll power up */
856 snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
857 } else {
858 /* otherwise, clk_ctrl must be set before pll power down */
859 snd_soc_component_write(component, SGTL5000_CHIP_CLK_CTRL, clk_ctl);
860
861 /* power down pll */
862 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
863 SGTL5000_PLL_POWERUP | SGTL5000_VCOAMP_POWERUP,
864 0);
865 }
866
867 return 0;
868 }
869
870 /*
871 * Set PCM DAI bit size and sample rate.
872 * input: params_rate, params_fmt
873 */
sgtl5000_pcm_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * dai)874 static int sgtl5000_pcm_hw_params(struct snd_pcm_substream *substream,
875 struct snd_pcm_hw_params *params,
876 struct snd_soc_dai *dai)
877 {
878 struct snd_soc_component *component = dai->component;
879 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
880 int channels = params_channels(params);
881 int i2s_ctl = 0;
882 int stereo;
883 int ret;
884
885 /* sysclk should already set */
886 if (!sgtl5000->sysclk) {
887 dev_err(component->dev, "%s: set sysclk first!\n", __func__);
888 return -EFAULT;
889 }
890
891 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
892 stereo = SGTL5000_DAC_STEREO;
893 else
894 stereo = SGTL5000_ADC_STEREO;
895
896 /* set mono to save power */
897 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER, stereo,
898 channels == 1 ? 0 : stereo);
899
900 /* set codec clock base on lrclk */
901 ret = sgtl5000_set_clock(component, params_rate(params));
902 if (ret)
903 return ret;
904
905 /* set i2s data format */
906 switch (params_width(params)) {
907 case 16:
908 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
909 return -EINVAL;
910 i2s_ctl |= SGTL5000_I2S_DLEN_16 << SGTL5000_I2S_DLEN_SHIFT;
911 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_32FS <<
912 SGTL5000_I2S_SCLKFREQ_SHIFT;
913 break;
914 case 20:
915 i2s_ctl |= SGTL5000_I2S_DLEN_20 << SGTL5000_I2S_DLEN_SHIFT;
916 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
917 SGTL5000_I2S_SCLKFREQ_SHIFT;
918 break;
919 case 24:
920 i2s_ctl |= SGTL5000_I2S_DLEN_24 << SGTL5000_I2S_DLEN_SHIFT;
921 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
922 SGTL5000_I2S_SCLKFREQ_SHIFT;
923 break;
924 case 32:
925 if (sgtl5000->fmt == SND_SOC_DAIFMT_RIGHT_J)
926 return -EINVAL;
927 i2s_ctl |= SGTL5000_I2S_DLEN_32 << SGTL5000_I2S_DLEN_SHIFT;
928 i2s_ctl |= SGTL5000_I2S_SCLKFREQ_64FS <<
929 SGTL5000_I2S_SCLKFREQ_SHIFT;
930 break;
931 default:
932 return -EINVAL;
933 }
934
935 snd_soc_component_update_bits(component, SGTL5000_CHIP_I2S_CTRL,
936 SGTL5000_I2S_DLEN_MASK | SGTL5000_I2S_SCLKFREQ_MASK,
937 i2s_ctl);
938
939 return 0;
940 }
941
942 /*
943 * set dac bias
944 * common state changes:
945 * startup:
946 * off --> standby --> prepare --> on
947 * standby --> prepare --> on
948 *
949 * stop:
950 * on --> prepare --> standby
951 */
sgtl5000_set_bias_level(struct snd_soc_component * component,enum snd_soc_bias_level level)952 static int sgtl5000_set_bias_level(struct snd_soc_component *component,
953 enum snd_soc_bias_level level)
954 {
955 struct sgtl5000_priv *sgtl = snd_soc_component_get_drvdata(component);
956 int ret;
957
958 switch (level) {
959 case SND_SOC_BIAS_ON:
960 case SND_SOC_BIAS_PREPARE:
961 case SND_SOC_BIAS_STANDBY:
962 regcache_cache_only(sgtl->regmap, false);
963 ret = regcache_sync(sgtl->regmap);
964 if (ret) {
965 regcache_cache_only(sgtl->regmap, true);
966 return ret;
967 }
968
969 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
970 SGTL5000_REFTOP_POWERUP,
971 SGTL5000_REFTOP_POWERUP);
972 break;
973 case SND_SOC_BIAS_OFF:
974 regcache_cache_only(sgtl->regmap, true);
975 snd_soc_component_update_bits(component, SGTL5000_CHIP_ANA_POWER,
976 SGTL5000_REFTOP_POWERUP, 0);
977 break;
978 }
979
980 return 0;
981 }
982
983 #define SGTL5000_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
984 SNDRV_PCM_FMTBIT_S20_3LE |\
985 SNDRV_PCM_FMTBIT_S24_LE |\
986 SNDRV_PCM_FMTBIT_S32_LE)
987
988 static const struct snd_soc_dai_ops sgtl5000_ops = {
989 .hw_params = sgtl5000_pcm_hw_params,
990 .digital_mute = sgtl5000_digital_mute,
991 .set_fmt = sgtl5000_set_dai_fmt,
992 .set_sysclk = sgtl5000_set_dai_sysclk,
993 };
994
995 static struct snd_soc_dai_driver sgtl5000_dai = {
996 .name = "sgtl5000",
997 .playback = {
998 .stream_name = "Playback",
999 .channels_min = 1,
1000 .channels_max = 2,
1001 /*
1002 * only support 8~48K + 96K,
1003 * TODO modify hw_param to support more
1004 */
1005 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1006 .formats = SGTL5000_FORMATS,
1007 },
1008 .capture = {
1009 .stream_name = "Capture",
1010 .channels_min = 1,
1011 .channels_max = 2,
1012 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_96000,
1013 .formats = SGTL5000_FORMATS,
1014 },
1015 .ops = &sgtl5000_ops,
1016 .symmetric_rates = 1,
1017 };
1018
sgtl5000_volatile(struct device * dev,unsigned int reg)1019 static bool sgtl5000_volatile(struct device *dev, unsigned int reg)
1020 {
1021 switch (reg) {
1022 case SGTL5000_CHIP_ID:
1023 case SGTL5000_CHIP_ADCDAC_CTRL:
1024 case SGTL5000_CHIP_ANA_STATUS:
1025 return true;
1026 }
1027
1028 return false;
1029 }
1030
sgtl5000_readable(struct device * dev,unsigned int reg)1031 static bool sgtl5000_readable(struct device *dev, unsigned int reg)
1032 {
1033 switch (reg) {
1034 case SGTL5000_CHIP_ID:
1035 case SGTL5000_CHIP_DIG_POWER:
1036 case SGTL5000_CHIP_CLK_CTRL:
1037 case SGTL5000_CHIP_I2S_CTRL:
1038 case SGTL5000_CHIP_SSS_CTRL:
1039 case SGTL5000_CHIP_ADCDAC_CTRL:
1040 case SGTL5000_CHIP_DAC_VOL:
1041 case SGTL5000_CHIP_PAD_STRENGTH:
1042 case SGTL5000_CHIP_ANA_ADC_CTRL:
1043 case SGTL5000_CHIP_ANA_HP_CTRL:
1044 case SGTL5000_CHIP_ANA_CTRL:
1045 case SGTL5000_CHIP_LINREG_CTRL:
1046 case SGTL5000_CHIP_REF_CTRL:
1047 case SGTL5000_CHIP_MIC_CTRL:
1048 case SGTL5000_CHIP_LINE_OUT_CTRL:
1049 case SGTL5000_CHIP_LINE_OUT_VOL:
1050 case SGTL5000_CHIP_ANA_POWER:
1051 case SGTL5000_CHIP_PLL_CTRL:
1052 case SGTL5000_CHIP_CLK_TOP_CTRL:
1053 case SGTL5000_CHIP_ANA_STATUS:
1054 case SGTL5000_CHIP_SHORT_CTRL:
1055 case SGTL5000_CHIP_ANA_TEST2:
1056 case SGTL5000_DAP_CTRL:
1057 case SGTL5000_DAP_PEQ:
1058 case SGTL5000_DAP_BASS_ENHANCE:
1059 case SGTL5000_DAP_BASS_ENHANCE_CTRL:
1060 case SGTL5000_DAP_AUDIO_EQ:
1061 case SGTL5000_DAP_SURROUND:
1062 case SGTL5000_DAP_FLT_COEF_ACCESS:
1063 case SGTL5000_DAP_COEF_WR_B0_MSB:
1064 case SGTL5000_DAP_COEF_WR_B0_LSB:
1065 case SGTL5000_DAP_EQ_BASS_BAND0:
1066 case SGTL5000_DAP_EQ_BASS_BAND1:
1067 case SGTL5000_DAP_EQ_BASS_BAND2:
1068 case SGTL5000_DAP_EQ_BASS_BAND3:
1069 case SGTL5000_DAP_EQ_BASS_BAND4:
1070 case SGTL5000_DAP_MAIN_CHAN:
1071 case SGTL5000_DAP_MIX_CHAN:
1072 case SGTL5000_DAP_AVC_CTRL:
1073 case SGTL5000_DAP_AVC_THRESHOLD:
1074 case SGTL5000_DAP_AVC_ATTACK:
1075 case SGTL5000_DAP_AVC_DECAY:
1076 case SGTL5000_DAP_COEF_WR_B1_MSB:
1077 case SGTL5000_DAP_COEF_WR_B1_LSB:
1078 case SGTL5000_DAP_COEF_WR_B2_MSB:
1079 case SGTL5000_DAP_COEF_WR_B2_LSB:
1080 case SGTL5000_DAP_COEF_WR_A1_MSB:
1081 case SGTL5000_DAP_COEF_WR_A1_LSB:
1082 case SGTL5000_DAP_COEF_WR_A2_MSB:
1083 case SGTL5000_DAP_COEF_WR_A2_LSB:
1084 return true;
1085
1086 default:
1087 return false;
1088 }
1089 }
1090
1091 /*
1092 * This precalculated table contains all (vag_val * 100 / lo_calcntrl) results
1093 * to select an appropriate lo_vol_* in SGTL5000_CHIP_LINE_OUT_VOL
1094 * The calculatation was done for all possible register values which
1095 * is the array index and the following formula: 10^((idx−15)/40) * 100
1096 */
1097 static const u8 vol_quot_table[] = {
1098 42, 45, 47, 50, 53, 56, 60, 63,
1099 67, 71, 75, 79, 84, 89, 94, 100,
1100 106, 112, 119, 126, 133, 141, 150, 158,
1101 168, 178, 188, 200, 211, 224, 237, 251
1102 };
1103
1104 /*
1105 * sgtl5000 has 3 internal power supplies:
1106 * 1. VAG, normally set to vdda/2
1107 * 2. charge pump, set to different value
1108 * according to voltage of vdda and vddio
1109 * 3. line out VAG, normally set to vddio/2
1110 *
1111 * and should be set according to:
1112 * 1. vddd provided by external or not
1113 * 2. vdda and vddio voltage value. > 3.1v or not
1114 */
sgtl5000_set_power_regs(struct snd_soc_component * component)1115 static int sgtl5000_set_power_regs(struct snd_soc_component *component)
1116 {
1117 int vddd;
1118 int vdda;
1119 int vddio;
1120 u16 ana_pwr;
1121 u16 lreg_ctrl;
1122 int vag;
1123 int lo_vag;
1124 int vol_quot;
1125 int lo_vol;
1126 size_t i;
1127 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1128
1129 vdda = regulator_get_voltage(sgtl5000->supplies[VDDA].consumer);
1130 vddio = regulator_get_voltage(sgtl5000->supplies[VDDIO].consumer);
1131 vddd = (sgtl5000->num_supplies > VDDD)
1132 ? regulator_get_voltage(sgtl5000->supplies[VDDD].consumer)
1133 : LDO_VOLTAGE;
1134
1135 vdda = vdda / 1000;
1136 vddio = vddio / 1000;
1137 vddd = vddd / 1000;
1138
1139 if (vdda <= 0 || vddio <= 0 || vddd < 0) {
1140 dev_err(component->dev, "regulator voltage not set correctly\n");
1141
1142 return -EINVAL;
1143 }
1144
1145 /* according to datasheet, maximum voltage of supplies */
1146 if (vdda > 3600 || vddio > 3600 || vddd > 1980) {
1147 dev_err(component->dev,
1148 "exceed max voltage vdda %dmV vddio %dmV vddd %dmV\n",
1149 vdda, vddio, vddd);
1150
1151 return -EINVAL;
1152 }
1153
1154 /* reset value */
1155 ana_pwr = snd_soc_component_read32(component, SGTL5000_CHIP_ANA_POWER);
1156 ana_pwr |= SGTL5000_DAC_STEREO |
1157 SGTL5000_ADC_STEREO |
1158 SGTL5000_REFTOP_POWERUP;
1159 lreg_ctrl = snd_soc_component_read32(component, SGTL5000_CHIP_LINREG_CTRL);
1160
1161 if (vddio < 3100 && vdda < 3100) {
1162 /* enable internal oscillator used for charge pump */
1163 snd_soc_component_update_bits(component, SGTL5000_CHIP_CLK_TOP_CTRL,
1164 SGTL5000_INT_OSC_EN,
1165 SGTL5000_INT_OSC_EN);
1166 /* Enable VDDC charge pump */
1167 ana_pwr |= SGTL5000_VDDC_CHRGPMP_POWERUP;
1168 } else if (vddio >= 3100 && vdda >= 3100) {
1169 ana_pwr &= ~SGTL5000_VDDC_CHRGPMP_POWERUP;
1170 /* VDDC use VDDIO rail */
1171 lreg_ctrl |= SGTL5000_VDDC_ASSN_OVRD;
1172 lreg_ctrl |= SGTL5000_VDDC_MAN_ASSN_VDDIO <<
1173 SGTL5000_VDDC_MAN_ASSN_SHIFT;
1174 }
1175
1176 snd_soc_component_write(component, SGTL5000_CHIP_LINREG_CTRL, lreg_ctrl);
1177
1178 snd_soc_component_write(component, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1179
1180 /*
1181 * set ADC/DAC VAG to vdda / 2,
1182 * should stay in range (0.8v, 1.575v)
1183 */
1184 vag = vdda / 2;
1185 if (vag <= SGTL5000_ANA_GND_BASE)
1186 vag = 0;
1187 else if (vag >= SGTL5000_ANA_GND_BASE + SGTL5000_ANA_GND_STP *
1188 (SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT))
1189 vag = SGTL5000_ANA_GND_MASK >> SGTL5000_ANA_GND_SHIFT;
1190 else
1191 vag = (vag - SGTL5000_ANA_GND_BASE) / SGTL5000_ANA_GND_STP;
1192
1193 snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1194 SGTL5000_ANA_GND_MASK, vag << SGTL5000_ANA_GND_SHIFT);
1195
1196 /* set line out VAG to vddio / 2, in range (0.8v, 1.675v) */
1197 lo_vag = vddio / 2;
1198 if (lo_vag <= SGTL5000_LINE_OUT_GND_BASE)
1199 lo_vag = 0;
1200 else if (lo_vag >= SGTL5000_LINE_OUT_GND_BASE +
1201 SGTL5000_LINE_OUT_GND_STP * SGTL5000_LINE_OUT_GND_MAX)
1202 lo_vag = SGTL5000_LINE_OUT_GND_MAX;
1203 else
1204 lo_vag = (lo_vag - SGTL5000_LINE_OUT_GND_BASE) /
1205 SGTL5000_LINE_OUT_GND_STP;
1206
1207 snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_CTRL,
1208 SGTL5000_LINE_OUT_CURRENT_MASK |
1209 SGTL5000_LINE_OUT_GND_MASK,
1210 lo_vag << SGTL5000_LINE_OUT_GND_SHIFT |
1211 SGTL5000_LINE_OUT_CURRENT_360u <<
1212 SGTL5000_LINE_OUT_CURRENT_SHIFT);
1213
1214 /*
1215 * Set lineout output level in range (0..31)
1216 * the same value is used for right and left channel
1217 *
1218 * Searching for a suitable index solving this formula:
1219 * idx = 40 * log10(vag_val / lo_cagcntrl) + 15
1220 */
1221 vol_quot = (vag * 100) / lo_vag;
1222 lo_vol = 0;
1223 for (i = 0; i < ARRAY_SIZE(vol_quot_table); i++) {
1224 if (vol_quot >= vol_quot_table[i])
1225 lo_vol = i;
1226 else
1227 break;
1228 }
1229
1230 snd_soc_component_update_bits(component, SGTL5000_CHIP_LINE_OUT_VOL,
1231 SGTL5000_LINE_OUT_VOL_RIGHT_MASK |
1232 SGTL5000_LINE_OUT_VOL_LEFT_MASK,
1233 lo_vol << SGTL5000_LINE_OUT_VOL_RIGHT_SHIFT |
1234 lo_vol << SGTL5000_LINE_OUT_VOL_LEFT_SHIFT);
1235
1236 return 0;
1237 }
1238
sgtl5000_enable_regulators(struct i2c_client * client)1239 static int sgtl5000_enable_regulators(struct i2c_client *client)
1240 {
1241 int ret;
1242 int i;
1243 int external_vddd = 0;
1244 struct regulator *vddd;
1245 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1246
1247 for (i = 0; i < ARRAY_SIZE(sgtl5000->supplies); i++)
1248 sgtl5000->supplies[i].supply = supply_names[i];
1249
1250 vddd = regulator_get_optional(&client->dev, "VDDD");
1251 if (IS_ERR(vddd)) {
1252 /* See if it's just not registered yet */
1253 if (PTR_ERR(vddd) == -EPROBE_DEFER)
1254 return -EPROBE_DEFER;
1255 } else {
1256 external_vddd = 1;
1257 regulator_put(vddd);
1258 }
1259
1260 sgtl5000->num_supplies = ARRAY_SIZE(sgtl5000->supplies)
1261 - 1 + external_vddd;
1262 ret = regulator_bulk_get(&client->dev, sgtl5000->num_supplies,
1263 sgtl5000->supplies);
1264 if (ret)
1265 return ret;
1266
1267 ret = regulator_bulk_enable(sgtl5000->num_supplies,
1268 sgtl5000->supplies);
1269 if (!ret)
1270 usleep_range(10, 20);
1271 else
1272 regulator_bulk_free(sgtl5000->num_supplies,
1273 sgtl5000->supplies);
1274
1275 return ret;
1276 }
1277
sgtl5000_probe(struct snd_soc_component * component)1278 static int sgtl5000_probe(struct snd_soc_component *component)
1279 {
1280 int ret;
1281 u16 reg;
1282 struct sgtl5000_priv *sgtl5000 = snd_soc_component_get_drvdata(component);
1283
1284 /* power up sgtl5000 */
1285 ret = sgtl5000_set_power_regs(component);
1286 if (ret)
1287 goto err;
1288
1289 /* enable small pop, introduce 400ms delay in turning off */
1290 snd_soc_component_update_bits(component, SGTL5000_CHIP_REF_CTRL,
1291 SGTL5000_SMALL_POP, 1);
1292
1293 /* disable short cut detector */
1294 snd_soc_component_write(component, SGTL5000_CHIP_SHORT_CTRL, 0);
1295
1296 snd_soc_component_write(component, SGTL5000_CHIP_DIG_POWER,
1297 SGTL5000_ADC_EN | SGTL5000_DAC_EN);
1298
1299 /* enable dac volume ramp by default */
1300 snd_soc_component_write(component, SGTL5000_CHIP_ADCDAC_CTRL,
1301 SGTL5000_DAC_VOL_RAMP_EN |
1302 SGTL5000_DAC_MUTE_RIGHT |
1303 SGTL5000_DAC_MUTE_LEFT);
1304
1305 reg = ((sgtl5000->lrclk_strength) << SGTL5000_PAD_I2S_LRCLK_SHIFT | 0x5f);
1306 snd_soc_component_write(component, SGTL5000_CHIP_PAD_STRENGTH, reg);
1307
1308 snd_soc_component_write(component, SGTL5000_CHIP_ANA_CTRL,
1309 SGTL5000_HP_ZCD_EN |
1310 SGTL5000_ADC_ZCD_EN);
1311
1312 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1313 SGTL5000_BIAS_R_MASK,
1314 sgtl5000->micbias_resistor << SGTL5000_BIAS_R_SHIFT);
1315
1316 snd_soc_component_update_bits(component, SGTL5000_CHIP_MIC_CTRL,
1317 SGTL5000_BIAS_VOLT_MASK,
1318 sgtl5000->micbias_voltage << SGTL5000_BIAS_VOLT_SHIFT);
1319 /*
1320 * enable DAP Graphic EQ
1321 * TODO:
1322 * Add control for changing between PEQ/Tone Control/GEQ
1323 */
1324 snd_soc_component_write(component, SGTL5000_DAP_AUDIO_EQ, SGTL5000_DAP_SEL_GEQ);
1325
1326 /* Unmute DAC after start */
1327 snd_soc_component_update_bits(component, SGTL5000_CHIP_ADCDAC_CTRL,
1328 SGTL5000_DAC_MUTE_LEFT | SGTL5000_DAC_MUTE_RIGHT, 0);
1329
1330 return 0;
1331
1332 err:
1333 return ret;
1334 }
1335
1336 static const struct snd_soc_component_driver sgtl5000_driver = {
1337 .probe = sgtl5000_probe,
1338 .set_bias_level = sgtl5000_set_bias_level,
1339 .controls = sgtl5000_snd_controls,
1340 .num_controls = ARRAY_SIZE(sgtl5000_snd_controls),
1341 .dapm_widgets = sgtl5000_dapm_widgets,
1342 .num_dapm_widgets = ARRAY_SIZE(sgtl5000_dapm_widgets),
1343 .dapm_routes = sgtl5000_dapm_routes,
1344 .num_dapm_routes = ARRAY_SIZE(sgtl5000_dapm_routes),
1345 .suspend_bias_off = 1,
1346 .idle_bias_on = 1,
1347 .use_pmdown_time = 1,
1348 .endianness = 1,
1349 .non_legacy_dai_naming = 1,
1350 };
1351
1352 static const struct regmap_config sgtl5000_regmap = {
1353 .reg_bits = 16,
1354 .val_bits = 16,
1355 .reg_stride = 2,
1356
1357 .max_register = SGTL5000_MAX_REG_OFFSET,
1358 .volatile_reg = sgtl5000_volatile,
1359 .readable_reg = sgtl5000_readable,
1360
1361 .cache_type = REGCACHE_RBTREE,
1362 .reg_defaults = sgtl5000_reg_defaults,
1363 .num_reg_defaults = ARRAY_SIZE(sgtl5000_reg_defaults),
1364 };
1365
1366 /*
1367 * Write all the default values from sgtl5000_reg_defaults[] array into the
1368 * sgtl5000 registers, to make sure we always start with the sane registers
1369 * values as stated in the datasheet.
1370 *
1371 * Since sgtl5000 does not have a reset line, nor a reset command in software,
1372 * we follow this approach to guarantee we always start from the default values
1373 * and avoid problems like, not being able to probe after an audio playback
1374 * followed by a system reset or a 'reboot' command in Linux
1375 */
sgtl5000_fill_defaults(struct i2c_client * client)1376 static void sgtl5000_fill_defaults(struct i2c_client *client)
1377 {
1378 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1379 int i, ret, val, index;
1380
1381 for (i = 0; i < ARRAY_SIZE(sgtl5000_reg_defaults); i++) {
1382 val = sgtl5000_reg_defaults[i].def;
1383 index = sgtl5000_reg_defaults[i].reg;
1384 ret = regmap_write(sgtl5000->regmap, index, val);
1385 if (ret)
1386 dev_err(&client->dev,
1387 "%s: error %d setting reg 0x%02x to 0x%04x\n",
1388 __func__, ret, index, val);
1389 }
1390 }
1391
sgtl5000_i2c_probe(struct i2c_client * client,const struct i2c_device_id * id)1392 static int sgtl5000_i2c_probe(struct i2c_client *client,
1393 const struct i2c_device_id *id)
1394 {
1395 struct sgtl5000_priv *sgtl5000;
1396 int ret, reg, rev;
1397 struct device_node *np = client->dev.of_node;
1398 u32 value;
1399 u16 ana_pwr;
1400
1401 sgtl5000 = devm_kzalloc(&client->dev, sizeof(*sgtl5000), GFP_KERNEL);
1402 if (!sgtl5000)
1403 return -ENOMEM;
1404
1405 i2c_set_clientdata(client, sgtl5000);
1406
1407 ret = sgtl5000_enable_regulators(client);
1408 if (ret)
1409 return ret;
1410
1411 sgtl5000->regmap = devm_regmap_init_i2c(client, &sgtl5000_regmap);
1412 if (IS_ERR(sgtl5000->regmap)) {
1413 ret = PTR_ERR(sgtl5000->regmap);
1414 dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
1415 goto disable_regs;
1416 }
1417
1418 sgtl5000->mclk = devm_clk_get(&client->dev, NULL);
1419 if (IS_ERR(sgtl5000->mclk)) {
1420 ret = PTR_ERR(sgtl5000->mclk);
1421 /* Defer the probe to see if the clk will be provided later */
1422 if (ret == -ENOENT)
1423 ret = -EPROBE_DEFER;
1424
1425 if (ret != -EPROBE_DEFER)
1426 dev_err(&client->dev, "Failed to get mclock: %d\n",
1427 ret);
1428 goto disable_regs;
1429 }
1430
1431 ret = clk_prepare_enable(sgtl5000->mclk);
1432 if (ret) {
1433 dev_err(&client->dev, "Error enabling clock %d\n", ret);
1434 goto disable_regs;
1435 }
1436
1437 /* Need 8 clocks before I2C accesses */
1438 udelay(1);
1439
1440 /* read chip information */
1441 ret = regmap_read(sgtl5000->regmap, SGTL5000_CHIP_ID, ®);
1442 if (ret) {
1443 dev_err(&client->dev, "Error reading chip id %d\n", ret);
1444 goto disable_clk;
1445 }
1446
1447 if (((reg & SGTL5000_PARTID_MASK) >> SGTL5000_PARTID_SHIFT) !=
1448 SGTL5000_PARTID_PART_ID) {
1449 dev_err(&client->dev,
1450 "Device with ID register %x is not a sgtl5000\n", reg);
1451 ret = -ENODEV;
1452 goto disable_clk;
1453 }
1454
1455 rev = (reg & SGTL5000_REVID_MASK) >> SGTL5000_REVID_SHIFT;
1456 dev_info(&client->dev, "sgtl5000 revision 0x%x\n", rev);
1457 sgtl5000->revision = rev;
1458
1459 /* reconfigure the clocks in case we're using the PLL */
1460 ret = regmap_write(sgtl5000->regmap,
1461 SGTL5000_CHIP_CLK_CTRL,
1462 SGTL5000_CHIP_CLK_CTRL_DEFAULT);
1463 if (ret)
1464 dev_err(&client->dev,
1465 "Error %d initializing CHIP_CLK_CTRL\n", ret);
1466
1467 /* Follow section 2.2.1.1 of AN3663 */
1468 ana_pwr = SGTL5000_ANA_POWER_DEFAULT;
1469 if (sgtl5000->num_supplies <= VDDD) {
1470 /* internal VDDD at 1.2V */
1471 ret = regmap_update_bits(sgtl5000->regmap,
1472 SGTL5000_CHIP_LINREG_CTRL,
1473 SGTL5000_LINREG_VDDD_MASK,
1474 LINREG_VDDD);
1475 if (ret)
1476 dev_err(&client->dev,
1477 "Error %d setting LINREG_VDDD\n", ret);
1478
1479 ana_pwr |= SGTL5000_LINEREG_D_POWERUP;
1480 dev_info(&client->dev,
1481 "Using internal LDO instead of VDDD: check ER1 erratum\n");
1482 } else {
1483 /* using external LDO for VDDD
1484 * Clear startup powerup and simple powerup
1485 * bits to save power
1486 */
1487 ana_pwr &= ~(SGTL5000_STARTUP_POWERUP
1488 | SGTL5000_LINREG_SIMPLE_POWERUP);
1489 dev_dbg(&client->dev, "Using external VDDD\n");
1490 }
1491 ret = regmap_write(sgtl5000->regmap, SGTL5000_CHIP_ANA_POWER, ana_pwr);
1492 if (ret)
1493 dev_err(&client->dev,
1494 "Error %d setting CHIP_ANA_POWER to %04x\n",
1495 ret, ana_pwr);
1496
1497 if (np) {
1498 if (!of_property_read_u32(np,
1499 "micbias-resistor-k-ohms", &value)) {
1500 switch (value) {
1501 case SGTL5000_MICBIAS_OFF:
1502 sgtl5000->micbias_resistor = 0;
1503 break;
1504 case SGTL5000_MICBIAS_2K:
1505 sgtl5000->micbias_resistor = 1;
1506 break;
1507 case SGTL5000_MICBIAS_4K:
1508 sgtl5000->micbias_resistor = 2;
1509 break;
1510 case SGTL5000_MICBIAS_8K:
1511 sgtl5000->micbias_resistor = 3;
1512 break;
1513 default:
1514 sgtl5000->micbias_resistor = 2;
1515 dev_err(&client->dev,
1516 "Unsuitable MicBias resistor\n");
1517 }
1518 } else {
1519 /* default is 4Kohms */
1520 sgtl5000->micbias_resistor = 2;
1521 }
1522 if (!of_property_read_u32(np,
1523 "micbias-voltage-m-volts", &value)) {
1524 /* 1250mV => 0 */
1525 /* steps of 250mV */
1526 if ((value >= 1250) && (value <= 3000))
1527 sgtl5000->micbias_voltage = (value / 250) - 5;
1528 else {
1529 sgtl5000->micbias_voltage = 0;
1530 dev_err(&client->dev,
1531 "Unsuitable MicBias voltage\n");
1532 }
1533 } else {
1534 sgtl5000->micbias_voltage = 0;
1535 }
1536 }
1537
1538 sgtl5000->lrclk_strength = I2S_LRCLK_STRENGTH_LOW;
1539 if (!of_property_read_u32(np, "lrclk-strength", &value)) {
1540 if (value > I2S_LRCLK_STRENGTH_HIGH)
1541 value = I2S_LRCLK_STRENGTH_LOW;
1542 sgtl5000->lrclk_strength = value;
1543 }
1544
1545 /* Ensure sgtl5000 will start with sane register values */
1546 sgtl5000_fill_defaults(client);
1547
1548 ret = devm_snd_soc_register_component(&client->dev,
1549 &sgtl5000_driver, &sgtl5000_dai, 1);
1550 if (ret)
1551 goto disable_clk;
1552
1553 return 0;
1554
1555 disable_clk:
1556 clk_disable_unprepare(sgtl5000->mclk);
1557
1558 disable_regs:
1559 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1560 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1561
1562 return ret;
1563 }
1564
sgtl5000_i2c_remove(struct i2c_client * client)1565 static int sgtl5000_i2c_remove(struct i2c_client *client)
1566 {
1567 struct sgtl5000_priv *sgtl5000 = i2c_get_clientdata(client);
1568
1569 clk_disable_unprepare(sgtl5000->mclk);
1570 regulator_bulk_disable(sgtl5000->num_supplies, sgtl5000->supplies);
1571 regulator_bulk_free(sgtl5000->num_supplies, sgtl5000->supplies);
1572
1573 return 0;
1574 }
1575
1576 static const struct i2c_device_id sgtl5000_id[] = {
1577 {"sgtl5000", 0},
1578 {},
1579 };
1580
1581 MODULE_DEVICE_TABLE(i2c, sgtl5000_id);
1582
1583 static const struct of_device_id sgtl5000_dt_ids[] = {
1584 { .compatible = "fsl,sgtl5000", },
1585 { /* sentinel */ }
1586 };
1587 MODULE_DEVICE_TABLE(of, sgtl5000_dt_ids);
1588
1589 static struct i2c_driver sgtl5000_i2c_driver = {
1590 .driver = {
1591 .name = "sgtl5000",
1592 .of_match_table = sgtl5000_dt_ids,
1593 },
1594 .probe = sgtl5000_i2c_probe,
1595 .remove = sgtl5000_i2c_remove,
1596 .id_table = sgtl5000_id,
1597 };
1598
1599 module_i2c_driver(sgtl5000_i2c_driver);
1600
1601 MODULE_DESCRIPTION("Freescale SGTL5000 ALSA SoC Codec Driver");
1602 MODULE_AUTHOR("Zeng Zhaoming <zengzm.kernel@gmail.com>");
1603 MODULE_LICENSE("GPL");
1604