1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/vmscan.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95, Stephen Tweedie.
8  *  kswapd added: 7.1.96  sct
9  *  Removed kswapd_ctl limits, and swap out as many pages as needed
10  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12  *  Multiqueue VM started 5.8.00, Rik van Riel.
13  */
14 
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h>	/* for try_to_release_page(),
32 					buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 
53 #include <asm/tlbflush.h>
54 #include <asm/div64.h>
55 
56 #include <linux/swapops.h>
57 #include <linux/balloon_compaction.h>
58 
59 #include "internal.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/vmscan.h>
63 
64 struct scan_control {
65 	/* How many pages shrink_list() should reclaim */
66 	unsigned long nr_to_reclaim;
67 
68 	/*
69 	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
70 	 * are scanned.
71 	 */
72 	nodemask_t	*nodemask;
73 
74 	/*
75 	 * The memory cgroup that hit its limit and as a result is the
76 	 * primary target of this reclaim invocation.
77 	 */
78 	struct mem_cgroup *target_mem_cgroup;
79 
80 	/* Writepage batching in laptop mode; RECLAIM_WRITE */
81 	unsigned int may_writepage:1;
82 
83 	/* Can mapped pages be reclaimed? */
84 	unsigned int may_unmap:1;
85 
86 	/* Can pages be swapped as part of reclaim? */
87 	unsigned int may_swap:1;
88 
89 	/*
90 	 * Cgroups are not reclaimed below their configured memory.low,
91 	 * unless we threaten to OOM. If any cgroups are skipped due to
92 	 * memory.low and nothing was reclaimed, go back for memory.low.
93 	 */
94 	unsigned int memcg_low_reclaim:1;
95 	unsigned int memcg_low_skipped:1;
96 
97 	unsigned int hibernation_mode:1;
98 
99 	/* One of the zones is ready for compaction */
100 	unsigned int compaction_ready:1;
101 
102 	/* Allocation order */
103 	s8 order;
104 
105 	/* Scan (total_size >> priority) pages at once */
106 	s8 priority;
107 
108 	/* The highest zone to isolate pages for reclaim from */
109 	s8 reclaim_idx;
110 
111 	/* This context's GFP mask */
112 	gfp_t gfp_mask;
113 
114 	/* Incremented by the number of inactive pages that were scanned */
115 	unsigned long nr_scanned;
116 
117 	/* Number of pages freed so far during a call to shrink_zones() */
118 	unsigned long nr_reclaimed;
119 
120 	struct {
121 		unsigned int dirty;
122 		unsigned int unqueued_dirty;
123 		unsigned int congested;
124 		unsigned int writeback;
125 		unsigned int immediate;
126 		unsigned int file_taken;
127 		unsigned int taken;
128 	} nr;
129 };
130 
131 #ifdef ARCH_HAS_PREFETCH
132 #define prefetch_prev_lru_page(_page, _base, _field)			\
133 	do {								\
134 		if ((_page)->lru.prev != _base) {			\
135 			struct page *prev;				\
136 									\
137 			prev = lru_to_page(&(_page->lru));		\
138 			prefetch(&prev->_field);			\
139 		}							\
140 	} while (0)
141 #else
142 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
143 #endif
144 
145 #ifdef ARCH_HAS_PREFETCHW
146 #define prefetchw_prev_lru_page(_page, _base, _field)			\
147 	do {								\
148 		if ((_page)->lru.prev != _base) {			\
149 			struct page *prev;				\
150 									\
151 			prev = lru_to_page(&(_page->lru));		\
152 			prefetchw(&prev->_field);			\
153 		}							\
154 	} while (0)
155 #else
156 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
157 #endif
158 
159 /*
160  * From 0 .. 100.  Higher means more swappy.
161  */
162 int vm_swappiness = 60;
163 /*
164  * The total number of pages which are beyond the high watermark within all
165  * zones.
166  */
167 unsigned long vm_total_pages;
168 
169 static LIST_HEAD(shrinker_list);
170 static DECLARE_RWSEM(shrinker_rwsem);
171 
172 #ifdef CONFIG_MEMCG_KMEM
173 
174 /*
175  * We allow subsystems to populate their shrinker-related
176  * LRU lists before register_shrinker_prepared() is called
177  * for the shrinker, since we don't want to impose
178  * restrictions on their internal registration order.
179  * In this case shrink_slab_memcg() may find corresponding
180  * bit is set in the shrinkers map.
181  *
182  * This value is used by the function to detect registering
183  * shrinkers and to skip do_shrink_slab() calls for them.
184  */
185 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
186 
187 static DEFINE_IDR(shrinker_idr);
188 static int shrinker_nr_max;
189 
prealloc_memcg_shrinker(struct shrinker * shrinker)190 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
191 {
192 	int id, ret = -ENOMEM;
193 
194 	down_write(&shrinker_rwsem);
195 	/* This may call shrinker, so it must use down_read_trylock() */
196 	id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
197 	if (id < 0)
198 		goto unlock;
199 
200 	if (id >= shrinker_nr_max) {
201 		if (memcg_expand_shrinker_maps(id)) {
202 			idr_remove(&shrinker_idr, id);
203 			goto unlock;
204 		}
205 
206 		shrinker_nr_max = id + 1;
207 	}
208 	shrinker->id = id;
209 	ret = 0;
210 unlock:
211 	up_write(&shrinker_rwsem);
212 	return ret;
213 }
214 
unregister_memcg_shrinker(struct shrinker * shrinker)215 static void unregister_memcg_shrinker(struct shrinker *shrinker)
216 {
217 	int id = shrinker->id;
218 
219 	BUG_ON(id < 0);
220 
221 	down_write(&shrinker_rwsem);
222 	idr_remove(&shrinker_idr, id);
223 	up_write(&shrinker_rwsem);
224 }
225 #else /* CONFIG_MEMCG_KMEM */
prealloc_memcg_shrinker(struct shrinker * shrinker)226 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
227 {
228 	return 0;
229 }
230 
unregister_memcg_shrinker(struct shrinker * shrinker)231 static void unregister_memcg_shrinker(struct shrinker *shrinker)
232 {
233 }
234 #endif /* CONFIG_MEMCG_KMEM */
235 
236 #ifdef CONFIG_MEMCG
global_reclaim(struct scan_control * sc)237 static bool global_reclaim(struct scan_control *sc)
238 {
239 	return !sc->target_mem_cgroup;
240 }
241 
242 /**
243  * sane_reclaim - is the usual dirty throttling mechanism operational?
244  * @sc: scan_control in question
245  *
246  * The normal page dirty throttling mechanism in balance_dirty_pages() is
247  * completely broken with the legacy memcg and direct stalling in
248  * shrink_page_list() is used for throttling instead, which lacks all the
249  * niceties such as fairness, adaptive pausing, bandwidth proportional
250  * allocation and configurability.
251  *
252  * This function tests whether the vmscan currently in progress can assume
253  * that the normal dirty throttling mechanism is operational.
254  */
sane_reclaim(struct scan_control * sc)255 static bool sane_reclaim(struct scan_control *sc)
256 {
257 	struct mem_cgroup *memcg = sc->target_mem_cgroup;
258 
259 	if (!memcg)
260 		return true;
261 #ifdef CONFIG_CGROUP_WRITEBACK
262 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
263 		return true;
264 #endif
265 	return false;
266 }
267 
set_memcg_congestion(pg_data_t * pgdat,struct mem_cgroup * memcg,bool congested)268 static void set_memcg_congestion(pg_data_t *pgdat,
269 				struct mem_cgroup *memcg,
270 				bool congested)
271 {
272 	struct mem_cgroup_per_node *mn;
273 
274 	if (!memcg)
275 		return;
276 
277 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
278 	WRITE_ONCE(mn->congested, congested);
279 }
280 
memcg_congested(pg_data_t * pgdat,struct mem_cgroup * memcg)281 static bool memcg_congested(pg_data_t *pgdat,
282 			struct mem_cgroup *memcg)
283 {
284 	struct mem_cgroup_per_node *mn;
285 
286 	mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
287 	return READ_ONCE(mn->congested);
288 
289 }
290 #else
global_reclaim(struct scan_control * sc)291 static bool global_reclaim(struct scan_control *sc)
292 {
293 	return true;
294 }
295 
sane_reclaim(struct scan_control * sc)296 static bool sane_reclaim(struct scan_control *sc)
297 {
298 	return true;
299 }
300 
set_memcg_congestion(struct pglist_data * pgdat,struct mem_cgroup * memcg,bool congested)301 static inline void set_memcg_congestion(struct pglist_data *pgdat,
302 				struct mem_cgroup *memcg, bool congested)
303 {
304 }
305 
memcg_congested(struct pglist_data * pgdat,struct mem_cgroup * memcg)306 static inline bool memcg_congested(struct pglist_data *pgdat,
307 			struct mem_cgroup *memcg)
308 {
309 	return false;
310 
311 }
312 #endif
313 
314 /*
315  * This misses isolated pages which are not accounted for to save counters.
316  * As the data only determines if reclaim or compaction continues, it is
317  * not expected that isolated pages will be a dominating factor.
318  */
zone_reclaimable_pages(struct zone * zone)319 unsigned long zone_reclaimable_pages(struct zone *zone)
320 {
321 	unsigned long nr;
322 
323 	nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
324 		zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
325 	if (get_nr_swap_pages() > 0)
326 		nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
327 			zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
328 
329 	return nr;
330 }
331 
332 /**
333  * lruvec_lru_size -  Returns the number of pages on the given LRU list.
334  * @lruvec: lru vector
335  * @lru: lru to use
336  * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
337  */
lruvec_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)338 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
339 {
340 	unsigned long lru_size;
341 	int zid;
342 
343 	if (!mem_cgroup_disabled())
344 		lru_size = mem_cgroup_get_lru_size(lruvec, lru);
345 	else
346 		lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
347 
348 	for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
349 		struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
350 		unsigned long size;
351 
352 		if (!managed_zone(zone))
353 			continue;
354 
355 		if (!mem_cgroup_disabled())
356 			size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
357 		else
358 			size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
359 				       NR_ZONE_LRU_BASE + lru);
360 		lru_size -= min(size, lru_size);
361 	}
362 
363 	return lru_size;
364 
365 }
366 
367 /*
368  * Add a shrinker callback to be called from the vm.
369  */
prealloc_shrinker(struct shrinker * shrinker)370 int prealloc_shrinker(struct shrinker *shrinker)
371 {
372 	size_t size = sizeof(*shrinker->nr_deferred);
373 
374 	if (shrinker->flags & SHRINKER_NUMA_AWARE)
375 		size *= nr_node_ids;
376 
377 	shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
378 	if (!shrinker->nr_deferred)
379 		return -ENOMEM;
380 
381 	if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
382 		if (prealloc_memcg_shrinker(shrinker))
383 			goto free_deferred;
384 	}
385 
386 	return 0;
387 
388 free_deferred:
389 	kfree(shrinker->nr_deferred);
390 	shrinker->nr_deferred = NULL;
391 	return -ENOMEM;
392 }
393 
free_prealloced_shrinker(struct shrinker * shrinker)394 void free_prealloced_shrinker(struct shrinker *shrinker)
395 {
396 	if (!shrinker->nr_deferred)
397 		return;
398 
399 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
400 		unregister_memcg_shrinker(shrinker);
401 
402 	kfree(shrinker->nr_deferred);
403 	shrinker->nr_deferred = NULL;
404 }
405 
register_shrinker_prepared(struct shrinker * shrinker)406 void register_shrinker_prepared(struct shrinker *shrinker)
407 {
408 	down_write(&shrinker_rwsem);
409 	list_add_tail(&shrinker->list, &shrinker_list);
410 #ifdef CONFIG_MEMCG_KMEM
411 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
412 		idr_replace(&shrinker_idr, shrinker, shrinker->id);
413 #endif
414 	up_write(&shrinker_rwsem);
415 }
416 
register_shrinker(struct shrinker * shrinker)417 int register_shrinker(struct shrinker *shrinker)
418 {
419 	int err = prealloc_shrinker(shrinker);
420 
421 	if (err)
422 		return err;
423 	register_shrinker_prepared(shrinker);
424 	return 0;
425 }
426 EXPORT_SYMBOL(register_shrinker);
427 
428 /*
429  * Remove one
430  */
unregister_shrinker(struct shrinker * shrinker)431 void unregister_shrinker(struct shrinker *shrinker)
432 {
433 	if (!shrinker->nr_deferred)
434 		return;
435 	if (shrinker->flags & SHRINKER_MEMCG_AWARE)
436 		unregister_memcg_shrinker(shrinker);
437 	down_write(&shrinker_rwsem);
438 	list_del(&shrinker->list);
439 	up_write(&shrinker_rwsem);
440 	kfree(shrinker->nr_deferred);
441 	shrinker->nr_deferred = NULL;
442 }
443 EXPORT_SYMBOL(unregister_shrinker);
444 
445 #define SHRINK_BATCH 128
446 
do_shrink_slab(struct shrink_control * shrinkctl,struct shrinker * shrinker,int priority)447 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
448 				    struct shrinker *shrinker, int priority)
449 {
450 	unsigned long freed = 0;
451 	unsigned long long delta;
452 	long total_scan;
453 	long freeable;
454 	long nr;
455 	long new_nr;
456 	int nid = shrinkctl->nid;
457 	long batch_size = shrinker->batch ? shrinker->batch
458 					  : SHRINK_BATCH;
459 	long scanned = 0, next_deferred;
460 
461 	if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
462 		nid = 0;
463 
464 	freeable = shrinker->count_objects(shrinker, shrinkctl);
465 	if (freeable == 0 || freeable == SHRINK_EMPTY)
466 		return freeable;
467 
468 	/*
469 	 * copy the current shrinker scan count into a local variable
470 	 * and zero it so that other concurrent shrinker invocations
471 	 * don't also do this scanning work.
472 	 */
473 	nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
474 
475 	total_scan = nr;
476 	delta = freeable >> priority;
477 	delta *= 4;
478 	do_div(delta, shrinker->seeks);
479 
480 	/*
481 	 * Make sure we apply some minimal pressure on default priority
482 	 * even on small cgroups. Stale objects are not only consuming memory
483 	 * by themselves, but can also hold a reference to a dying cgroup,
484 	 * preventing it from being reclaimed. A dying cgroup with all
485 	 * corresponding structures like per-cpu stats and kmem caches
486 	 * can be really big, so it may lead to a significant waste of memory.
487 	 */
488 	delta = max_t(unsigned long long, delta, min(freeable, batch_size));
489 
490 	total_scan += delta;
491 	if (total_scan < 0) {
492 		pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
493 		       shrinker->scan_objects, total_scan);
494 		total_scan = freeable;
495 		next_deferred = nr;
496 	} else
497 		next_deferred = total_scan;
498 
499 	/*
500 	 * We need to avoid excessive windup on filesystem shrinkers
501 	 * due to large numbers of GFP_NOFS allocations causing the
502 	 * shrinkers to return -1 all the time. This results in a large
503 	 * nr being built up so when a shrink that can do some work
504 	 * comes along it empties the entire cache due to nr >>>
505 	 * freeable. This is bad for sustaining a working set in
506 	 * memory.
507 	 *
508 	 * Hence only allow the shrinker to scan the entire cache when
509 	 * a large delta change is calculated directly.
510 	 */
511 	if (delta < freeable / 4)
512 		total_scan = min(total_scan, freeable / 2);
513 
514 	/*
515 	 * Avoid risking looping forever due to too large nr value:
516 	 * never try to free more than twice the estimate number of
517 	 * freeable entries.
518 	 */
519 	if (total_scan > freeable * 2)
520 		total_scan = freeable * 2;
521 
522 	trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
523 				   freeable, delta, total_scan, priority);
524 
525 	/*
526 	 * Normally, we should not scan less than batch_size objects in one
527 	 * pass to avoid too frequent shrinker calls, but if the slab has less
528 	 * than batch_size objects in total and we are really tight on memory,
529 	 * we will try to reclaim all available objects, otherwise we can end
530 	 * up failing allocations although there are plenty of reclaimable
531 	 * objects spread over several slabs with usage less than the
532 	 * batch_size.
533 	 *
534 	 * We detect the "tight on memory" situations by looking at the total
535 	 * number of objects we want to scan (total_scan). If it is greater
536 	 * than the total number of objects on slab (freeable), we must be
537 	 * scanning at high prio and therefore should try to reclaim as much as
538 	 * possible.
539 	 */
540 	while (total_scan >= batch_size ||
541 	       total_scan >= freeable) {
542 		unsigned long ret;
543 		unsigned long nr_to_scan = min(batch_size, total_scan);
544 
545 		shrinkctl->nr_to_scan = nr_to_scan;
546 		shrinkctl->nr_scanned = nr_to_scan;
547 		ret = shrinker->scan_objects(shrinker, shrinkctl);
548 		if (ret == SHRINK_STOP)
549 			break;
550 		freed += ret;
551 
552 		count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
553 		total_scan -= shrinkctl->nr_scanned;
554 		scanned += shrinkctl->nr_scanned;
555 
556 		cond_resched();
557 	}
558 
559 	if (next_deferred >= scanned)
560 		next_deferred -= scanned;
561 	else
562 		next_deferred = 0;
563 	/*
564 	 * move the unused scan count back into the shrinker in a
565 	 * manner that handles concurrent updates. If we exhausted the
566 	 * scan, there is no need to do an update.
567 	 */
568 	if (next_deferred > 0)
569 		new_nr = atomic_long_add_return(next_deferred,
570 						&shrinker->nr_deferred[nid]);
571 	else
572 		new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
573 
574 	trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
575 	return freed;
576 }
577 
578 #ifdef CONFIG_MEMCG_KMEM
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)579 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
580 			struct mem_cgroup *memcg, int priority)
581 {
582 	struct memcg_shrinker_map *map;
583 	unsigned long ret, freed = 0;
584 	int i;
585 
586 	if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
587 		return 0;
588 
589 	if (!down_read_trylock(&shrinker_rwsem))
590 		return 0;
591 
592 	map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
593 					true);
594 	if (unlikely(!map))
595 		goto unlock;
596 
597 	for_each_set_bit(i, map->map, shrinker_nr_max) {
598 		struct shrink_control sc = {
599 			.gfp_mask = gfp_mask,
600 			.nid = nid,
601 			.memcg = memcg,
602 		};
603 		struct shrinker *shrinker;
604 
605 		shrinker = idr_find(&shrinker_idr, i);
606 		if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
607 			if (!shrinker)
608 				clear_bit(i, map->map);
609 			continue;
610 		}
611 
612 		ret = do_shrink_slab(&sc, shrinker, priority);
613 		if (ret == SHRINK_EMPTY) {
614 			clear_bit(i, map->map);
615 			/*
616 			 * After the shrinker reported that it had no objects to
617 			 * free, but before we cleared the corresponding bit in
618 			 * the memcg shrinker map, a new object might have been
619 			 * added. To make sure, we have the bit set in this
620 			 * case, we invoke the shrinker one more time and reset
621 			 * the bit if it reports that it is not empty anymore.
622 			 * The memory barrier here pairs with the barrier in
623 			 * memcg_set_shrinker_bit():
624 			 *
625 			 * list_lru_add()     shrink_slab_memcg()
626 			 *   list_add_tail()    clear_bit()
627 			 *   <MB>               <MB>
628 			 *   set_bit()          do_shrink_slab()
629 			 */
630 			smp_mb__after_atomic();
631 			ret = do_shrink_slab(&sc, shrinker, priority);
632 			if (ret == SHRINK_EMPTY)
633 				ret = 0;
634 			else
635 				memcg_set_shrinker_bit(memcg, nid, i);
636 		}
637 		freed += ret;
638 
639 		if (rwsem_is_contended(&shrinker_rwsem)) {
640 			freed = freed ? : 1;
641 			break;
642 		}
643 	}
644 unlock:
645 	up_read(&shrinker_rwsem);
646 	return freed;
647 }
648 #else /* CONFIG_MEMCG_KMEM */
shrink_slab_memcg(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)649 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
650 			struct mem_cgroup *memcg, int priority)
651 {
652 	return 0;
653 }
654 #endif /* CONFIG_MEMCG_KMEM */
655 
656 /**
657  * shrink_slab - shrink slab caches
658  * @gfp_mask: allocation context
659  * @nid: node whose slab caches to target
660  * @memcg: memory cgroup whose slab caches to target
661  * @priority: the reclaim priority
662  *
663  * Call the shrink functions to age shrinkable caches.
664  *
665  * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
666  * unaware shrinkers will receive a node id of 0 instead.
667  *
668  * @memcg specifies the memory cgroup to target. Unaware shrinkers
669  * are called only if it is the root cgroup.
670  *
671  * @priority is sc->priority, we take the number of objects and >> by priority
672  * in order to get the scan target.
673  *
674  * Returns the number of reclaimed slab objects.
675  */
shrink_slab(gfp_t gfp_mask,int nid,struct mem_cgroup * memcg,int priority)676 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
677 				 struct mem_cgroup *memcg,
678 				 int priority)
679 {
680 	unsigned long ret, freed = 0;
681 	struct shrinker *shrinker;
682 
683 	if (!mem_cgroup_is_root(memcg))
684 		return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
685 
686 	if (!down_read_trylock(&shrinker_rwsem))
687 		goto out;
688 
689 	list_for_each_entry(shrinker, &shrinker_list, list) {
690 		struct shrink_control sc = {
691 			.gfp_mask = gfp_mask,
692 			.nid = nid,
693 			.memcg = memcg,
694 		};
695 
696 		ret = do_shrink_slab(&sc, shrinker, priority);
697 		if (ret == SHRINK_EMPTY)
698 			ret = 0;
699 		freed += ret;
700 		/*
701 		 * Bail out if someone want to register a new shrinker to
702 		 * prevent the regsitration from being stalled for long periods
703 		 * by parallel ongoing shrinking.
704 		 */
705 		if (rwsem_is_contended(&shrinker_rwsem)) {
706 			freed = freed ? : 1;
707 			break;
708 		}
709 	}
710 
711 	up_read(&shrinker_rwsem);
712 out:
713 	cond_resched();
714 	return freed;
715 }
716 
drop_slab_node(int nid)717 void drop_slab_node(int nid)
718 {
719 	unsigned long freed;
720 
721 	do {
722 		struct mem_cgroup *memcg = NULL;
723 
724 		freed = 0;
725 		memcg = mem_cgroup_iter(NULL, NULL, NULL);
726 		do {
727 			freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
728 		} while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
729 	} while (freed > 10);
730 }
731 
drop_slab(void)732 void drop_slab(void)
733 {
734 	int nid;
735 
736 	for_each_online_node(nid)
737 		drop_slab_node(nid);
738 }
739 
is_page_cache_freeable(struct page * page)740 static inline int is_page_cache_freeable(struct page *page)
741 {
742 	/*
743 	 * A freeable page cache page is referenced only by the caller
744 	 * that isolated the page, the page cache radix tree and
745 	 * optional buffer heads at page->private.
746 	 */
747 	int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
748 		HPAGE_PMD_NR : 1;
749 	return page_count(page) - page_has_private(page) == 1 + radix_pins;
750 }
751 
may_write_to_inode(struct inode * inode,struct scan_control * sc)752 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
753 {
754 	if (current->flags & PF_SWAPWRITE)
755 		return 1;
756 	if (!inode_write_congested(inode))
757 		return 1;
758 	if (inode_to_bdi(inode) == current->backing_dev_info)
759 		return 1;
760 	return 0;
761 }
762 
763 /*
764  * We detected a synchronous write error writing a page out.  Probably
765  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
766  * fsync(), msync() or close().
767  *
768  * The tricky part is that after writepage we cannot touch the mapping: nothing
769  * prevents it from being freed up.  But we have a ref on the page and once
770  * that page is locked, the mapping is pinned.
771  *
772  * We're allowed to run sleeping lock_page() here because we know the caller has
773  * __GFP_FS.
774  */
handle_write_error(struct address_space * mapping,struct page * page,int error)775 static void handle_write_error(struct address_space *mapping,
776 				struct page *page, int error)
777 {
778 	lock_page(page);
779 	if (page_mapping(page) == mapping)
780 		mapping_set_error(mapping, error);
781 	unlock_page(page);
782 }
783 
784 /* possible outcome of pageout() */
785 typedef enum {
786 	/* failed to write page out, page is locked */
787 	PAGE_KEEP,
788 	/* move page to the active list, page is locked */
789 	PAGE_ACTIVATE,
790 	/* page has been sent to the disk successfully, page is unlocked */
791 	PAGE_SUCCESS,
792 	/* page is clean and locked */
793 	PAGE_CLEAN,
794 } pageout_t;
795 
796 /*
797  * pageout is called by shrink_page_list() for each dirty page.
798  * Calls ->writepage().
799  */
pageout(struct page * page,struct address_space * mapping,struct scan_control * sc)800 static pageout_t pageout(struct page *page, struct address_space *mapping,
801 			 struct scan_control *sc)
802 {
803 	/*
804 	 * If the page is dirty, only perform writeback if that write
805 	 * will be non-blocking.  To prevent this allocation from being
806 	 * stalled by pagecache activity.  But note that there may be
807 	 * stalls if we need to run get_block().  We could test
808 	 * PagePrivate for that.
809 	 *
810 	 * If this process is currently in __generic_file_write_iter() against
811 	 * this page's queue, we can perform writeback even if that
812 	 * will block.
813 	 *
814 	 * If the page is swapcache, write it back even if that would
815 	 * block, for some throttling. This happens by accident, because
816 	 * swap_backing_dev_info is bust: it doesn't reflect the
817 	 * congestion state of the swapdevs.  Easy to fix, if needed.
818 	 */
819 	if (!is_page_cache_freeable(page))
820 		return PAGE_KEEP;
821 	if (!mapping) {
822 		/*
823 		 * Some data journaling orphaned pages can have
824 		 * page->mapping == NULL while being dirty with clean buffers.
825 		 */
826 		if (page_has_private(page)) {
827 			if (try_to_free_buffers(page)) {
828 				ClearPageDirty(page);
829 				pr_info("%s: orphaned page\n", __func__);
830 				return PAGE_CLEAN;
831 			}
832 		}
833 		return PAGE_KEEP;
834 	}
835 	if (mapping->a_ops->writepage == NULL)
836 		return PAGE_ACTIVATE;
837 	if (!may_write_to_inode(mapping->host, sc))
838 		return PAGE_KEEP;
839 
840 	if (clear_page_dirty_for_io(page)) {
841 		int res;
842 		struct writeback_control wbc = {
843 			.sync_mode = WB_SYNC_NONE,
844 			.nr_to_write = SWAP_CLUSTER_MAX,
845 			.range_start = 0,
846 			.range_end = LLONG_MAX,
847 			.for_reclaim = 1,
848 		};
849 
850 		SetPageReclaim(page);
851 		res = mapping->a_ops->writepage(page, &wbc);
852 		if (res < 0)
853 			handle_write_error(mapping, page, res);
854 		if (res == AOP_WRITEPAGE_ACTIVATE) {
855 			ClearPageReclaim(page);
856 			return PAGE_ACTIVATE;
857 		}
858 
859 		if (!PageWriteback(page)) {
860 			/* synchronous write or broken a_ops? */
861 			ClearPageReclaim(page);
862 		}
863 		trace_mm_vmscan_writepage(page);
864 		inc_node_page_state(page, NR_VMSCAN_WRITE);
865 		return PAGE_SUCCESS;
866 	}
867 
868 	return PAGE_CLEAN;
869 }
870 
871 /*
872  * Same as remove_mapping, but if the page is removed from the mapping, it
873  * gets returned with a refcount of 0.
874  */
__remove_mapping(struct address_space * mapping,struct page * page,bool reclaimed)875 static int __remove_mapping(struct address_space *mapping, struct page *page,
876 			    bool reclaimed)
877 {
878 	unsigned long flags;
879 	int refcount;
880 
881 	BUG_ON(!PageLocked(page));
882 	BUG_ON(mapping != page_mapping(page));
883 
884 	xa_lock_irqsave(&mapping->i_pages, flags);
885 	/*
886 	 * The non racy check for a busy page.
887 	 *
888 	 * Must be careful with the order of the tests. When someone has
889 	 * a ref to the page, it may be possible that they dirty it then
890 	 * drop the reference. So if PageDirty is tested before page_count
891 	 * here, then the following race may occur:
892 	 *
893 	 * get_user_pages(&page);
894 	 * [user mapping goes away]
895 	 * write_to(page);
896 	 *				!PageDirty(page)    [good]
897 	 * SetPageDirty(page);
898 	 * put_page(page);
899 	 *				!page_count(page)   [good, discard it]
900 	 *
901 	 * [oops, our write_to data is lost]
902 	 *
903 	 * Reversing the order of the tests ensures such a situation cannot
904 	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
905 	 * load is not satisfied before that of page->_refcount.
906 	 *
907 	 * Note that if SetPageDirty is always performed via set_page_dirty,
908 	 * and thus under the i_pages lock, then this ordering is not required.
909 	 */
910 	if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
911 		refcount = 1 + HPAGE_PMD_NR;
912 	else
913 		refcount = 2;
914 	if (!page_ref_freeze(page, refcount))
915 		goto cannot_free;
916 	/* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
917 	if (unlikely(PageDirty(page))) {
918 		page_ref_unfreeze(page, refcount);
919 		goto cannot_free;
920 	}
921 
922 	if (PageSwapCache(page)) {
923 		swp_entry_t swap = { .val = page_private(page) };
924 		mem_cgroup_swapout(page, swap);
925 		__delete_from_swap_cache(page);
926 		xa_unlock_irqrestore(&mapping->i_pages, flags);
927 		put_swap_page(page, swap);
928 	} else {
929 		void (*freepage)(struct page *);
930 		void *shadow = NULL;
931 
932 		freepage = mapping->a_ops->freepage;
933 		/*
934 		 * Remember a shadow entry for reclaimed file cache in
935 		 * order to detect refaults, thus thrashing, later on.
936 		 *
937 		 * But don't store shadows in an address space that is
938 		 * already exiting.  This is not just an optizimation,
939 		 * inode reclaim needs to empty out the radix tree or
940 		 * the nodes are lost.  Don't plant shadows behind its
941 		 * back.
942 		 *
943 		 * We also don't store shadows for DAX mappings because the
944 		 * only page cache pages found in these are zero pages
945 		 * covering holes, and because we don't want to mix DAX
946 		 * exceptional entries and shadow exceptional entries in the
947 		 * same address_space.
948 		 */
949 		if (reclaimed && page_is_file_cache(page) &&
950 		    !mapping_exiting(mapping) && !dax_mapping(mapping))
951 			shadow = workingset_eviction(mapping, page);
952 		__delete_from_page_cache(page, shadow);
953 		xa_unlock_irqrestore(&mapping->i_pages, flags);
954 
955 		if (freepage != NULL)
956 			freepage(page);
957 	}
958 
959 	return 1;
960 
961 cannot_free:
962 	xa_unlock_irqrestore(&mapping->i_pages, flags);
963 	return 0;
964 }
965 
966 /*
967  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
968  * someone else has a ref on the page, abort and return 0.  If it was
969  * successfully detached, return 1.  Assumes the caller has a single ref on
970  * this page.
971  */
remove_mapping(struct address_space * mapping,struct page * page)972 int remove_mapping(struct address_space *mapping, struct page *page)
973 {
974 	if (__remove_mapping(mapping, page, false)) {
975 		/*
976 		 * Unfreezing the refcount with 1 rather than 2 effectively
977 		 * drops the pagecache ref for us without requiring another
978 		 * atomic operation.
979 		 */
980 		page_ref_unfreeze(page, 1);
981 		return 1;
982 	}
983 	return 0;
984 }
985 
986 /**
987  * putback_lru_page - put previously isolated page onto appropriate LRU list
988  * @page: page to be put back to appropriate lru list
989  *
990  * Add previously isolated @page to appropriate LRU list.
991  * Page may still be unevictable for other reasons.
992  *
993  * lru_lock must not be held, interrupts must be enabled.
994  */
putback_lru_page(struct page * page)995 void putback_lru_page(struct page *page)
996 {
997 	lru_cache_add(page);
998 	put_page(page);		/* drop ref from isolate */
999 }
1000 
1001 enum page_references {
1002 	PAGEREF_RECLAIM,
1003 	PAGEREF_RECLAIM_CLEAN,
1004 	PAGEREF_KEEP,
1005 	PAGEREF_ACTIVATE,
1006 };
1007 
page_check_references(struct page * page,struct scan_control * sc)1008 static enum page_references page_check_references(struct page *page,
1009 						  struct scan_control *sc)
1010 {
1011 	int referenced_ptes, referenced_page;
1012 	unsigned long vm_flags;
1013 
1014 	referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1015 					  &vm_flags);
1016 	referenced_page = TestClearPageReferenced(page);
1017 
1018 	/*
1019 	 * Mlock lost the isolation race with us.  Let try_to_unmap()
1020 	 * move the page to the unevictable list.
1021 	 */
1022 	if (vm_flags & VM_LOCKED)
1023 		return PAGEREF_RECLAIM;
1024 
1025 	if (referenced_ptes) {
1026 		if (PageSwapBacked(page))
1027 			return PAGEREF_ACTIVATE;
1028 		/*
1029 		 * All mapped pages start out with page table
1030 		 * references from the instantiating fault, so we need
1031 		 * to look twice if a mapped file page is used more
1032 		 * than once.
1033 		 *
1034 		 * Mark it and spare it for another trip around the
1035 		 * inactive list.  Another page table reference will
1036 		 * lead to its activation.
1037 		 *
1038 		 * Note: the mark is set for activated pages as well
1039 		 * so that recently deactivated but used pages are
1040 		 * quickly recovered.
1041 		 */
1042 		SetPageReferenced(page);
1043 
1044 		if (referenced_page || referenced_ptes > 1)
1045 			return PAGEREF_ACTIVATE;
1046 
1047 		/*
1048 		 * Activate file-backed executable pages after first usage.
1049 		 */
1050 		if (vm_flags & VM_EXEC)
1051 			return PAGEREF_ACTIVATE;
1052 
1053 		return PAGEREF_KEEP;
1054 	}
1055 
1056 	/* Reclaim if clean, defer dirty pages to writeback */
1057 	if (referenced_page && !PageSwapBacked(page))
1058 		return PAGEREF_RECLAIM_CLEAN;
1059 
1060 	return PAGEREF_RECLAIM;
1061 }
1062 
1063 /* Check if a page is dirty or under writeback */
page_check_dirty_writeback(struct page * page,bool * dirty,bool * writeback)1064 static void page_check_dirty_writeback(struct page *page,
1065 				       bool *dirty, bool *writeback)
1066 {
1067 	struct address_space *mapping;
1068 
1069 	/*
1070 	 * Anonymous pages are not handled by flushers and must be written
1071 	 * from reclaim context. Do not stall reclaim based on them
1072 	 */
1073 	if (!page_is_file_cache(page) ||
1074 	    (PageAnon(page) && !PageSwapBacked(page))) {
1075 		*dirty = false;
1076 		*writeback = false;
1077 		return;
1078 	}
1079 
1080 	/* By default assume that the page flags are accurate */
1081 	*dirty = PageDirty(page);
1082 	*writeback = PageWriteback(page);
1083 
1084 	/* Verify dirty/writeback state if the filesystem supports it */
1085 	if (!page_has_private(page))
1086 		return;
1087 
1088 	mapping = page_mapping(page);
1089 	if (mapping && mapping->a_ops->is_dirty_writeback)
1090 		mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1091 }
1092 
1093 /*
1094  * shrink_page_list() returns the number of reclaimed pages
1095  */
shrink_page_list(struct list_head * page_list,struct pglist_data * pgdat,struct scan_control * sc,enum ttu_flags ttu_flags,struct reclaim_stat * stat,bool force_reclaim)1096 static unsigned long shrink_page_list(struct list_head *page_list,
1097 				      struct pglist_data *pgdat,
1098 				      struct scan_control *sc,
1099 				      enum ttu_flags ttu_flags,
1100 				      struct reclaim_stat *stat,
1101 				      bool force_reclaim)
1102 {
1103 	LIST_HEAD(ret_pages);
1104 	LIST_HEAD(free_pages);
1105 	int pgactivate = 0;
1106 	unsigned nr_unqueued_dirty = 0;
1107 	unsigned nr_dirty = 0;
1108 	unsigned nr_congested = 0;
1109 	unsigned nr_reclaimed = 0;
1110 	unsigned nr_writeback = 0;
1111 	unsigned nr_immediate = 0;
1112 	unsigned nr_ref_keep = 0;
1113 	unsigned nr_unmap_fail = 0;
1114 
1115 	cond_resched();
1116 
1117 	while (!list_empty(page_list)) {
1118 		struct address_space *mapping;
1119 		struct page *page;
1120 		int may_enter_fs;
1121 		enum page_references references = PAGEREF_RECLAIM_CLEAN;
1122 		bool dirty, writeback;
1123 
1124 		cond_resched();
1125 
1126 		page = lru_to_page(page_list);
1127 		list_del(&page->lru);
1128 
1129 		if (!trylock_page(page))
1130 			goto keep;
1131 
1132 		VM_BUG_ON_PAGE(PageActive(page), page);
1133 
1134 		sc->nr_scanned++;
1135 
1136 		if (unlikely(!page_evictable(page)))
1137 			goto activate_locked;
1138 
1139 		if (!sc->may_unmap && page_mapped(page))
1140 			goto keep_locked;
1141 
1142 		/* Double the slab pressure for mapped and swapcache pages */
1143 		if ((page_mapped(page) || PageSwapCache(page)) &&
1144 		    !(PageAnon(page) && !PageSwapBacked(page)))
1145 			sc->nr_scanned++;
1146 
1147 		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1148 			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1149 
1150 		/*
1151 		 * The number of dirty pages determines if a node is marked
1152 		 * reclaim_congested which affects wait_iff_congested. kswapd
1153 		 * will stall and start writing pages if the tail of the LRU
1154 		 * is all dirty unqueued pages.
1155 		 */
1156 		page_check_dirty_writeback(page, &dirty, &writeback);
1157 		if (dirty || writeback)
1158 			nr_dirty++;
1159 
1160 		if (dirty && !writeback)
1161 			nr_unqueued_dirty++;
1162 
1163 		/*
1164 		 * Treat this page as congested if the underlying BDI is or if
1165 		 * pages are cycling through the LRU so quickly that the
1166 		 * pages marked for immediate reclaim are making it to the
1167 		 * end of the LRU a second time.
1168 		 */
1169 		mapping = page_mapping(page);
1170 		if (((dirty || writeback) && mapping &&
1171 		     inode_write_congested(mapping->host)) ||
1172 		    (writeback && PageReclaim(page)))
1173 			nr_congested++;
1174 
1175 		/*
1176 		 * If a page at the tail of the LRU is under writeback, there
1177 		 * are three cases to consider.
1178 		 *
1179 		 * 1) If reclaim is encountering an excessive number of pages
1180 		 *    under writeback and this page is both under writeback and
1181 		 *    PageReclaim then it indicates that pages are being queued
1182 		 *    for IO but are being recycled through the LRU before the
1183 		 *    IO can complete. Waiting on the page itself risks an
1184 		 *    indefinite stall if it is impossible to writeback the
1185 		 *    page due to IO error or disconnected storage so instead
1186 		 *    note that the LRU is being scanned too quickly and the
1187 		 *    caller can stall after page list has been processed.
1188 		 *
1189 		 * 2) Global or new memcg reclaim encounters a page that is
1190 		 *    not marked for immediate reclaim, or the caller does not
1191 		 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1192 		 *    not to fs). In this case mark the page for immediate
1193 		 *    reclaim and continue scanning.
1194 		 *
1195 		 *    Require may_enter_fs because we would wait on fs, which
1196 		 *    may not have submitted IO yet. And the loop driver might
1197 		 *    enter reclaim, and deadlock if it waits on a page for
1198 		 *    which it is needed to do the write (loop masks off
1199 		 *    __GFP_IO|__GFP_FS for this reason); but more thought
1200 		 *    would probably show more reasons.
1201 		 *
1202 		 * 3) Legacy memcg encounters a page that is already marked
1203 		 *    PageReclaim. memcg does not have any dirty pages
1204 		 *    throttling so we could easily OOM just because too many
1205 		 *    pages are in writeback and there is nothing else to
1206 		 *    reclaim. Wait for the writeback to complete.
1207 		 *
1208 		 * In cases 1) and 2) we activate the pages to get them out of
1209 		 * the way while we continue scanning for clean pages on the
1210 		 * inactive list and refilling from the active list. The
1211 		 * observation here is that waiting for disk writes is more
1212 		 * expensive than potentially causing reloads down the line.
1213 		 * Since they're marked for immediate reclaim, they won't put
1214 		 * memory pressure on the cache working set any longer than it
1215 		 * takes to write them to disk.
1216 		 */
1217 		if (PageWriteback(page)) {
1218 			/* Case 1 above */
1219 			if (current_is_kswapd() &&
1220 			    PageReclaim(page) &&
1221 			    test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1222 				nr_immediate++;
1223 				goto activate_locked;
1224 
1225 			/* Case 2 above */
1226 			} else if (sane_reclaim(sc) ||
1227 			    !PageReclaim(page) || !may_enter_fs) {
1228 				/*
1229 				 * This is slightly racy - end_page_writeback()
1230 				 * might have just cleared PageReclaim, then
1231 				 * setting PageReclaim here end up interpreted
1232 				 * as PageReadahead - but that does not matter
1233 				 * enough to care.  What we do want is for this
1234 				 * page to have PageReclaim set next time memcg
1235 				 * reclaim reaches the tests above, so it will
1236 				 * then wait_on_page_writeback() to avoid OOM;
1237 				 * and it's also appropriate in global reclaim.
1238 				 */
1239 				SetPageReclaim(page);
1240 				nr_writeback++;
1241 				goto activate_locked;
1242 
1243 			/* Case 3 above */
1244 			} else {
1245 				unlock_page(page);
1246 				wait_on_page_writeback(page);
1247 				/* then go back and try same page again */
1248 				list_add_tail(&page->lru, page_list);
1249 				continue;
1250 			}
1251 		}
1252 
1253 		if (!force_reclaim)
1254 			references = page_check_references(page, sc);
1255 
1256 		switch (references) {
1257 		case PAGEREF_ACTIVATE:
1258 			goto activate_locked;
1259 		case PAGEREF_KEEP:
1260 			nr_ref_keep++;
1261 			goto keep_locked;
1262 		case PAGEREF_RECLAIM:
1263 		case PAGEREF_RECLAIM_CLEAN:
1264 			; /* try to reclaim the page below */
1265 		}
1266 
1267 		/*
1268 		 * Anonymous process memory has backing store?
1269 		 * Try to allocate it some swap space here.
1270 		 * Lazyfree page could be freed directly
1271 		 */
1272 		if (PageAnon(page) && PageSwapBacked(page)) {
1273 			if (!PageSwapCache(page)) {
1274 				if (!(sc->gfp_mask & __GFP_IO))
1275 					goto keep_locked;
1276 				if (PageTransHuge(page)) {
1277 					/* cannot split THP, skip it */
1278 					if (!can_split_huge_page(page, NULL))
1279 						goto activate_locked;
1280 					/*
1281 					 * Split pages without a PMD map right
1282 					 * away. Chances are some or all of the
1283 					 * tail pages can be freed without IO.
1284 					 */
1285 					if (!compound_mapcount(page) &&
1286 					    split_huge_page_to_list(page,
1287 								    page_list))
1288 						goto activate_locked;
1289 				}
1290 				if (!add_to_swap(page)) {
1291 					if (!PageTransHuge(page))
1292 						goto activate_locked;
1293 					/* Fallback to swap normal pages */
1294 					if (split_huge_page_to_list(page,
1295 								    page_list))
1296 						goto activate_locked;
1297 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1298 					count_vm_event(THP_SWPOUT_FALLBACK);
1299 #endif
1300 					if (!add_to_swap(page))
1301 						goto activate_locked;
1302 				}
1303 
1304 				may_enter_fs = 1;
1305 
1306 				/* Adding to swap updated mapping */
1307 				mapping = page_mapping(page);
1308 			}
1309 		} else if (unlikely(PageTransHuge(page))) {
1310 			/* Split file THP */
1311 			if (split_huge_page_to_list(page, page_list))
1312 				goto keep_locked;
1313 		}
1314 
1315 		/*
1316 		 * The page is mapped into the page tables of one or more
1317 		 * processes. Try to unmap it here.
1318 		 */
1319 		if (page_mapped(page)) {
1320 			enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1321 
1322 			if (unlikely(PageTransHuge(page)))
1323 				flags |= TTU_SPLIT_HUGE_PMD;
1324 			if (!try_to_unmap(page, flags)) {
1325 				nr_unmap_fail++;
1326 				goto activate_locked;
1327 			}
1328 		}
1329 
1330 		if (PageDirty(page)) {
1331 			/*
1332 			 * Only kswapd can writeback filesystem pages
1333 			 * to avoid risk of stack overflow. But avoid
1334 			 * injecting inefficient single-page IO into
1335 			 * flusher writeback as much as possible: only
1336 			 * write pages when we've encountered many
1337 			 * dirty pages, and when we've already scanned
1338 			 * the rest of the LRU for clean pages and see
1339 			 * the same dirty pages again (PageReclaim).
1340 			 */
1341 			if (page_is_file_cache(page) &&
1342 			    (!current_is_kswapd() || !PageReclaim(page) ||
1343 			     !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1344 				/*
1345 				 * Immediately reclaim when written back.
1346 				 * Similar in principal to deactivate_page()
1347 				 * except we already have the page isolated
1348 				 * and know it's dirty
1349 				 */
1350 				inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1351 				SetPageReclaim(page);
1352 
1353 				goto activate_locked;
1354 			}
1355 
1356 			if (references == PAGEREF_RECLAIM_CLEAN)
1357 				goto keep_locked;
1358 			if (!may_enter_fs)
1359 				goto keep_locked;
1360 			if (!sc->may_writepage)
1361 				goto keep_locked;
1362 
1363 			/*
1364 			 * Page is dirty. Flush the TLB if a writable entry
1365 			 * potentially exists to avoid CPU writes after IO
1366 			 * starts and then write it out here.
1367 			 */
1368 			try_to_unmap_flush_dirty();
1369 			switch (pageout(page, mapping, sc)) {
1370 			case PAGE_KEEP:
1371 				goto keep_locked;
1372 			case PAGE_ACTIVATE:
1373 				goto activate_locked;
1374 			case PAGE_SUCCESS:
1375 				if (PageWriteback(page))
1376 					goto keep;
1377 				if (PageDirty(page))
1378 					goto keep;
1379 
1380 				/*
1381 				 * A synchronous write - probably a ramdisk.  Go
1382 				 * ahead and try to reclaim the page.
1383 				 */
1384 				if (!trylock_page(page))
1385 					goto keep;
1386 				if (PageDirty(page) || PageWriteback(page))
1387 					goto keep_locked;
1388 				mapping = page_mapping(page);
1389 			case PAGE_CLEAN:
1390 				; /* try to free the page below */
1391 			}
1392 		}
1393 
1394 		/*
1395 		 * If the page has buffers, try to free the buffer mappings
1396 		 * associated with this page. If we succeed we try to free
1397 		 * the page as well.
1398 		 *
1399 		 * We do this even if the page is PageDirty().
1400 		 * try_to_release_page() does not perform I/O, but it is
1401 		 * possible for a page to have PageDirty set, but it is actually
1402 		 * clean (all its buffers are clean).  This happens if the
1403 		 * buffers were written out directly, with submit_bh(). ext3
1404 		 * will do this, as well as the blockdev mapping.
1405 		 * try_to_release_page() will discover that cleanness and will
1406 		 * drop the buffers and mark the page clean - it can be freed.
1407 		 *
1408 		 * Rarely, pages can have buffers and no ->mapping.  These are
1409 		 * the pages which were not successfully invalidated in
1410 		 * truncate_complete_page().  We try to drop those buffers here
1411 		 * and if that worked, and the page is no longer mapped into
1412 		 * process address space (page_count == 1) it can be freed.
1413 		 * Otherwise, leave the page on the LRU so it is swappable.
1414 		 */
1415 		if (page_has_private(page)) {
1416 			if (!try_to_release_page(page, sc->gfp_mask))
1417 				goto activate_locked;
1418 			if (!mapping && page_count(page) == 1) {
1419 				unlock_page(page);
1420 				if (put_page_testzero(page))
1421 					goto free_it;
1422 				else {
1423 					/*
1424 					 * rare race with speculative reference.
1425 					 * the speculative reference will free
1426 					 * this page shortly, so we may
1427 					 * increment nr_reclaimed here (and
1428 					 * leave it off the LRU).
1429 					 */
1430 					nr_reclaimed++;
1431 					continue;
1432 				}
1433 			}
1434 		}
1435 
1436 		if (PageAnon(page) && !PageSwapBacked(page)) {
1437 			/* follow __remove_mapping for reference */
1438 			if (!page_ref_freeze(page, 1))
1439 				goto keep_locked;
1440 			if (PageDirty(page)) {
1441 				page_ref_unfreeze(page, 1);
1442 				goto keep_locked;
1443 			}
1444 
1445 			count_vm_event(PGLAZYFREED);
1446 			count_memcg_page_event(page, PGLAZYFREED);
1447 		} else if (!mapping || !__remove_mapping(mapping, page, true))
1448 			goto keep_locked;
1449 		/*
1450 		 * At this point, we have no other references and there is
1451 		 * no way to pick any more up (removed from LRU, removed
1452 		 * from pagecache). Can use non-atomic bitops now (and
1453 		 * we obviously don't have to worry about waking up a process
1454 		 * waiting on the page lock, because there are no references.
1455 		 */
1456 		__ClearPageLocked(page);
1457 free_it:
1458 		nr_reclaimed++;
1459 
1460 		/*
1461 		 * Is there need to periodically free_page_list? It would
1462 		 * appear not as the counts should be low
1463 		 */
1464 		if (unlikely(PageTransHuge(page))) {
1465 			mem_cgroup_uncharge(page);
1466 			(*get_compound_page_dtor(page))(page);
1467 		} else
1468 			list_add(&page->lru, &free_pages);
1469 		continue;
1470 
1471 activate_locked:
1472 		/* Not a candidate for swapping, so reclaim swap space. */
1473 		if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1474 						PageMlocked(page)))
1475 			try_to_free_swap(page);
1476 		VM_BUG_ON_PAGE(PageActive(page), page);
1477 		if (!PageMlocked(page)) {
1478 			SetPageActive(page);
1479 			pgactivate++;
1480 			count_memcg_page_event(page, PGACTIVATE);
1481 		}
1482 keep_locked:
1483 		unlock_page(page);
1484 keep:
1485 		list_add(&page->lru, &ret_pages);
1486 		VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1487 	}
1488 
1489 	mem_cgroup_uncharge_list(&free_pages);
1490 	try_to_unmap_flush();
1491 	free_unref_page_list(&free_pages);
1492 
1493 	list_splice(&ret_pages, page_list);
1494 	count_vm_events(PGACTIVATE, pgactivate);
1495 
1496 	if (stat) {
1497 		stat->nr_dirty = nr_dirty;
1498 		stat->nr_congested = nr_congested;
1499 		stat->nr_unqueued_dirty = nr_unqueued_dirty;
1500 		stat->nr_writeback = nr_writeback;
1501 		stat->nr_immediate = nr_immediate;
1502 		stat->nr_activate = pgactivate;
1503 		stat->nr_ref_keep = nr_ref_keep;
1504 		stat->nr_unmap_fail = nr_unmap_fail;
1505 	}
1506 	return nr_reclaimed;
1507 }
1508 
reclaim_clean_pages_from_list(struct zone * zone,struct list_head * page_list)1509 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1510 					    struct list_head *page_list)
1511 {
1512 	struct scan_control sc = {
1513 		.gfp_mask = GFP_KERNEL,
1514 		.priority = DEF_PRIORITY,
1515 		.may_unmap = 1,
1516 	};
1517 	unsigned long ret;
1518 	struct page *page, *next;
1519 	LIST_HEAD(clean_pages);
1520 
1521 	list_for_each_entry_safe(page, next, page_list, lru) {
1522 		if (page_is_file_cache(page) && !PageDirty(page) &&
1523 		    !__PageMovable(page)) {
1524 			ClearPageActive(page);
1525 			list_move(&page->lru, &clean_pages);
1526 		}
1527 	}
1528 
1529 	ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1530 			TTU_IGNORE_ACCESS, NULL, true);
1531 	list_splice(&clean_pages, page_list);
1532 	mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1533 	return ret;
1534 }
1535 
1536 /*
1537  * Attempt to remove the specified page from its LRU.  Only take this page
1538  * if it is of the appropriate PageActive status.  Pages which are being
1539  * freed elsewhere are also ignored.
1540  *
1541  * page:	page to consider
1542  * mode:	one of the LRU isolation modes defined above
1543  *
1544  * returns 0 on success, -ve errno on failure.
1545  */
__isolate_lru_page(struct page * page,isolate_mode_t mode)1546 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1547 {
1548 	int ret = -EINVAL;
1549 
1550 	/* Only take pages on the LRU. */
1551 	if (!PageLRU(page))
1552 		return ret;
1553 
1554 	/* Compaction should not handle unevictable pages but CMA can do so */
1555 	if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1556 		return ret;
1557 
1558 	ret = -EBUSY;
1559 
1560 	/*
1561 	 * To minimise LRU disruption, the caller can indicate that it only
1562 	 * wants to isolate pages it will be able to operate on without
1563 	 * blocking - clean pages for the most part.
1564 	 *
1565 	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1566 	 * that it is possible to migrate without blocking
1567 	 */
1568 	if (mode & ISOLATE_ASYNC_MIGRATE) {
1569 		/* All the caller can do on PageWriteback is block */
1570 		if (PageWriteback(page))
1571 			return ret;
1572 
1573 		if (PageDirty(page)) {
1574 			struct address_space *mapping;
1575 			bool migrate_dirty;
1576 
1577 			/*
1578 			 * Only pages without mappings or that have a
1579 			 * ->migratepage callback are possible to migrate
1580 			 * without blocking. However, we can be racing with
1581 			 * truncation so it's necessary to lock the page
1582 			 * to stabilise the mapping as truncation holds
1583 			 * the page lock until after the page is removed
1584 			 * from the page cache.
1585 			 */
1586 			if (!trylock_page(page))
1587 				return ret;
1588 
1589 			mapping = page_mapping(page);
1590 			migrate_dirty = !mapping || mapping->a_ops->migratepage;
1591 			unlock_page(page);
1592 			if (!migrate_dirty)
1593 				return ret;
1594 		}
1595 	}
1596 
1597 	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1598 		return ret;
1599 
1600 	if (likely(get_page_unless_zero(page))) {
1601 		/*
1602 		 * Be careful not to clear PageLRU until after we're
1603 		 * sure the page is not being freed elsewhere -- the
1604 		 * page release code relies on it.
1605 		 */
1606 		ClearPageLRU(page);
1607 		ret = 0;
1608 	}
1609 
1610 	return ret;
1611 }
1612 
1613 
1614 /*
1615  * Update LRU sizes after isolating pages. The LRU size updates must
1616  * be complete before mem_cgroup_update_lru_size due to a santity check.
1617  */
update_lru_sizes(struct lruvec * lruvec,enum lru_list lru,unsigned long * nr_zone_taken)1618 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1619 			enum lru_list lru, unsigned long *nr_zone_taken)
1620 {
1621 	int zid;
1622 
1623 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1624 		if (!nr_zone_taken[zid])
1625 			continue;
1626 
1627 		__update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1628 #ifdef CONFIG_MEMCG
1629 		mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1630 #endif
1631 	}
1632 
1633 }
1634 
1635 /*
1636  * zone_lru_lock is heavily contended.  Some of the functions that
1637  * shrink the lists perform better by taking out a batch of pages
1638  * and working on them outside the LRU lock.
1639  *
1640  * For pagecache intensive workloads, this function is the hottest
1641  * spot in the kernel (apart from copy_*_user functions).
1642  *
1643  * Appropriate locks must be held before calling this function.
1644  *
1645  * @nr_to_scan:	The number of eligible pages to look through on the list.
1646  * @lruvec:	The LRU vector to pull pages from.
1647  * @dst:	The temp list to put pages on to.
1648  * @nr_scanned:	The number of pages that were scanned.
1649  * @sc:		The scan_control struct for this reclaim session
1650  * @mode:	One of the LRU isolation modes
1651  * @lru:	LRU list id for isolating
1652  *
1653  * returns how many pages were moved onto *@dst.
1654  */
isolate_lru_pages(unsigned long nr_to_scan,struct lruvec * lruvec,struct list_head * dst,unsigned long * nr_scanned,struct scan_control * sc,isolate_mode_t mode,enum lru_list lru)1655 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1656 		struct lruvec *lruvec, struct list_head *dst,
1657 		unsigned long *nr_scanned, struct scan_control *sc,
1658 		isolate_mode_t mode, enum lru_list lru)
1659 {
1660 	struct list_head *src = &lruvec->lists[lru];
1661 	unsigned long nr_taken = 0;
1662 	unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1663 	unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1664 	unsigned long skipped = 0;
1665 	unsigned long scan, total_scan, nr_pages;
1666 	LIST_HEAD(pages_skipped);
1667 
1668 	scan = 0;
1669 	for (total_scan = 0;
1670 	     scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1671 	     total_scan++) {
1672 		struct page *page;
1673 
1674 		page = lru_to_page(src);
1675 		prefetchw_prev_lru_page(page, src, flags);
1676 
1677 		VM_BUG_ON_PAGE(!PageLRU(page), page);
1678 
1679 		if (page_zonenum(page) > sc->reclaim_idx) {
1680 			list_move(&page->lru, &pages_skipped);
1681 			nr_skipped[page_zonenum(page)]++;
1682 			continue;
1683 		}
1684 
1685 		/*
1686 		 * Do not count skipped pages because that makes the function
1687 		 * return with no isolated pages if the LRU mostly contains
1688 		 * ineligible pages.  This causes the VM to not reclaim any
1689 		 * pages, triggering a premature OOM.
1690 		 */
1691 		scan++;
1692 		switch (__isolate_lru_page(page, mode)) {
1693 		case 0:
1694 			nr_pages = hpage_nr_pages(page);
1695 			nr_taken += nr_pages;
1696 			nr_zone_taken[page_zonenum(page)] += nr_pages;
1697 			list_move(&page->lru, dst);
1698 			break;
1699 
1700 		case -EBUSY:
1701 			/* else it is being freed elsewhere */
1702 			list_move(&page->lru, src);
1703 			continue;
1704 
1705 		default:
1706 			BUG();
1707 		}
1708 	}
1709 
1710 	/*
1711 	 * Splice any skipped pages to the start of the LRU list. Note that
1712 	 * this disrupts the LRU order when reclaiming for lower zones but
1713 	 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1714 	 * scanning would soon rescan the same pages to skip and put the
1715 	 * system at risk of premature OOM.
1716 	 */
1717 	if (!list_empty(&pages_skipped)) {
1718 		int zid;
1719 
1720 		list_splice(&pages_skipped, src);
1721 		for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1722 			if (!nr_skipped[zid])
1723 				continue;
1724 
1725 			__count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1726 			skipped += nr_skipped[zid];
1727 		}
1728 	}
1729 	*nr_scanned = total_scan;
1730 	trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1731 				    total_scan, skipped, nr_taken, mode, lru);
1732 	update_lru_sizes(lruvec, lru, nr_zone_taken);
1733 	return nr_taken;
1734 }
1735 
1736 /**
1737  * isolate_lru_page - tries to isolate a page from its LRU list
1738  * @page: page to isolate from its LRU list
1739  *
1740  * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1741  * vmstat statistic corresponding to whatever LRU list the page was on.
1742  *
1743  * Returns 0 if the page was removed from an LRU list.
1744  * Returns -EBUSY if the page was not on an LRU list.
1745  *
1746  * The returned page will have PageLRU() cleared.  If it was found on
1747  * the active list, it will have PageActive set.  If it was found on
1748  * the unevictable list, it will have the PageUnevictable bit set. That flag
1749  * may need to be cleared by the caller before letting the page go.
1750  *
1751  * The vmstat statistic corresponding to the list on which the page was
1752  * found will be decremented.
1753  *
1754  * Restrictions:
1755  *
1756  * (1) Must be called with an elevated refcount on the page. This is a
1757  *     fundamentnal difference from isolate_lru_pages (which is called
1758  *     without a stable reference).
1759  * (2) the lru_lock must not be held.
1760  * (3) interrupts must be enabled.
1761  */
isolate_lru_page(struct page * page)1762 int isolate_lru_page(struct page *page)
1763 {
1764 	int ret = -EBUSY;
1765 
1766 	VM_BUG_ON_PAGE(!page_count(page), page);
1767 	WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1768 
1769 	if (PageLRU(page)) {
1770 		struct zone *zone = page_zone(page);
1771 		struct lruvec *lruvec;
1772 
1773 		spin_lock_irq(zone_lru_lock(zone));
1774 		lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1775 		if (PageLRU(page)) {
1776 			int lru = page_lru(page);
1777 			get_page(page);
1778 			ClearPageLRU(page);
1779 			del_page_from_lru_list(page, lruvec, lru);
1780 			ret = 0;
1781 		}
1782 		spin_unlock_irq(zone_lru_lock(zone));
1783 	}
1784 	return ret;
1785 }
1786 
1787 /*
1788  * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1789  * then get resheduled. When there are massive number of tasks doing page
1790  * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1791  * the LRU list will go small and be scanned faster than necessary, leading to
1792  * unnecessary swapping, thrashing and OOM.
1793  */
too_many_isolated(struct pglist_data * pgdat,int file,struct scan_control * sc)1794 static int too_many_isolated(struct pglist_data *pgdat, int file,
1795 		struct scan_control *sc)
1796 {
1797 	unsigned long inactive, isolated;
1798 
1799 	if (current_is_kswapd())
1800 		return 0;
1801 
1802 	if (!sane_reclaim(sc))
1803 		return 0;
1804 
1805 	if (file) {
1806 		inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1807 		isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1808 	} else {
1809 		inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1810 		isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1811 	}
1812 
1813 	/*
1814 	 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1815 	 * won't get blocked by normal direct-reclaimers, forming a circular
1816 	 * deadlock.
1817 	 */
1818 	if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1819 		inactive >>= 3;
1820 
1821 	return isolated > inactive;
1822 }
1823 
1824 static noinline_for_stack void
putback_inactive_pages(struct lruvec * lruvec,struct list_head * page_list)1825 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1826 {
1827 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1828 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1829 	LIST_HEAD(pages_to_free);
1830 
1831 	/*
1832 	 * Put back any unfreeable pages.
1833 	 */
1834 	while (!list_empty(page_list)) {
1835 		struct page *page = lru_to_page(page_list);
1836 		int lru;
1837 
1838 		VM_BUG_ON_PAGE(PageLRU(page), page);
1839 		list_del(&page->lru);
1840 		if (unlikely(!page_evictable(page))) {
1841 			spin_unlock_irq(&pgdat->lru_lock);
1842 			putback_lru_page(page);
1843 			spin_lock_irq(&pgdat->lru_lock);
1844 			continue;
1845 		}
1846 
1847 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
1848 
1849 		SetPageLRU(page);
1850 		lru = page_lru(page);
1851 		add_page_to_lru_list(page, lruvec, lru);
1852 
1853 		if (is_active_lru(lru)) {
1854 			int file = is_file_lru(lru);
1855 			int numpages = hpage_nr_pages(page);
1856 			reclaim_stat->recent_rotated[file] += numpages;
1857 		}
1858 		if (put_page_testzero(page)) {
1859 			__ClearPageLRU(page);
1860 			__ClearPageActive(page);
1861 			del_page_from_lru_list(page, lruvec, lru);
1862 
1863 			if (unlikely(PageCompound(page))) {
1864 				spin_unlock_irq(&pgdat->lru_lock);
1865 				mem_cgroup_uncharge(page);
1866 				(*get_compound_page_dtor(page))(page);
1867 				spin_lock_irq(&pgdat->lru_lock);
1868 			} else
1869 				list_add(&page->lru, &pages_to_free);
1870 		}
1871 	}
1872 
1873 	/*
1874 	 * To save our caller's stack, now use input list for pages to free.
1875 	 */
1876 	list_splice(&pages_to_free, page_list);
1877 }
1878 
1879 /*
1880  * If a kernel thread (such as nfsd for loop-back mounts) services
1881  * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1882  * In that case we should only throttle if the backing device it is
1883  * writing to is congested.  In other cases it is safe to throttle.
1884  */
current_may_throttle(void)1885 static int current_may_throttle(void)
1886 {
1887 	return !(current->flags & PF_LESS_THROTTLE) ||
1888 		current->backing_dev_info == NULL ||
1889 		bdi_write_congested(current->backing_dev_info);
1890 }
1891 
1892 /*
1893  * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1894  * of reclaimed pages
1895  */
1896 static noinline_for_stack unsigned long
shrink_inactive_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)1897 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1898 		     struct scan_control *sc, enum lru_list lru)
1899 {
1900 	LIST_HEAD(page_list);
1901 	unsigned long nr_scanned;
1902 	unsigned long nr_reclaimed = 0;
1903 	unsigned long nr_taken;
1904 	struct reclaim_stat stat = {};
1905 	isolate_mode_t isolate_mode = 0;
1906 	int file = is_file_lru(lru);
1907 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1908 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1909 	bool stalled = false;
1910 
1911 	while (unlikely(too_many_isolated(pgdat, file, sc))) {
1912 		if (stalled)
1913 			return 0;
1914 
1915 		/* wait a bit for the reclaimer. */
1916 		msleep(100);
1917 		stalled = true;
1918 
1919 		/* We are about to die and free our memory. Return now. */
1920 		if (fatal_signal_pending(current))
1921 			return SWAP_CLUSTER_MAX;
1922 	}
1923 
1924 	lru_add_drain();
1925 
1926 	if (!sc->may_unmap)
1927 		isolate_mode |= ISOLATE_UNMAPPED;
1928 
1929 	spin_lock_irq(&pgdat->lru_lock);
1930 
1931 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1932 				     &nr_scanned, sc, isolate_mode, lru);
1933 
1934 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935 	reclaim_stat->recent_scanned[file] += nr_taken;
1936 
1937 	if (current_is_kswapd()) {
1938 		if (global_reclaim(sc))
1939 			__count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1940 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1941 				   nr_scanned);
1942 	} else {
1943 		if (global_reclaim(sc))
1944 			__count_vm_events(PGSCAN_DIRECT, nr_scanned);
1945 		count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1946 				   nr_scanned);
1947 	}
1948 	spin_unlock_irq(&pgdat->lru_lock);
1949 
1950 	if (nr_taken == 0)
1951 		return 0;
1952 
1953 	nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1954 				&stat, false);
1955 
1956 	spin_lock_irq(&pgdat->lru_lock);
1957 
1958 	if (current_is_kswapd()) {
1959 		if (global_reclaim(sc))
1960 			__count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1961 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1962 				   nr_reclaimed);
1963 	} else {
1964 		if (global_reclaim(sc))
1965 			__count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1966 		count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1967 				   nr_reclaimed);
1968 	}
1969 
1970 	putback_inactive_pages(lruvec, &page_list);
1971 
1972 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1973 
1974 	spin_unlock_irq(&pgdat->lru_lock);
1975 
1976 	mem_cgroup_uncharge_list(&page_list);
1977 	free_unref_page_list(&page_list);
1978 
1979 	/*
1980 	 * If dirty pages are scanned that are not queued for IO, it
1981 	 * implies that flushers are not doing their job. This can
1982 	 * happen when memory pressure pushes dirty pages to the end of
1983 	 * the LRU before the dirty limits are breached and the dirty
1984 	 * data has expired. It can also happen when the proportion of
1985 	 * dirty pages grows not through writes but through memory
1986 	 * pressure reclaiming all the clean cache. And in some cases,
1987 	 * the flushers simply cannot keep up with the allocation
1988 	 * rate. Nudge the flusher threads in case they are asleep.
1989 	 */
1990 	if (stat.nr_unqueued_dirty == nr_taken)
1991 		wakeup_flusher_threads(WB_REASON_VMSCAN);
1992 
1993 	sc->nr.dirty += stat.nr_dirty;
1994 	sc->nr.congested += stat.nr_congested;
1995 	sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1996 	sc->nr.writeback += stat.nr_writeback;
1997 	sc->nr.immediate += stat.nr_immediate;
1998 	sc->nr.taken += nr_taken;
1999 	if (file)
2000 		sc->nr.file_taken += nr_taken;
2001 
2002 	trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2003 			nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2004 	return nr_reclaimed;
2005 }
2006 
2007 /*
2008  * This moves pages from the active list to the inactive list.
2009  *
2010  * We move them the other way if the page is referenced by one or more
2011  * processes, from rmap.
2012  *
2013  * If the pages are mostly unmapped, the processing is fast and it is
2014  * appropriate to hold zone_lru_lock across the whole operation.  But if
2015  * the pages are mapped, the processing is slow (page_referenced()) so we
2016  * should drop zone_lru_lock around each page.  It's impossible to balance
2017  * this, so instead we remove the pages from the LRU while processing them.
2018  * It is safe to rely on PG_active against the non-LRU pages in here because
2019  * nobody will play with that bit on a non-LRU page.
2020  *
2021  * The downside is that we have to touch page->_refcount against each page.
2022  * But we had to alter page->flags anyway.
2023  *
2024  * Returns the number of pages moved to the given lru.
2025  */
2026 
move_active_pages_to_lru(struct lruvec * lruvec,struct list_head * list,struct list_head * pages_to_free,enum lru_list lru)2027 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2028 				     struct list_head *list,
2029 				     struct list_head *pages_to_free,
2030 				     enum lru_list lru)
2031 {
2032 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2033 	struct page *page;
2034 	int nr_pages;
2035 	int nr_moved = 0;
2036 
2037 	while (!list_empty(list)) {
2038 		page = lru_to_page(list);
2039 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
2040 
2041 		VM_BUG_ON_PAGE(PageLRU(page), page);
2042 		SetPageLRU(page);
2043 
2044 		nr_pages = hpage_nr_pages(page);
2045 		update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2046 		list_move(&page->lru, &lruvec->lists[lru]);
2047 
2048 		if (put_page_testzero(page)) {
2049 			__ClearPageLRU(page);
2050 			__ClearPageActive(page);
2051 			del_page_from_lru_list(page, lruvec, lru);
2052 
2053 			if (unlikely(PageCompound(page))) {
2054 				spin_unlock_irq(&pgdat->lru_lock);
2055 				mem_cgroup_uncharge(page);
2056 				(*get_compound_page_dtor(page))(page);
2057 				spin_lock_irq(&pgdat->lru_lock);
2058 			} else
2059 				list_add(&page->lru, pages_to_free);
2060 		} else {
2061 			nr_moved += nr_pages;
2062 		}
2063 	}
2064 
2065 	if (!is_active_lru(lru)) {
2066 		__count_vm_events(PGDEACTIVATE, nr_moved);
2067 		count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2068 				   nr_moved);
2069 	}
2070 
2071 	return nr_moved;
2072 }
2073 
shrink_active_list(unsigned long nr_to_scan,struct lruvec * lruvec,struct scan_control * sc,enum lru_list lru)2074 static void shrink_active_list(unsigned long nr_to_scan,
2075 			       struct lruvec *lruvec,
2076 			       struct scan_control *sc,
2077 			       enum lru_list lru)
2078 {
2079 	unsigned long nr_taken;
2080 	unsigned long nr_scanned;
2081 	unsigned long vm_flags;
2082 	LIST_HEAD(l_hold);	/* The pages which were snipped off */
2083 	LIST_HEAD(l_active);
2084 	LIST_HEAD(l_inactive);
2085 	struct page *page;
2086 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2087 	unsigned nr_deactivate, nr_activate;
2088 	unsigned nr_rotated = 0;
2089 	isolate_mode_t isolate_mode = 0;
2090 	int file = is_file_lru(lru);
2091 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2092 
2093 	lru_add_drain();
2094 
2095 	if (!sc->may_unmap)
2096 		isolate_mode |= ISOLATE_UNMAPPED;
2097 
2098 	spin_lock_irq(&pgdat->lru_lock);
2099 
2100 	nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2101 				     &nr_scanned, sc, isolate_mode, lru);
2102 
2103 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2104 	reclaim_stat->recent_scanned[file] += nr_taken;
2105 
2106 	__count_vm_events(PGREFILL, nr_scanned);
2107 	count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2108 
2109 	spin_unlock_irq(&pgdat->lru_lock);
2110 
2111 	while (!list_empty(&l_hold)) {
2112 		cond_resched();
2113 		page = lru_to_page(&l_hold);
2114 		list_del(&page->lru);
2115 
2116 		if (unlikely(!page_evictable(page))) {
2117 			putback_lru_page(page);
2118 			continue;
2119 		}
2120 
2121 		if (unlikely(buffer_heads_over_limit)) {
2122 			if (page_has_private(page) && trylock_page(page)) {
2123 				if (page_has_private(page))
2124 					try_to_release_page(page, 0);
2125 				unlock_page(page);
2126 			}
2127 		}
2128 
2129 		if (page_referenced(page, 0, sc->target_mem_cgroup,
2130 				    &vm_flags)) {
2131 			nr_rotated += hpage_nr_pages(page);
2132 			/*
2133 			 * Identify referenced, file-backed active pages and
2134 			 * give them one more trip around the active list. So
2135 			 * that executable code get better chances to stay in
2136 			 * memory under moderate memory pressure.  Anon pages
2137 			 * are not likely to be evicted by use-once streaming
2138 			 * IO, plus JVM can create lots of anon VM_EXEC pages,
2139 			 * so we ignore them here.
2140 			 */
2141 			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2142 				list_add(&page->lru, &l_active);
2143 				continue;
2144 			}
2145 		}
2146 
2147 		ClearPageActive(page);	/* we are de-activating */
2148 		list_add(&page->lru, &l_inactive);
2149 	}
2150 
2151 	/*
2152 	 * Move pages back to the lru list.
2153 	 */
2154 	spin_lock_irq(&pgdat->lru_lock);
2155 	/*
2156 	 * Count referenced pages from currently used mappings as rotated,
2157 	 * even though only some of them are actually re-activated.  This
2158 	 * helps balance scan pressure between file and anonymous pages in
2159 	 * get_scan_count.
2160 	 */
2161 	reclaim_stat->recent_rotated[file] += nr_rotated;
2162 
2163 	nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2164 	nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2165 	__mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2166 	spin_unlock_irq(&pgdat->lru_lock);
2167 
2168 	mem_cgroup_uncharge_list(&l_hold);
2169 	free_unref_page_list(&l_hold);
2170 	trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2171 			nr_deactivate, nr_rotated, sc->priority, file);
2172 }
2173 
2174 /*
2175  * The inactive anon list should be small enough that the VM never has
2176  * to do too much work.
2177  *
2178  * The inactive file list should be small enough to leave most memory
2179  * to the established workingset on the scan-resistant active list,
2180  * but large enough to avoid thrashing the aggregate readahead window.
2181  *
2182  * Both inactive lists should also be large enough that each inactive
2183  * page has a chance to be referenced again before it is reclaimed.
2184  *
2185  * If that fails and refaulting is observed, the inactive list grows.
2186  *
2187  * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2188  * on this LRU, maintained by the pageout code. An inactive_ratio
2189  * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2190  *
2191  * total     target    max
2192  * memory    ratio     inactive
2193  * -------------------------------------
2194  *   10MB       1         5MB
2195  *  100MB       1        50MB
2196  *    1GB       3       250MB
2197  *   10GB      10       0.9GB
2198  *  100GB      31         3GB
2199  *    1TB     101        10GB
2200  *   10TB     320        32GB
2201  */
inactive_list_is_low(struct lruvec * lruvec,bool file,struct mem_cgroup * memcg,struct scan_control * sc,bool actual_reclaim)2202 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2203 				 struct mem_cgroup *memcg,
2204 				 struct scan_control *sc, bool actual_reclaim)
2205 {
2206 	enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2207 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2208 	enum lru_list inactive_lru = file * LRU_FILE;
2209 	unsigned long inactive, active;
2210 	unsigned long inactive_ratio;
2211 	unsigned long refaults;
2212 	unsigned long gb;
2213 
2214 	/*
2215 	 * If we don't have swap space, anonymous page deactivation
2216 	 * is pointless.
2217 	 */
2218 	if (!file && !total_swap_pages)
2219 		return false;
2220 
2221 	inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2222 	active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2223 
2224 	if (memcg)
2225 		refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2226 	else
2227 		refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2228 
2229 	/*
2230 	 * When refaults are being observed, it means a new workingset
2231 	 * is being established. Disable active list protection to get
2232 	 * rid of the stale workingset quickly.
2233 	 */
2234 	if (file && actual_reclaim && lruvec->refaults != refaults) {
2235 		inactive_ratio = 0;
2236 	} else {
2237 		gb = (inactive + active) >> (30 - PAGE_SHIFT);
2238 		if (gb)
2239 			inactive_ratio = int_sqrt(10 * gb);
2240 		else
2241 			inactive_ratio = 1;
2242 	}
2243 
2244 	if (actual_reclaim)
2245 		trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2246 			lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2247 			lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2248 			inactive_ratio, file);
2249 
2250 	return inactive * inactive_ratio < active;
2251 }
2252 
shrink_list(enum lru_list lru,unsigned long nr_to_scan,struct lruvec * lruvec,struct mem_cgroup * memcg,struct scan_control * sc)2253 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2254 				 struct lruvec *lruvec, struct mem_cgroup *memcg,
2255 				 struct scan_control *sc)
2256 {
2257 	if (is_active_lru(lru)) {
2258 		if (inactive_list_is_low(lruvec, is_file_lru(lru),
2259 					 memcg, sc, true))
2260 			shrink_active_list(nr_to_scan, lruvec, sc, lru);
2261 		return 0;
2262 	}
2263 
2264 	return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2265 }
2266 
2267 enum scan_balance {
2268 	SCAN_EQUAL,
2269 	SCAN_FRACT,
2270 	SCAN_ANON,
2271 	SCAN_FILE,
2272 };
2273 
2274 /*
2275  * Determine how aggressively the anon and file LRU lists should be
2276  * scanned.  The relative value of each set of LRU lists is determined
2277  * by looking at the fraction of the pages scanned we did rotate back
2278  * onto the active list instead of evict.
2279  *
2280  * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2281  * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2282  */
get_scan_count(struct lruvec * lruvec,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * nr,unsigned long * lru_pages)2283 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2284 			   struct scan_control *sc, unsigned long *nr,
2285 			   unsigned long *lru_pages)
2286 {
2287 	int swappiness = mem_cgroup_swappiness(memcg);
2288 	struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2289 	u64 fraction[2];
2290 	u64 denominator = 0;	/* gcc */
2291 	struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2292 	unsigned long anon_prio, file_prio;
2293 	enum scan_balance scan_balance;
2294 	unsigned long anon, file;
2295 	unsigned long ap, fp;
2296 	enum lru_list lru;
2297 
2298 	/* If we have no swap space, do not bother scanning anon pages. */
2299 	if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2300 		scan_balance = SCAN_FILE;
2301 		goto out;
2302 	}
2303 
2304 	/*
2305 	 * Global reclaim will swap to prevent OOM even with no
2306 	 * swappiness, but memcg users want to use this knob to
2307 	 * disable swapping for individual groups completely when
2308 	 * using the memory controller's swap limit feature would be
2309 	 * too expensive.
2310 	 */
2311 	if (!global_reclaim(sc) && !swappiness) {
2312 		scan_balance = SCAN_FILE;
2313 		goto out;
2314 	}
2315 
2316 	/*
2317 	 * Do not apply any pressure balancing cleverness when the
2318 	 * system is close to OOM, scan both anon and file equally
2319 	 * (unless the swappiness setting disagrees with swapping).
2320 	 */
2321 	if (!sc->priority && swappiness) {
2322 		scan_balance = SCAN_EQUAL;
2323 		goto out;
2324 	}
2325 
2326 	/*
2327 	 * Prevent the reclaimer from falling into the cache trap: as
2328 	 * cache pages start out inactive, every cache fault will tip
2329 	 * the scan balance towards the file LRU.  And as the file LRU
2330 	 * shrinks, so does the window for rotation from references.
2331 	 * This means we have a runaway feedback loop where a tiny
2332 	 * thrashing file LRU becomes infinitely more attractive than
2333 	 * anon pages.  Try to detect this based on file LRU size.
2334 	 */
2335 	if (global_reclaim(sc)) {
2336 		unsigned long pgdatfile;
2337 		unsigned long pgdatfree;
2338 		int z;
2339 		unsigned long total_high_wmark = 0;
2340 
2341 		pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2342 		pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2343 			   node_page_state(pgdat, NR_INACTIVE_FILE);
2344 
2345 		for (z = 0; z < MAX_NR_ZONES; z++) {
2346 			struct zone *zone = &pgdat->node_zones[z];
2347 			if (!managed_zone(zone))
2348 				continue;
2349 
2350 			total_high_wmark += high_wmark_pages(zone);
2351 		}
2352 
2353 		if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2354 			/*
2355 			 * Force SCAN_ANON if there are enough inactive
2356 			 * anonymous pages on the LRU in eligible zones.
2357 			 * Otherwise, the small LRU gets thrashed.
2358 			 */
2359 			if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2360 			    lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2361 					>> sc->priority) {
2362 				scan_balance = SCAN_ANON;
2363 				goto out;
2364 			}
2365 		}
2366 	}
2367 
2368 	/*
2369 	 * If there is enough inactive page cache, i.e. if the size of the
2370 	 * inactive list is greater than that of the active list *and* the
2371 	 * inactive list actually has some pages to scan on this priority, we
2372 	 * do not reclaim anything from the anonymous working set right now.
2373 	 * Without the second condition we could end up never scanning an
2374 	 * lruvec even if it has plenty of old anonymous pages unless the
2375 	 * system is under heavy pressure.
2376 	 */
2377 	if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2378 	    lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2379 		scan_balance = SCAN_FILE;
2380 		goto out;
2381 	}
2382 
2383 	scan_balance = SCAN_FRACT;
2384 
2385 	/*
2386 	 * With swappiness at 100, anonymous and file have the same priority.
2387 	 * This scanning priority is essentially the inverse of IO cost.
2388 	 */
2389 	anon_prio = swappiness;
2390 	file_prio = 200 - anon_prio;
2391 
2392 	/*
2393 	 * OK, so we have swap space and a fair amount of page cache
2394 	 * pages.  We use the recently rotated / recently scanned
2395 	 * ratios to determine how valuable each cache is.
2396 	 *
2397 	 * Because workloads change over time (and to avoid overflow)
2398 	 * we keep these statistics as a floating average, which ends
2399 	 * up weighing recent references more than old ones.
2400 	 *
2401 	 * anon in [0], file in [1]
2402 	 */
2403 
2404 	anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2405 		lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2406 	file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2407 		lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2408 
2409 	spin_lock_irq(&pgdat->lru_lock);
2410 	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2411 		reclaim_stat->recent_scanned[0] /= 2;
2412 		reclaim_stat->recent_rotated[0] /= 2;
2413 	}
2414 
2415 	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2416 		reclaim_stat->recent_scanned[1] /= 2;
2417 		reclaim_stat->recent_rotated[1] /= 2;
2418 	}
2419 
2420 	/*
2421 	 * The amount of pressure on anon vs file pages is inversely
2422 	 * proportional to the fraction of recently scanned pages on
2423 	 * each list that were recently referenced and in active use.
2424 	 */
2425 	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2426 	ap /= reclaim_stat->recent_rotated[0] + 1;
2427 
2428 	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2429 	fp /= reclaim_stat->recent_rotated[1] + 1;
2430 	spin_unlock_irq(&pgdat->lru_lock);
2431 
2432 	fraction[0] = ap;
2433 	fraction[1] = fp;
2434 	denominator = ap + fp + 1;
2435 out:
2436 	*lru_pages = 0;
2437 	for_each_evictable_lru(lru) {
2438 		int file = is_file_lru(lru);
2439 		unsigned long size;
2440 		unsigned long scan;
2441 
2442 		size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2443 		scan = size >> sc->priority;
2444 		/*
2445 		 * If the cgroup's already been deleted, make sure to
2446 		 * scrape out the remaining cache.
2447 		 */
2448 		if (!scan && !mem_cgroup_online(memcg))
2449 			scan = min(size, SWAP_CLUSTER_MAX);
2450 
2451 		switch (scan_balance) {
2452 		case SCAN_EQUAL:
2453 			/* Scan lists relative to size */
2454 			break;
2455 		case SCAN_FRACT:
2456 			/*
2457 			 * Scan types proportional to swappiness and
2458 			 * their relative recent reclaim efficiency.
2459 			 */
2460 			scan = div64_u64(scan * fraction[file],
2461 					 denominator);
2462 			break;
2463 		case SCAN_FILE:
2464 		case SCAN_ANON:
2465 			/* Scan one type exclusively */
2466 			if ((scan_balance == SCAN_FILE) != file) {
2467 				size = 0;
2468 				scan = 0;
2469 			}
2470 			break;
2471 		default:
2472 			/* Look ma, no brain */
2473 			BUG();
2474 		}
2475 
2476 		*lru_pages += size;
2477 		nr[lru] = scan;
2478 	}
2479 }
2480 
2481 /*
2482  * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2483  */
shrink_node_memcg(struct pglist_data * pgdat,struct mem_cgroup * memcg,struct scan_control * sc,unsigned long * lru_pages)2484 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2485 			      struct scan_control *sc, unsigned long *lru_pages)
2486 {
2487 	struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2488 	unsigned long nr[NR_LRU_LISTS];
2489 	unsigned long targets[NR_LRU_LISTS];
2490 	unsigned long nr_to_scan;
2491 	enum lru_list lru;
2492 	unsigned long nr_reclaimed = 0;
2493 	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2494 	struct blk_plug plug;
2495 	bool scan_adjusted;
2496 
2497 	get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2498 
2499 	/* Record the original scan target for proportional adjustments later */
2500 	memcpy(targets, nr, sizeof(nr));
2501 
2502 	/*
2503 	 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2504 	 * event that can occur when there is little memory pressure e.g.
2505 	 * multiple streaming readers/writers. Hence, we do not abort scanning
2506 	 * when the requested number of pages are reclaimed when scanning at
2507 	 * DEF_PRIORITY on the assumption that the fact we are direct
2508 	 * reclaiming implies that kswapd is not keeping up and it is best to
2509 	 * do a batch of work at once. For memcg reclaim one check is made to
2510 	 * abort proportional reclaim if either the file or anon lru has already
2511 	 * dropped to zero at the first pass.
2512 	 */
2513 	scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2514 			 sc->priority == DEF_PRIORITY);
2515 
2516 	blk_start_plug(&plug);
2517 	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2518 					nr[LRU_INACTIVE_FILE]) {
2519 		unsigned long nr_anon, nr_file, percentage;
2520 		unsigned long nr_scanned;
2521 
2522 		for_each_evictable_lru(lru) {
2523 			if (nr[lru]) {
2524 				nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2525 				nr[lru] -= nr_to_scan;
2526 
2527 				nr_reclaimed += shrink_list(lru, nr_to_scan,
2528 							    lruvec, memcg, sc);
2529 			}
2530 		}
2531 
2532 		cond_resched();
2533 
2534 		if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2535 			continue;
2536 
2537 		/*
2538 		 * For kswapd and memcg, reclaim at least the number of pages
2539 		 * requested. Ensure that the anon and file LRUs are scanned
2540 		 * proportionally what was requested by get_scan_count(). We
2541 		 * stop reclaiming one LRU and reduce the amount scanning
2542 		 * proportional to the original scan target.
2543 		 */
2544 		nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2545 		nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2546 
2547 		/*
2548 		 * It's just vindictive to attack the larger once the smaller
2549 		 * has gone to zero.  And given the way we stop scanning the
2550 		 * smaller below, this makes sure that we only make one nudge
2551 		 * towards proportionality once we've got nr_to_reclaim.
2552 		 */
2553 		if (!nr_file || !nr_anon)
2554 			break;
2555 
2556 		if (nr_file > nr_anon) {
2557 			unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2558 						targets[LRU_ACTIVE_ANON] + 1;
2559 			lru = LRU_BASE;
2560 			percentage = nr_anon * 100 / scan_target;
2561 		} else {
2562 			unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2563 						targets[LRU_ACTIVE_FILE] + 1;
2564 			lru = LRU_FILE;
2565 			percentage = nr_file * 100 / scan_target;
2566 		}
2567 
2568 		/* Stop scanning the smaller of the LRU */
2569 		nr[lru] = 0;
2570 		nr[lru + LRU_ACTIVE] = 0;
2571 
2572 		/*
2573 		 * Recalculate the other LRU scan count based on its original
2574 		 * scan target and the percentage scanning already complete
2575 		 */
2576 		lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2577 		nr_scanned = targets[lru] - nr[lru];
2578 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2579 		nr[lru] -= min(nr[lru], nr_scanned);
2580 
2581 		lru += LRU_ACTIVE;
2582 		nr_scanned = targets[lru] - nr[lru];
2583 		nr[lru] = targets[lru] * (100 - percentage) / 100;
2584 		nr[lru] -= min(nr[lru], nr_scanned);
2585 
2586 		scan_adjusted = true;
2587 	}
2588 	blk_finish_plug(&plug);
2589 	sc->nr_reclaimed += nr_reclaimed;
2590 
2591 	/*
2592 	 * Even if we did not try to evict anon pages at all, we want to
2593 	 * rebalance the anon lru active/inactive ratio.
2594 	 */
2595 	if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2596 		shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2597 				   sc, LRU_ACTIVE_ANON);
2598 }
2599 
2600 /* Use reclaim/compaction for costly allocs or under memory pressure */
in_reclaim_compaction(struct scan_control * sc)2601 static bool in_reclaim_compaction(struct scan_control *sc)
2602 {
2603 	if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2604 			(sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2605 			 sc->priority < DEF_PRIORITY - 2))
2606 		return true;
2607 
2608 	return false;
2609 }
2610 
2611 /*
2612  * Reclaim/compaction is used for high-order allocation requests. It reclaims
2613  * order-0 pages before compacting the zone. should_continue_reclaim() returns
2614  * true if more pages should be reclaimed such that when the page allocator
2615  * calls try_to_compact_zone() that it will have enough free pages to succeed.
2616  * It will give up earlier than that if there is difficulty reclaiming pages.
2617  */
should_continue_reclaim(struct pglist_data * pgdat,unsigned long nr_reclaimed,unsigned long nr_scanned,struct scan_control * sc)2618 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2619 					unsigned long nr_reclaimed,
2620 					unsigned long nr_scanned,
2621 					struct scan_control *sc)
2622 {
2623 	unsigned long pages_for_compaction;
2624 	unsigned long inactive_lru_pages;
2625 	int z;
2626 
2627 	/* If not in reclaim/compaction mode, stop */
2628 	if (!in_reclaim_compaction(sc))
2629 		return false;
2630 
2631 	/* Consider stopping depending on scan and reclaim activity */
2632 	if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2633 		/*
2634 		 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2635 		 * full LRU list has been scanned and we are still failing
2636 		 * to reclaim pages. This full LRU scan is potentially
2637 		 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2638 		 */
2639 		if (!nr_reclaimed && !nr_scanned)
2640 			return false;
2641 	} else {
2642 		/*
2643 		 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2644 		 * fail without consequence, stop if we failed to reclaim
2645 		 * any pages from the last SWAP_CLUSTER_MAX number of
2646 		 * pages that were scanned. This will return to the
2647 		 * caller faster at the risk reclaim/compaction and
2648 		 * the resulting allocation attempt fails
2649 		 */
2650 		if (!nr_reclaimed)
2651 			return false;
2652 	}
2653 
2654 	/*
2655 	 * If we have not reclaimed enough pages for compaction and the
2656 	 * inactive lists are large enough, continue reclaiming
2657 	 */
2658 	pages_for_compaction = compact_gap(sc->order);
2659 	inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2660 	if (get_nr_swap_pages() > 0)
2661 		inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2662 	if (sc->nr_reclaimed < pages_for_compaction &&
2663 			inactive_lru_pages > pages_for_compaction)
2664 		return true;
2665 
2666 	/* If compaction would go ahead or the allocation would succeed, stop */
2667 	for (z = 0; z <= sc->reclaim_idx; z++) {
2668 		struct zone *zone = &pgdat->node_zones[z];
2669 		if (!managed_zone(zone))
2670 			continue;
2671 
2672 		switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2673 		case COMPACT_SUCCESS:
2674 		case COMPACT_CONTINUE:
2675 			return false;
2676 		default:
2677 			/* check next zone */
2678 			;
2679 		}
2680 	}
2681 	return true;
2682 }
2683 
pgdat_memcg_congested(pg_data_t * pgdat,struct mem_cgroup * memcg)2684 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2685 {
2686 	return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2687 		(memcg && memcg_congested(pgdat, memcg));
2688 }
2689 
shrink_node(pg_data_t * pgdat,struct scan_control * sc)2690 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2691 {
2692 	struct reclaim_state *reclaim_state = current->reclaim_state;
2693 	unsigned long nr_reclaimed, nr_scanned;
2694 	bool reclaimable = false;
2695 
2696 	do {
2697 		struct mem_cgroup *root = sc->target_mem_cgroup;
2698 		struct mem_cgroup_reclaim_cookie reclaim = {
2699 			.pgdat = pgdat,
2700 			.priority = sc->priority,
2701 		};
2702 		unsigned long node_lru_pages = 0;
2703 		struct mem_cgroup *memcg;
2704 
2705 		memset(&sc->nr, 0, sizeof(sc->nr));
2706 
2707 		nr_reclaimed = sc->nr_reclaimed;
2708 		nr_scanned = sc->nr_scanned;
2709 
2710 		memcg = mem_cgroup_iter(root, NULL, &reclaim);
2711 		do {
2712 			unsigned long lru_pages;
2713 			unsigned long reclaimed;
2714 			unsigned long scanned;
2715 
2716 			switch (mem_cgroup_protected(root, memcg)) {
2717 			case MEMCG_PROT_MIN:
2718 				/*
2719 				 * Hard protection.
2720 				 * If there is no reclaimable memory, OOM.
2721 				 */
2722 				continue;
2723 			case MEMCG_PROT_LOW:
2724 				/*
2725 				 * Soft protection.
2726 				 * Respect the protection only as long as
2727 				 * there is an unprotected supply
2728 				 * of reclaimable memory from other cgroups.
2729 				 */
2730 				if (!sc->memcg_low_reclaim) {
2731 					sc->memcg_low_skipped = 1;
2732 					continue;
2733 				}
2734 				memcg_memory_event(memcg, MEMCG_LOW);
2735 				break;
2736 			case MEMCG_PROT_NONE:
2737 				break;
2738 			}
2739 
2740 			reclaimed = sc->nr_reclaimed;
2741 			scanned = sc->nr_scanned;
2742 			shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2743 			node_lru_pages += lru_pages;
2744 
2745 			shrink_slab(sc->gfp_mask, pgdat->node_id,
2746 				    memcg, sc->priority);
2747 
2748 			/* Record the group's reclaim efficiency */
2749 			vmpressure(sc->gfp_mask, memcg, false,
2750 				   sc->nr_scanned - scanned,
2751 				   sc->nr_reclaimed - reclaimed);
2752 
2753 			/*
2754 			 * Direct reclaim and kswapd have to scan all memory
2755 			 * cgroups to fulfill the overall scan target for the
2756 			 * node.
2757 			 *
2758 			 * Limit reclaim, on the other hand, only cares about
2759 			 * nr_to_reclaim pages to be reclaimed and it will
2760 			 * retry with decreasing priority if one round over the
2761 			 * whole hierarchy is not sufficient.
2762 			 */
2763 			if (!global_reclaim(sc) &&
2764 					sc->nr_reclaimed >= sc->nr_to_reclaim) {
2765 				mem_cgroup_iter_break(root, memcg);
2766 				break;
2767 			}
2768 		} while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2769 
2770 		if (reclaim_state) {
2771 			sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2772 			reclaim_state->reclaimed_slab = 0;
2773 		}
2774 
2775 		/* Record the subtree's reclaim efficiency */
2776 		vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2777 			   sc->nr_scanned - nr_scanned,
2778 			   sc->nr_reclaimed - nr_reclaimed);
2779 
2780 		if (sc->nr_reclaimed - nr_reclaimed)
2781 			reclaimable = true;
2782 
2783 		if (current_is_kswapd()) {
2784 			/*
2785 			 * If reclaim is isolating dirty pages under writeback,
2786 			 * it implies that the long-lived page allocation rate
2787 			 * is exceeding the page laundering rate. Either the
2788 			 * global limits are not being effective at throttling
2789 			 * processes due to the page distribution throughout
2790 			 * zones or there is heavy usage of a slow backing
2791 			 * device. The only option is to throttle from reclaim
2792 			 * context which is not ideal as there is no guarantee
2793 			 * the dirtying process is throttled in the same way
2794 			 * balance_dirty_pages() manages.
2795 			 *
2796 			 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2797 			 * count the number of pages under pages flagged for
2798 			 * immediate reclaim and stall if any are encountered
2799 			 * in the nr_immediate check below.
2800 			 */
2801 			if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2802 				set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2803 
2804 			/*
2805 			 * Tag a node as congested if all the dirty pages
2806 			 * scanned were backed by a congested BDI and
2807 			 * wait_iff_congested will stall.
2808 			 */
2809 			if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2810 				set_bit(PGDAT_CONGESTED, &pgdat->flags);
2811 
2812 			/* Allow kswapd to start writing pages during reclaim.*/
2813 			if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2814 				set_bit(PGDAT_DIRTY, &pgdat->flags);
2815 
2816 			/*
2817 			 * If kswapd scans pages marked marked for immediate
2818 			 * reclaim and under writeback (nr_immediate), it
2819 			 * implies that pages are cycling through the LRU
2820 			 * faster than they are written so also forcibly stall.
2821 			 */
2822 			if (sc->nr.immediate)
2823 				congestion_wait(BLK_RW_ASYNC, HZ/10);
2824 		}
2825 
2826 		/*
2827 		 * Legacy memcg will stall in page writeback so avoid forcibly
2828 		 * stalling in wait_iff_congested().
2829 		 */
2830 		if (!global_reclaim(sc) && sane_reclaim(sc) &&
2831 		    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2832 			set_memcg_congestion(pgdat, root, true);
2833 
2834 		/*
2835 		 * Stall direct reclaim for IO completions if underlying BDIs
2836 		 * and node is congested. Allow kswapd to continue until it
2837 		 * starts encountering unqueued dirty pages or cycling through
2838 		 * the LRU too quickly.
2839 		 */
2840 		if (!sc->hibernation_mode && !current_is_kswapd() &&
2841 		   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2842 			wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2843 
2844 	} while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2845 					 sc->nr_scanned - nr_scanned, sc));
2846 
2847 	/*
2848 	 * Kswapd gives up on balancing particular nodes after too
2849 	 * many failures to reclaim anything from them and goes to
2850 	 * sleep. On reclaim progress, reset the failure counter. A
2851 	 * successful direct reclaim run will revive a dormant kswapd.
2852 	 */
2853 	if (reclaimable)
2854 		pgdat->kswapd_failures = 0;
2855 
2856 	return reclaimable;
2857 }
2858 
2859 /*
2860  * Returns true if compaction should go ahead for a costly-order request, or
2861  * the allocation would already succeed without compaction. Return false if we
2862  * should reclaim first.
2863  */
compaction_ready(struct zone * zone,struct scan_control * sc)2864 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2865 {
2866 	unsigned long watermark;
2867 	enum compact_result suitable;
2868 
2869 	suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2870 	if (suitable == COMPACT_SUCCESS)
2871 		/* Allocation should succeed already. Don't reclaim. */
2872 		return true;
2873 	if (suitable == COMPACT_SKIPPED)
2874 		/* Compaction cannot yet proceed. Do reclaim. */
2875 		return false;
2876 
2877 	/*
2878 	 * Compaction is already possible, but it takes time to run and there
2879 	 * are potentially other callers using the pages just freed. So proceed
2880 	 * with reclaim to make a buffer of free pages available to give
2881 	 * compaction a reasonable chance of completing and allocating the page.
2882 	 * Note that we won't actually reclaim the whole buffer in one attempt
2883 	 * as the target watermark in should_continue_reclaim() is lower. But if
2884 	 * we are already above the high+gap watermark, don't reclaim at all.
2885 	 */
2886 	watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2887 
2888 	return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2889 }
2890 
2891 /*
2892  * This is the direct reclaim path, for page-allocating processes.  We only
2893  * try to reclaim pages from zones which will satisfy the caller's allocation
2894  * request.
2895  *
2896  * If a zone is deemed to be full of pinned pages then just give it a light
2897  * scan then give up on it.
2898  */
shrink_zones(struct zonelist * zonelist,struct scan_control * sc)2899 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2900 {
2901 	struct zoneref *z;
2902 	struct zone *zone;
2903 	unsigned long nr_soft_reclaimed;
2904 	unsigned long nr_soft_scanned;
2905 	gfp_t orig_mask;
2906 	pg_data_t *last_pgdat = NULL;
2907 
2908 	/*
2909 	 * If the number of buffer_heads in the machine exceeds the maximum
2910 	 * allowed level, force direct reclaim to scan the highmem zone as
2911 	 * highmem pages could be pinning lowmem pages storing buffer_heads
2912 	 */
2913 	orig_mask = sc->gfp_mask;
2914 	if (buffer_heads_over_limit) {
2915 		sc->gfp_mask |= __GFP_HIGHMEM;
2916 		sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2917 	}
2918 
2919 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
2920 					sc->reclaim_idx, sc->nodemask) {
2921 		/*
2922 		 * Take care memory controller reclaiming has small influence
2923 		 * to global LRU.
2924 		 */
2925 		if (global_reclaim(sc)) {
2926 			if (!cpuset_zone_allowed(zone,
2927 						 GFP_KERNEL | __GFP_HARDWALL))
2928 				continue;
2929 
2930 			/*
2931 			 * If we already have plenty of memory free for
2932 			 * compaction in this zone, don't free any more.
2933 			 * Even though compaction is invoked for any
2934 			 * non-zero order, only frequent costly order
2935 			 * reclamation is disruptive enough to become a
2936 			 * noticeable problem, like transparent huge
2937 			 * page allocations.
2938 			 */
2939 			if (IS_ENABLED(CONFIG_COMPACTION) &&
2940 			    sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2941 			    compaction_ready(zone, sc)) {
2942 				sc->compaction_ready = true;
2943 				continue;
2944 			}
2945 
2946 			/*
2947 			 * Shrink each node in the zonelist once. If the
2948 			 * zonelist is ordered by zone (not the default) then a
2949 			 * node may be shrunk multiple times but in that case
2950 			 * the user prefers lower zones being preserved.
2951 			 */
2952 			if (zone->zone_pgdat == last_pgdat)
2953 				continue;
2954 
2955 			/*
2956 			 * This steals pages from memory cgroups over softlimit
2957 			 * and returns the number of reclaimed pages and
2958 			 * scanned pages. This works for global memory pressure
2959 			 * and balancing, not for a memcg's limit.
2960 			 */
2961 			nr_soft_scanned = 0;
2962 			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2963 						sc->order, sc->gfp_mask,
2964 						&nr_soft_scanned);
2965 			sc->nr_reclaimed += nr_soft_reclaimed;
2966 			sc->nr_scanned += nr_soft_scanned;
2967 			/* need some check for avoid more shrink_zone() */
2968 		}
2969 
2970 		/* See comment about same check for global reclaim above */
2971 		if (zone->zone_pgdat == last_pgdat)
2972 			continue;
2973 		last_pgdat = zone->zone_pgdat;
2974 		shrink_node(zone->zone_pgdat, sc);
2975 	}
2976 
2977 	/*
2978 	 * Restore to original mask to avoid the impact on the caller if we
2979 	 * promoted it to __GFP_HIGHMEM.
2980 	 */
2981 	sc->gfp_mask = orig_mask;
2982 }
2983 
snapshot_refaults(struct mem_cgroup * root_memcg,pg_data_t * pgdat)2984 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2985 {
2986 	struct mem_cgroup *memcg;
2987 
2988 	memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2989 	do {
2990 		unsigned long refaults;
2991 		struct lruvec *lruvec;
2992 
2993 		if (memcg)
2994 			refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2995 		else
2996 			refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2997 
2998 		lruvec = mem_cgroup_lruvec(pgdat, memcg);
2999 		lruvec->refaults = refaults;
3000 	} while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3001 }
3002 
3003 /*
3004  * This is the main entry point to direct page reclaim.
3005  *
3006  * If a full scan of the inactive list fails to free enough memory then we
3007  * are "out of memory" and something needs to be killed.
3008  *
3009  * If the caller is !__GFP_FS then the probability of a failure is reasonably
3010  * high - the zone may be full of dirty or under-writeback pages, which this
3011  * caller can't do much about.  We kick the writeback threads and take explicit
3012  * naps in the hope that some of these pages can be written.  But if the
3013  * allocating task holds filesystem locks which prevent writeout this might not
3014  * work, and the allocation attempt will fail.
3015  *
3016  * returns:	0, if no pages reclaimed
3017  * 		else, the number of pages reclaimed
3018  */
do_try_to_free_pages(struct zonelist * zonelist,struct scan_control * sc)3019 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3020 					  struct scan_control *sc)
3021 {
3022 	int initial_priority = sc->priority;
3023 	pg_data_t *last_pgdat;
3024 	struct zoneref *z;
3025 	struct zone *zone;
3026 retry:
3027 	delayacct_freepages_start();
3028 
3029 	if (global_reclaim(sc))
3030 		__count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3031 
3032 	do {
3033 		vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3034 				sc->priority);
3035 		sc->nr_scanned = 0;
3036 		shrink_zones(zonelist, sc);
3037 
3038 		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3039 			break;
3040 
3041 		if (sc->compaction_ready)
3042 			break;
3043 
3044 		/*
3045 		 * If we're getting trouble reclaiming, start doing
3046 		 * writepage even in laptop mode.
3047 		 */
3048 		if (sc->priority < DEF_PRIORITY - 2)
3049 			sc->may_writepage = 1;
3050 	} while (--sc->priority >= 0);
3051 
3052 	last_pgdat = NULL;
3053 	for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3054 					sc->nodemask) {
3055 		if (zone->zone_pgdat == last_pgdat)
3056 			continue;
3057 		last_pgdat = zone->zone_pgdat;
3058 		snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3059 		set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3060 	}
3061 
3062 	delayacct_freepages_end();
3063 
3064 	if (sc->nr_reclaimed)
3065 		return sc->nr_reclaimed;
3066 
3067 	/* Aborted reclaim to try compaction? don't OOM, then */
3068 	if (sc->compaction_ready)
3069 		return 1;
3070 
3071 	/* Untapped cgroup reserves?  Don't OOM, retry. */
3072 	if (sc->memcg_low_skipped) {
3073 		sc->priority = initial_priority;
3074 		sc->memcg_low_reclaim = 1;
3075 		sc->memcg_low_skipped = 0;
3076 		goto retry;
3077 	}
3078 
3079 	return 0;
3080 }
3081 
allow_direct_reclaim(pg_data_t * pgdat)3082 static bool allow_direct_reclaim(pg_data_t *pgdat)
3083 {
3084 	struct zone *zone;
3085 	unsigned long pfmemalloc_reserve = 0;
3086 	unsigned long free_pages = 0;
3087 	int i;
3088 	bool wmark_ok;
3089 
3090 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3091 		return true;
3092 
3093 	for (i = 0; i <= ZONE_NORMAL; i++) {
3094 		zone = &pgdat->node_zones[i];
3095 		if (!managed_zone(zone))
3096 			continue;
3097 
3098 		if (!zone_reclaimable_pages(zone))
3099 			continue;
3100 
3101 		pfmemalloc_reserve += min_wmark_pages(zone);
3102 		free_pages += zone_page_state(zone, NR_FREE_PAGES);
3103 	}
3104 
3105 	/* If there are no reserves (unexpected config) then do not throttle */
3106 	if (!pfmemalloc_reserve)
3107 		return true;
3108 
3109 	wmark_ok = free_pages > pfmemalloc_reserve / 2;
3110 
3111 	/* kswapd must be awake if processes are being throttled */
3112 	if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3113 		pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3114 						(enum zone_type)ZONE_NORMAL);
3115 		wake_up_interruptible(&pgdat->kswapd_wait);
3116 	}
3117 
3118 	return wmark_ok;
3119 }
3120 
3121 /*
3122  * Throttle direct reclaimers if backing storage is backed by the network
3123  * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3124  * depleted. kswapd will continue to make progress and wake the processes
3125  * when the low watermark is reached.
3126  *
3127  * Returns true if a fatal signal was delivered during throttling. If this
3128  * happens, the page allocator should not consider triggering the OOM killer.
3129  */
throttle_direct_reclaim(gfp_t gfp_mask,struct zonelist * zonelist,nodemask_t * nodemask)3130 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3131 					nodemask_t *nodemask)
3132 {
3133 	struct zoneref *z;
3134 	struct zone *zone;
3135 	pg_data_t *pgdat = NULL;
3136 
3137 	/*
3138 	 * Kernel threads should not be throttled as they may be indirectly
3139 	 * responsible for cleaning pages necessary for reclaim to make forward
3140 	 * progress. kjournald for example may enter direct reclaim while
3141 	 * committing a transaction where throttling it could forcing other
3142 	 * processes to block on log_wait_commit().
3143 	 */
3144 	if (current->flags & PF_KTHREAD)
3145 		goto out;
3146 
3147 	/*
3148 	 * If a fatal signal is pending, this process should not throttle.
3149 	 * It should return quickly so it can exit and free its memory
3150 	 */
3151 	if (fatal_signal_pending(current))
3152 		goto out;
3153 
3154 	/*
3155 	 * Check if the pfmemalloc reserves are ok by finding the first node
3156 	 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3157 	 * GFP_KERNEL will be required for allocating network buffers when
3158 	 * swapping over the network so ZONE_HIGHMEM is unusable.
3159 	 *
3160 	 * Throttling is based on the first usable node and throttled processes
3161 	 * wait on a queue until kswapd makes progress and wakes them. There
3162 	 * is an affinity then between processes waking up and where reclaim
3163 	 * progress has been made assuming the process wakes on the same node.
3164 	 * More importantly, processes running on remote nodes will not compete
3165 	 * for remote pfmemalloc reserves and processes on different nodes
3166 	 * should make reasonable progress.
3167 	 */
3168 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
3169 					gfp_zone(gfp_mask), nodemask) {
3170 		if (zone_idx(zone) > ZONE_NORMAL)
3171 			continue;
3172 
3173 		/* Throttle based on the first usable node */
3174 		pgdat = zone->zone_pgdat;
3175 		if (allow_direct_reclaim(pgdat))
3176 			goto out;
3177 		break;
3178 	}
3179 
3180 	/* If no zone was usable by the allocation flags then do not throttle */
3181 	if (!pgdat)
3182 		goto out;
3183 
3184 	/* Account for the throttling */
3185 	count_vm_event(PGSCAN_DIRECT_THROTTLE);
3186 
3187 	/*
3188 	 * If the caller cannot enter the filesystem, it's possible that it
3189 	 * is due to the caller holding an FS lock or performing a journal
3190 	 * transaction in the case of a filesystem like ext[3|4]. In this case,
3191 	 * it is not safe to block on pfmemalloc_wait as kswapd could be
3192 	 * blocked waiting on the same lock. Instead, throttle for up to a
3193 	 * second before continuing.
3194 	 */
3195 	if (!(gfp_mask & __GFP_FS)) {
3196 		wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3197 			allow_direct_reclaim(pgdat), HZ);
3198 
3199 		goto check_pending;
3200 	}
3201 
3202 	/* Throttle until kswapd wakes the process */
3203 	wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3204 		allow_direct_reclaim(pgdat));
3205 
3206 check_pending:
3207 	if (fatal_signal_pending(current))
3208 		return true;
3209 
3210 out:
3211 	return false;
3212 }
3213 
try_to_free_pages(struct zonelist * zonelist,int order,gfp_t gfp_mask,nodemask_t * nodemask)3214 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3215 				gfp_t gfp_mask, nodemask_t *nodemask)
3216 {
3217 	unsigned long nr_reclaimed;
3218 	struct scan_control sc = {
3219 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3220 		.gfp_mask = current_gfp_context(gfp_mask),
3221 		.reclaim_idx = gfp_zone(gfp_mask),
3222 		.order = order,
3223 		.nodemask = nodemask,
3224 		.priority = DEF_PRIORITY,
3225 		.may_writepage = !laptop_mode,
3226 		.may_unmap = 1,
3227 		.may_swap = 1,
3228 	};
3229 
3230 	/*
3231 	 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3232 	 * Confirm they are large enough for max values.
3233 	 */
3234 	BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3235 	BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3236 	BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3237 
3238 	/*
3239 	 * Do not enter reclaim if fatal signal was delivered while throttled.
3240 	 * 1 is returned so that the page allocator does not OOM kill at this
3241 	 * point.
3242 	 */
3243 	if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3244 		return 1;
3245 
3246 	trace_mm_vmscan_direct_reclaim_begin(order,
3247 				sc.may_writepage,
3248 				sc.gfp_mask,
3249 				sc.reclaim_idx);
3250 
3251 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3252 
3253 	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3254 
3255 	return nr_reclaimed;
3256 }
3257 
3258 #ifdef CONFIG_MEMCG
3259 
mem_cgroup_shrink_node(struct mem_cgroup * memcg,gfp_t gfp_mask,bool noswap,pg_data_t * pgdat,unsigned long * nr_scanned)3260 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3261 						gfp_t gfp_mask, bool noswap,
3262 						pg_data_t *pgdat,
3263 						unsigned long *nr_scanned)
3264 {
3265 	struct scan_control sc = {
3266 		.nr_to_reclaim = SWAP_CLUSTER_MAX,
3267 		.target_mem_cgroup = memcg,
3268 		.may_writepage = !laptop_mode,
3269 		.may_unmap = 1,
3270 		.reclaim_idx = MAX_NR_ZONES - 1,
3271 		.may_swap = !noswap,
3272 	};
3273 	unsigned long lru_pages;
3274 
3275 	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3276 			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3277 
3278 	trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3279 						      sc.may_writepage,
3280 						      sc.gfp_mask,
3281 						      sc.reclaim_idx);
3282 
3283 	/*
3284 	 * NOTE: Although we can get the priority field, using it
3285 	 * here is not a good idea, since it limits the pages we can scan.
3286 	 * if we don't reclaim here, the shrink_node from balance_pgdat
3287 	 * will pick up pages from other mem cgroup's as well. We hack
3288 	 * the priority and make it zero.
3289 	 */
3290 	shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3291 
3292 	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3293 
3294 	*nr_scanned = sc.nr_scanned;
3295 	return sc.nr_reclaimed;
3296 }
3297 
try_to_free_mem_cgroup_pages(struct mem_cgroup * memcg,unsigned long nr_pages,gfp_t gfp_mask,bool may_swap)3298 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3299 					   unsigned long nr_pages,
3300 					   gfp_t gfp_mask,
3301 					   bool may_swap)
3302 {
3303 	struct zonelist *zonelist;
3304 	unsigned long nr_reclaimed;
3305 	int nid;
3306 	unsigned int noreclaim_flag;
3307 	struct scan_control sc = {
3308 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3309 		.gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3310 				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3311 		.reclaim_idx = MAX_NR_ZONES - 1,
3312 		.target_mem_cgroup = memcg,
3313 		.priority = DEF_PRIORITY,
3314 		.may_writepage = !laptop_mode,
3315 		.may_unmap = 1,
3316 		.may_swap = may_swap,
3317 	};
3318 
3319 	/*
3320 	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3321 	 * take care of from where we get pages. So the node where we start the
3322 	 * scan does not need to be the current node.
3323 	 */
3324 	nid = mem_cgroup_select_victim_node(memcg);
3325 
3326 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3327 
3328 	trace_mm_vmscan_memcg_reclaim_begin(0,
3329 					    sc.may_writepage,
3330 					    sc.gfp_mask,
3331 					    sc.reclaim_idx);
3332 
3333 	noreclaim_flag = memalloc_noreclaim_save();
3334 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3335 	memalloc_noreclaim_restore(noreclaim_flag);
3336 
3337 	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3338 
3339 	return nr_reclaimed;
3340 }
3341 #endif
3342 
age_active_anon(struct pglist_data * pgdat,struct scan_control * sc)3343 static void age_active_anon(struct pglist_data *pgdat,
3344 				struct scan_control *sc)
3345 {
3346 	struct mem_cgroup *memcg;
3347 
3348 	if (!total_swap_pages)
3349 		return;
3350 
3351 	memcg = mem_cgroup_iter(NULL, NULL, NULL);
3352 	do {
3353 		struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3354 
3355 		if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3356 			shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3357 					   sc, LRU_ACTIVE_ANON);
3358 
3359 		memcg = mem_cgroup_iter(NULL, memcg, NULL);
3360 	} while (memcg);
3361 }
3362 
3363 /*
3364  * Returns true if there is an eligible zone balanced for the request order
3365  * and classzone_idx
3366  */
pgdat_balanced(pg_data_t * pgdat,int order,int classzone_idx)3367 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3368 {
3369 	int i;
3370 	unsigned long mark = -1;
3371 	struct zone *zone;
3372 
3373 	for (i = 0; i <= classzone_idx; i++) {
3374 		zone = pgdat->node_zones + i;
3375 
3376 		if (!managed_zone(zone))
3377 			continue;
3378 
3379 		mark = high_wmark_pages(zone);
3380 		if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3381 			return true;
3382 	}
3383 
3384 	/*
3385 	 * If a node has no populated zone within classzone_idx, it does not
3386 	 * need balancing by definition. This can happen if a zone-restricted
3387 	 * allocation tries to wake a remote kswapd.
3388 	 */
3389 	if (mark == -1)
3390 		return true;
3391 
3392 	return false;
3393 }
3394 
3395 /* Clear pgdat state for congested, dirty or under writeback. */
clear_pgdat_congested(pg_data_t * pgdat)3396 static void clear_pgdat_congested(pg_data_t *pgdat)
3397 {
3398 	clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3399 	clear_bit(PGDAT_DIRTY, &pgdat->flags);
3400 	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3401 }
3402 
3403 /*
3404  * Prepare kswapd for sleeping. This verifies that there are no processes
3405  * waiting in throttle_direct_reclaim() and that watermarks have been met.
3406  *
3407  * Returns true if kswapd is ready to sleep
3408  */
prepare_kswapd_sleep(pg_data_t * pgdat,int order,int classzone_idx)3409 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3410 {
3411 	/*
3412 	 * The throttled processes are normally woken up in balance_pgdat() as
3413 	 * soon as allow_direct_reclaim() is true. But there is a potential
3414 	 * race between when kswapd checks the watermarks and a process gets
3415 	 * throttled. There is also a potential race if processes get
3416 	 * throttled, kswapd wakes, a large process exits thereby balancing the
3417 	 * zones, which causes kswapd to exit balance_pgdat() before reaching
3418 	 * the wake up checks. If kswapd is going to sleep, no process should
3419 	 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3420 	 * the wake up is premature, processes will wake kswapd and get
3421 	 * throttled again. The difference from wake ups in balance_pgdat() is
3422 	 * that here we are under prepare_to_wait().
3423 	 */
3424 	if (waitqueue_active(&pgdat->pfmemalloc_wait))
3425 		wake_up_all(&pgdat->pfmemalloc_wait);
3426 
3427 	/* Hopeless node, leave it to direct reclaim */
3428 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3429 		return true;
3430 
3431 	if (pgdat_balanced(pgdat, order, classzone_idx)) {
3432 		clear_pgdat_congested(pgdat);
3433 		return true;
3434 	}
3435 
3436 	return false;
3437 }
3438 
3439 /*
3440  * kswapd shrinks a node of pages that are at or below the highest usable
3441  * zone that is currently unbalanced.
3442  *
3443  * Returns true if kswapd scanned at least the requested number of pages to
3444  * reclaim or if the lack of progress was due to pages under writeback.
3445  * This is used to determine if the scanning priority needs to be raised.
3446  */
kswapd_shrink_node(pg_data_t * pgdat,struct scan_control * sc)3447 static bool kswapd_shrink_node(pg_data_t *pgdat,
3448 			       struct scan_control *sc)
3449 {
3450 	struct zone *zone;
3451 	int z;
3452 
3453 	/* Reclaim a number of pages proportional to the number of zones */
3454 	sc->nr_to_reclaim = 0;
3455 	for (z = 0; z <= sc->reclaim_idx; z++) {
3456 		zone = pgdat->node_zones + z;
3457 		if (!managed_zone(zone))
3458 			continue;
3459 
3460 		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3461 	}
3462 
3463 	/*
3464 	 * Historically care was taken to put equal pressure on all zones but
3465 	 * now pressure is applied based on node LRU order.
3466 	 */
3467 	shrink_node(pgdat, sc);
3468 
3469 	/*
3470 	 * Fragmentation may mean that the system cannot be rebalanced for
3471 	 * high-order allocations. If twice the allocation size has been
3472 	 * reclaimed then recheck watermarks only at order-0 to prevent
3473 	 * excessive reclaim. Assume that a process requested a high-order
3474 	 * can direct reclaim/compact.
3475 	 */
3476 	if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3477 		sc->order = 0;
3478 
3479 	return sc->nr_scanned >= sc->nr_to_reclaim;
3480 }
3481 
3482 /*
3483  * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3484  * that are eligible for use by the caller until at least one zone is
3485  * balanced.
3486  *
3487  * Returns the order kswapd finished reclaiming at.
3488  *
3489  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3490  * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3491  * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3492  * or lower is eligible for reclaim until at least one usable zone is
3493  * balanced.
3494  */
balance_pgdat(pg_data_t * pgdat,int order,int classzone_idx)3495 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3496 {
3497 	int i;
3498 	unsigned long nr_soft_reclaimed;
3499 	unsigned long nr_soft_scanned;
3500 	struct zone *zone;
3501 	struct scan_control sc = {
3502 		.gfp_mask = GFP_KERNEL,
3503 		.order = order,
3504 		.priority = DEF_PRIORITY,
3505 		.may_writepage = !laptop_mode,
3506 		.may_unmap = 1,
3507 		.may_swap = 1,
3508 	};
3509 
3510 	__fs_reclaim_acquire();
3511 
3512 	count_vm_event(PAGEOUTRUN);
3513 
3514 	do {
3515 		unsigned long nr_reclaimed = sc.nr_reclaimed;
3516 		bool raise_priority = true;
3517 		bool ret;
3518 
3519 		sc.reclaim_idx = classzone_idx;
3520 
3521 		/*
3522 		 * If the number of buffer_heads exceeds the maximum allowed
3523 		 * then consider reclaiming from all zones. This has a dual
3524 		 * purpose -- on 64-bit systems it is expected that
3525 		 * buffer_heads are stripped during active rotation. On 32-bit
3526 		 * systems, highmem pages can pin lowmem memory and shrinking
3527 		 * buffers can relieve lowmem pressure. Reclaim may still not
3528 		 * go ahead if all eligible zones for the original allocation
3529 		 * request are balanced to avoid excessive reclaim from kswapd.
3530 		 */
3531 		if (buffer_heads_over_limit) {
3532 			for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3533 				zone = pgdat->node_zones + i;
3534 				if (!managed_zone(zone))
3535 					continue;
3536 
3537 				sc.reclaim_idx = i;
3538 				break;
3539 			}
3540 		}
3541 
3542 		/*
3543 		 * Only reclaim if there are no eligible zones. Note that
3544 		 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3545 		 * have adjusted it.
3546 		 */
3547 		if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3548 			goto out;
3549 
3550 		/*
3551 		 * Do some background aging of the anon list, to give
3552 		 * pages a chance to be referenced before reclaiming. All
3553 		 * pages are rotated regardless of classzone as this is
3554 		 * about consistent aging.
3555 		 */
3556 		age_active_anon(pgdat, &sc);
3557 
3558 		/*
3559 		 * If we're getting trouble reclaiming, start doing writepage
3560 		 * even in laptop mode.
3561 		 */
3562 		if (sc.priority < DEF_PRIORITY - 2)
3563 			sc.may_writepage = 1;
3564 
3565 		/* Call soft limit reclaim before calling shrink_node. */
3566 		sc.nr_scanned = 0;
3567 		nr_soft_scanned = 0;
3568 		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3569 						sc.gfp_mask, &nr_soft_scanned);
3570 		sc.nr_reclaimed += nr_soft_reclaimed;
3571 
3572 		/*
3573 		 * There should be no need to raise the scanning priority if
3574 		 * enough pages are already being scanned that that high
3575 		 * watermark would be met at 100% efficiency.
3576 		 */
3577 		if (kswapd_shrink_node(pgdat, &sc))
3578 			raise_priority = false;
3579 
3580 		/*
3581 		 * If the low watermark is met there is no need for processes
3582 		 * to be throttled on pfmemalloc_wait as they should not be
3583 		 * able to safely make forward progress. Wake them
3584 		 */
3585 		if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3586 				allow_direct_reclaim(pgdat))
3587 			wake_up_all(&pgdat->pfmemalloc_wait);
3588 
3589 		/* Check if kswapd should be suspending */
3590 		__fs_reclaim_release();
3591 		ret = try_to_freeze();
3592 		__fs_reclaim_acquire();
3593 		if (ret || kthread_should_stop())
3594 			break;
3595 
3596 		/*
3597 		 * Raise priority if scanning rate is too low or there was no
3598 		 * progress in reclaiming pages
3599 		 */
3600 		nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3601 		if (raise_priority || !nr_reclaimed)
3602 			sc.priority--;
3603 	} while (sc.priority >= 1);
3604 
3605 	if (!sc.nr_reclaimed)
3606 		pgdat->kswapd_failures++;
3607 
3608 out:
3609 	snapshot_refaults(NULL, pgdat);
3610 	__fs_reclaim_release();
3611 	/*
3612 	 * Return the order kswapd stopped reclaiming at as
3613 	 * prepare_kswapd_sleep() takes it into account. If another caller
3614 	 * entered the allocator slow path while kswapd was awake, order will
3615 	 * remain at the higher level.
3616 	 */
3617 	return sc.order;
3618 }
3619 
3620 /*
3621  * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3622  * allocation request woke kswapd for. When kswapd has not woken recently,
3623  * the value is MAX_NR_ZONES which is not a valid index. This compares a
3624  * given classzone and returns it or the highest classzone index kswapd
3625  * was recently woke for.
3626  */
kswapd_classzone_idx(pg_data_t * pgdat,enum zone_type classzone_idx)3627 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3628 					   enum zone_type classzone_idx)
3629 {
3630 	if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3631 		return classzone_idx;
3632 
3633 	return max(pgdat->kswapd_classzone_idx, classzone_idx);
3634 }
3635 
kswapd_try_to_sleep(pg_data_t * pgdat,int alloc_order,int reclaim_order,unsigned int classzone_idx)3636 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3637 				unsigned int classzone_idx)
3638 {
3639 	long remaining = 0;
3640 	DEFINE_WAIT(wait);
3641 
3642 	if (freezing(current) || kthread_should_stop())
3643 		return;
3644 
3645 	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3646 
3647 	/*
3648 	 * Try to sleep for a short interval. Note that kcompactd will only be
3649 	 * woken if it is possible to sleep for a short interval. This is
3650 	 * deliberate on the assumption that if reclaim cannot keep an
3651 	 * eligible zone balanced that it's also unlikely that compaction will
3652 	 * succeed.
3653 	 */
3654 	if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3655 		/*
3656 		 * Compaction records what page blocks it recently failed to
3657 		 * isolate pages from and skips them in the future scanning.
3658 		 * When kswapd is going to sleep, it is reasonable to assume
3659 		 * that pages and compaction may succeed so reset the cache.
3660 		 */
3661 		reset_isolation_suitable(pgdat);
3662 
3663 		/*
3664 		 * We have freed the memory, now we should compact it to make
3665 		 * allocation of the requested order possible.
3666 		 */
3667 		wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3668 
3669 		remaining = schedule_timeout(HZ/10);
3670 
3671 		/*
3672 		 * If woken prematurely then reset kswapd_classzone_idx and
3673 		 * order. The values will either be from a wakeup request or
3674 		 * the previous request that slept prematurely.
3675 		 */
3676 		if (remaining) {
3677 			pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3678 			pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3679 		}
3680 
3681 		finish_wait(&pgdat->kswapd_wait, &wait);
3682 		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3683 	}
3684 
3685 	/*
3686 	 * After a short sleep, check if it was a premature sleep. If not, then
3687 	 * go fully to sleep until explicitly woken up.
3688 	 */
3689 	if (!remaining &&
3690 	    prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3691 		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3692 
3693 		/*
3694 		 * vmstat counters are not perfectly accurate and the estimated
3695 		 * value for counters such as NR_FREE_PAGES can deviate from the
3696 		 * true value by nr_online_cpus * threshold. To avoid the zone
3697 		 * watermarks being breached while under pressure, we reduce the
3698 		 * per-cpu vmstat threshold while kswapd is awake and restore
3699 		 * them before going back to sleep.
3700 		 */
3701 		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3702 
3703 		if (!kthread_should_stop())
3704 			schedule();
3705 
3706 		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3707 	} else {
3708 		if (remaining)
3709 			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3710 		else
3711 			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3712 	}
3713 	finish_wait(&pgdat->kswapd_wait, &wait);
3714 }
3715 
3716 /*
3717  * The background pageout daemon, started as a kernel thread
3718  * from the init process.
3719  *
3720  * This basically trickles out pages so that we have _some_
3721  * free memory available even if there is no other activity
3722  * that frees anything up. This is needed for things like routing
3723  * etc, where we otherwise might have all activity going on in
3724  * asynchronous contexts that cannot page things out.
3725  *
3726  * If there are applications that are active memory-allocators
3727  * (most normal use), this basically shouldn't matter.
3728  */
kswapd(void * p)3729 static int kswapd(void *p)
3730 {
3731 	unsigned int alloc_order, reclaim_order;
3732 	unsigned int classzone_idx = MAX_NR_ZONES - 1;
3733 	pg_data_t *pgdat = (pg_data_t*)p;
3734 	struct task_struct *tsk = current;
3735 
3736 	struct reclaim_state reclaim_state = {
3737 		.reclaimed_slab = 0,
3738 	};
3739 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3740 
3741 	if (!cpumask_empty(cpumask))
3742 		set_cpus_allowed_ptr(tsk, cpumask);
3743 	current->reclaim_state = &reclaim_state;
3744 
3745 	/*
3746 	 * Tell the memory management that we're a "memory allocator",
3747 	 * and that if we need more memory we should get access to it
3748 	 * regardless (see "__alloc_pages()"). "kswapd" should
3749 	 * never get caught in the normal page freeing logic.
3750 	 *
3751 	 * (Kswapd normally doesn't need memory anyway, but sometimes
3752 	 * you need a small amount of memory in order to be able to
3753 	 * page out something else, and this flag essentially protects
3754 	 * us from recursively trying to free more memory as we're
3755 	 * trying to free the first piece of memory in the first place).
3756 	 */
3757 	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3758 	set_freezable();
3759 
3760 	pgdat->kswapd_order = 0;
3761 	pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3762 	for ( ; ; ) {
3763 		bool ret;
3764 
3765 		alloc_order = reclaim_order = pgdat->kswapd_order;
3766 		classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3767 
3768 kswapd_try_sleep:
3769 		kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3770 					classzone_idx);
3771 
3772 		/* Read the new order and classzone_idx */
3773 		alloc_order = reclaim_order = pgdat->kswapd_order;
3774 		classzone_idx = kswapd_classzone_idx(pgdat, 0);
3775 		pgdat->kswapd_order = 0;
3776 		pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3777 
3778 		ret = try_to_freeze();
3779 		if (kthread_should_stop())
3780 			break;
3781 
3782 		/*
3783 		 * We can speed up thawing tasks if we don't call balance_pgdat
3784 		 * after returning from the refrigerator
3785 		 */
3786 		if (ret)
3787 			continue;
3788 
3789 		/*
3790 		 * Reclaim begins at the requested order but if a high-order
3791 		 * reclaim fails then kswapd falls back to reclaiming for
3792 		 * order-0. If that happens, kswapd will consider sleeping
3793 		 * for the order it finished reclaiming at (reclaim_order)
3794 		 * but kcompactd is woken to compact for the original
3795 		 * request (alloc_order).
3796 		 */
3797 		trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3798 						alloc_order);
3799 		reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3800 		if (reclaim_order < alloc_order)
3801 			goto kswapd_try_sleep;
3802 	}
3803 
3804 	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3805 	current->reclaim_state = NULL;
3806 
3807 	return 0;
3808 }
3809 
3810 /*
3811  * A zone is low on free memory or too fragmented for high-order memory.  If
3812  * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3813  * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3814  * has failed or is not needed, still wake up kcompactd if only compaction is
3815  * needed.
3816  */
wakeup_kswapd(struct zone * zone,gfp_t gfp_flags,int order,enum zone_type classzone_idx)3817 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3818 		   enum zone_type classzone_idx)
3819 {
3820 	pg_data_t *pgdat;
3821 
3822 	if (!managed_zone(zone))
3823 		return;
3824 
3825 	if (!cpuset_zone_allowed(zone, gfp_flags))
3826 		return;
3827 	pgdat = zone->zone_pgdat;
3828 	pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3829 							   classzone_idx);
3830 	pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3831 	if (!waitqueue_active(&pgdat->kswapd_wait))
3832 		return;
3833 
3834 	/* Hopeless node, leave it to direct reclaim if possible */
3835 	if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3836 	    pgdat_balanced(pgdat, order, classzone_idx)) {
3837 		/*
3838 		 * There may be plenty of free memory available, but it's too
3839 		 * fragmented for high-order allocations.  Wake up kcompactd
3840 		 * and rely on compaction_suitable() to determine if it's
3841 		 * needed.  If it fails, it will defer subsequent attempts to
3842 		 * ratelimit its work.
3843 		 */
3844 		if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3845 			wakeup_kcompactd(pgdat, order, classzone_idx);
3846 		return;
3847 	}
3848 
3849 	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3850 				      gfp_flags);
3851 	wake_up_interruptible(&pgdat->kswapd_wait);
3852 }
3853 
3854 #ifdef CONFIG_HIBERNATION
3855 /*
3856  * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3857  * freed pages.
3858  *
3859  * Rather than trying to age LRUs the aim is to preserve the overall
3860  * LRU order by reclaiming preferentially
3861  * inactive > active > active referenced > active mapped
3862  */
shrink_all_memory(unsigned long nr_to_reclaim)3863 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3864 {
3865 	struct reclaim_state reclaim_state;
3866 	struct scan_control sc = {
3867 		.nr_to_reclaim = nr_to_reclaim,
3868 		.gfp_mask = GFP_HIGHUSER_MOVABLE,
3869 		.reclaim_idx = MAX_NR_ZONES - 1,
3870 		.priority = DEF_PRIORITY,
3871 		.may_writepage = 1,
3872 		.may_unmap = 1,
3873 		.may_swap = 1,
3874 		.hibernation_mode = 1,
3875 	};
3876 	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3877 	struct task_struct *p = current;
3878 	unsigned long nr_reclaimed;
3879 	unsigned int noreclaim_flag;
3880 
3881 	fs_reclaim_acquire(sc.gfp_mask);
3882 	noreclaim_flag = memalloc_noreclaim_save();
3883 	reclaim_state.reclaimed_slab = 0;
3884 	p->reclaim_state = &reclaim_state;
3885 
3886 	nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3887 
3888 	p->reclaim_state = NULL;
3889 	memalloc_noreclaim_restore(noreclaim_flag);
3890 	fs_reclaim_release(sc.gfp_mask);
3891 
3892 	return nr_reclaimed;
3893 }
3894 #endif /* CONFIG_HIBERNATION */
3895 
3896 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3897    not required for correctness.  So if the last cpu in a node goes
3898    away, we get changed to run anywhere: as the first one comes back,
3899    restore their cpu bindings. */
kswapd_cpu_online(unsigned int cpu)3900 static int kswapd_cpu_online(unsigned int cpu)
3901 {
3902 	int nid;
3903 
3904 	for_each_node_state(nid, N_MEMORY) {
3905 		pg_data_t *pgdat = NODE_DATA(nid);
3906 		const struct cpumask *mask;
3907 
3908 		mask = cpumask_of_node(pgdat->node_id);
3909 
3910 		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3911 			/* One of our CPUs online: restore mask */
3912 			set_cpus_allowed_ptr(pgdat->kswapd, mask);
3913 	}
3914 	return 0;
3915 }
3916 
3917 /*
3918  * This kswapd start function will be called by init and node-hot-add.
3919  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3920  */
kswapd_run(int nid)3921 int kswapd_run(int nid)
3922 {
3923 	pg_data_t *pgdat = NODE_DATA(nid);
3924 	int ret = 0;
3925 
3926 	if (pgdat->kswapd)
3927 		return 0;
3928 
3929 	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3930 	if (IS_ERR(pgdat->kswapd)) {
3931 		/* failure at boot is fatal */
3932 		BUG_ON(system_state < SYSTEM_RUNNING);
3933 		pr_err("Failed to start kswapd on node %d\n", nid);
3934 		ret = PTR_ERR(pgdat->kswapd);
3935 		pgdat->kswapd = NULL;
3936 	}
3937 	return ret;
3938 }
3939 
3940 /*
3941  * Called by memory hotplug when all memory in a node is offlined.  Caller must
3942  * hold mem_hotplug_begin/end().
3943  */
kswapd_stop(int nid)3944 void kswapd_stop(int nid)
3945 {
3946 	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3947 
3948 	if (kswapd) {
3949 		kthread_stop(kswapd);
3950 		NODE_DATA(nid)->kswapd = NULL;
3951 	}
3952 }
3953 
kswapd_init(void)3954 static int __init kswapd_init(void)
3955 {
3956 	int nid, ret;
3957 
3958 	swap_setup();
3959 	for_each_node_state(nid, N_MEMORY)
3960  		kswapd_run(nid);
3961 	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3962 					"mm/vmscan:online", kswapd_cpu_online,
3963 					NULL);
3964 	WARN_ON(ret < 0);
3965 	return 0;
3966 }
3967 
3968 module_init(kswapd_init)
3969 
3970 #ifdef CONFIG_NUMA
3971 /*
3972  * Node reclaim mode
3973  *
3974  * If non-zero call node_reclaim when the number of free pages falls below
3975  * the watermarks.
3976  */
3977 int node_reclaim_mode __read_mostly;
3978 
3979 #define RECLAIM_OFF 0
3980 #define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
3981 #define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
3982 #define RECLAIM_UNMAP (1<<2)	/* Unmap pages during reclaim */
3983 
3984 /*
3985  * Priority for NODE_RECLAIM. This determines the fraction of pages
3986  * of a node considered for each zone_reclaim. 4 scans 1/16th of
3987  * a zone.
3988  */
3989 #define NODE_RECLAIM_PRIORITY 4
3990 
3991 /*
3992  * Percentage of pages in a zone that must be unmapped for node_reclaim to
3993  * occur.
3994  */
3995 int sysctl_min_unmapped_ratio = 1;
3996 
3997 /*
3998  * If the number of slab pages in a zone grows beyond this percentage then
3999  * slab reclaim needs to occur.
4000  */
4001 int sysctl_min_slab_ratio = 5;
4002 
node_unmapped_file_pages(struct pglist_data * pgdat)4003 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4004 {
4005 	unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4006 	unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4007 		node_page_state(pgdat, NR_ACTIVE_FILE);
4008 
4009 	/*
4010 	 * It's possible for there to be more file mapped pages than
4011 	 * accounted for by the pages on the file LRU lists because
4012 	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4013 	 */
4014 	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4015 }
4016 
4017 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
node_pagecache_reclaimable(struct pglist_data * pgdat)4018 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4019 {
4020 	unsigned long nr_pagecache_reclaimable;
4021 	unsigned long delta = 0;
4022 
4023 	/*
4024 	 * If RECLAIM_UNMAP is set, then all file pages are considered
4025 	 * potentially reclaimable. Otherwise, we have to worry about
4026 	 * pages like swapcache and node_unmapped_file_pages() provides
4027 	 * a better estimate
4028 	 */
4029 	if (node_reclaim_mode & RECLAIM_UNMAP)
4030 		nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4031 	else
4032 		nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4033 
4034 	/* If we can't clean pages, remove dirty pages from consideration */
4035 	if (!(node_reclaim_mode & RECLAIM_WRITE))
4036 		delta += node_page_state(pgdat, NR_FILE_DIRTY);
4037 
4038 	/* Watch for any possible underflows due to delta */
4039 	if (unlikely(delta > nr_pagecache_reclaimable))
4040 		delta = nr_pagecache_reclaimable;
4041 
4042 	return nr_pagecache_reclaimable - delta;
4043 }
4044 
4045 /*
4046  * Try to free up some pages from this node through reclaim.
4047  */
__node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4048 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4049 {
4050 	/* Minimum pages needed in order to stay on node */
4051 	const unsigned long nr_pages = 1 << order;
4052 	struct task_struct *p = current;
4053 	struct reclaim_state reclaim_state;
4054 	unsigned int noreclaim_flag;
4055 	struct scan_control sc = {
4056 		.nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4057 		.gfp_mask = current_gfp_context(gfp_mask),
4058 		.order = order,
4059 		.priority = NODE_RECLAIM_PRIORITY,
4060 		.may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4061 		.may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4062 		.may_swap = 1,
4063 		.reclaim_idx = gfp_zone(gfp_mask),
4064 	};
4065 
4066 	cond_resched();
4067 	fs_reclaim_acquire(sc.gfp_mask);
4068 	/*
4069 	 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4070 	 * and we also need to be able to write out pages for RECLAIM_WRITE
4071 	 * and RECLAIM_UNMAP.
4072 	 */
4073 	noreclaim_flag = memalloc_noreclaim_save();
4074 	p->flags |= PF_SWAPWRITE;
4075 	reclaim_state.reclaimed_slab = 0;
4076 	p->reclaim_state = &reclaim_state;
4077 
4078 	if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4079 		/*
4080 		 * Free memory by calling shrink node with increasing
4081 		 * priorities until we have enough memory freed.
4082 		 */
4083 		do {
4084 			shrink_node(pgdat, &sc);
4085 		} while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4086 	}
4087 
4088 	p->reclaim_state = NULL;
4089 	current->flags &= ~PF_SWAPWRITE;
4090 	memalloc_noreclaim_restore(noreclaim_flag);
4091 	fs_reclaim_release(sc.gfp_mask);
4092 	return sc.nr_reclaimed >= nr_pages;
4093 }
4094 
node_reclaim(struct pglist_data * pgdat,gfp_t gfp_mask,unsigned int order)4095 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4096 {
4097 	int ret;
4098 
4099 	/*
4100 	 * Node reclaim reclaims unmapped file backed pages and
4101 	 * slab pages if we are over the defined limits.
4102 	 *
4103 	 * A small portion of unmapped file backed pages is needed for
4104 	 * file I/O otherwise pages read by file I/O will be immediately
4105 	 * thrown out if the node is overallocated. So we do not reclaim
4106 	 * if less than a specified percentage of the node is used by
4107 	 * unmapped file backed pages.
4108 	 */
4109 	if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4110 	    node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4111 		return NODE_RECLAIM_FULL;
4112 
4113 	/*
4114 	 * Do not scan if the allocation should not be delayed.
4115 	 */
4116 	if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4117 		return NODE_RECLAIM_NOSCAN;
4118 
4119 	/*
4120 	 * Only run node reclaim on the local node or on nodes that do not
4121 	 * have associated processors. This will favor the local processor
4122 	 * over remote processors and spread off node memory allocations
4123 	 * as wide as possible.
4124 	 */
4125 	if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4126 		return NODE_RECLAIM_NOSCAN;
4127 
4128 	if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4129 		return NODE_RECLAIM_NOSCAN;
4130 
4131 	ret = __node_reclaim(pgdat, gfp_mask, order);
4132 	clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4133 
4134 	if (!ret)
4135 		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4136 
4137 	return ret;
4138 }
4139 #endif
4140 
4141 /*
4142  * page_evictable - test whether a page is evictable
4143  * @page: the page to test
4144  *
4145  * Test whether page is evictable--i.e., should be placed on active/inactive
4146  * lists vs unevictable list.
4147  *
4148  * Reasons page might not be evictable:
4149  * (1) page's mapping marked unevictable
4150  * (2) page is part of an mlocked VMA
4151  *
4152  */
page_evictable(struct page * page)4153 int page_evictable(struct page *page)
4154 {
4155 	int ret;
4156 
4157 	/* Prevent address_space of inode and swap cache from being freed */
4158 	rcu_read_lock();
4159 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4160 	rcu_read_unlock();
4161 	return ret;
4162 }
4163 
4164 #ifdef CONFIG_SHMEM
4165 /**
4166  * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4167  * @pages:	array of pages to check
4168  * @nr_pages:	number of pages to check
4169  *
4170  * Checks pages for evictability and moves them to the appropriate lru list.
4171  *
4172  * This function is only used for SysV IPC SHM_UNLOCK.
4173  */
check_move_unevictable_pages(struct page ** pages,int nr_pages)4174 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4175 {
4176 	struct lruvec *lruvec;
4177 	struct pglist_data *pgdat = NULL;
4178 	int pgscanned = 0;
4179 	int pgrescued = 0;
4180 	int i;
4181 
4182 	for (i = 0; i < nr_pages; i++) {
4183 		struct page *page = pages[i];
4184 		struct pglist_data *pagepgdat = page_pgdat(page);
4185 
4186 		pgscanned++;
4187 		if (pagepgdat != pgdat) {
4188 			if (pgdat)
4189 				spin_unlock_irq(&pgdat->lru_lock);
4190 			pgdat = pagepgdat;
4191 			spin_lock_irq(&pgdat->lru_lock);
4192 		}
4193 		lruvec = mem_cgroup_page_lruvec(page, pgdat);
4194 
4195 		if (!PageLRU(page) || !PageUnevictable(page))
4196 			continue;
4197 
4198 		if (page_evictable(page)) {
4199 			enum lru_list lru = page_lru_base_type(page);
4200 
4201 			VM_BUG_ON_PAGE(PageActive(page), page);
4202 			ClearPageUnevictable(page);
4203 			del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4204 			add_page_to_lru_list(page, lruvec, lru);
4205 			pgrescued++;
4206 		}
4207 	}
4208 
4209 	if (pgdat) {
4210 		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4211 		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4212 		spin_unlock_irq(&pgdat->lru_lock);
4213 	}
4214 }
4215 #endif /* CONFIG_SHMEM */
4216