1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * sparse memory mappings.
4 */
5 #include <linux/mm.h>
6 #include <linux/slab.h>
7 #include <linux/mmzone.h>
8 #include <linux/bootmem.h>
9 #include <linux/compiler.h>
10 #include <linux/highmem.h>
11 #include <linux/export.h>
12 #include <linux/spinlock.h>
13 #include <linux/vmalloc.h>
14
15 #include "internal.h"
16 #include <asm/dma.h>
17 #include <asm/pgalloc.h>
18 #include <asm/pgtable.h>
19
20 /*
21 * Permanent SPARSEMEM data:
22 *
23 * 1) mem_section - memory sections, mem_map's for valid memory
24 */
25 #ifdef CONFIG_SPARSEMEM_EXTREME
26 struct mem_section **mem_section;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
32
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
34 /*
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
38 */
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
44
page_to_nid(const struct page * page)45 int page_to_nid(const struct page *page)
46 {
47 return section_to_node_table[page_to_section(page)];
48 }
49 EXPORT_SYMBOL(page_to_nid);
50
set_section_nid(unsigned long section_nr,int nid)51 static void set_section_nid(unsigned long section_nr, int nid)
52 {
53 section_to_node_table[section_nr] = nid;
54 }
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
set_section_nid(unsigned long section_nr,int nid)56 static inline void set_section_nid(unsigned long section_nr, int nid)
57 {
58 }
59 #endif
60
61 #ifdef CONFIG_SPARSEMEM_EXTREME
sparse_index_alloc(int nid)62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
63 {
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
67
68 if (slab_is_available())
69 section = kzalloc_node(array_size, GFP_KERNEL, nid);
70 else
71 section = memblock_virt_alloc_node(array_size, nid);
72
73 return section;
74 }
75
sparse_index_init(unsigned long section_nr,int nid)76 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
77 {
78 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
79 struct mem_section *section;
80
81 if (mem_section[root])
82 return -EEXIST;
83
84 section = sparse_index_alloc(nid);
85 if (!section)
86 return -ENOMEM;
87
88 mem_section[root] = section;
89
90 return 0;
91 }
92 #else /* !SPARSEMEM_EXTREME */
sparse_index_init(unsigned long section_nr,int nid)93 static inline int sparse_index_init(unsigned long section_nr, int nid)
94 {
95 return 0;
96 }
97 #endif
98
99 #ifdef CONFIG_SPARSEMEM_EXTREME
__section_nr(struct mem_section * ms)100 int __section_nr(struct mem_section* ms)
101 {
102 unsigned long root_nr;
103 struct mem_section *root = NULL;
104
105 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
106 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
107 if (!root)
108 continue;
109
110 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
111 break;
112 }
113
114 VM_BUG_ON(!root);
115
116 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
117 }
118 #else
__section_nr(struct mem_section * ms)119 int __section_nr(struct mem_section* ms)
120 {
121 return (int)(ms - mem_section[0]);
122 }
123 #endif
124
125 /*
126 * During early boot, before section_mem_map is used for an actual
127 * mem_map, we use section_mem_map to store the section's NUMA
128 * node. This keeps us from having to use another data structure. The
129 * node information is cleared just before we store the real mem_map.
130 */
sparse_encode_early_nid(int nid)131 static inline unsigned long sparse_encode_early_nid(int nid)
132 {
133 return (nid << SECTION_NID_SHIFT);
134 }
135
sparse_early_nid(struct mem_section * section)136 static inline int sparse_early_nid(struct mem_section *section)
137 {
138 return (section->section_mem_map >> SECTION_NID_SHIFT);
139 }
140
141 /* Validate the physical addressing limitations of the model */
mminit_validate_memmodel_limits(unsigned long * start_pfn,unsigned long * end_pfn)142 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
143 unsigned long *end_pfn)
144 {
145 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
146
147 /*
148 * Sanity checks - do not allow an architecture to pass
149 * in larger pfns than the maximum scope of sparsemem:
150 */
151 if (*start_pfn > max_sparsemem_pfn) {
152 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
153 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
154 *start_pfn, *end_pfn, max_sparsemem_pfn);
155 WARN_ON_ONCE(1);
156 *start_pfn = max_sparsemem_pfn;
157 *end_pfn = max_sparsemem_pfn;
158 } else if (*end_pfn > max_sparsemem_pfn) {
159 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
160 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
161 *start_pfn, *end_pfn, max_sparsemem_pfn);
162 WARN_ON_ONCE(1);
163 *end_pfn = max_sparsemem_pfn;
164 }
165 }
166
167 /*
168 * There are a number of times that we loop over NR_MEM_SECTIONS,
169 * looking for section_present() on each. But, when we have very
170 * large physical address spaces, NR_MEM_SECTIONS can also be
171 * very large which makes the loops quite long.
172 *
173 * Keeping track of this gives us an easy way to break out of
174 * those loops early.
175 */
176 int __highest_present_section_nr;
section_mark_present(struct mem_section * ms)177 static void section_mark_present(struct mem_section *ms)
178 {
179 int section_nr = __section_nr(ms);
180
181 if (section_nr > __highest_present_section_nr)
182 __highest_present_section_nr = section_nr;
183
184 ms->section_mem_map |= SECTION_MARKED_PRESENT;
185 }
186
next_present_section_nr(int section_nr)187 static inline int next_present_section_nr(int section_nr)
188 {
189 do {
190 section_nr++;
191 if (present_section_nr(section_nr))
192 return section_nr;
193 } while ((section_nr <= __highest_present_section_nr));
194
195 return -1;
196 }
197 #define for_each_present_section_nr(start, section_nr) \
198 for (section_nr = next_present_section_nr(start-1); \
199 ((section_nr >= 0) && \
200 (section_nr <= __highest_present_section_nr)); \
201 section_nr = next_present_section_nr(section_nr))
202
first_present_section_nr(void)203 static inline unsigned long first_present_section_nr(void)
204 {
205 return next_present_section_nr(-1);
206 }
207
208 /* Record a memory area against a node. */
memory_present(int nid,unsigned long start,unsigned long end)209 void __init memory_present(int nid, unsigned long start, unsigned long end)
210 {
211 unsigned long pfn;
212
213 #ifdef CONFIG_SPARSEMEM_EXTREME
214 if (unlikely(!mem_section)) {
215 unsigned long size, align;
216
217 size = sizeof(struct mem_section*) * NR_SECTION_ROOTS;
218 align = 1 << (INTERNODE_CACHE_SHIFT);
219 mem_section = memblock_virt_alloc(size, align);
220 }
221 #endif
222
223 start &= PAGE_SECTION_MASK;
224 mminit_validate_memmodel_limits(&start, &end);
225 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
226 unsigned long section = pfn_to_section_nr(pfn);
227 struct mem_section *ms;
228
229 sparse_index_init(section, nid);
230 set_section_nid(section, nid);
231
232 ms = __nr_to_section(section);
233 if (!ms->section_mem_map) {
234 ms->section_mem_map = sparse_encode_early_nid(nid) |
235 SECTION_IS_ONLINE;
236 section_mark_present(ms);
237 }
238 }
239 }
240
241 /*
242 * Subtle, we encode the real pfn into the mem_map such that
243 * the identity pfn - section_mem_map will return the actual
244 * physical page frame number.
245 */
sparse_encode_mem_map(struct page * mem_map,unsigned long pnum)246 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
247 {
248 unsigned long coded_mem_map =
249 (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
250 BUILD_BUG_ON(SECTION_MAP_LAST_BIT > (1UL<<PFN_SECTION_SHIFT));
251 BUG_ON(coded_mem_map & ~SECTION_MAP_MASK);
252 return coded_mem_map;
253 }
254
255 /*
256 * Decode mem_map from the coded memmap
257 */
sparse_decode_mem_map(unsigned long coded_mem_map,unsigned long pnum)258 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
259 {
260 /* mask off the extra low bits of information */
261 coded_mem_map &= SECTION_MAP_MASK;
262 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
263 }
264
sparse_init_one_section(struct mem_section * ms,unsigned long pnum,struct page * mem_map,unsigned long * pageblock_bitmap)265 static void __meminit sparse_init_one_section(struct mem_section *ms,
266 unsigned long pnum, struct page *mem_map,
267 unsigned long *pageblock_bitmap)
268 {
269 ms->section_mem_map &= ~SECTION_MAP_MASK;
270 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
271 SECTION_HAS_MEM_MAP;
272 ms->pageblock_flags = pageblock_bitmap;
273 }
274
usemap_size(void)275 unsigned long usemap_size(void)
276 {
277 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
278 }
279
280 #ifdef CONFIG_MEMORY_HOTPLUG
__kmalloc_section_usemap(void)281 static unsigned long *__kmalloc_section_usemap(void)
282 {
283 return kmalloc(usemap_size(), GFP_KERNEL);
284 }
285 #endif /* CONFIG_MEMORY_HOTPLUG */
286
287 #ifdef CONFIG_MEMORY_HOTREMOVE
288 static unsigned long * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)289 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
290 unsigned long size)
291 {
292 unsigned long goal, limit;
293 unsigned long *p;
294 int nid;
295 /*
296 * A page may contain usemaps for other sections preventing the
297 * page being freed and making a section unremovable while
298 * other sections referencing the usemap remain active. Similarly,
299 * a pgdat can prevent a section being removed. If section A
300 * contains a pgdat and section B contains the usemap, both
301 * sections become inter-dependent. This allocates usemaps
302 * from the same section as the pgdat where possible to avoid
303 * this problem.
304 */
305 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
306 limit = goal + (1UL << PA_SECTION_SHIFT);
307 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
308 again:
309 p = memblock_virt_alloc_try_nid_nopanic(size,
310 SMP_CACHE_BYTES, goal, limit,
311 nid);
312 if (!p && limit) {
313 limit = 0;
314 goto again;
315 }
316 return p;
317 }
318
check_usemap_section_nr(int nid,unsigned long * usemap)319 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
320 {
321 unsigned long usemap_snr, pgdat_snr;
322 static unsigned long old_usemap_snr;
323 static unsigned long old_pgdat_snr;
324 struct pglist_data *pgdat = NODE_DATA(nid);
325 int usemap_nid;
326
327 /* First call */
328 if (!old_usemap_snr) {
329 old_usemap_snr = NR_MEM_SECTIONS;
330 old_pgdat_snr = NR_MEM_SECTIONS;
331 }
332
333 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
334 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
335 if (usemap_snr == pgdat_snr)
336 return;
337
338 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
339 /* skip redundant message */
340 return;
341
342 old_usemap_snr = usemap_snr;
343 old_pgdat_snr = pgdat_snr;
344
345 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
346 if (usemap_nid != nid) {
347 pr_info("node %d must be removed before remove section %ld\n",
348 nid, usemap_snr);
349 return;
350 }
351 /*
352 * There is a circular dependency.
353 * Some platforms allow un-removable section because they will just
354 * gather other removable sections for dynamic partitioning.
355 * Just notify un-removable section's number here.
356 */
357 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
358 usemap_snr, pgdat_snr, nid);
359 }
360 #else
361 static unsigned long * __init
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data * pgdat,unsigned long size)362 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
363 unsigned long size)
364 {
365 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
366 }
367
check_usemap_section_nr(int nid,unsigned long * usemap)368 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
369 {
370 }
371 #endif /* CONFIG_MEMORY_HOTREMOVE */
372
373 #ifdef CONFIG_SPARSEMEM_VMEMMAP
section_map_size(void)374 static unsigned long __init section_map_size(void)
375 {
376 return ALIGN(sizeof(struct page) * PAGES_PER_SECTION, PMD_SIZE);
377 }
378
379 #else
section_map_size(void)380 static unsigned long __init section_map_size(void)
381 {
382 return PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
383 }
384
sparse_mem_map_populate(unsigned long pnum,int nid,struct vmem_altmap * altmap)385 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid,
386 struct vmem_altmap *altmap)
387 {
388 unsigned long size = section_map_size();
389 struct page *map = sparse_buffer_alloc(size);
390
391 if (map)
392 return map;
393
394 map = memblock_virt_alloc_try_nid(size,
395 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
396 BOOTMEM_ALLOC_ACCESSIBLE, nid);
397 return map;
398 }
399 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
400
401 static void *sparsemap_buf __meminitdata;
402 static void *sparsemap_buf_end __meminitdata;
403
sparse_buffer_init(unsigned long size,int nid)404 static void __init sparse_buffer_init(unsigned long size, int nid)
405 {
406 WARN_ON(sparsemap_buf); /* forgot to call sparse_buffer_fini()? */
407 sparsemap_buf =
408 memblock_virt_alloc_try_nid_raw(size, PAGE_SIZE,
409 __pa(MAX_DMA_ADDRESS),
410 BOOTMEM_ALLOC_ACCESSIBLE, nid);
411 sparsemap_buf_end = sparsemap_buf + size;
412 }
413
sparse_buffer_fini(void)414 static void __init sparse_buffer_fini(void)
415 {
416 unsigned long size = sparsemap_buf_end - sparsemap_buf;
417
418 if (sparsemap_buf && size > 0)
419 memblock_free_early(__pa(sparsemap_buf), size);
420 sparsemap_buf = NULL;
421 }
422
sparse_buffer_alloc(unsigned long size)423 void * __meminit sparse_buffer_alloc(unsigned long size)
424 {
425 void *ptr = NULL;
426
427 if (sparsemap_buf) {
428 ptr = PTR_ALIGN(sparsemap_buf, size);
429 if (ptr + size > sparsemap_buf_end)
430 ptr = NULL;
431 else
432 sparsemap_buf = ptr + size;
433 }
434 return ptr;
435 }
436
vmemmap_populate_print_last(void)437 void __weak __meminit vmemmap_populate_print_last(void)
438 {
439 }
440
441 /*
442 * Initialize sparse on a specific node. The node spans [pnum_begin, pnum_end)
443 * And number of present sections in this node is map_count.
444 */
sparse_init_nid(int nid,unsigned long pnum_begin,unsigned long pnum_end,unsigned long map_count)445 static void __init sparse_init_nid(int nid, unsigned long pnum_begin,
446 unsigned long pnum_end,
447 unsigned long map_count)
448 {
449 unsigned long pnum, usemap_longs, *usemap;
450 struct page *map;
451
452 usemap_longs = BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS);
453 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nid),
454 usemap_size() *
455 map_count);
456 if (!usemap) {
457 pr_err("%s: node[%d] usemap allocation failed", __func__, nid);
458 goto failed;
459 }
460 sparse_buffer_init(map_count * section_map_size(), nid);
461 for_each_present_section_nr(pnum_begin, pnum) {
462 if (pnum >= pnum_end)
463 break;
464
465 map = sparse_mem_map_populate(pnum, nid, NULL);
466 if (!map) {
467 pr_err("%s: node[%d] memory map backing failed. Some memory will not be available.",
468 __func__, nid);
469 pnum_begin = pnum;
470 goto failed;
471 }
472 check_usemap_section_nr(nid, usemap);
473 sparse_init_one_section(__nr_to_section(pnum), pnum, map, usemap);
474 usemap += usemap_longs;
475 }
476 sparse_buffer_fini();
477 return;
478 failed:
479 /* We failed to allocate, mark all the following pnums as not present */
480 for_each_present_section_nr(pnum_begin, pnum) {
481 struct mem_section *ms;
482
483 if (pnum >= pnum_end)
484 break;
485 ms = __nr_to_section(pnum);
486 ms->section_mem_map = 0;
487 }
488 }
489
490 /*
491 * Allocate the accumulated non-linear sections, allocate a mem_map
492 * for each and record the physical to section mapping.
493 */
sparse_init(void)494 void __init sparse_init(void)
495 {
496 unsigned long pnum_begin = first_present_section_nr();
497 int nid_begin = sparse_early_nid(__nr_to_section(pnum_begin));
498 unsigned long pnum_end, map_count = 1;
499
500 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
501 set_pageblock_order();
502
503 for_each_present_section_nr(pnum_begin + 1, pnum_end) {
504 int nid = sparse_early_nid(__nr_to_section(pnum_end));
505
506 if (nid == nid_begin) {
507 map_count++;
508 continue;
509 }
510 /* Init node with sections in range [pnum_begin, pnum_end) */
511 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
512 nid_begin = nid;
513 pnum_begin = pnum_end;
514 map_count = 1;
515 }
516 /* cover the last node */
517 sparse_init_nid(nid_begin, pnum_begin, pnum_end, map_count);
518 vmemmap_populate_print_last();
519 }
520
521 #ifdef CONFIG_MEMORY_HOTPLUG
522
523 /* Mark all memory sections within the pfn range as online */
online_mem_sections(unsigned long start_pfn,unsigned long end_pfn)524 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
525 {
526 unsigned long pfn;
527
528 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
529 unsigned long section_nr = pfn_to_section_nr(pfn);
530 struct mem_section *ms;
531
532 /* onlining code should never touch invalid ranges */
533 if (WARN_ON(!valid_section_nr(section_nr)))
534 continue;
535
536 ms = __nr_to_section(section_nr);
537 ms->section_mem_map |= SECTION_IS_ONLINE;
538 }
539 }
540
541 #ifdef CONFIG_MEMORY_HOTREMOVE
542 /* Mark all memory sections within the pfn range as online */
offline_mem_sections(unsigned long start_pfn,unsigned long end_pfn)543 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn)
544 {
545 unsigned long pfn;
546
547 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
548 unsigned long section_nr = pfn_to_section_nr(pfn);
549 struct mem_section *ms;
550
551 /*
552 * TODO this needs some double checking. Offlining code makes
553 * sure to check pfn_valid but those checks might be just bogus
554 */
555 if (WARN_ON(!valid_section_nr(section_nr)))
556 continue;
557
558 ms = __nr_to_section(section_nr);
559 ms->section_mem_map &= ~SECTION_IS_ONLINE;
560 }
561 }
562 #endif
563
564 #ifdef CONFIG_SPARSEMEM_VMEMMAP
kmalloc_section_memmap(unsigned long pnum,int nid,struct vmem_altmap * altmap)565 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
566 struct vmem_altmap *altmap)
567 {
568 /* This will make the necessary allocations eventually. */
569 return sparse_mem_map_populate(pnum, nid, altmap);
570 }
__kfree_section_memmap(struct page * memmap,struct vmem_altmap * altmap)571 static void __kfree_section_memmap(struct page *memmap,
572 struct vmem_altmap *altmap)
573 {
574 unsigned long start = (unsigned long)memmap;
575 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
576
577 vmemmap_free(start, end, altmap);
578 }
579 #ifdef CONFIG_MEMORY_HOTREMOVE
free_map_bootmem(struct page * memmap)580 static void free_map_bootmem(struct page *memmap)
581 {
582 unsigned long start = (unsigned long)memmap;
583 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
584
585 vmemmap_free(start, end, NULL);
586 }
587 #endif /* CONFIG_MEMORY_HOTREMOVE */
588 #else
__kmalloc_section_memmap(void)589 static struct page *__kmalloc_section_memmap(void)
590 {
591 struct page *page, *ret;
592 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
593
594 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
595 if (page)
596 goto got_map_page;
597
598 ret = vmalloc(memmap_size);
599 if (ret)
600 goto got_map_ptr;
601
602 return NULL;
603 got_map_page:
604 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
605 got_map_ptr:
606
607 return ret;
608 }
609
kmalloc_section_memmap(unsigned long pnum,int nid,struct vmem_altmap * altmap)610 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
611 struct vmem_altmap *altmap)
612 {
613 return __kmalloc_section_memmap();
614 }
615
__kfree_section_memmap(struct page * memmap,struct vmem_altmap * altmap)616 static void __kfree_section_memmap(struct page *memmap,
617 struct vmem_altmap *altmap)
618 {
619 if (is_vmalloc_addr(memmap))
620 vfree(memmap);
621 else
622 free_pages((unsigned long)memmap,
623 get_order(sizeof(struct page) * PAGES_PER_SECTION));
624 }
625
626 #ifdef CONFIG_MEMORY_HOTREMOVE
free_map_bootmem(struct page * memmap)627 static void free_map_bootmem(struct page *memmap)
628 {
629 unsigned long maps_section_nr, removing_section_nr, i;
630 unsigned long magic, nr_pages;
631 struct page *page = virt_to_page(memmap);
632
633 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
634 >> PAGE_SHIFT;
635
636 for (i = 0; i < nr_pages; i++, page++) {
637 magic = (unsigned long) page->freelist;
638
639 BUG_ON(magic == NODE_INFO);
640
641 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
642 removing_section_nr = page_private(page);
643
644 /*
645 * When this function is called, the removing section is
646 * logical offlined state. This means all pages are isolated
647 * from page allocator. If removing section's memmap is placed
648 * on the same section, it must not be freed.
649 * If it is freed, page allocator may allocate it which will
650 * be removed physically soon.
651 */
652 if (maps_section_nr != removing_section_nr)
653 put_page_bootmem(page);
654 }
655 }
656 #endif /* CONFIG_MEMORY_HOTREMOVE */
657 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
658
659 /*
660 * returns the number of sections whose mem_maps were properly
661 * set. If this is <=0, then that means that the passed-in
662 * map was not consumed and must be freed.
663 */
sparse_add_one_section(struct pglist_data * pgdat,unsigned long start_pfn,struct vmem_altmap * altmap)664 int __meminit sparse_add_one_section(struct pglist_data *pgdat,
665 unsigned long start_pfn, struct vmem_altmap *altmap)
666 {
667 unsigned long section_nr = pfn_to_section_nr(start_pfn);
668 struct mem_section *ms;
669 struct page *memmap;
670 unsigned long *usemap;
671 unsigned long flags;
672 int ret;
673
674 /*
675 * no locking for this, because it does its own
676 * plus, it does a kmalloc
677 */
678 ret = sparse_index_init(section_nr, pgdat->node_id);
679 if (ret < 0 && ret != -EEXIST)
680 return ret;
681 ret = 0;
682 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, altmap);
683 if (!memmap)
684 return -ENOMEM;
685 usemap = __kmalloc_section_usemap();
686 if (!usemap) {
687 __kfree_section_memmap(memmap, altmap);
688 return -ENOMEM;
689 }
690
691 pgdat_resize_lock(pgdat, &flags);
692
693 ms = __pfn_to_section(start_pfn);
694 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
695 ret = -EEXIST;
696 goto out;
697 }
698
699 #ifdef CONFIG_DEBUG_VM
700 /*
701 * Poison uninitialized struct pages in order to catch invalid flags
702 * combinations.
703 */
704 memset(memmap, PAGE_POISON_PATTERN, sizeof(struct page) * PAGES_PER_SECTION);
705 #endif
706
707 section_mark_present(ms);
708 sparse_init_one_section(ms, section_nr, memmap, usemap);
709
710 out:
711 pgdat_resize_unlock(pgdat, &flags);
712 if (ret < 0) {
713 kfree(usemap);
714 __kfree_section_memmap(memmap, altmap);
715 }
716 return ret;
717 }
718
719 #ifdef CONFIG_MEMORY_HOTREMOVE
720 #ifdef CONFIG_MEMORY_FAILURE
clear_hwpoisoned_pages(struct page * memmap,int nr_pages)721 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
722 {
723 int i;
724
725 if (!memmap)
726 return;
727
728 for (i = 0; i < nr_pages; i++) {
729 if (PageHWPoison(&memmap[i])) {
730 atomic_long_sub(1, &num_poisoned_pages);
731 ClearPageHWPoison(&memmap[i]);
732 }
733 }
734 }
735 #else
clear_hwpoisoned_pages(struct page * memmap,int nr_pages)736 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
737 {
738 }
739 #endif
740
free_section_usemap(struct page * memmap,unsigned long * usemap,struct vmem_altmap * altmap)741 static void free_section_usemap(struct page *memmap, unsigned long *usemap,
742 struct vmem_altmap *altmap)
743 {
744 struct page *usemap_page;
745
746 if (!usemap)
747 return;
748
749 usemap_page = virt_to_page(usemap);
750 /*
751 * Check to see if allocation came from hot-plug-add
752 */
753 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
754 kfree(usemap);
755 if (memmap)
756 __kfree_section_memmap(memmap, altmap);
757 return;
758 }
759
760 /*
761 * The usemap came from bootmem. This is packed with other usemaps
762 * on the section which has pgdat at boot time. Just keep it as is now.
763 */
764
765 if (memmap)
766 free_map_bootmem(memmap);
767 }
768
sparse_remove_one_section(struct zone * zone,struct mem_section * ms,unsigned long map_offset,struct vmem_altmap * altmap)769 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
770 unsigned long map_offset, struct vmem_altmap *altmap)
771 {
772 struct page *memmap = NULL;
773 unsigned long *usemap = NULL, flags;
774 struct pglist_data *pgdat = zone->zone_pgdat;
775
776 pgdat_resize_lock(pgdat, &flags);
777 if (ms->section_mem_map) {
778 usemap = ms->pageblock_flags;
779 memmap = sparse_decode_mem_map(ms->section_mem_map,
780 __section_nr(ms));
781 ms->section_mem_map = 0;
782 ms->pageblock_flags = NULL;
783 }
784 pgdat_resize_unlock(pgdat, &flags);
785
786 clear_hwpoisoned_pages(memmap + map_offset,
787 PAGES_PER_SECTION - map_offset);
788 free_section_usemap(memmap, usemap, altmap);
789 }
790 #endif /* CONFIG_MEMORY_HOTREMOVE */
791 #endif /* CONFIG_MEMORY_HOTPLUG */
792