1 /*
2 * linux/net/sunrpc/svc_xprt.c
3 *
4 * Author: Tom Tucker <tom@opengridcomputing.com>
5 */
6
7 #include <linux/sched.h>
8 #include <linux/errno.h>
9 #include <linux/freezer.h>
10 #include <linux/kthread.h>
11 #include <linux/slab.h>
12 #include <net/sock.h>
13 #include <linux/sunrpc/addr.h>
14 #include <linux/sunrpc/stats.h>
15 #include <linux/sunrpc/svc_xprt.h>
16 #include <linux/sunrpc/svcsock.h>
17 #include <linux/sunrpc/xprt.h>
18 #include <linux/module.h>
19 #include <linux/netdevice.h>
20 #include <trace/events/sunrpc.h>
21
22 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
23
24 static unsigned int svc_rpc_per_connection_limit __read_mostly;
25 module_param(svc_rpc_per_connection_limit, uint, 0644);
26
27
28 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
29 static int svc_deferred_recv(struct svc_rqst *rqstp);
30 static struct cache_deferred_req *svc_defer(struct cache_req *req);
31 static void svc_age_temp_xprts(struct timer_list *t);
32 static void svc_delete_xprt(struct svc_xprt *xprt);
33
34 /* apparently the "standard" is that clients close
35 * idle connections after 5 minutes, servers after
36 * 6 minutes
37 * http://www.connectathon.org/talks96/nfstcp.pdf
38 */
39 static int svc_conn_age_period = 6*60;
40
41 /* List of registered transport classes */
42 static DEFINE_SPINLOCK(svc_xprt_class_lock);
43 static LIST_HEAD(svc_xprt_class_list);
44
45 /* SMP locking strategy:
46 *
47 * svc_pool->sp_lock protects most of the fields of that pool.
48 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
49 * when both need to be taken (rare), svc_serv->sv_lock is first.
50 * The "service mutex" protects svc_serv->sv_nrthread.
51 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
52 * and the ->sk_info_authunix cache.
53 *
54 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
55 * enqueued multiply. During normal transport processing this bit
56 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
57 * Providers should not manipulate this bit directly.
58 *
59 * Some flags can be set to certain values at any time
60 * providing that certain rules are followed:
61 *
62 * XPT_CONN, XPT_DATA:
63 * - Can be set or cleared at any time.
64 * - After a set, svc_xprt_enqueue must be called to enqueue
65 * the transport for processing.
66 * - After a clear, the transport must be read/accepted.
67 * If this succeeds, it must be set again.
68 * XPT_CLOSE:
69 * - Can set at any time. It is never cleared.
70 * XPT_DEAD:
71 * - Can only be set while XPT_BUSY is held which ensures
72 * that no other thread will be using the transport or will
73 * try to set XPT_DEAD.
74 */
svc_reg_xprt_class(struct svc_xprt_class * xcl)75 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
76 {
77 struct svc_xprt_class *cl;
78 int res = -EEXIST;
79
80 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
81
82 INIT_LIST_HEAD(&xcl->xcl_list);
83 spin_lock(&svc_xprt_class_lock);
84 /* Make sure there isn't already a class with the same name */
85 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
86 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
87 goto out;
88 }
89 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
90 res = 0;
91 out:
92 spin_unlock(&svc_xprt_class_lock);
93 return res;
94 }
95 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
96
svc_unreg_xprt_class(struct svc_xprt_class * xcl)97 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
98 {
99 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
100 spin_lock(&svc_xprt_class_lock);
101 list_del_init(&xcl->xcl_list);
102 spin_unlock(&svc_xprt_class_lock);
103 }
104 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
105
106 /*
107 * Format the transport list for printing
108 */
svc_print_xprts(char * buf,int maxlen)109 int svc_print_xprts(char *buf, int maxlen)
110 {
111 struct svc_xprt_class *xcl;
112 char tmpstr[80];
113 int len = 0;
114 buf[0] = '\0';
115
116 spin_lock(&svc_xprt_class_lock);
117 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
118 int slen;
119
120 sprintf(tmpstr, "%s %d\n", xcl->xcl_name, xcl->xcl_max_payload);
121 slen = strlen(tmpstr);
122 if (len + slen > maxlen)
123 break;
124 len += slen;
125 strcat(buf, tmpstr);
126 }
127 spin_unlock(&svc_xprt_class_lock);
128
129 return len;
130 }
131
svc_xprt_free(struct kref * kref)132 static void svc_xprt_free(struct kref *kref)
133 {
134 struct svc_xprt *xprt =
135 container_of(kref, struct svc_xprt, xpt_ref);
136 struct module *owner = xprt->xpt_class->xcl_owner;
137 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
138 svcauth_unix_info_release(xprt);
139 put_net(xprt->xpt_net);
140 /* See comment on corresponding get in xs_setup_bc_tcp(): */
141 if (xprt->xpt_bc_xprt)
142 xprt_put(xprt->xpt_bc_xprt);
143 if (xprt->xpt_bc_xps)
144 xprt_switch_put(xprt->xpt_bc_xps);
145 xprt->xpt_ops->xpo_free(xprt);
146 module_put(owner);
147 }
148
svc_xprt_put(struct svc_xprt * xprt)149 void svc_xprt_put(struct svc_xprt *xprt)
150 {
151 kref_put(&xprt->xpt_ref, svc_xprt_free);
152 }
153 EXPORT_SYMBOL_GPL(svc_xprt_put);
154
155 /*
156 * Called by transport drivers to initialize the transport independent
157 * portion of the transport instance.
158 */
svc_xprt_init(struct net * net,struct svc_xprt_class * xcl,struct svc_xprt * xprt,struct svc_serv * serv)159 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
160 struct svc_xprt *xprt, struct svc_serv *serv)
161 {
162 memset(xprt, 0, sizeof(*xprt));
163 xprt->xpt_class = xcl;
164 xprt->xpt_ops = xcl->xcl_ops;
165 kref_init(&xprt->xpt_ref);
166 xprt->xpt_server = serv;
167 INIT_LIST_HEAD(&xprt->xpt_list);
168 INIT_LIST_HEAD(&xprt->xpt_ready);
169 INIT_LIST_HEAD(&xprt->xpt_deferred);
170 INIT_LIST_HEAD(&xprt->xpt_users);
171 mutex_init(&xprt->xpt_mutex);
172 spin_lock_init(&xprt->xpt_lock);
173 set_bit(XPT_BUSY, &xprt->xpt_flags);
174 rpc_init_wait_queue(&xprt->xpt_bc_pending, "xpt_bc_pending");
175 xprt->xpt_net = get_net(net);
176 strcpy(xprt->xpt_remotebuf, "uninitialized");
177 }
178 EXPORT_SYMBOL_GPL(svc_xprt_init);
179
__svc_xpo_create(struct svc_xprt_class * xcl,struct svc_serv * serv,struct net * net,const int family,const unsigned short port,int flags)180 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
181 struct svc_serv *serv,
182 struct net *net,
183 const int family,
184 const unsigned short port,
185 int flags)
186 {
187 struct sockaddr_in sin = {
188 .sin_family = AF_INET,
189 .sin_addr.s_addr = htonl(INADDR_ANY),
190 .sin_port = htons(port),
191 };
192 #if IS_ENABLED(CONFIG_IPV6)
193 struct sockaddr_in6 sin6 = {
194 .sin6_family = AF_INET6,
195 .sin6_addr = IN6ADDR_ANY_INIT,
196 .sin6_port = htons(port),
197 };
198 #endif
199 struct sockaddr *sap;
200 size_t len;
201
202 switch (family) {
203 case PF_INET:
204 sap = (struct sockaddr *)&sin;
205 len = sizeof(sin);
206 break;
207 #if IS_ENABLED(CONFIG_IPV6)
208 case PF_INET6:
209 sap = (struct sockaddr *)&sin6;
210 len = sizeof(sin6);
211 break;
212 #endif
213 default:
214 return ERR_PTR(-EAFNOSUPPORT);
215 }
216
217 return xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
218 }
219
220 /*
221 * svc_xprt_received conditionally queues the transport for processing
222 * by another thread. The caller must hold the XPT_BUSY bit and must
223 * not thereafter touch transport data.
224 *
225 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
226 * insufficient) data.
227 */
svc_xprt_received(struct svc_xprt * xprt)228 static void svc_xprt_received(struct svc_xprt *xprt)
229 {
230 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
231 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
232 return;
233 }
234
235 /* As soon as we clear busy, the xprt could be closed and
236 * 'put', so we need a reference to call svc_enqueue_xprt with:
237 */
238 svc_xprt_get(xprt);
239 smp_mb__before_atomic();
240 clear_bit(XPT_BUSY, &xprt->xpt_flags);
241 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
242 svc_xprt_put(xprt);
243 }
244
svc_add_new_perm_xprt(struct svc_serv * serv,struct svc_xprt * new)245 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
246 {
247 clear_bit(XPT_TEMP, &new->xpt_flags);
248 spin_lock_bh(&serv->sv_lock);
249 list_add(&new->xpt_list, &serv->sv_permsocks);
250 spin_unlock_bh(&serv->sv_lock);
251 svc_xprt_received(new);
252 }
253
_svc_create_xprt(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags)254 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
255 struct net *net, const int family,
256 const unsigned short port, int flags)
257 {
258 struct svc_xprt_class *xcl;
259
260 spin_lock(&svc_xprt_class_lock);
261 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
262 struct svc_xprt *newxprt;
263 unsigned short newport;
264
265 if (strcmp(xprt_name, xcl->xcl_name))
266 continue;
267
268 if (!try_module_get(xcl->xcl_owner))
269 goto err;
270
271 spin_unlock(&svc_xprt_class_lock);
272 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
273 if (IS_ERR(newxprt)) {
274 module_put(xcl->xcl_owner);
275 return PTR_ERR(newxprt);
276 }
277 svc_add_new_perm_xprt(serv, newxprt);
278 newport = svc_xprt_local_port(newxprt);
279 return newport;
280 }
281 err:
282 spin_unlock(&svc_xprt_class_lock);
283 /* This errno is exposed to user space. Provide a reasonable
284 * perror msg for a bad transport. */
285 return -EPROTONOSUPPORT;
286 }
287
svc_create_xprt(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags)288 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
289 struct net *net, const int family,
290 const unsigned short port, int flags)
291 {
292 int err;
293
294 dprintk("svc: creating transport %s[%d]\n", xprt_name, port);
295 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
296 if (err == -EPROTONOSUPPORT) {
297 request_module("svc%s", xprt_name);
298 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags);
299 }
300 if (err)
301 dprintk("svc: transport %s not found, err %d\n",
302 xprt_name, err);
303 return err;
304 }
305 EXPORT_SYMBOL_GPL(svc_create_xprt);
306
307 /*
308 * Copy the local and remote xprt addresses to the rqstp structure
309 */
svc_xprt_copy_addrs(struct svc_rqst * rqstp,struct svc_xprt * xprt)310 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
311 {
312 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
313 rqstp->rq_addrlen = xprt->xpt_remotelen;
314
315 /*
316 * Destination address in request is needed for binding the
317 * source address in RPC replies/callbacks later.
318 */
319 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
320 rqstp->rq_daddrlen = xprt->xpt_locallen;
321 }
322 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
323
324 /**
325 * svc_print_addr - Format rq_addr field for printing
326 * @rqstp: svc_rqst struct containing address to print
327 * @buf: target buffer for formatted address
328 * @len: length of target buffer
329 *
330 */
svc_print_addr(struct svc_rqst * rqstp,char * buf,size_t len)331 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
332 {
333 return __svc_print_addr(svc_addr(rqstp), buf, len);
334 }
335 EXPORT_SYMBOL_GPL(svc_print_addr);
336
svc_xprt_slots_in_range(struct svc_xprt * xprt)337 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
338 {
339 unsigned int limit = svc_rpc_per_connection_limit;
340 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
341
342 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
343 }
344
svc_xprt_reserve_slot(struct svc_rqst * rqstp,struct svc_xprt * xprt)345 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
346 {
347 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
348 if (!svc_xprt_slots_in_range(xprt))
349 return false;
350 atomic_inc(&xprt->xpt_nr_rqsts);
351 set_bit(RQ_DATA, &rqstp->rq_flags);
352 }
353 return true;
354 }
355
svc_xprt_release_slot(struct svc_rqst * rqstp)356 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
357 {
358 struct svc_xprt *xprt = rqstp->rq_xprt;
359 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
360 atomic_dec(&xprt->xpt_nr_rqsts);
361 svc_xprt_enqueue(xprt);
362 }
363 }
364
svc_xprt_has_something_to_do(struct svc_xprt * xprt)365 static bool svc_xprt_has_something_to_do(struct svc_xprt *xprt)
366 {
367 if (xprt->xpt_flags & ((1<<XPT_CONN)|(1<<XPT_CLOSE)))
368 return true;
369 if (xprt->xpt_flags & ((1<<XPT_DATA)|(1<<XPT_DEFERRED))) {
370 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
371 svc_xprt_slots_in_range(xprt))
372 return true;
373 trace_svc_xprt_no_write_space(xprt);
374 return false;
375 }
376 return false;
377 }
378
svc_xprt_do_enqueue(struct svc_xprt * xprt)379 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
380 {
381 struct svc_pool *pool;
382 struct svc_rqst *rqstp = NULL;
383 int cpu;
384
385 if (!svc_xprt_has_something_to_do(xprt))
386 return;
387
388 /* Mark transport as busy. It will remain in this state until
389 * the provider calls svc_xprt_received. We update XPT_BUSY
390 * atomically because it also guards against trying to enqueue
391 * the transport twice.
392 */
393 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
394 return;
395
396 cpu = get_cpu();
397 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
398
399 atomic_long_inc(&pool->sp_stats.packets);
400
401 spin_lock_bh(&pool->sp_lock);
402 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
403 pool->sp_stats.sockets_queued++;
404 spin_unlock_bh(&pool->sp_lock);
405
406 /* find a thread for this xprt */
407 rcu_read_lock();
408 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
409 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
410 continue;
411 atomic_long_inc(&pool->sp_stats.threads_woken);
412 rqstp->rq_qtime = ktime_get();
413 wake_up_process(rqstp->rq_task);
414 goto out_unlock;
415 }
416 set_bit(SP_CONGESTED, &pool->sp_flags);
417 rqstp = NULL;
418 out_unlock:
419 rcu_read_unlock();
420 put_cpu();
421 trace_svc_xprt_do_enqueue(xprt, rqstp);
422 }
423 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
424
425 /*
426 * Queue up a transport with data pending. If there are idle nfsd
427 * processes, wake 'em up.
428 *
429 */
svc_xprt_enqueue(struct svc_xprt * xprt)430 void svc_xprt_enqueue(struct svc_xprt *xprt)
431 {
432 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
433 return;
434 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
435 }
436 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
437
438 /*
439 * Dequeue the first transport, if there is one.
440 */
svc_xprt_dequeue(struct svc_pool * pool)441 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
442 {
443 struct svc_xprt *xprt = NULL;
444
445 if (list_empty(&pool->sp_sockets))
446 goto out;
447
448 spin_lock_bh(&pool->sp_lock);
449 if (likely(!list_empty(&pool->sp_sockets))) {
450 xprt = list_first_entry(&pool->sp_sockets,
451 struct svc_xprt, xpt_ready);
452 list_del_init(&xprt->xpt_ready);
453 svc_xprt_get(xprt);
454 }
455 spin_unlock_bh(&pool->sp_lock);
456 out:
457 return xprt;
458 }
459
460 /**
461 * svc_reserve - change the space reserved for the reply to a request.
462 * @rqstp: The request in question
463 * @space: new max space to reserve
464 *
465 * Each request reserves some space on the output queue of the transport
466 * to make sure the reply fits. This function reduces that reserved
467 * space to be the amount of space used already, plus @space.
468 *
469 */
svc_reserve(struct svc_rqst * rqstp,int space)470 void svc_reserve(struct svc_rqst *rqstp, int space)
471 {
472 space += rqstp->rq_res.head[0].iov_len;
473
474 if (space < rqstp->rq_reserved) {
475 struct svc_xprt *xprt = rqstp->rq_xprt;
476 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
477 rqstp->rq_reserved = space;
478
479 svc_xprt_enqueue(xprt);
480 }
481 }
482 EXPORT_SYMBOL_GPL(svc_reserve);
483
svc_xprt_release(struct svc_rqst * rqstp)484 static void svc_xprt_release(struct svc_rqst *rqstp)
485 {
486 struct svc_xprt *xprt = rqstp->rq_xprt;
487
488 xprt->xpt_ops->xpo_release_rqst(rqstp);
489
490 kfree(rqstp->rq_deferred);
491 rqstp->rq_deferred = NULL;
492
493 svc_free_res_pages(rqstp);
494 rqstp->rq_res.page_len = 0;
495 rqstp->rq_res.page_base = 0;
496
497 /* Reset response buffer and release
498 * the reservation.
499 * But first, check that enough space was reserved
500 * for the reply, otherwise we have a bug!
501 */
502 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
503 printk(KERN_ERR "RPC request reserved %d but used %d\n",
504 rqstp->rq_reserved,
505 rqstp->rq_res.len);
506
507 rqstp->rq_res.head[0].iov_len = 0;
508 svc_reserve(rqstp, 0);
509 svc_xprt_release_slot(rqstp);
510 rqstp->rq_xprt = NULL;
511 svc_xprt_put(xprt);
512 }
513
514 /*
515 * Some svc_serv's will have occasional work to do, even when a xprt is not
516 * waiting to be serviced. This function is there to "kick" a task in one of
517 * those services so that it can wake up and do that work. Note that we only
518 * bother with pool 0 as we don't need to wake up more than one thread for
519 * this purpose.
520 */
svc_wake_up(struct svc_serv * serv)521 void svc_wake_up(struct svc_serv *serv)
522 {
523 struct svc_rqst *rqstp;
524 struct svc_pool *pool;
525
526 pool = &serv->sv_pools[0];
527
528 rcu_read_lock();
529 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
530 /* skip any that aren't queued */
531 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
532 continue;
533 rcu_read_unlock();
534 wake_up_process(rqstp->rq_task);
535 trace_svc_wake_up(rqstp->rq_task->pid);
536 return;
537 }
538 rcu_read_unlock();
539
540 /* No free entries available */
541 set_bit(SP_TASK_PENDING, &pool->sp_flags);
542 smp_wmb();
543 trace_svc_wake_up(0);
544 }
545 EXPORT_SYMBOL_GPL(svc_wake_up);
546
svc_port_is_privileged(struct sockaddr * sin)547 int svc_port_is_privileged(struct sockaddr *sin)
548 {
549 switch (sin->sa_family) {
550 case AF_INET:
551 return ntohs(((struct sockaddr_in *)sin)->sin_port)
552 < PROT_SOCK;
553 case AF_INET6:
554 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
555 < PROT_SOCK;
556 default:
557 return 0;
558 }
559 }
560
561 /*
562 * Make sure that we don't have too many active connections. If we have,
563 * something must be dropped. It's not clear what will happen if we allow
564 * "too many" connections, but when dealing with network-facing software,
565 * we have to code defensively. Here we do that by imposing hard limits.
566 *
567 * There's no point in trying to do random drop here for DoS
568 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
569 * attacker can easily beat that.
570 *
571 * The only somewhat efficient mechanism would be if drop old
572 * connections from the same IP first. But right now we don't even
573 * record the client IP in svc_sock.
574 *
575 * single-threaded services that expect a lot of clients will probably
576 * need to set sv_maxconn to override the default value which is based
577 * on the number of threads
578 */
svc_check_conn_limits(struct svc_serv * serv)579 static void svc_check_conn_limits(struct svc_serv *serv)
580 {
581 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
582 (serv->sv_nrthreads+3) * 20;
583
584 if (serv->sv_tmpcnt > limit) {
585 struct svc_xprt *xprt = NULL;
586 spin_lock_bh(&serv->sv_lock);
587 if (!list_empty(&serv->sv_tempsocks)) {
588 /* Try to help the admin */
589 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
590 serv->sv_name, serv->sv_maxconn ?
591 "max number of connections" :
592 "number of threads");
593 /*
594 * Always select the oldest connection. It's not fair,
595 * but so is life
596 */
597 xprt = list_entry(serv->sv_tempsocks.prev,
598 struct svc_xprt,
599 xpt_list);
600 set_bit(XPT_CLOSE, &xprt->xpt_flags);
601 svc_xprt_get(xprt);
602 }
603 spin_unlock_bh(&serv->sv_lock);
604
605 if (xprt) {
606 svc_xprt_enqueue(xprt);
607 svc_xprt_put(xprt);
608 }
609 }
610 }
611
svc_alloc_arg(struct svc_rqst * rqstp)612 static int svc_alloc_arg(struct svc_rqst *rqstp)
613 {
614 struct svc_serv *serv = rqstp->rq_server;
615 struct xdr_buf *arg;
616 int pages;
617 int i;
618
619 /* now allocate needed pages. If we get a failure, sleep briefly */
620 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
621 if (pages > RPCSVC_MAXPAGES) {
622 pr_warn_once("svc: warning: pages=%u > RPCSVC_MAXPAGES=%lu\n",
623 pages, RPCSVC_MAXPAGES);
624 /* use as many pages as possible */
625 pages = RPCSVC_MAXPAGES;
626 }
627 for (i = 0; i < pages ; i++)
628 while (rqstp->rq_pages[i] == NULL) {
629 struct page *p = alloc_page(GFP_KERNEL);
630 if (!p) {
631 set_current_state(TASK_INTERRUPTIBLE);
632 if (signalled() || kthread_should_stop()) {
633 set_current_state(TASK_RUNNING);
634 return -EINTR;
635 }
636 schedule_timeout(msecs_to_jiffies(500));
637 }
638 rqstp->rq_pages[i] = p;
639 }
640 rqstp->rq_page_end = &rqstp->rq_pages[i];
641 rqstp->rq_pages[i++] = NULL; /* this might be seen in nfs_read_actor */
642
643 /* Make arg->head point to first page and arg->pages point to rest */
644 arg = &rqstp->rq_arg;
645 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
646 arg->head[0].iov_len = PAGE_SIZE;
647 arg->pages = rqstp->rq_pages + 1;
648 arg->page_base = 0;
649 /* save at least one page for response */
650 arg->page_len = (pages-2)*PAGE_SIZE;
651 arg->len = (pages-1)*PAGE_SIZE;
652 arg->tail[0].iov_len = 0;
653 return 0;
654 }
655
656 static bool
rqst_should_sleep(struct svc_rqst * rqstp)657 rqst_should_sleep(struct svc_rqst *rqstp)
658 {
659 struct svc_pool *pool = rqstp->rq_pool;
660
661 /* did someone call svc_wake_up? */
662 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
663 return false;
664
665 /* was a socket queued? */
666 if (!list_empty(&pool->sp_sockets))
667 return false;
668
669 /* are we shutting down? */
670 if (signalled() || kthread_should_stop())
671 return false;
672
673 /* are we freezing? */
674 if (freezing(current))
675 return false;
676
677 return true;
678 }
679
svc_get_next_xprt(struct svc_rqst * rqstp,long timeout)680 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
681 {
682 struct svc_pool *pool = rqstp->rq_pool;
683 long time_left = 0;
684
685 /* rq_xprt should be clear on entry */
686 WARN_ON_ONCE(rqstp->rq_xprt);
687
688 rqstp->rq_xprt = svc_xprt_dequeue(pool);
689 if (rqstp->rq_xprt)
690 goto out_found;
691
692 /*
693 * We have to be able to interrupt this wait
694 * to bring down the daemons ...
695 */
696 set_current_state(TASK_INTERRUPTIBLE);
697 smp_mb__before_atomic();
698 clear_bit(SP_CONGESTED, &pool->sp_flags);
699 clear_bit(RQ_BUSY, &rqstp->rq_flags);
700 smp_mb__after_atomic();
701
702 if (likely(rqst_should_sleep(rqstp)))
703 time_left = schedule_timeout(timeout);
704 else
705 __set_current_state(TASK_RUNNING);
706
707 try_to_freeze();
708
709 set_bit(RQ_BUSY, &rqstp->rq_flags);
710 smp_mb__after_atomic();
711 rqstp->rq_xprt = svc_xprt_dequeue(pool);
712 if (rqstp->rq_xprt)
713 goto out_found;
714
715 if (!time_left)
716 atomic_long_inc(&pool->sp_stats.threads_timedout);
717
718 if (signalled() || kthread_should_stop())
719 return ERR_PTR(-EINTR);
720 return ERR_PTR(-EAGAIN);
721 out_found:
722 /* Normally we will wait up to 5 seconds for any required
723 * cache information to be provided.
724 */
725 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
726 rqstp->rq_chandle.thread_wait = 5*HZ;
727 else
728 rqstp->rq_chandle.thread_wait = 1*HZ;
729 trace_svc_xprt_dequeue(rqstp);
730 return rqstp->rq_xprt;
731 }
732
svc_add_new_temp_xprt(struct svc_serv * serv,struct svc_xprt * newxpt)733 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
734 {
735 spin_lock_bh(&serv->sv_lock);
736 set_bit(XPT_TEMP, &newxpt->xpt_flags);
737 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
738 serv->sv_tmpcnt++;
739 if (serv->sv_temptimer.function == NULL) {
740 /* setup timer to age temp transports */
741 serv->sv_temptimer.function = svc_age_temp_xprts;
742 mod_timer(&serv->sv_temptimer,
743 jiffies + svc_conn_age_period * HZ);
744 }
745 spin_unlock_bh(&serv->sv_lock);
746 svc_xprt_received(newxpt);
747 }
748
svc_handle_xprt(struct svc_rqst * rqstp,struct svc_xprt * xprt)749 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
750 {
751 struct svc_serv *serv = rqstp->rq_server;
752 int len = 0;
753
754 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
755 dprintk("svc_recv: found XPT_CLOSE\n");
756 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
757 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
758 svc_delete_xprt(xprt);
759 /* Leave XPT_BUSY set on the dead xprt: */
760 goto out;
761 }
762 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
763 struct svc_xprt *newxpt;
764 /*
765 * We know this module_get will succeed because the
766 * listener holds a reference too
767 */
768 __module_get(xprt->xpt_class->xcl_owner);
769 svc_check_conn_limits(xprt->xpt_server);
770 newxpt = xprt->xpt_ops->xpo_accept(xprt);
771 if (newxpt)
772 svc_add_new_temp_xprt(serv, newxpt);
773 else
774 module_put(xprt->xpt_class->xcl_owner);
775 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
776 /* XPT_DATA|XPT_DEFERRED case: */
777 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
778 rqstp, rqstp->rq_pool->sp_id, xprt,
779 kref_read(&xprt->xpt_ref));
780 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
781 if (rqstp->rq_deferred)
782 len = svc_deferred_recv(rqstp);
783 else
784 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
785 rqstp->rq_stime = ktime_get();
786 rqstp->rq_reserved = serv->sv_max_mesg;
787 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
788 }
789 /* clear XPT_BUSY: */
790 svc_xprt_received(xprt);
791 out:
792 trace_svc_handle_xprt(xprt, len);
793 return len;
794 }
795
796 /*
797 * Receive the next request on any transport. This code is carefully
798 * organised not to touch any cachelines in the shared svc_serv
799 * structure, only cachelines in the local svc_pool.
800 */
svc_recv(struct svc_rqst * rqstp,long timeout)801 int svc_recv(struct svc_rqst *rqstp, long timeout)
802 {
803 struct svc_xprt *xprt = NULL;
804 struct svc_serv *serv = rqstp->rq_server;
805 int len, err;
806
807 dprintk("svc: server %p waiting for data (to = %ld)\n",
808 rqstp, timeout);
809
810 if (rqstp->rq_xprt)
811 printk(KERN_ERR
812 "svc_recv: service %p, transport not NULL!\n",
813 rqstp);
814
815 err = svc_alloc_arg(rqstp);
816 if (err)
817 goto out;
818
819 try_to_freeze();
820 cond_resched();
821 err = -EINTR;
822 if (signalled() || kthread_should_stop())
823 goto out;
824
825 xprt = svc_get_next_xprt(rqstp, timeout);
826 if (IS_ERR(xprt)) {
827 err = PTR_ERR(xprt);
828 goto out;
829 }
830
831 len = svc_handle_xprt(rqstp, xprt);
832
833 /* No data, incomplete (TCP) read, or accept() */
834 err = -EAGAIN;
835 if (len <= 0)
836 goto out_release;
837
838 clear_bit(XPT_OLD, &xprt->xpt_flags);
839
840 xprt->xpt_ops->xpo_secure_port(rqstp);
841 rqstp->rq_chandle.defer = svc_defer;
842 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
843
844 if (serv->sv_stats)
845 serv->sv_stats->netcnt++;
846 trace_svc_recv(rqstp, len);
847 return len;
848 out_release:
849 rqstp->rq_res.len = 0;
850 svc_xprt_release(rqstp);
851 out:
852 return err;
853 }
854 EXPORT_SYMBOL_GPL(svc_recv);
855
856 /*
857 * Drop request
858 */
svc_drop(struct svc_rqst * rqstp)859 void svc_drop(struct svc_rqst *rqstp)
860 {
861 trace_svc_drop(rqstp);
862 dprintk("svc: xprt %p dropped request\n", rqstp->rq_xprt);
863 svc_xprt_release(rqstp);
864 }
865 EXPORT_SYMBOL_GPL(svc_drop);
866
867 /*
868 * Return reply to client.
869 */
svc_send(struct svc_rqst * rqstp)870 int svc_send(struct svc_rqst *rqstp)
871 {
872 struct svc_xprt *xprt;
873 int len = -EFAULT;
874 struct xdr_buf *xb;
875
876 xprt = rqstp->rq_xprt;
877 if (!xprt)
878 goto out;
879
880 /* release the receive skb before sending the reply */
881 xprt->xpt_ops->xpo_release_rqst(rqstp);
882
883 /* calculate over-all length */
884 xb = &rqstp->rq_res;
885 xb->len = xb->head[0].iov_len +
886 xb->page_len +
887 xb->tail[0].iov_len;
888
889 /* Grab mutex to serialize outgoing data. */
890 mutex_lock(&xprt->xpt_mutex);
891 trace_svc_stats_latency(rqstp);
892 if (test_bit(XPT_DEAD, &xprt->xpt_flags)
893 || test_bit(XPT_CLOSE, &xprt->xpt_flags))
894 len = -ENOTCONN;
895 else
896 len = xprt->xpt_ops->xpo_sendto(rqstp);
897 mutex_unlock(&xprt->xpt_mutex);
898 rpc_wake_up(&xprt->xpt_bc_pending);
899 trace_svc_send(rqstp, len);
900 svc_xprt_release(rqstp);
901
902 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
903 len = 0;
904 out:
905 return len;
906 }
907
908 /*
909 * Timer function to close old temporary transports, using
910 * a mark-and-sweep algorithm.
911 */
svc_age_temp_xprts(struct timer_list * t)912 static void svc_age_temp_xprts(struct timer_list *t)
913 {
914 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
915 struct svc_xprt *xprt;
916 struct list_head *le, *next;
917
918 dprintk("svc_age_temp_xprts\n");
919
920 if (!spin_trylock_bh(&serv->sv_lock)) {
921 /* busy, try again 1 sec later */
922 dprintk("svc_age_temp_xprts: busy\n");
923 mod_timer(&serv->sv_temptimer, jiffies + HZ);
924 return;
925 }
926
927 list_for_each_safe(le, next, &serv->sv_tempsocks) {
928 xprt = list_entry(le, struct svc_xprt, xpt_list);
929
930 /* First time through, just mark it OLD. Second time
931 * through, close it. */
932 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
933 continue;
934 if (kref_read(&xprt->xpt_ref) > 1 ||
935 test_bit(XPT_BUSY, &xprt->xpt_flags))
936 continue;
937 list_del_init(le);
938 set_bit(XPT_CLOSE, &xprt->xpt_flags);
939 dprintk("queuing xprt %p for closing\n", xprt);
940
941 /* a thread will dequeue and close it soon */
942 svc_xprt_enqueue(xprt);
943 }
944 spin_unlock_bh(&serv->sv_lock);
945
946 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
947 }
948
949 /* Close temporary transports whose xpt_local matches server_addr immediately
950 * instead of waiting for them to be picked up by the timer.
951 *
952 * This is meant to be called from a notifier_block that runs when an ip
953 * address is deleted.
954 */
svc_age_temp_xprts_now(struct svc_serv * serv,struct sockaddr * server_addr)955 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
956 {
957 struct svc_xprt *xprt;
958 struct list_head *le, *next;
959 LIST_HEAD(to_be_closed);
960
961 spin_lock_bh(&serv->sv_lock);
962 list_for_each_safe(le, next, &serv->sv_tempsocks) {
963 xprt = list_entry(le, struct svc_xprt, xpt_list);
964 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
965 &xprt->xpt_local)) {
966 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
967 list_move(le, &to_be_closed);
968 }
969 }
970 spin_unlock_bh(&serv->sv_lock);
971
972 while (!list_empty(&to_be_closed)) {
973 le = to_be_closed.next;
974 list_del_init(le);
975 xprt = list_entry(le, struct svc_xprt, xpt_list);
976 set_bit(XPT_CLOSE, &xprt->xpt_flags);
977 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
978 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
979 xprt);
980 svc_xprt_enqueue(xprt);
981 }
982 }
983 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
984
call_xpt_users(struct svc_xprt * xprt)985 static void call_xpt_users(struct svc_xprt *xprt)
986 {
987 struct svc_xpt_user *u;
988
989 spin_lock(&xprt->xpt_lock);
990 while (!list_empty(&xprt->xpt_users)) {
991 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
992 list_del(&u->list);
993 u->callback(u);
994 }
995 spin_unlock(&xprt->xpt_lock);
996 }
997
998 /*
999 * Remove a dead transport
1000 */
svc_delete_xprt(struct svc_xprt * xprt)1001 static void svc_delete_xprt(struct svc_xprt *xprt)
1002 {
1003 struct svc_serv *serv = xprt->xpt_server;
1004 struct svc_deferred_req *dr;
1005
1006 /* Only do this once */
1007 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1008 BUG();
1009
1010 dprintk("svc: svc_delete_xprt(%p)\n", xprt);
1011 xprt->xpt_ops->xpo_detach(xprt);
1012
1013 spin_lock_bh(&serv->sv_lock);
1014 list_del_init(&xprt->xpt_list);
1015 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1016 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1017 serv->sv_tmpcnt--;
1018 spin_unlock_bh(&serv->sv_lock);
1019
1020 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1021 kfree(dr);
1022
1023 call_xpt_users(xprt);
1024 svc_xprt_put(xprt);
1025 }
1026
svc_close_xprt(struct svc_xprt * xprt)1027 void svc_close_xprt(struct svc_xprt *xprt)
1028 {
1029 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1030 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1031 /* someone else will have to effect the close */
1032 return;
1033 /*
1034 * We expect svc_close_xprt() to work even when no threads are
1035 * running (e.g., while configuring the server before starting
1036 * any threads), so if the transport isn't busy, we delete
1037 * it ourself:
1038 */
1039 svc_delete_xprt(xprt);
1040 }
1041 EXPORT_SYMBOL_GPL(svc_close_xprt);
1042
svc_close_list(struct svc_serv * serv,struct list_head * xprt_list,struct net * net)1043 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1044 {
1045 struct svc_xprt *xprt;
1046 int ret = 0;
1047
1048 spin_lock(&serv->sv_lock);
1049 list_for_each_entry(xprt, xprt_list, xpt_list) {
1050 if (xprt->xpt_net != net)
1051 continue;
1052 ret++;
1053 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1054 svc_xprt_enqueue(xprt);
1055 }
1056 spin_unlock(&serv->sv_lock);
1057 return ret;
1058 }
1059
svc_dequeue_net(struct svc_serv * serv,struct net * net)1060 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1061 {
1062 struct svc_pool *pool;
1063 struct svc_xprt *xprt;
1064 struct svc_xprt *tmp;
1065 int i;
1066
1067 for (i = 0; i < serv->sv_nrpools; i++) {
1068 pool = &serv->sv_pools[i];
1069
1070 spin_lock_bh(&pool->sp_lock);
1071 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1072 if (xprt->xpt_net != net)
1073 continue;
1074 list_del_init(&xprt->xpt_ready);
1075 spin_unlock_bh(&pool->sp_lock);
1076 return xprt;
1077 }
1078 spin_unlock_bh(&pool->sp_lock);
1079 }
1080 return NULL;
1081 }
1082
svc_clean_up_xprts(struct svc_serv * serv,struct net * net)1083 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1084 {
1085 struct svc_xprt *xprt;
1086
1087 while ((xprt = svc_dequeue_net(serv, net))) {
1088 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1089 svc_delete_xprt(xprt);
1090 }
1091 }
1092
1093 /*
1094 * Server threads may still be running (especially in the case where the
1095 * service is still running in other network namespaces).
1096 *
1097 * So we shut down sockets the same way we would on a running server, by
1098 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1099 * the close. In the case there are no such other threads,
1100 * threads running, svc_clean_up_xprts() does a simple version of a
1101 * server's main event loop, and in the case where there are other
1102 * threads, we may need to wait a little while and then check again to
1103 * see if they're done.
1104 */
svc_close_net(struct svc_serv * serv,struct net * net)1105 void svc_close_net(struct svc_serv *serv, struct net *net)
1106 {
1107 int delay = 0;
1108
1109 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1110 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1111
1112 svc_clean_up_xprts(serv, net);
1113 msleep(delay++);
1114 }
1115 }
1116
1117 /*
1118 * Handle defer and revisit of requests
1119 */
1120
svc_revisit(struct cache_deferred_req * dreq,int too_many)1121 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1122 {
1123 struct svc_deferred_req *dr =
1124 container_of(dreq, struct svc_deferred_req, handle);
1125 struct svc_xprt *xprt = dr->xprt;
1126
1127 spin_lock(&xprt->xpt_lock);
1128 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1129 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1130 spin_unlock(&xprt->xpt_lock);
1131 dprintk("revisit canceled\n");
1132 svc_xprt_put(xprt);
1133 trace_svc_drop_deferred(dr);
1134 kfree(dr);
1135 return;
1136 }
1137 dprintk("revisit queued\n");
1138 dr->xprt = NULL;
1139 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1140 spin_unlock(&xprt->xpt_lock);
1141 svc_xprt_enqueue(xprt);
1142 svc_xprt_put(xprt);
1143 }
1144
1145 /*
1146 * Save the request off for later processing. The request buffer looks
1147 * like this:
1148 *
1149 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1150 *
1151 * This code can only handle requests that consist of an xprt-header
1152 * and rpc-header.
1153 */
svc_defer(struct cache_req * req)1154 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1155 {
1156 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1157 struct svc_deferred_req *dr;
1158
1159 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1160 return NULL; /* if more than a page, give up FIXME */
1161 if (rqstp->rq_deferred) {
1162 dr = rqstp->rq_deferred;
1163 rqstp->rq_deferred = NULL;
1164 } else {
1165 size_t skip;
1166 size_t size;
1167 /* FIXME maybe discard if size too large */
1168 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1169 dr = kmalloc(size, GFP_KERNEL);
1170 if (dr == NULL)
1171 return NULL;
1172
1173 dr->handle.owner = rqstp->rq_server;
1174 dr->prot = rqstp->rq_prot;
1175 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1176 dr->addrlen = rqstp->rq_addrlen;
1177 dr->daddr = rqstp->rq_daddr;
1178 dr->argslen = rqstp->rq_arg.len >> 2;
1179 dr->xprt_hlen = rqstp->rq_xprt_hlen;
1180
1181 /* back up head to the start of the buffer and copy */
1182 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1183 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1184 dr->argslen << 2);
1185 }
1186 svc_xprt_get(rqstp->rq_xprt);
1187 dr->xprt = rqstp->rq_xprt;
1188 set_bit(RQ_DROPME, &rqstp->rq_flags);
1189
1190 dr->handle.revisit = svc_revisit;
1191 trace_svc_defer(rqstp);
1192 return &dr->handle;
1193 }
1194
1195 /*
1196 * recv data from a deferred request into an active one
1197 */
svc_deferred_recv(struct svc_rqst * rqstp)1198 static int svc_deferred_recv(struct svc_rqst *rqstp)
1199 {
1200 struct svc_deferred_req *dr = rqstp->rq_deferred;
1201
1202 /* setup iov_base past transport header */
1203 rqstp->rq_arg.head[0].iov_base = dr->args + (dr->xprt_hlen>>2);
1204 /* The iov_len does not include the transport header bytes */
1205 rqstp->rq_arg.head[0].iov_len = (dr->argslen<<2) - dr->xprt_hlen;
1206 rqstp->rq_arg.page_len = 0;
1207 /* The rq_arg.len includes the transport header bytes */
1208 rqstp->rq_arg.len = dr->argslen<<2;
1209 rqstp->rq_prot = dr->prot;
1210 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1211 rqstp->rq_addrlen = dr->addrlen;
1212 /* Save off transport header len in case we get deferred again */
1213 rqstp->rq_xprt_hlen = dr->xprt_hlen;
1214 rqstp->rq_daddr = dr->daddr;
1215 rqstp->rq_respages = rqstp->rq_pages;
1216 return (dr->argslen<<2) - dr->xprt_hlen;
1217 }
1218
1219
svc_deferred_dequeue(struct svc_xprt * xprt)1220 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1221 {
1222 struct svc_deferred_req *dr = NULL;
1223
1224 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1225 return NULL;
1226 spin_lock(&xprt->xpt_lock);
1227 if (!list_empty(&xprt->xpt_deferred)) {
1228 dr = list_entry(xprt->xpt_deferred.next,
1229 struct svc_deferred_req,
1230 handle.recent);
1231 list_del_init(&dr->handle.recent);
1232 trace_svc_revisit_deferred(dr);
1233 } else
1234 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1235 spin_unlock(&xprt->xpt_lock);
1236 return dr;
1237 }
1238
1239 /**
1240 * svc_find_xprt - find an RPC transport instance
1241 * @serv: pointer to svc_serv to search
1242 * @xcl_name: C string containing transport's class name
1243 * @net: owner net pointer
1244 * @af: Address family of transport's local address
1245 * @port: transport's IP port number
1246 *
1247 * Return the transport instance pointer for the endpoint accepting
1248 * connections/peer traffic from the specified transport class,
1249 * address family and port.
1250 *
1251 * Specifying 0 for the address family or port is effectively a
1252 * wild-card, and will result in matching the first transport in the
1253 * service's list that has a matching class name.
1254 */
svc_find_xprt(struct svc_serv * serv,const char * xcl_name,struct net * net,const sa_family_t af,const unsigned short port)1255 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1256 struct net *net, const sa_family_t af,
1257 const unsigned short port)
1258 {
1259 struct svc_xprt *xprt;
1260 struct svc_xprt *found = NULL;
1261
1262 /* Sanity check the args */
1263 if (serv == NULL || xcl_name == NULL)
1264 return found;
1265
1266 spin_lock_bh(&serv->sv_lock);
1267 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1268 if (xprt->xpt_net != net)
1269 continue;
1270 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1271 continue;
1272 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1273 continue;
1274 if (port != 0 && port != svc_xprt_local_port(xprt))
1275 continue;
1276 found = xprt;
1277 svc_xprt_get(xprt);
1278 break;
1279 }
1280 spin_unlock_bh(&serv->sv_lock);
1281 return found;
1282 }
1283 EXPORT_SYMBOL_GPL(svc_find_xprt);
1284
svc_one_xprt_name(const struct svc_xprt * xprt,char * pos,int remaining)1285 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1286 char *pos, int remaining)
1287 {
1288 int len;
1289
1290 len = snprintf(pos, remaining, "%s %u\n",
1291 xprt->xpt_class->xcl_name,
1292 svc_xprt_local_port(xprt));
1293 if (len >= remaining)
1294 return -ENAMETOOLONG;
1295 return len;
1296 }
1297
1298 /**
1299 * svc_xprt_names - format a buffer with a list of transport names
1300 * @serv: pointer to an RPC service
1301 * @buf: pointer to a buffer to be filled in
1302 * @buflen: length of buffer to be filled in
1303 *
1304 * Fills in @buf with a string containing a list of transport names,
1305 * each name terminated with '\n'.
1306 *
1307 * Returns positive length of the filled-in string on success; otherwise
1308 * a negative errno value is returned if an error occurs.
1309 */
svc_xprt_names(struct svc_serv * serv,char * buf,const int buflen)1310 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1311 {
1312 struct svc_xprt *xprt;
1313 int len, totlen;
1314 char *pos;
1315
1316 /* Sanity check args */
1317 if (!serv)
1318 return 0;
1319
1320 spin_lock_bh(&serv->sv_lock);
1321
1322 pos = buf;
1323 totlen = 0;
1324 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1325 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1326 if (len < 0) {
1327 *buf = '\0';
1328 totlen = len;
1329 }
1330 if (len <= 0)
1331 break;
1332
1333 pos += len;
1334 totlen += len;
1335 }
1336
1337 spin_unlock_bh(&serv->sv_lock);
1338 return totlen;
1339 }
1340 EXPORT_SYMBOL_GPL(svc_xprt_names);
1341
1342
1343 /*----------------------------------------------------------------------------*/
1344
svc_pool_stats_start(struct seq_file * m,loff_t * pos)1345 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1346 {
1347 unsigned int pidx = (unsigned int)*pos;
1348 struct svc_serv *serv = m->private;
1349
1350 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1351
1352 if (!pidx)
1353 return SEQ_START_TOKEN;
1354 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1355 }
1356
svc_pool_stats_next(struct seq_file * m,void * p,loff_t * pos)1357 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1358 {
1359 struct svc_pool *pool = p;
1360 struct svc_serv *serv = m->private;
1361
1362 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1363
1364 if (p == SEQ_START_TOKEN) {
1365 pool = &serv->sv_pools[0];
1366 } else {
1367 unsigned int pidx = (pool - &serv->sv_pools[0]);
1368 if (pidx < serv->sv_nrpools-1)
1369 pool = &serv->sv_pools[pidx+1];
1370 else
1371 pool = NULL;
1372 }
1373 ++*pos;
1374 return pool;
1375 }
1376
svc_pool_stats_stop(struct seq_file * m,void * p)1377 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1378 {
1379 }
1380
svc_pool_stats_show(struct seq_file * m,void * p)1381 static int svc_pool_stats_show(struct seq_file *m, void *p)
1382 {
1383 struct svc_pool *pool = p;
1384
1385 if (p == SEQ_START_TOKEN) {
1386 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1387 return 0;
1388 }
1389
1390 seq_printf(m, "%u %lu %lu %lu %lu\n",
1391 pool->sp_id,
1392 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1393 pool->sp_stats.sockets_queued,
1394 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1395 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1396
1397 return 0;
1398 }
1399
1400 static const struct seq_operations svc_pool_stats_seq_ops = {
1401 .start = svc_pool_stats_start,
1402 .next = svc_pool_stats_next,
1403 .stop = svc_pool_stats_stop,
1404 .show = svc_pool_stats_show,
1405 };
1406
svc_pool_stats_open(struct svc_serv * serv,struct file * file)1407 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1408 {
1409 int err;
1410
1411 err = seq_open(file, &svc_pool_stats_seq_ops);
1412 if (!err)
1413 ((struct seq_file *) file->private_data)->private = serv;
1414 return err;
1415 }
1416 EXPORT_SYMBOL(svc_pool_stats_open);
1417
1418 /*----------------------------------------------------------------------------*/
1419