1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The IP fragmentation functionality.
8  *
9  * Authors:	Fred N. van Kempen <waltje@uWalt.NL.Mugnet.ORG>
10  *		Alan Cox <alan@lxorguk.ukuu.org.uk>
11  *
12  * Fixes:
13  *		Alan Cox	:	Split from ip.c , see ip_input.c for history.
14  *		David S. Miller :	Begin massive cleanup...
15  *		Andi Kleen	:	Add sysctls.
16  *		xxxx		:	Overlapfrag bug.
17  *		Ultima          :       ip_expire() kernel panic.
18  *		Bill Hawes	:	Frag accounting and evictor fixes.
19  *		John McDonald	:	0 length frag bug.
20  *		Alexey Kuznetsov:	SMP races, threading, cleanup.
21  *		Patrick McHardy :	LRU queue of frag heads for evictor.
22  */
23 
24 #define pr_fmt(fmt) "IPv4: " fmt
25 
26 #include <linux/compiler.h>
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/mm.h>
30 #include <linux/jiffies.h>
31 #include <linux/skbuff.h>
32 #include <linux/list.h>
33 #include <linux/ip.h>
34 #include <linux/icmp.h>
35 #include <linux/netdevice.h>
36 #include <linux/jhash.h>
37 #include <linux/random.h>
38 #include <linux/slab.h>
39 #include <net/route.h>
40 #include <net/dst.h>
41 #include <net/sock.h>
42 #include <net/ip.h>
43 #include <net/icmp.h>
44 #include <net/checksum.h>
45 #include <net/inetpeer.h>
46 #include <net/inet_frag.h>
47 #include <linux/tcp.h>
48 #include <linux/udp.h>
49 #include <linux/inet.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <net/inet_ecn.h>
52 #include <net/l3mdev.h>
53 
54 /* NOTE. Logic of IP defragmentation is parallel to corresponding IPv6
55  * code now. If you change something here, _PLEASE_ update ipv6/reassembly.c
56  * as well. Or notify me, at least. --ANK
57  */
58 static const char ip_frag_cache_name[] = "ip4-frags";
59 
60 /* Use skb->cb to track consecutive/adjacent fragments coming at
61  * the end of the queue. Nodes in the rb-tree queue will
62  * contain "runs" of one or more adjacent fragments.
63  *
64  * Invariants:
65  * - next_frag is NULL at the tail of a "run";
66  * - the head of a "run" has the sum of all fragment lengths in frag_run_len.
67  */
68 struct ipfrag_skb_cb {
69 	struct inet_skb_parm	h;
70 	struct sk_buff		*next_frag;
71 	int			frag_run_len;
72 };
73 
74 #define FRAG_CB(skb)		((struct ipfrag_skb_cb *)((skb)->cb))
75 
ip4_frag_init_run(struct sk_buff * skb)76 static void ip4_frag_init_run(struct sk_buff *skb)
77 {
78 	BUILD_BUG_ON(sizeof(struct ipfrag_skb_cb) > sizeof(skb->cb));
79 
80 	FRAG_CB(skb)->next_frag = NULL;
81 	FRAG_CB(skb)->frag_run_len = skb->len;
82 }
83 
84 /* Append skb to the last "run". */
ip4_frag_append_to_last_run(struct inet_frag_queue * q,struct sk_buff * skb)85 static void ip4_frag_append_to_last_run(struct inet_frag_queue *q,
86 					struct sk_buff *skb)
87 {
88 	RB_CLEAR_NODE(&skb->rbnode);
89 	FRAG_CB(skb)->next_frag = NULL;
90 
91 	FRAG_CB(q->last_run_head)->frag_run_len += skb->len;
92 	FRAG_CB(q->fragments_tail)->next_frag = skb;
93 	q->fragments_tail = skb;
94 }
95 
96 /* Create a new "run" with the skb. */
ip4_frag_create_run(struct inet_frag_queue * q,struct sk_buff * skb)97 static void ip4_frag_create_run(struct inet_frag_queue *q, struct sk_buff *skb)
98 {
99 	if (q->last_run_head)
100 		rb_link_node(&skb->rbnode, &q->last_run_head->rbnode,
101 			     &q->last_run_head->rbnode.rb_right);
102 	else
103 		rb_link_node(&skb->rbnode, NULL, &q->rb_fragments.rb_node);
104 	rb_insert_color(&skb->rbnode, &q->rb_fragments);
105 
106 	ip4_frag_init_run(skb);
107 	q->fragments_tail = skb;
108 	q->last_run_head = skb;
109 }
110 
111 /* Describe an entry in the "incomplete datagrams" queue. */
112 struct ipq {
113 	struct inet_frag_queue q;
114 
115 	u8		ecn; /* RFC3168 support */
116 	u16		max_df_size; /* largest frag with DF set seen */
117 	int             iif;
118 	unsigned int    rid;
119 	struct inet_peer *peer;
120 };
121 
ip4_frag_ecn(u8 tos)122 static u8 ip4_frag_ecn(u8 tos)
123 {
124 	return 1 << (tos & INET_ECN_MASK);
125 }
126 
127 static struct inet_frags ip4_frags;
128 
129 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
130 			 struct sk_buff *prev_tail, struct net_device *dev);
131 
132 
ip4_frag_init(struct inet_frag_queue * q,const void * a)133 static void ip4_frag_init(struct inet_frag_queue *q, const void *a)
134 {
135 	struct ipq *qp = container_of(q, struct ipq, q);
136 	struct netns_ipv4 *ipv4 = container_of(q->net, struct netns_ipv4,
137 					       frags);
138 	struct net *net = container_of(ipv4, struct net, ipv4);
139 
140 	const struct frag_v4_compare_key *key = a;
141 
142 	q->key.v4 = *key;
143 	qp->ecn = 0;
144 	qp->peer = q->net->max_dist ?
145 		inet_getpeer_v4(net->ipv4.peers, key->saddr, key->vif, 1) :
146 		NULL;
147 }
148 
ip4_frag_free(struct inet_frag_queue * q)149 static void ip4_frag_free(struct inet_frag_queue *q)
150 {
151 	struct ipq *qp;
152 
153 	qp = container_of(q, struct ipq, q);
154 	if (qp->peer)
155 		inet_putpeer(qp->peer);
156 }
157 
158 
159 /* Destruction primitives. */
160 
ipq_put(struct ipq * ipq)161 static void ipq_put(struct ipq *ipq)
162 {
163 	inet_frag_put(&ipq->q);
164 }
165 
166 /* Kill ipq entry. It is not destroyed immediately,
167  * because caller (and someone more) holds reference count.
168  */
ipq_kill(struct ipq * ipq)169 static void ipq_kill(struct ipq *ipq)
170 {
171 	inet_frag_kill(&ipq->q);
172 }
173 
frag_expire_skip_icmp(u32 user)174 static bool frag_expire_skip_icmp(u32 user)
175 {
176 	return user == IP_DEFRAG_AF_PACKET ||
177 	       ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_IN,
178 					 __IP_DEFRAG_CONNTRACK_IN_END) ||
179 	       ip_defrag_user_in_between(user, IP_DEFRAG_CONNTRACK_BRIDGE_IN,
180 					 __IP_DEFRAG_CONNTRACK_BRIDGE_IN);
181 }
182 
183 /*
184  * Oops, a fragment queue timed out.  Kill it and send an ICMP reply.
185  */
ip_expire(struct timer_list * t)186 static void ip_expire(struct timer_list *t)
187 {
188 	struct inet_frag_queue *frag = from_timer(frag, t, timer);
189 	const struct iphdr *iph;
190 	struct sk_buff *head = NULL;
191 	struct net *net;
192 	struct ipq *qp;
193 	int err;
194 
195 	qp = container_of(frag, struct ipq, q);
196 	net = container_of(qp->q.net, struct net, ipv4.frags);
197 
198 	rcu_read_lock();
199 	spin_lock(&qp->q.lock);
200 
201 	if (qp->q.flags & INET_FRAG_COMPLETE)
202 		goto out;
203 
204 	ipq_kill(qp);
205 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
206 	__IP_INC_STATS(net, IPSTATS_MIB_REASMTIMEOUT);
207 
208 	if (!(qp->q.flags & INET_FRAG_FIRST_IN))
209 		goto out;
210 
211 	/* sk_buff::dev and sk_buff::rbnode are unionized. So we
212 	 * pull the head out of the tree in order to be able to
213 	 * deal with head->dev.
214 	 */
215 	if (qp->q.fragments) {
216 		head = qp->q.fragments;
217 		qp->q.fragments = head->next;
218 	} else {
219 		head = skb_rb_first(&qp->q.rb_fragments);
220 		if (!head)
221 			goto out;
222 		if (FRAG_CB(head)->next_frag)
223 			rb_replace_node(&head->rbnode,
224 					&FRAG_CB(head)->next_frag->rbnode,
225 					&qp->q.rb_fragments);
226 		else
227 			rb_erase(&head->rbnode, &qp->q.rb_fragments);
228 		memset(&head->rbnode, 0, sizeof(head->rbnode));
229 		barrier();
230 	}
231 	if (head == qp->q.fragments_tail)
232 		qp->q.fragments_tail = NULL;
233 
234 	sub_frag_mem_limit(qp->q.net, head->truesize);
235 
236 	head->dev = dev_get_by_index_rcu(net, qp->iif);
237 	if (!head->dev)
238 		goto out;
239 
240 
241 	/* skb has no dst, perform route lookup again */
242 	iph = ip_hdr(head);
243 	err = ip_route_input_noref(head, iph->daddr, iph->saddr,
244 					   iph->tos, head->dev);
245 	if (err)
246 		goto out;
247 
248 	/* Only an end host needs to send an ICMP
249 	 * "Fragment Reassembly Timeout" message, per RFC792.
250 	 */
251 	if (frag_expire_skip_icmp(qp->q.key.v4.user) &&
252 	    (skb_rtable(head)->rt_type != RTN_LOCAL))
253 		goto out;
254 
255 	spin_unlock(&qp->q.lock);
256 	icmp_send(head, ICMP_TIME_EXCEEDED, ICMP_EXC_FRAGTIME, 0);
257 	goto out_rcu_unlock;
258 
259 out:
260 	spin_unlock(&qp->q.lock);
261 out_rcu_unlock:
262 	rcu_read_unlock();
263 	if (head)
264 		kfree_skb(head);
265 	ipq_put(qp);
266 }
267 
268 /* Find the correct entry in the "incomplete datagrams" queue for
269  * this IP datagram, and create new one, if nothing is found.
270  */
ip_find(struct net * net,struct iphdr * iph,u32 user,int vif)271 static struct ipq *ip_find(struct net *net, struct iphdr *iph,
272 			   u32 user, int vif)
273 {
274 	struct frag_v4_compare_key key = {
275 		.saddr = iph->saddr,
276 		.daddr = iph->daddr,
277 		.user = user,
278 		.vif = vif,
279 		.id = iph->id,
280 		.protocol = iph->protocol,
281 	};
282 	struct inet_frag_queue *q;
283 
284 	q = inet_frag_find(&net->ipv4.frags, &key);
285 	if (!q)
286 		return NULL;
287 
288 	return container_of(q, struct ipq, q);
289 }
290 
291 /* Is the fragment too far ahead to be part of ipq? */
ip_frag_too_far(struct ipq * qp)292 static int ip_frag_too_far(struct ipq *qp)
293 {
294 	struct inet_peer *peer = qp->peer;
295 	unsigned int max = qp->q.net->max_dist;
296 	unsigned int start, end;
297 
298 	int rc;
299 
300 	if (!peer || !max)
301 		return 0;
302 
303 	start = qp->rid;
304 	end = atomic_inc_return(&peer->rid);
305 	qp->rid = end;
306 
307 	rc = qp->q.fragments_tail && (end - start) > max;
308 
309 	if (rc) {
310 		struct net *net;
311 
312 		net = container_of(qp->q.net, struct net, ipv4.frags);
313 		__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
314 	}
315 
316 	return rc;
317 }
318 
ip_frag_reinit(struct ipq * qp)319 static int ip_frag_reinit(struct ipq *qp)
320 {
321 	unsigned int sum_truesize = 0;
322 
323 	if (!mod_timer(&qp->q.timer, jiffies + qp->q.net->timeout)) {
324 		refcount_inc(&qp->q.refcnt);
325 		return -ETIMEDOUT;
326 	}
327 
328 	sum_truesize = inet_frag_rbtree_purge(&qp->q.rb_fragments);
329 	sub_frag_mem_limit(qp->q.net, sum_truesize);
330 
331 	qp->q.flags = 0;
332 	qp->q.len = 0;
333 	qp->q.meat = 0;
334 	qp->q.fragments = NULL;
335 	qp->q.rb_fragments = RB_ROOT;
336 	qp->q.fragments_tail = NULL;
337 	qp->q.last_run_head = NULL;
338 	qp->iif = 0;
339 	qp->ecn = 0;
340 
341 	return 0;
342 }
343 
344 /* Add new segment to existing queue. */
ip_frag_queue(struct ipq * qp,struct sk_buff * skb)345 static int ip_frag_queue(struct ipq *qp, struct sk_buff *skb)
346 {
347 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
348 	struct rb_node **rbn, *parent;
349 	struct sk_buff *skb1, *prev_tail;
350 	struct net_device *dev;
351 	unsigned int fragsize;
352 	int flags, offset;
353 	int ihl, end;
354 	int err = -ENOENT;
355 	u8 ecn;
356 
357 	if (qp->q.flags & INET_FRAG_COMPLETE)
358 		goto err;
359 
360 	if (!(IPCB(skb)->flags & IPSKB_FRAG_COMPLETE) &&
361 	    unlikely(ip_frag_too_far(qp)) &&
362 	    unlikely(err = ip_frag_reinit(qp))) {
363 		ipq_kill(qp);
364 		goto err;
365 	}
366 
367 	ecn = ip4_frag_ecn(ip_hdr(skb)->tos);
368 	offset = ntohs(ip_hdr(skb)->frag_off);
369 	flags = offset & ~IP_OFFSET;
370 	offset &= IP_OFFSET;
371 	offset <<= 3;		/* offset is in 8-byte chunks */
372 	ihl = ip_hdrlen(skb);
373 
374 	/* Determine the position of this fragment. */
375 	end = offset + skb->len - skb_network_offset(skb) - ihl;
376 	err = -EINVAL;
377 
378 	/* Is this the final fragment? */
379 	if ((flags & IP_MF) == 0) {
380 		/* If we already have some bits beyond end
381 		 * or have different end, the segment is corrupted.
382 		 */
383 		if (end < qp->q.len ||
384 		    ((qp->q.flags & INET_FRAG_LAST_IN) && end != qp->q.len))
385 			goto err;
386 		qp->q.flags |= INET_FRAG_LAST_IN;
387 		qp->q.len = end;
388 	} else {
389 		if (end&7) {
390 			end &= ~7;
391 			if (skb->ip_summed != CHECKSUM_UNNECESSARY)
392 				skb->ip_summed = CHECKSUM_NONE;
393 		}
394 		if (end > qp->q.len) {
395 			/* Some bits beyond end -> corruption. */
396 			if (qp->q.flags & INET_FRAG_LAST_IN)
397 				goto err;
398 			qp->q.len = end;
399 		}
400 	}
401 	if (end == offset)
402 		goto err;
403 
404 	err = -ENOMEM;
405 	if (!pskb_pull(skb, skb_network_offset(skb) + ihl))
406 		goto err;
407 
408 	err = pskb_trim_rcsum(skb, end - offset);
409 	if (err)
410 		goto err;
411 
412 	/* Note : skb->rbnode and skb->dev share the same location. */
413 	dev = skb->dev;
414 	/* Makes sure compiler wont do silly aliasing games */
415 	barrier();
416 
417 	/* RFC5722, Section 4, amended by Errata ID : 3089
418 	 *                          When reassembling an IPv6 datagram, if
419 	 *   one or more its constituent fragments is determined to be an
420 	 *   overlapping fragment, the entire datagram (and any constituent
421 	 *   fragments) MUST be silently discarded.
422 	 *
423 	 * We do the same here for IPv4 (and increment an snmp counter).
424 	 */
425 
426 	/* Find out where to put this fragment.  */
427 	prev_tail = qp->q.fragments_tail;
428 	if (!prev_tail)
429 		ip4_frag_create_run(&qp->q, skb);  /* First fragment. */
430 	else if (prev_tail->ip_defrag_offset + prev_tail->len < end) {
431 		/* This is the common case: skb goes to the end. */
432 		/* Detect and discard overlaps. */
433 		if (offset < prev_tail->ip_defrag_offset + prev_tail->len)
434 			goto discard_qp;
435 		if (offset == prev_tail->ip_defrag_offset + prev_tail->len)
436 			ip4_frag_append_to_last_run(&qp->q, skb);
437 		else
438 			ip4_frag_create_run(&qp->q, skb);
439 	} else {
440 		/* Binary search. Note that skb can become the first fragment,
441 		 * but not the last (covered above).
442 		 */
443 		rbn = &qp->q.rb_fragments.rb_node;
444 		do {
445 			parent = *rbn;
446 			skb1 = rb_to_skb(parent);
447 			if (end <= skb1->ip_defrag_offset)
448 				rbn = &parent->rb_left;
449 			else if (offset >= skb1->ip_defrag_offset +
450 						FRAG_CB(skb1)->frag_run_len)
451 				rbn = &parent->rb_right;
452 			else /* Found an overlap with skb1. */
453 				goto discard_qp;
454 		} while (*rbn);
455 		/* Here we have parent properly set, and rbn pointing to
456 		 * one of its NULL left/right children. Insert skb.
457 		 */
458 		ip4_frag_init_run(skb);
459 		rb_link_node(&skb->rbnode, parent, rbn);
460 		rb_insert_color(&skb->rbnode, &qp->q.rb_fragments);
461 	}
462 
463 	if (dev)
464 		qp->iif = dev->ifindex;
465 	skb->ip_defrag_offset = offset;
466 
467 	qp->q.stamp = skb->tstamp;
468 	qp->q.meat += skb->len;
469 	qp->ecn |= ecn;
470 	add_frag_mem_limit(qp->q.net, skb->truesize);
471 	if (offset == 0)
472 		qp->q.flags |= INET_FRAG_FIRST_IN;
473 
474 	fragsize = skb->len + ihl;
475 
476 	if (fragsize > qp->q.max_size)
477 		qp->q.max_size = fragsize;
478 
479 	if (ip_hdr(skb)->frag_off & htons(IP_DF) &&
480 	    fragsize > qp->max_df_size)
481 		qp->max_df_size = fragsize;
482 
483 	if (qp->q.flags == (INET_FRAG_FIRST_IN | INET_FRAG_LAST_IN) &&
484 	    qp->q.meat == qp->q.len) {
485 		unsigned long orefdst = skb->_skb_refdst;
486 
487 		skb->_skb_refdst = 0UL;
488 		err = ip_frag_reasm(qp, skb, prev_tail, dev);
489 		skb->_skb_refdst = orefdst;
490 		return err;
491 	}
492 
493 	skb_dst_drop(skb);
494 	return -EINPROGRESS;
495 
496 discard_qp:
497 	inet_frag_kill(&qp->q);
498 	err = -EINVAL;
499 	__IP_INC_STATS(net, IPSTATS_MIB_REASM_OVERLAPS);
500 err:
501 	kfree_skb(skb);
502 	return err;
503 }
504 
505 /* Build a new IP datagram from all its fragments. */
ip_frag_reasm(struct ipq * qp,struct sk_buff * skb,struct sk_buff * prev_tail,struct net_device * dev)506 static int ip_frag_reasm(struct ipq *qp, struct sk_buff *skb,
507 			 struct sk_buff *prev_tail, struct net_device *dev)
508 {
509 	struct net *net = container_of(qp->q.net, struct net, ipv4.frags);
510 	struct iphdr *iph;
511 	struct sk_buff *fp, *head = skb_rb_first(&qp->q.rb_fragments);
512 	struct sk_buff **nextp; /* To build frag_list. */
513 	struct rb_node *rbn;
514 	int len;
515 	int ihlen;
516 	int err;
517 	u8 ecn;
518 
519 	ipq_kill(qp);
520 
521 	ecn = ip_frag_ecn_table[qp->ecn];
522 	if (unlikely(ecn == 0xff)) {
523 		err = -EINVAL;
524 		goto out_fail;
525 	}
526 	/* Make the one we just received the head. */
527 	if (head != skb) {
528 		fp = skb_clone(skb, GFP_ATOMIC);
529 		if (!fp)
530 			goto out_nomem;
531 		FRAG_CB(fp)->next_frag = FRAG_CB(skb)->next_frag;
532 		if (RB_EMPTY_NODE(&skb->rbnode))
533 			FRAG_CB(prev_tail)->next_frag = fp;
534 		else
535 			rb_replace_node(&skb->rbnode, &fp->rbnode,
536 					&qp->q.rb_fragments);
537 		if (qp->q.fragments_tail == skb)
538 			qp->q.fragments_tail = fp;
539 		skb_morph(skb, head);
540 		FRAG_CB(skb)->next_frag = FRAG_CB(head)->next_frag;
541 		rb_replace_node(&head->rbnode, &skb->rbnode,
542 				&qp->q.rb_fragments);
543 		consume_skb(head);
544 		head = skb;
545 	}
546 
547 	WARN_ON(head->ip_defrag_offset != 0);
548 
549 	/* Allocate a new buffer for the datagram. */
550 	ihlen = ip_hdrlen(head);
551 	len = ihlen + qp->q.len;
552 
553 	err = -E2BIG;
554 	if (len > 65535)
555 		goto out_oversize;
556 
557 	/* Head of list must not be cloned. */
558 	if (skb_unclone(head, GFP_ATOMIC))
559 		goto out_nomem;
560 
561 	/* If the first fragment is fragmented itself, we split
562 	 * it to two chunks: the first with data and paged part
563 	 * and the second, holding only fragments. */
564 	if (skb_has_frag_list(head)) {
565 		struct sk_buff *clone;
566 		int i, plen = 0;
567 
568 		clone = alloc_skb(0, GFP_ATOMIC);
569 		if (!clone)
570 			goto out_nomem;
571 		skb_shinfo(clone)->frag_list = skb_shinfo(head)->frag_list;
572 		skb_frag_list_init(head);
573 		for (i = 0; i < skb_shinfo(head)->nr_frags; i++)
574 			plen += skb_frag_size(&skb_shinfo(head)->frags[i]);
575 		clone->len = clone->data_len = head->data_len - plen;
576 		head->truesize += clone->truesize;
577 		clone->csum = 0;
578 		clone->ip_summed = head->ip_summed;
579 		add_frag_mem_limit(qp->q.net, clone->truesize);
580 		skb_shinfo(head)->frag_list = clone;
581 		nextp = &clone->next;
582 	} else {
583 		nextp = &skb_shinfo(head)->frag_list;
584 	}
585 
586 	skb_push(head, head->data - skb_network_header(head));
587 
588 	/* Traverse the tree in order, to build frag_list. */
589 	fp = FRAG_CB(head)->next_frag;
590 	rbn = rb_next(&head->rbnode);
591 	rb_erase(&head->rbnode, &qp->q.rb_fragments);
592 	while (rbn || fp) {
593 		/* fp points to the next sk_buff in the current run;
594 		 * rbn points to the next run.
595 		 */
596 		/* Go through the current run. */
597 		while (fp) {
598 			*nextp = fp;
599 			nextp = &fp->next;
600 			fp->prev = NULL;
601 			memset(&fp->rbnode, 0, sizeof(fp->rbnode));
602 			fp->sk = NULL;
603 			head->data_len += fp->len;
604 			head->len += fp->len;
605 			if (head->ip_summed != fp->ip_summed)
606 				head->ip_summed = CHECKSUM_NONE;
607 			else if (head->ip_summed == CHECKSUM_COMPLETE)
608 				head->csum = csum_add(head->csum, fp->csum);
609 			head->truesize += fp->truesize;
610 			fp = FRAG_CB(fp)->next_frag;
611 		}
612 		/* Move to the next run. */
613 		if (rbn) {
614 			struct rb_node *rbnext = rb_next(rbn);
615 
616 			fp = rb_to_skb(rbn);
617 			rb_erase(rbn, &qp->q.rb_fragments);
618 			rbn = rbnext;
619 		}
620 	}
621 	sub_frag_mem_limit(qp->q.net, head->truesize);
622 
623 	*nextp = NULL;
624 	head->next = NULL;
625 	head->prev = NULL;
626 	head->dev = dev;
627 	head->tstamp = qp->q.stamp;
628 	IPCB(head)->frag_max_size = max(qp->max_df_size, qp->q.max_size);
629 
630 	iph = ip_hdr(head);
631 	iph->tot_len = htons(len);
632 	iph->tos |= ecn;
633 
634 	/* When we set IP_DF on a refragmented skb we must also force a
635 	 * call to ip_fragment to avoid forwarding a DF-skb of size s while
636 	 * original sender only sent fragments of size f (where f < s).
637 	 *
638 	 * We only set DF/IPSKB_FRAG_PMTU if such DF fragment was the largest
639 	 * frag seen to avoid sending tiny DF-fragments in case skb was built
640 	 * from one very small df-fragment and one large non-df frag.
641 	 */
642 	if (qp->max_df_size == qp->q.max_size) {
643 		IPCB(head)->flags |= IPSKB_FRAG_PMTU;
644 		iph->frag_off = htons(IP_DF);
645 	} else {
646 		iph->frag_off = 0;
647 	}
648 
649 	ip_send_check(iph);
650 
651 	__IP_INC_STATS(net, IPSTATS_MIB_REASMOKS);
652 	qp->q.fragments = NULL;
653 	qp->q.rb_fragments = RB_ROOT;
654 	qp->q.fragments_tail = NULL;
655 	qp->q.last_run_head = NULL;
656 	return 0;
657 
658 out_nomem:
659 	net_dbg_ratelimited("queue_glue: no memory for gluing queue %p\n", qp);
660 	err = -ENOMEM;
661 	goto out_fail;
662 out_oversize:
663 	net_info_ratelimited("Oversized IP packet from %pI4\n", &qp->q.key.v4.saddr);
664 out_fail:
665 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
666 	return err;
667 }
668 
669 /* Process an incoming IP datagram fragment. */
ip_defrag(struct net * net,struct sk_buff * skb,u32 user)670 int ip_defrag(struct net *net, struct sk_buff *skb, u32 user)
671 {
672 	struct net_device *dev = skb->dev ? : skb_dst(skb)->dev;
673 	int vif = l3mdev_master_ifindex_rcu(dev);
674 	struct ipq *qp;
675 
676 	__IP_INC_STATS(net, IPSTATS_MIB_REASMREQDS);
677 	skb_orphan(skb);
678 
679 	/* Lookup (or create) queue header */
680 	qp = ip_find(net, ip_hdr(skb), user, vif);
681 	if (qp) {
682 		int ret;
683 
684 		spin_lock(&qp->q.lock);
685 
686 		ret = ip_frag_queue(qp, skb);
687 
688 		spin_unlock(&qp->q.lock);
689 		ipq_put(qp);
690 		return ret;
691 	}
692 
693 	__IP_INC_STATS(net, IPSTATS_MIB_REASMFAILS);
694 	kfree_skb(skb);
695 	return -ENOMEM;
696 }
697 EXPORT_SYMBOL(ip_defrag);
698 
ip_check_defrag(struct net * net,struct sk_buff * skb,u32 user)699 struct sk_buff *ip_check_defrag(struct net *net, struct sk_buff *skb, u32 user)
700 {
701 	struct iphdr iph;
702 	int netoff;
703 	u32 len;
704 
705 	if (skb->protocol != htons(ETH_P_IP))
706 		return skb;
707 
708 	netoff = skb_network_offset(skb);
709 
710 	if (skb_copy_bits(skb, netoff, &iph, sizeof(iph)) < 0)
711 		return skb;
712 
713 	if (iph.ihl < 5 || iph.version != 4)
714 		return skb;
715 
716 	len = ntohs(iph.tot_len);
717 	if (skb->len < netoff + len || len < (iph.ihl * 4))
718 		return skb;
719 
720 	if (ip_is_fragment(&iph)) {
721 		skb = skb_share_check(skb, GFP_ATOMIC);
722 		if (skb) {
723 			if (!pskb_may_pull(skb, netoff + iph.ihl * 4))
724 				return skb;
725 			if (pskb_trim_rcsum(skb, netoff + len))
726 				return skb;
727 			memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
728 			if (ip_defrag(net, skb, user))
729 				return NULL;
730 			skb_clear_hash(skb);
731 		}
732 	}
733 	return skb;
734 }
735 EXPORT_SYMBOL(ip_check_defrag);
736 
inet_frag_rbtree_purge(struct rb_root * root)737 unsigned int inet_frag_rbtree_purge(struct rb_root *root)
738 {
739 	struct rb_node *p = rb_first(root);
740 	unsigned int sum = 0;
741 
742 	while (p) {
743 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
744 
745 		p = rb_next(p);
746 		rb_erase(&skb->rbnode, root);
747 		while (skb) {
748 			struct sk_buff *next = FRAG_CB(skb)->next_frag;
749 
750 			sum += skb->truesize;
751 			kfree_skb(skb);
752 			skb = next;
753 		}
754 	}
755 	return sum;
756 }
757 EXPORT_SYMBOL(inet_frag_rbtree_purge);
758 
759 #ifdef CONFIG_SYSCTL
760 static int dist_min;
761 
762 static struct ctl_table ip4_frags_ns_ctl_table[] = {
763 	{
764 		.procname	= "ipfrag_high_thresh",
765 		.data		= &init_net.ipv4.frags.high_thresh,
766 		.maxlen		= sizeof(unsigned long),
767 		.mode		= 0644,
768 		.proc_handler	= proc_doulongvec_minmax,
769 		.extra1		= &init_net.ipv4.frags.low_thresh
770 	},
771 	{
772 		.procname	= "ipfrag_low_thresh",
773 		.data		= &init_net.ipv4.frags.low_thresh,
774 		.maxlen		= sizeof(unsigned long),
775 		.mode		= 0644,
776 		.proc_handler	= proc_doulongvec_minmax,
777 		.extra2		= &init_net.ipv4.frags.high_thresh
778 	},
779 	{
780 		.procname	= "ipfrag_time",
781 		.data		= &init_net.ipv4.frags.timeout,
782 		.maxlen		= sizeof(int),
783 		.mode		= 0644,
784 		.proc_handler	= proc_dointvec_jiffies,
785 	},
786 	{
787 		.procname	= "ipfrag_max_dist",
788 		.data		= &init_net.ipv4.frags.max_dist,
789 		.maxlen		= sizeof(int),
790 		.mode		= 0644,
791 		.proc_handler	= proc_dointvec_minmax,
792 		.extra1		= &dist_min,
793 	},
794 	{ }
795 };
796 
797 /* secret interval has been deprecated */
798 static int ip4_frags_secret_interval_unused;
799 static struct ctl_table ip4_frags_ctl_table[] = {
800 	{
801 		.procname	= "ipfrag_secret_interval",
802 		.data		= &ip4_frags_secret_interval_unused,
803 		.maxlen		= sizeof(int),
804 		.mode		= 0644,
805 		.proc_handler	= proc_dointvec_jiffies,
806 	},
807 	{ }
808 };
809 
ip4_frags_ns_ctl_register(struct net * net)810 static int __net_init ip4_frags_ns_ctl_register(struct net *net)
811 {
812 	struct ctl_table *table;
813 	struct ctl_table_header *hdr;
814 
815 	table = ip4_frags_ns_ctl_table;
816 	if (!net_eq(net, &init_net)) {
817 		table = kmemdup(table, sizeof(ip4_frags_ns_ctl_table), GFP_KERNEL);
818 		if (!table)
819 			goto err_alloc;
820 
821 		table[0].data = &net->ipv4.frags.high_thresh;
822 		table[0].extra1 = &net->ipv4.frags.low_thresh;
823 		table[0].extra2 = &init_net.ipv4.frags.high_thresh;
824 		table[1].data = &net->ipv4.frags.low_thresh;
825 		table[1].extra2 = &net->ipv4.frags.high_thresh;
826 		table[2].data = &net->ipv4.frags.timeout;
827 		table[3].data = &net->ipv4.frags.max_dist;
828 	}
829 
830 	hdr = register_net_sysctl(net, "net/ipv4", table);
831 	if (!hdr)
832 		goto err_reg;
833 
834 	net->ipv4.frags_hdr = hdr;
835 	return 0;
836 
837 err_reg:
838 	if (!net_eq(net, &init_net))
839 		kfree(table);
840 err_alloc:
841 	return -ENOMEM;
842 }
843 
ip4_frags_ns_ctl_unregister(struct net * net)844 static void __net_exit ip4_frags_ns_ctl_unregister(struct net *net)
845 {
846 	struct ctl_table *table;
847 
848 	table = net->ipv4.frags_hdr->ctl_table_arg;
849 	unregister_net_sysctl_table(net->ipv4.frags_hdr);
850 	kfree(table);
851 }
852 
ip4_frags_ctl_register(void)853 static void __init ip4_frags_ctl_register(void)
854 {
855 	register_net_sysctl(&init_net, "net/ipv4", ip4_frags_ctl_table);
856 }
857 #else
ip4_frags_ns_ctl_register(struct net * net)858 static int ip4_frags_ns_ctl_register(struct net *net)
859 {
860 	return 0;
861 }
862 
ip4_frags_ns_ctl_unregister(struct net * net)863 static void ip4_frags_ns_ctl_unregister(struct net *net)
864 {
865 }
866 
ip4_frags_ctl_register(void)867 static void __init ip4_frags_ctl_register(void)
868 {
869 }
870 #endif
871 
ipv4_frags_init_net(struct net * net)872 static int __net_init ipv4_frags_init_net(struct net *net)
873 {
874 	int res;
875 
876 	/* Fragment cache limits.
877 	 *
878 	 * The fragment memory accounting code, (tries to) account for
879 	 * the real memory usage, by measuring both the size of frag
880 	 * queue struct (inet_frag_queue (ipv4:ipq/ipv6:frag_queue))
881 	 * and the SKB's truesize.
882 	 *
883 	 * A 64K fragment consumes 129736 bytes (44*2944)+200
884 	 * (1500 truesize == 2944, sizeof(struct ipq) == 200)
885 	 *
886 	 * We will commit 4MB at one time. Should we cross that limit
887 	 * we will prune down to 3MB, making room for approx 8 big 64K
888 	 * fragments 8x128k.
889 	 */
890 	net->ipv4.frags.high_thresh = 4 * 1024 * 1024;
891 	net->ipv4.frags.low_thresh  = 3 * 1024 * 1024;
892 	/*
893 	 * Important NOTE! Fragment queue must be destroyed before MSL expires.
894 	 * RFC791 is wrong proposing to prolongate timer each fragment arrival
895 	 * by TTL.
896 	 */
897 	net->ipv4.frags.timeout = IP_FRAG_TIME;
898 
899 	net->ipv4.frags.max_dist = 64;
900 	net->ipv4.frags.f = &ip4_frags;
901 
902 	res = inet_frags_init_net(&net->ipv4.frags);
903 	if (res < 0)
904 		return res;
905 	res = ip4_frags_ns_ctl_register(net);
906 	if (res < 0)
907 		inet_frags_exit_net(&net->ipv4.frags);
908 	return res;
909 }
910 
ipv4_frags_exit_net(struct net * net)911 static void __net_exit ipv4_frags_exit_net(struct net *net)
912 {
913 	ip4_frags_ns_ctl_unregister(net);
914 	inet_frags_exit_net(&net->ipv4.frags);
915 }
916 
917 static struct pernet_operations ip4_frags_ops = {
918 	.init = ipv4_frags_init_net,
919 	.exit = ipv4_frags_exit_net,
920 };
921 
922 
ip4_key_hashfn(const void * data,u32 len,u32 seed)923 static u32 ip4_key_hashfn(const void *data, u32 len, u32 seed)
924 {
925 	return jhash2(data,
926 		      sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
927 }
928 
ip4_obj_hashfn(const void * data,u32 len,u32 seed)929 static u32 ip4_obj_hashfn(const void *data, u32 len, u32 seed)
930 {
931 	const struct inet_frag_queue *fq = data;
932 
933 	return jhash2((const u32 *)&fq->key.v4,
934 		      sizeof(struct frag_v4_compare_key) / sizeof(u32), seed);
935 }
936 
ip4_obj_cmpfn(struct rhashtable_compare_arg * arg,const void * ptr)937 static int ip4_obj_cmpfn(struct rhashtable_compare_arg *arg, const void *ptr)
938 {
939 	const struct frag_v4_compare_key *key = arg->key;
940 	const struct inet_frag_queue *fq = ptr;
941 
942 	return !!memcmp(&fq->key, key, sizeof(*key));
943 }
944 
945 static const struct rhashtable_params ip4_rhash_params = {
946 	.head_offset		= offsetof(struct inet_frag_queue, node),
947 	.key_offset		= offsetof(struct inet_frag_queue, key),
948 	.key_len		= sizeof(struct frag_v4_compare_key),
949 	.hashfn			= ip4_key_hashfn,
950 	.obj_hashfn		= ip4_obj_hashfn,
951 	.obj_cmpfn		= ip4_obj_cmpfn,
952 	.automatic_shrinking	= true,
953 };
954 
ipfrag_init(void)955 void __init ipfrag_init(void)
956 {
957 	ip4_frags.constructor = ip4_frag_init;
958 	ip4_frags.destructor = ip4_frag_free;
959 	ip4_frags.qsize = sizeof(struct ipq);
960 	ip4_frags.frag_expire = ip_expire;
961 	ip4_frags.frags_cache_name = ip_frag_cache_name;
962 	ip4_frags.rhash_params = ip4_rhash_params;
963 	if (inet_frags_init(&ip4_frags))
964 		panic("IP: failed to allocate ip4_frags cache\n");
965 	ip4_frags_ctl_register();
966 	register_pernet_subsys(&ip4_frags_ops);
967 }
968