1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
kmem_cache_node_init(struct kmem_cache_node * parent)226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB ((slab_flags_t __force)0x40000000U)
255 #define CFLGS_OFF_SLAB ((slab_flags_t __force)0x80000000U)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
obj_offset(struct kmem_cache * cachep)327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
dbg_redzone1(struct kmem_cache * cachep,void * objp)332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
dbg_redzone2(struct kmem_cache * cachep,void * objp)339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
dbg_userword(struct kmem_cache * cachep,void * objp)350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366
is_store_user_clean(struct kmem_cache * cachep)367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 return atomic_read(&cachep->store_user_clean) == 1;
370 }
371
set_store_user_clean(struct kmem_cache * cachep)372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 atomic_set(&cachep->store_user_clean, 1);
375 }
376
set_store_user_dirty(struct kmem_cache * cachep)377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381 }
382
383 #else
set_store_user_dirty(struct kmem_cache * cachep)384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386 #endif
387
388 /*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396
virt_to_cache(const void * obj)397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401 }
402
index_to_obj(struct kmem_cache * cache,struct page * page,unsigned int idx)403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405 {
406 return page->s_mem + cache->size * idx;
407 }
408
409 /*
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
obj_to_index(const struct kmem_cache * cache,const struct page * page,void * obj)415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 const struct page *page, void *obj)
417 {
418 u32 offset = (obj - page->s_mem);
419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421
422 #define BOOT_CPUCACHE_ENTRIES 1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
428 .size = sizeof(struct kmem_cache),
429 .name = "kmem_cache",
430 };
431
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433
cpu_cache_get(struct kmem_cache * cachep)434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 return this_cpu_ptr(cachep->cpu_cache);
437 }
438
439 /*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
cache_estimate(unsigned long gfporder,size_t buffer_size,slab_flags_t flags,size_t * left_over)442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 slab_flags_t flags, size_t *left_over)
444 {
445 unsigned int num;
446 size_t slab_size = PAGE_SIZE << gfporder;
447
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
453 * - @buffer_size bytes for each object
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 num = slab_size / buffer_size;
467 *left_over = slab_size % buffer_size;
468 } else {
469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
472 }
473
474 return num;
475 }
476
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479
__slab_error(const char * function,struct kmem_cache * cachep,char * msg)480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
482 {
483 pr_err("slab error in %s(): cache `%s': %s\n",
484 function, cachep->name, msg);
485 dump_stack();
486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489
490 /*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498 static int use_alien_caches __read_mostly = 1;
noaliencache_setup(char * s)499 static int __init noaliencache_setup(char *s)
500 {
501 use_alien_caches = 0;
502 return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505
slab_max_order_setup(char * str)506 static int __init slab_max_order_setup(char *str)
507 {
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516
517 #ifdef CONFIG_NUMA
518 /*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525
init_reap_node(int cpu)526 static void init_reap_node(int cpu)
527 {
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
530 }
531
next_reap_node(void)532 static void next_reap_node(void)
533 {
534 int node = __this_cpu_read(slab_reap_node);
535
536 node = next_node_in(node, node_online_map);
537 __this_cpu_write(slab_reap_node, node);
538 }
539
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544
545 /*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
start_cpu_timer(int cpu)552 static void start_cpu_timer(int cpu)
553 {
554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555
556 if (reap_work->work.func == NULL) {
557 init_reap_node(cpu);
558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
561 }
562 }
563
init_arraycache(struct array_cache * ac,int limit,int batch)564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 /*
567 * The array_cache structures contain pointers to free object.
568 * However, when such objects are allocated or transferred to another
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
579 }
580 }
581
alloc_arraycache(int node,int entries,int batchcount,gfp_t gfp)582 static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584 {
585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
591 }
592
cache_free_pfmemalloc(struct kmem_cache * cachep,struct page * page,void * objp)593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
595 {
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
599
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
602
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
606
607 slabs_destroy(cachep, &list);
608 }
609
610 /*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
transfer_objects(struct array_cache * to,struct array_cache * from,unsigned int max)616 static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618 {
619 /* Figure out how many entries to transfer */
620 int nr = min3(from->avail, max, to->limit - to->avail);
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
630 return nr;
631 }
632
633 #ifndef CONFIG_NUMA
634
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637
alloc_alien_cache(int node,int limit,gfp_t gfp)638 static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
640 {
641 return NULL;
642 }
643
free_alien_cache(struct alien_cache ** ac_ptr)644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647
cache_free_alien(struct kmem_cache * cachep,void * objp)648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 return 0;
651 }
652
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655 {
656 return NULL;
657 }
658
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 gfp_t flags, int nodeid)
661 {
662 return NULL;
663 }
664
gfp_exact_node(gfp_t flags)665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 return flags & ~__GFP_NOFAIL;
668 }
669
670 #else /* CONFIG_NUMA */
671
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674
__alloc_alien_cache(int node,int entries,int batch,gfp_t gfp)675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677 {
678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
683 spin_lock_init(&alc->lock);
684 return alc;
685 }
686
alloc_alien_cache(int node,int limit,gfp_t gfp)687 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
688 {
689 struct alien_cache **alc_ptr;
690 size_t memsize = sizeof(void *) * nr_node_ids;
691 int i;
692
693 if (limit > 1)
694 limit = 12;
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
708 }
709 }
710 return alc_ptr;
711 }
712
free_alien_cache(struct alien_cache ** alc_ptr)713 static void free_alien_cache(struct alien_cache **alc_ptr)
714 {
715 int i;
716
717 if (!alc_ptr)
718 return;
719 for_each_node(i)
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
722 }
723
__drain_alien_cache(struct kmem_cache * cachep,struct array_cache * ac,int node,struct list_head * list)724 static void __drain_alien_cache(struct kmem_cache *cachep,
725 struct array_cache *ac, int node,
726 struct list_head *list)
727 {
728 struct kmem_cache_node *n = get_node(cachep, node);
729
730 if (ac->avail) {
731 spin_lock(&n->list_lock);
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
739
740 free_block(cachep, ac->entry, ac->avail, node, list);
741 ac->avail = 0;
742 spin_unlock(&n->list_lock);
743 }
744 }
745
746 /*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
reap_alien(struct kmem_cache * cachep,struct kmem_cache_node * n)749 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
750 {
751 int node = __this_cpu_read(slab_reap_node);
752
753 if (n->alien) {
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
763 spin_unlock_irq(&alc->lock);
764 slabs_destroy(cachep, &list);
765 }
766 }
767 }
768 }
769
drain_alien_cache(struct kmem_cache * cachep,struct alien_cache ** alien)770 static void drain_alien_cache(struct kmem_cache *cachep,
771 struct alien_cache **alien)
772 {
773 int i = 0;
774 struct alien_cache *alc;
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
779 alc = alien[i];
780 if (alc) {
781 LIST_HEAD(list);
782
783 ac = &alc->ac;
784 spin_lock_irqsave(&alc->lock, flags);
785 __drain_alien_cache(cachep, ac, i, &list);
786 spin_unlock_irqrestore(&alc->lock, flags);
787 slabs_destroy(cachep, &list);
788 }
789 }
790 }
791
__cache_free_alien(struct kmem_cache * cachep,void * objp,int node,int page_node)792 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
794 {
795 struct kmem_cache_node *n;
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
798 LIST_HEAD(list);
799
800 n = get_node(cachep, node);
801 STATS_INC_NODEFREES(cachep);
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
804 ac = &alien->ac;
805 spin_lock(&alien->lock);
806 if (unlikely(ac->avail == ac->limit)) {
807 STATS_INC_ACOVERFLOW(cachep);
808 __drain_alien_cache(cachep, ac, page_node, &list);
809 }
810 ac->entry[ac->avail++] = objp;
811 spin_unlock(&alien->lock);
812 slabs_destroy(cachep, &list);
813 } else {
814 n = get_node(cachep, page_node);
815 spin_lock(&n->list_lock);
816 free_block(cachep, &objp, 1, page_node, &list);
817 spin_unlock(&n->list_lock);
818 slabs_destroy(cachep, &list);
819 }
820 return 1;
821 }
822
cache_free_alien(struct kmem_cache * cachep,void * objp)823 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824 {
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835 }
836
837 /*
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
840 */
gfp_exact_node(gfp_t flags)841 static inline gfp_t gfp_exact_node(gfp_t flags)
842 {
843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
844 }
845 #endif
846
init_cache_node(struct kmem_cache * cachep,int node,gfp_t gfp)847 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848 {
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885 }
886
887 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
888 /*
889 * Allocates and initializes node for a node on each slab cache, used for
890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
891 * will be allocated off-node since memory is not yet online for the new node.
892 * When hotplugging memory or a cpu, existing node are not replaced if
893 * already in use.
894 *
895 * Must hold slab_mutex.
896 */
init_cache_node_node(int node)897 static int init_cache_node_node(int node)
898 {
899 int ret;
900 struct kmem_cache *cachep;
901
902 list_for_each_entry(cachep, &slab_caches, list) {
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
906 }
907
908 return 0;
909 }
910 #endif
911
setup_kmem_cache_node(struct kmem_cache * cachep,int node,gfp_t gfp,bool force_change)912 static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914 {
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
967 if (old_shared && force_change)
968 synchronize_sched();
969
970 fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976 }
977
978 #ifdef CONFIG_SMP
979
cpuup_canceled(long cpu)980 static void cpuup_canceled(long cpu)
981 {
982 struct kmem_cache *cachep;
983 struct kmem_cache_node *n = NULL;
984 int node = cpu_to_mem(cpu);
985 const struct cpumask *mask = cpumask_of_node(node);
986
987 list_for_each_entry(cachep, &slab_caches, list) {
988 struct array_cache *nc;
989 struct array_cache *shared;
990 struct alien_cache **alien;
991 LIST_HEAD(list);
992
993 n = get_node(cachep, node);
994 if (!n)
995 continue;
996
997 spin_lock_irq(&n->list_lock);
998
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
1005 free_block(cachep, nc->entry, nc->avail, node, &list);
1006 nc->avail = 0;
1007 }
1008
1009 if (!cpumask_empty(mask)) {
1010 spin_unlock_irq(&n->list_lock);
1011 goto free_slab;
1012 }
1013
1014 shared = n->shared;
1015 if (shared) {
1016 free_block(cachep, shared->entry,
1017 shared->avail, node, &list);
1018 n->shared = NULL;
1019 }
1020
1021 alien = n->alien;
1022 n->alien = NULL;
1023
1024 spin_unlock_irq(&n->list_lock);
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
1031
1032 free_slab:
1033 slabs_destroy(cachep, &list);
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
1040 list_for_each_entry(cachep, &slab_caches, list) {
1041 n = get_node(cachep, node);
1042 if (!n)
1043 continue;
1044 drain_freelist(cachep, n, INT_MAX);
1045 }
1046 }
1047
cpuup_prepare(long cpu)1048 static int cpuup_prepare(long cpu)
1049 {
1050 struct kmem_cache *cachep;
1051 int node = cpu_to_mem(cpu);
1052 int err;
1053
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
1058 * kmem_cache_node and not this cpu's kmem_cache_node
1059 */
1060 err = init_cache_node_node(node);
1061 if (err < 0)
1062 goto bad;
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
1068 list_for_each_entry(cachep, &slab_caches, list) {
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
1072 }
1073
1074 return 0;
1075 bad:
1076 cpuup_canceled(cpu);
1077 return -ENOMEM;
1078 }
1079
slab_prepare_cpu(unsigned int cpu)1080 int slab_prepare_cpu(unsigned int cpu)
1081 {
1082 int err;
1083
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088 }
1089
1090 /*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
slab_dead_cpu(unsigned int cpu)1100 int slab_dead_cpu(unsigned int cpu)
1101 {
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106 }
1107 #endif
1108
slab_online_cpu(unsigned int cpu)1109 static int slab_online_cpu(unsigned int cpu)
1110 {
1111 start_cpu_timer(cpu);
1112 return 0;
1113 }
1114
slab_offline_cpu(unsigned int cpu)1115 static int slab_offline_cpu(unsigned int cpu)
1116 {
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127 }
1128
1129 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130 /*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
1135 * Must hold slab_mutex.
1136 */
drain_cache_node_node(int node)1137 static int __meminit drain_cache_node_node(int node)
1138 {
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
1142 list_for_each_entry(cachep, &slab_caches, list) {
1143 struct kmem_cache_node *n;
1144
1145 n = get_node(cachep, node);
1146 if (!n)
1147 continue;
1148
1149 drain_freelist(cachep, n, INT_MAX);
1150
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158 }
1159
slab_memory_callback(struct notifier_block * self,unsigned long action,void * arg)1160 static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162 {
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
1173 mutex_lock(&slab_mutex);
1174 ret = init_cache_node_node(nid);
1175 mutex_unlock(&slab_mutex);
1176 break;
1177 case MEM_GOING_OFFLINE:
1178 mutex_lock(&slab_mutex);
1179 ret = drain_cache_node_node(nid);
1180 mutex_unlock(&slab_mutex);
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188 out:
1189 return notifier_from_errno(ret);
1190 }
1191 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
1193 /*
1194 * swap the static kmem_cache_node with kmalloced memory
1195 */
init_list(struct kmem_cache * cachep,struct kmem_cache_node * list,int nodeid)1196 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1197 int nodeid)
1198 {
1199 struct kmem_cache_node *ptr;
1200
1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1202 BUG_ON(!ptr);
1203
1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1211 cachep->node[nodeid] = ptr;
1212 }
1213
1214 /*
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
1217 */
set_up_node(struct kmem_cache * cachep,int index)1218 static void __init set_up_node(struct kmem_cache *cachep, int index)
1219 {
1220 int node;
1221
1222 for_each_online_node(node) {
1223 cachep->node[node] = &init_kmem_cache_node[index + node];
1224 cachep->node[node]->next_reap = jiffies +
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1227 }
1228 }
1229
1230 /*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1233 */
kmem_cache_init(void)1234 void __init kmem_cache_init(void)
1235 {
1236 int i;
1237
1238 kmem_cache = &kmem_cache_boot;
1239
1240 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1241 use_alien_caches = 0;
1242
1243 for (i = 0; i < NUM_INIT_LISTS; i++)
1244 kmem_cache_node_init(&init_kmem_cache_node[i]);
1245
1246 /*
1247 * Fragmentation resistance on low memory - only use bigger
1248 * page orders on machines with more than 32MB of memory if
1249 * not overridden on the command line.
1250 */
1251 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1252 slab_max_order = SLAB_MAX_ORDER_HI;
1253
1254 /* Bootstrap is tricky, because several objects are allocated
1255 * from caches that do not exist yet:
1256 * 1) initialize the kmem_cache cache: it contains the struct
1257 * kmem_cache structures of all caches, except kmem_cache itself:
1258 * kmem_cache is statically allocated.
1259 * Initially an __init data area is used for the head array and the
1260 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1261 * array at the end of the bootstrap.
1262 * 2) Create the first kmalloc cache.
1263 * The struct kmem_cache for the new cache is allocated normally.
1264 * An __init data area is used for the head array.
1265 * 3) Create the remaining kmalloc caches, with minimally sized
1266 * head arrays.
1267 * 4) Replace the __init data head arrays for kmem_cache and the first
1268 * kmalloc cache with kmalloc allocated arrays.
1269 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1270 * the other cache's with kmalloc allocated memory.
1271 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1272 */
1273
1274 /* 1) create the kmem_cache */
1275
1276 /*
1277 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1278 */
1279 create_boot_cache(kmem_cache, "kmem_cache",
1280 offsetof(struct kmem_cache, node) +
1281 nr_node_ids * sizeof(struct kmem_cache_node *),
1282 SLAB_HWCACHE_ALIGN, 0, 0);
1283 list_add(&kmem_cache->list, &slab_caches);
1284 memcg_link_cache(kmem_cache);
1285 slab_state = PARTIAL;
1286
1287 /*
1288 * Initialize the caches that provide memory for the kmem_cache_node
1289 * structures first. Without this, further allocations will bug.
1290 */
1291 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1292 kmalloc_info[INDEX_NODE].name,
1293 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS,
1294 0, kmalloc_size(INDEX_NODE));
1295 slab_state = PARTIAL_NODE;
1296 setup_kmalloc_cache_index_table();
1297
1298 slab_early_init = 0;
1299
1300 /* 5) Replace the bootstrap kmem_cache_node */
1301 {
1302 int nid;
1303
1304 for_each_online_node(nid) {
1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1306
1307 init_list(kmalloc_caches[INDEX_NODE],
1308 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1309 }
1310 }
1311
1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1313 }
1314
kmem_cache_init_late(void)1315 void __init kmem_cache_init_late(void)
1316 {
1317 struct kmem_cache *cachep;
1318
1319 /* 6) resize the head arrays to their final sizes */
1320 mutex_lock(&slab_mutex);
1321 list_for_each_entry(cachep, &slab_caches, list)
1322 if (enable_cpucache(cachep, GFP_NOWAIT))
1323 BUG();
1324 mutex_unlock(&slab_mutex);
1325
1326 /* Done! */
1327 slab_state = FULL;
1328
1329 #ifdef CONFIG_NUMA
1330 /*
1331 * Register a memory hotplug callback that initializes and frees
1332 * node.
1333 */
1334 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1335 #endif
1336
1337 /*
1338 * The reap timers are started later, with a module init call: That part
1339 * of the kernel is not yet operational.
1340 */
1341 }
1342
cpucache_init(void)1343 static int __init cpucache_init(void)
1344 {
1345 int ret;
1346
1347 /*
1348 * Register the timers that return unneeded pages to the page allocator
1349 */
1350 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1351 slab_online_cpu, slab_offline_cpu);
1352 WARN_ON(ret < 0);
1353
1354 return 0;
1355 }
1356 __initcall(cpucache_init);
1357
1358 static noinline void
slab_out_of_memory(struct kmem_cache * cachep,gfp_t gfpflags,int nodeid)1359 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1360 {
1361 #if DEBUG
1362 struct kmem_cache_node *n;
1363 unsigned long flags;
1364 int node;
1365 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1366 DEFAULT_RATELIMIT_BURST);
1367
1368 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1369 return;
1370
1371 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1372 nodeid, gfpflags, &gfpflags);
1373 pr_warn(" cache: %s, object size: %d, order: %d\n",
1374 cachep->name, cachep->size, cachep->gfporder);
1375
1376 for_each_kmem_cache_node(cachep, node, n) {
1377 unsigned long total_slabs, free_slabs, free_objs;
1378
1379 spin_lock_irqsave(&n->list_lock, flags);
1380 total_slabs = n->total_slabs;
1381 free_slabs = n->free_slabs;
1382 free_objs = n->free_objects;
1383 spin_unlock_irqrestore(&n->list_lock, flags);
1384
1385 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1386 node, total_slabs - free_slabs, total_slabs,
1387 (total_slabs * cachep->num) - free_objs,
1388 total_slabs * cachep->num);
1389 }
1390 #endif
1391 }
1392
1393 /*
1394 * Interface to system's page allocator. No need to hold the
1395 * kmem_cache_node ->list_lock.
1396 *
1397 * If we requested dmaable memory, we will get it. Even if we
1398 * did not request dmaable memory, we might get it, but that
1399 * would be relatively rare and ignorable.
1400 */
kmem_getpages(struct kmem_cache * cachep,gfp_t flags,int nodeid)1401 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1402 int nodeid)
1403 {
1404 struct page *page;
1405 int nr_pages;
1406
1407 flags |= cachep->allocflags;
1408
1409 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1410 if (!page) {
1411 slab_out_of_memory(cachep, flags, nodeid);
1412 return NULL;
1413 }
1414
1415 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1416 __free_pages(page, cachep->gfporder);
1417 return NULL;
1418 }
1419
1420 nr_pages = (1 << cachep->gfporder);
1421 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1422 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1423 else
1424 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1425
1426 __SetPageSlab(page);
1427 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1428 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1429 SetPageSlabPfmemalloc(page);
1430
1431 return page;
1432 }
1433
1434 /*
1435 * Interface to system's page release.
1436 */
kmem_freepages(struct kmem_cache * cachep,struct page * page)1437 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1438 {
1439 int order = cachep->gfporder;
1440 unsigned long nr_freed = (1 << order);
1441
1442 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1443 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1444 else
1445 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1446
1447 BUG_ON(!PageSlab(page));
1448 __ClearPageSlabPfmemalloc(page);
1449 __ClearPageSlab(page);
1450 page_mapcount_reset(page);
1451 page->mapping = NULL;
1452
1453 if (current->reclaim_state)
1454 current->reclaim_state->reclaimed_slab += nr_freed;
1455 memcg_uncharge_slab(page, order, cachep);
1456 __free_pages(page, order);
1457 }
1458
kmem_rcu_free(struct rcu_head * head)1459 static void kmem_rcu_free(struct rcu_head *head)
1460 {
1461 struct kmem_cache *cachep;
1462 struct page *page;
1463
1464 page = container_of(head, struct page, rcu_head);
1465 cachep = page->slab_cache;
1466
1467 kmem_freepages(cachep, page);
1468 }
1469
1470 #if DEBUG
is_debug_pagealloc_cache(struct kmem_cache * cachep)1471 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1472 {
1473 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1474 (cachep->size % PAGE_SIZE) == 0)
1475 return true;
1476
1477 return false;
1478 }
1479
1480 #ifdef CONFIG_DEBUG_PAGEALLOC
store_stackinfo(struct kmem_cache * cachep,unsigned long * addr,unsigned long caller)1481 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1482 unsigned long caller)
1483 {
1484 int size = cachep->object_size;
1485
1486 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1487
1488 if (size < 5 * sizeof(unsigned long))
1489 return;
1490
1491 *addr++ = 0x12345678;
1492 *addr++ = caller;
1493 *addr++ = smp_processor_id();
1494 size -= 3 * sizeof(unsigned long);
1495 {
1496 unsigned long *sptr = &caller;
1497 unsigned long svalue;
1498
1499 while (!kstack_end(sptr)) {
1500 svalue = *sptr++;
1501 if (kernel_text_address(svalue)) {
1502 *addr++ = svalue;
1503 size -= sizeof(unsigned long);
1504 if (size <= sizeof(unsigned long))
1505 break;
1506 }
1507 }
1508
1509 }
1510 *addr++ = 0x87654321;
1511 }
1512
slab_kernel_map(struct kmem_cache * cachep,void * objp,int map,unsigned long caller)1513 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1514 int map, unsigned long caller)
1515 {
1516 if (!is_debug_pagealloc_cache(cachep))
1517 return;
1518
1519 if (caller)
1520 store_stackinfo(cachep, objp, caller);
1521
1522 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1523 }
1524
1525 #else
slab_kernel_map(struct kmem_cache * cachep,void * objp,int map,unsigned long caller)1526 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1527 int map, unsigned long caller) {}
1528
1529 #endif
1530
poison_obj(struct kmem_cache * cachep,void * addr,unsigned char val)1531 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1532 {
1533 int size = cachep->object_size;
1534 addr = &((char *)addr)[obj_offset(cachep)];
1535
1536 memset(addr, val, size);
1537 *(unsigned char *)(addr + size - 1) = POISON_END;
1538 }
1539
dump_line(char * data,int offset,int limit)1540 static void dump_line(char *data, int offset, int limit)
1541 {
1542 int i;
1543 unsigned char error = 0;
1544 int bad_count = 0;
1545
1546 pr_err("%03x: ", offset);
1547 for (i = 0; i < limit; i++) {
1548 if (data[offset + i] != POISON_FREE) {
1549 error = data[offset + i];
1550 bad_count++;
1551 }
1552 }
1553 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1554 &data[offset], limit, 1);
1555
1556 if (bad_count == 1) {
1557 error ^= POISON_FREE;
1558 if (!(error & (error - 1))) {
1559 pr_err("Single bit error detected. Probably bad RAM.\n");
1560 #ifdef CONFIG_X86
1561 pr_err("Run memtest86+ or a similar memory test tool.\n");
1562 #else
1563 pr_err("Run a memory test tool.\n");
1564 #endif
1565 }
1566 }
1567 }
1568 #endif
1569
1570 #if DEBUG
1571
print_objinfo(struct kmem_cache * cachep,void * objp,int lines)1572 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1573 {
1574 int i, size;
1575 char *realobj;
1576
1577 if (cachep->flags & SLAB_RED_ZONE) {
1578 pr_err("Redzone: 0x%llx/0x%llx\n",
1579 *dbg_redzone1(cachep, objp),
1580 *dbg_redzone2(cachep, objp));
1581 }
1582
1583 if (cachep->flags & SLAB_STORE_USER)
1584 pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
1585 realobj = (char *)objp + obj_offset(cachep);
1586 size = cachep->object_size;
1587 for (i = 0; i < size && lines; i += 16, lines--) {
1588 int limit;
1589 limit = 16;
1590 if (i + limit > size)
1591 limit = size - i;
1592 dump_line(realobj, i, limit);
1593 }
1594 }
1595
check_poison_obj(struct kmem_cache * cachep,void * objp)1596 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1597 {
1598 char *realobj;
1599 int size, i;
1600 int lines = 0;
1601
1602 if (is_debug_pagealloc_cache(cachep))
1603 return;
1604
1605 realobj = (char *)objp + obj_offset(cachep);
1606 size = cachep->object_size;
1607
1608 for (i = 0; i < size; i++) {
1609 char exp = POISON_FREE;
1610 if (i == size - 1)
1611 exp = POISON_END;
1612 if (realobj[i] != exp) {
1613 int limit;
1614 /* Mismatch ! */
1615 /* Print header */
1616 if (lines == 0) {
1617 pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
1618 print_tainted(), cachep->name,
1619 realobj, size);
1620 print_objinfo(cachep, objp, 0);
1621 }
1622 /* Hexdump the affected line */
1623 i = (i / 16) * 16;
1624 limit = 16;
1625 if (i + limit > size)
1626 limit = size - i;
1627 dump_line(realobj, i, limit);
1628 i += 16;
1629 lines++;
1630 /* Limit to 5 lines */
1631 if (lines > 5)
1632 break;
1633 }
1634 }
1635 if (lines != 0) {
1636 /* Print some data about the neighboring objects, if they
1637 * exist:
1638 */
1639 struct page *page = virt_to_head_page(objp);
1640 unsigned int objnr;
1641
1642 objnr = obj_to_index(cachep, page, objp);
1643 if (objnr) {
1644 objp = index_to_obj(cachep, page, objnr - 1);
1645 realobj = (char *)objp + obj_offset(cachep);
1646 pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
1647 print_objinfo(cachep, objp, 2);
1648 }
1649 if (objnr + 1 < cachep->num) {
1650 objp = index_to_obj(cachep, page, objnr + 1);
1651 realobj = (char *)objp + obj_offset(cachep);
1652 pr_err("Next obj: start=%px, len=%d\n", realobj, size);
1653 print_objinfo(cachep, objp, 2);
1654 }
1655 }
1656 }
1657 #endif
1658
1659 #if DEBUG
slab_destroy_debugcheck(struct kmem_cache * cachep,struct page * page)1660 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1661 struct page *page)
1662 {
1663 int i;
1664
1665 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1666 poison_obj(cachep, page->freelist - obj_offset(cachep),
1667 POISON_FREE);
1668 }
1669
1670 for (i = 0; i < cachep->num; i++) {
1671 void *objp = index_to_obj(cachep, page, i);
1672
1673 if (cachep->flags & SLAB_POISON) {
1674 check_poison_obj(cachep, objp);
1675 slab_kernel_map(cachep, objp, 1, 0);
1676 }
1677 if (cachep->flags & SLAB_RED_ZONE) {
1678 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1679 slab_error(cachep, "start of a freed object was overwritten");
1680 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1681 slab_error(cachep, "end of a freed object was overwritten");
1682 }
1683 }
1684 }
1685 #else
slab_destroy_debugcheck(struct kmem_cache * cachep,struct page * page)1686 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1687 struct page *page)
1688 {
1689 }
1690 #endif
1691
1692 /**
1693 * slab_destroy - destroy and release all objects in a slab
1694 * @cachep: cache pointer being destroyed
1695 * @page: page pointer being destroyed
1696 *
1697 * Destroy all the objs in a slab page, and release the mem back to the system.
1698 * Before calling the slab page must have been unlinked from the cache. The
1699 * kmem_cache_node ->list_lock is not held/needed.
1700 */
slab_destroy(struct kmem_cache * cachep,struct page * page)1701 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1702 {
1703 void *freelist;
1704
1705 freelist = page->freelist;
1706 slab_destroy_debugcheck(cachep, page);
1707 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1708 call_rcu(&page->rcu_head, kmem_rcu_free);
1709 else
1710 kmem_freepages(cachep, page);
1711
1712 /*
1713 * From now on, we don't use freelist
1714 * although actual page can be freed in rcu context
1715 */
1716 if (OFF_SLAB(cachep))
1717 kmem_cache_free(cachep->freelist_cache, freelist);
1718 }
1719
slabs_destroy(struct kmem_cache * cachep,struct list_head * list)1720 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1721 {
1722 struct page *page, *n;
1723
1724 list_for_each_entry_safe(page, n, list, lru) {
1725 list_del(&page->lru);
1726 slab_destroy(cachep, page);
1727 }
1728 }
1729
1730 /**
1731 * calculate_slab_order - calculate size (page order) of slabs
1732 * @cachep: pointer to the cache that is being created
1733 * @size: size of objects to be created in this cache.
1734 * @flags: slab allocation flags
1735 *
1736 * Also calculates the number of objects per slab.
1737 *
1738 * This could be made much more intelligent. For now, try to avoid using
1739 * high order pages for slabs. When the gfp() functions are more friendly
1740 * towards high-order requests, this should be changed.
1741 */
calculate_slab_order(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1742 static size_t calculate_slab_order(struct kmem_cache *cachep,
1743 size_t size, slab_flags_t flags)
1744 {
1745 size_t left_over = 0;
1746 int gfporder;
1747
1748 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1749 unsigned int num;
1750 size_t remainder;
1751
1752 num = cache_estimate(gfporder, size, flags, &remainder);
1753 if (!num)
1754 continue;
1755
1756 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1757 if (num > SLAB_OBJ_MAX_NUM)
1758 break;
1759
1760 if (flags & CFLGS_OFF_SLAB) {
1761 struct kmem_cache *freelist_cache;
1762 size_t freelist_size;
1763
1764 freelist_size = num * sizeof(freelist_idx_t);
1765 freelist_cache = kmalloc_slab(freelist_size, 0u);
1766 if (!freelist_cache)
1767 continue;
1768
1769 /*
1770 * Needed to avoid possible looping condition
1771 * in cache_grow_begin()
1772 */
1773 if (OFF_SLAB(freelist_cache))
1774 continue;
1775
1776 /* check if off slab has enough benefit */
1777 if (freelist_cache->size > cachep->size / 2)
1778 continue;
1779 }
1780
1781 /* Found something acceptable - save it away */
1782 cachep->num = num;
1783 cachep->gfporder = gfporder;
1784 left_over = remainder;
1785
1786 /*
1787 * A VFS-reclaimable slab tends to have most allocations
1788 * as GFP_NOFS and we really don't want to have to be allocating
1789 * higher-order pages when we are unable to shrink dcache.
1790 */
1791 if (flags & SLAB_RECLAIM_ACCOUNT)
1792 break;
1793
1794 /*
1795 * Large number of objects is good, but very large slabs are
1796 * currently bad for the gfp()s.
1797 */
1798 if (gfporder >= slab_max_order)
1799 break;
1800
1801 /*
1802 * Acceptable internal fragmentation?
1803 */
1804 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1805 break;
1806 }
1807 return left_over;
1808 }
1809
alloc_kmem_cache_cpus(struct kmem_cache * cachep,int entries,int batchcount)1810 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1811 struct kmem_cache *cachep, int entries, int batchcount)
1812 {
1813 int cpu;
1814 size_t size;
1815 struct array_cache __percpu *cpu_cache;
1816
1817 size = sizeof(void *) * entries + sizeof(struct array_cache);
1818 cpu_cache = __alloc_percpu(size, sizeof(void *));
1819
1820 if (!cpu_cache)
1821 return NULL;
1822
1823 for_each_possible_cpu(cpu) {
1824 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1825 entries, batchcount);
1826 }
1827
1828 return cpu_cache;
1829 }
1830
setup_cpu_cache(struct kmem_cache * cachep,gfp_t gfp)1831 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1832 {
1833 if (slab_state >= FULL)
1834 return enable_cpucache(cachep, gfp);
1835
1836 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1837 if (!cachep->cpu_cache)
1838 return 1;
1839
1840 if (slab_state == DOWN) {
1841 /* Creation of first cache (kmem_cache). */
1842 set_up_node(kmem_cache, CACHE_CACHE);
1843 } else if (slab_state == PARTIAL) {
1844 /* For kmem_cache_node */
1845 set_up_node(cachep, SIZE_NODE);
1846 } else {
1847 int node;
1848
1849 for_each_online_node(node) {
1850 cachep->node[node] = kmalloc_node(
1851 sizeof(struct kmem_cache_node), gfp, node);
1852 BUG_ON(!cachep->node[node]);
1853 kmem_cache_node_init(cachep->node[node]);
1854 }
1855 }
1856
1857 cachep->node[numa_mem_id()]->next_reap =
1858 jiffies + REAPTIMEOUT_NODE +
1859 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1860
1861 cpu_cache_get(cachep)->avail = 0;
1862 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1863 cpu_cache_get(cachep)->batchcount = 1;
1864 cpu_cache_get(cachep)->touched = 0;
1865 cachep->batchcount = 1;
1866 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1867 return 0;
1868 }
1869
kmem_cache_flags(unsigned int object_size,slab_flags_t flags,const char * name,void (* ctor)(void *))1870 slab_flags_t kmem_cache_flags(unsigned int object_size,
1871 slab_flags_t flags, const char *name,
1872 void (*ctor)(void *))
1873 {
1874 return flags;
1875 }
1876
1877 struct kmem_cache *
__kmem_cache_alias(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))1878 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
1879 slab_flags_t flags, void (*ctor)(void *))
1880 {
1881 struct kmem_cache *cachep;
1882
1883 cachep = find_mergeable(size, align, flags, name, ctor);
1884 if (cachep) {
1885 cachep->refcount++;
1886
1887 /*
1888 * Adjust the object sizes so that we clear
1889 * the complete object on kzalloc.
1890 */
1891 cachep->object_size = max_t(int, cachep->object_size, size);
1892 }
1893 return cachep;
1894 }
1895
set_objfreelist_slab_cache(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1896 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1897 size_t size, slab_flags_t flags)
1898 {
1899 size_t left;
1900
1901 cachep->num = 0;
1902
1903 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1904 return false;
1905
1906 left = calculate_slab_order(cachep, size,
1907 flags | CFLGS_OBJFREELIST_SLAB);
1908 if (!cachep->num)
1909 return false;
1910
1911 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1912 return false;
1913
1914 cachep->colour = left / cachep->colour_off;
1915
1916 return true;
1917 }
1918
set_off_slab_cache(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1919 static bool set_off_slab_cache(struct kmem_cache *cachep,
1920 size_t size, slab_flags_t flags)
1921 {
1922 size_t left;
1923
1924 cachep->num = 0;
1925
1926 /*
1927 * Always use on-slab management when SLAB_NOLEAKTRACE
1928 * to avoid recursive calls into kmemleak.
1929 */
1930 if (flags & SLAB_NOLEAKTRACE)
1931 return false;
1932
1933 /*
1934 * Size is large, assume best to place the slab management obj
1935 * off-slab (should allow better packing of objs).
1936 */
1937 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1938 if (!cachep->num)
1939 return false;
1940
1941 /*
1942 * If the slab has been placed off-slab, and we have enough space then
1943 * move it on-slab. This is at the expense of any extra colouring.
1944 */
1945 if (left >= cachep->num * sizeof(freelist_idx_t))
1946 return false;
1947
1948 cachep->colour = left / cachep->colour_off;
1949
1950 return true;
1951 }
1952
set_on_slab_cache(struct kmem_cache * cachep,size_t size,slab_flags_t flags)1953 static bool set_on_slab_cache(struct kmem_cache *cachep,
1954 size_t size, slab_flags_t flags)
1955 {
1956 size_t left;
1957
1958 cachep->num = 0;
1959
1960 left = calculate_slab_order(cachep, size, flags);
1961 if (!cachep->num)
1962 return false;
1963
1964 cachep->colour = left / cachep->colour_off;
1965
1966 return true;
1967 }
1968
1969 /**
1970 * __kmem_cache_create - Create a cache.
1971 * @cachep: cache management descriptor
1972 * @flags: SLAB flags
1973 *
1974 * Returns a ptr to the cache on success, NULL on failure.
1975 * Cannot be called within a int, but can be interrupted.
1976 * The @ctor is run when new pages are allocated by the cache.
1977 *
1978 * The flags are
1979 *
1980 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1981 * to catch references to uninitialised memory.
1982 *
1983 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1984 * for buffer overruns.
1985 *
1986 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1987 * cacheline. This can be beneficial if you're counting cycles as closely
1988 * as davem.
1989 */
__kmem_cache_create(struct kmem_cache * cachep,slab_flags_t flags)1990 int __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
1991 {
1992 size_t ralign = BYTES_PER_WORD;
1993 gfp_t gfp;
1994 int err;
1995 unsigned int size = cachep->size;
1996
1997 #if DEBUG
1998 #if FORCED_DEBUG
1999 /*
2000 * Enable redzoning and last user accounting, except for caches with
2001 * large objects, if the increased size would increase the object size
2002 * above the next power of two: caches with object sizes just above a
2003 * power of two have a significant amount of internal fragmentation.
2004 */
2005 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2006 2 * sizeof(unsigned long long)))
2007 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2008 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2009 flags |= SLAB_POISON;
2010 #endif
2011 #endif
2012
2013 /*
2014 * Check that size is in terms of words. This is needed to avoid
2015 * unaligned accesses for some archs when redzoning is used, and makes
2016 * sure any on-slab bufctl's are also correctly aligned.
2017 */
2018 size = ALIGN(size, BYTES_PER_WORD);
2019
2020 if (flags & SLAB_RED_ZONE) {
2021 ralign = REDZONE_ALIGN;
2022 /* If redzoning, ensure that the second redzone is suitably
2023 * aligned, by adjusting the object size accordingly. */
2024 size = ALIGN(size, REDZONE_ALIGN);
2025 }
2026
2027 /* 3) caller mandated alignment */
2028 if (ralign < cachep->align) {
2029 ralign = cachep->align;
2030 }
2031 /* disable debug if necessary */
2032 if (ralign > __alignof__(unsigned long long))
2033 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2034 /*
2035 * 4) Store it.
2036 */
2037 cachep->align = ralign;
2038 cachep->colour_off = cache_line_size();
2039 /* Offset must be a multiple of the alignment. */
2040 if (cachep->colour_off < cachep->align)
2041 cachep->colour_off = cachep->align;
2042
2043 if (slab_is_available())
2044 gfp = GFP_KERNEL;
2045 else
2046 gfp = GFP_NOWAIT;
2047
2048 #if DEBUG
2049
2050 /*
2051 * Both debugging options require word-alignment which is calculated
2052 * into align above.
2053 */
2054 if (flags & SLAB_RED_ZONE) {
2055 /* add space for red zone words */
2056 cachep->obj_offset += sizeof(unsigned long long);
2057 size += 2 * sizeof(unsigned long long);
2058 }
2059 if (flags & SLAB_STORE_USER) {
2060 /* user store requires one word storage behind the end of
2061 * the real object. But if the second red zone needs to be
2062 * aligned to 64 bits, we must allow that much space.
2063 */
2064 if (flags & SLAB_RED_ZONE)
2065 size += REDZONE_ALIGN;
2066 else
2067 size += BYTES_PER_WORD;
2068 }
2069 #endif
2070
2071 kasan_cache_create(cachep, &size, &flags);
2072
2073 size = ALIGN(size, cachep->align);
2074 /*
2075 * We should restrict the number of objects in a slab to implement
2076 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2077 */
2078 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2079 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2080
2081 #if DEBUG
2082 /*
2083 * To activate debug pagealloc, off-slab management is necessary
2084 * requirement. In early phase of initialization, small sized slab
2085 * doesn't get initialized so it would not be possible. So, we need
2086 * to check size >= 256. It guarantees that all necessary small
2087 * sized slab is initialized in current slab initialization sequence.
2088 */
2089 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2090 size >= 256 && cachep->object_size > cache_line_size()) {
2091 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2092 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2093
2094 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2095 flags |= CFLGS_OFF_SLAB;
2096 cachep->obj_offset += tmp_size - size;
2097 size = tmp_size;
2098 goto done;
2099 }
2100 }
2101 }
2102 #endif
2103
2104 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2105 flags |= CFLGS_OBJFREELIST_SLAB;
2106 goto done;
2107 }
2108
2109 if (set_off_slab_cache(cachep, size, flags)) {
2110 flags |= CFLGS_OFF_SLAB;
2111 goto done;
2112 }
2113
2114 if (set_on_slab_cache(cachep, size, flags))
2115 goto done;
2116
2117 return -E2BIG;
2118
2119 done:
2120 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2121 cachep->flags = flags;
2122 cachep->allocflags = __GFP_COMP;
2123 if (flags & SLAB_CACHE_DMA)
2124 cachep->allocflags |= GFP_DMA;
2125 if (flags & SLAB_RECLAIM_ACCOUNT)
2126 cachep->allocflags |= __GFP_RECLAIMABLE;
2127 cachep->size = size;
2128 cachep->reciprocal_buffer_size = reciprocal_value(size);
2129
2130 #if DEBUG
2131 /*
2132 * If we're going to use the generic kernel_map_pages()
2133 * poisoning, then it's going to smash the contents of
2134 * the redzone and userword anyhow, so switch them off.
2135 */
2136 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2137 (cachep->flags & SLAB_POISON) &&
2138 is_debug_pagealloc_cache(cachep))
2139 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2140 #endif
2141
2142 if (OFF_SLAB(cachep)) {
2143 cachep->freelist_cache =
2144 kmalloc_slab(cachep->freelist_size, 0u);
2145 }
2146
2147 err = setup_cpu_cache(cachep, gfp);
2148 if (err) {
2149 __kmem_cache_release(cachep);
2150 return err;
2151 }
2152
2153 return 0;
2154 }
2155
2156 #if DEBUG
check_irq_off(void)2157 static void check_irq_off(void)
2158 {
2159 BUG_ON(!irqs_disabled());
2160 }
2161
check_irq_on(void)2162 static void check_irq_on(void)
2163 {
2164 BUG_ON(irqs_disabled());
2165 }
2166
check_mutex_acquired(void)2167 static void check_mutex_acquired(void)
2168 {
2169 BUG_ON(!mutex_is_locked(&slab_mutex));
2170 }
2171
check_spinlock_acquired(struct kmem_cache * cachep)2172 static void check_spinlock_acquired(struct kmem_cache *cachep)
2173 {
2174 #ifdef CONFIG_SMP
2175 check_irq_off();
2176 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2177 #endif
2178 }
2179
check_spinlock_acquired_node(struct kmem_cache * cachep,int node)2180 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2181 {
2182 #ifdef CONFIG_SMP
2183 check_irq_off();
2184 assert_spin_locked(&get_node(cachep, node)->list_lock);
2185 #endif
2186 }
2187
2188 #else
2189 #define check_irq_off() do { } while(0)
2190 #define check_irq_on() do { } while(0)
2191 #define check_mutex_acquired() do { } while(0)
2192 #define check_spinlock_acquired(x) do { } while(0)
2193 #define check_spinlock_acquired_node(x, y) do { } while(0)
2194 #endif
2195
drain_array_locked(struct kmem_cache * cachep,struct array_cache * ac,int node,bool free_all,struct list_head * list)2196 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2197 int node, bool free_all, struct list_head *list)
2198 {
2199 int tofree;
2200
2201 if (!ac || !ac->avail)
2202 return;
2203
2204 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2205 if (tofree > ac->avail)
2206 tofree = (ac->avail + 1) / 2;
2207
2208 free_block(cachep, ac->entry, tofree, node, list);
2209 ac->avail -= tofree;
2210 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2211 }
2212
do_drain(void * arg)2213 static void do_drain(void *arg)
2214 {
2215 struct kmem_cache *cachep = arg;
2216 struct array_cache *ac;
2217 int node = numa_mem_id();
2218 struct kmem_cache_node *n;
2219 LIST_HEAD(list);
2220
2221 check_irq_off();
2222 ac = cpu_cache_get(cachep);
2223 n = get_node(cachep, node);
2224 spin_lock(&n->list_lock);
2225 free_block(cachep, ac->entry, ac->avail, node, &list);
2226 spin_unlock(&n->list_lock);
2227 slabs_destroy(cachep, &list);
2228 ac->avail = 0;
2229 }
2230
drain_cpu_caches(struct kmem_cache * cachep)2231 static void drain_cpu_caches(struct kmem_cache *cachep)
2232 {
2233 struct kmem_cache_node *n;
2234 int node;
2235 LIST_HEAD(list);
2236
2237 on_each_cpu(do_drain, cachep, 1);
2238 check_irq_on();
2239 for_each_kmem_cache_node(cachep, node, n)
2240 if (n->alien)
2241 drain_alien_cache(cachep, n->alien);
2242
2243 for_each_kmem_cache_node(cachep, node, n) {
2244 spin_lock_irq(&n->list_lock);
2245 drain_array_locked(cachep, n->shared, node, true, &list);
2246 spin_unlock_irq(&n->list_lock);
2247
2248 slabs_destroy(cachep, &list);
2249 }
2250 }
2251
2252 /*
2253 * Remove slabs from the list of free slabs.
2254 * Specify the number of slabs to drain in tofree.
2255 *
2256 * Returns the actual number of slabs released.
2257 */
drain_freelist(struct kmem_cache * cache,struct kmem_cache_node * n,int tofree)2258 static int drain_freelist(struct kmem_cache *cache,
2259 struct kmem_cache_node *n, int tofree)
2260 {
2261 struct list_head *p;
2262 int nr_freed;
2263 struct page *page;
2264
2265 nr_freed = 0;
2266 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2267
2268 spin_lock_irq(&n->list_lock);
2269 p = n->slabs_free.prev;
2270 if (p == &n->slabs_free) {
2271 spin_unlock_irq(&n->list_lock);
2272 goto out;
2273 }
2274
2275 page = list_entry(p, struct page, lru);
2276 list_del(&page->lru);
2277 n->free_slabs--;
2278 n->total_slabs--;
2279 /*
2280 * Safe to drop the lock. The slab is no longer linked
2281 * to the cache.
2282 */
2283 n->free_objects -= cache->num;
2284 spin_unlock_irq(&n->list_lock);
2285 slab_destroy(cache, page);
2286 nr_freed++;
2287 }
2288 out:
2289 return nr_freed;
2290 }
2291
__kmem_cache_empty(struct kmem_cache * s)2292 bool __kmem_cache_empty(struct kmem_cache *s)
2293 {
2294 int node;
2295 struct kmem_cache_node *n;
2296
2297 for_each_kmem_cache_node(s, node, n)
2298 if (!list_empty(&n->slabs_full) ||
2299 !list_empty(&n->slabs_partial))
2300 return false;
2301 return true;
2302 }
2303
__kmem_cache_shrink(struct kmem_cache * cachep)2304 int __kmem_cache_shrink(struct kmem_cache *cachep)
2305 {
2306 int ret = 0;
2307 int node;
2308 struct kmem_cache_node *n;
2309
2310 drain_cpu_caches(cachep);
2311
2312 check_irq_on();
2313 for_each_kmem_cache_node(cachep, node, n) {
2314 drain_freelist(cachep, n, INT_MAX);
2315
2316 ret += !list_empty(&n->slabs_full) ||
2317 !list_empty(&n->slabs_partial);
2318 }
2319 return (ret ? 1 : 0);
2320 }
2321
2322 #ifdef CONFIG_MEMCG
__kmemcg_cache_deactivate(struct kmem_cache * cachep)2323 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2324 {
2325 __kmem_cache_shrink(cachep);
2326 }
2327 #endif
2328
__kmem_cache_shutdown(struct kmem_cache * cachep)2329 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2330 {
2331 return __kmem_cache_shrink(cachep);
2332 }
2333
__kmem_cache_release(struct kmem_cache * cachep)2334 void __kmem_cache_release(struct kmem_cache *cachep)
2335 {
2336 int i;
2337 struct kmem_cache_node *n;
2338
2339 cache_random_seq_destroy(cachep);
2340
2341 free_percpu(cachep->cpu_cache);
2342
2343 /* NUMA: free the node structures */
2344 for_each_kmem_cache_node(cachep, i, n) {
2345 kfree(n->shared);
2346 free_alien_cache(n->alien);
2347 kfree(n);
2348 cachep->node[i] = NULL;
2349 }
2350 }
2351
2352 /*
2353 * Get the memory for a slab management obj.
2354 *
2355 * For a slab cache when the slab descriptor is off-slab, the
2356 * slab descriptor can't come from the same cache which is being created,
2357 * Because if it is the case, that means we defer the creation of
2358 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2359 * And we eventually call down to __kmem_cache_create(), which
2360 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2361 * This is a "chicken-and-egg" problem.
2362 *
2363 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2364 * which are all initialized during kmem_cache_init().
2365 */
alloc_slabmgmt(struct kmem_cache * cachep,struct page * page,int colour_off,gfp_t local_flags,int nodeid)2366 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2367 struct page *page, int colour_off,
2368 gfp_t local_flags, int nodeid)
2369 {
2370 void *freelist;
2371 void *addr = page_address(page);
2372
2373 page->s_mem = addr + colour_off;
2374 page->active = 0;
2375
2376 if (OBJFREELIST_SLAB(cachep))
2377 freelist = NULL;
2378 else if (OFF_SLAB(cachep)) {
2379 /* Slab management obj is off-slab. */
2380 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2381 local_flags, nodeid);
2382 if (!freelist)
2383 return NULL;
2384 } else {
2385 /* We will use last bytes at the slab for freelist */
2386 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2387 cachep->freelist_size;
2388 }
2389
2390 return freelist;
2391 }
2392
get_free_obj(struct page * page,unsigned int idx)2393 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2394 {
2395 return ((freelist_idx_t *)page->freelist)[idx];
2396 }
2397
set_free_obj(struct page * page,unsigned int idx,freelist_idx_t val)2398 static inline void set_free_obj(struct page *page,
2399 unsigned int idx, freelist_idx_t val)
2400 {
2401 ((freelist_idx_t *)(page->freelist))[idx] = val;
2402 }
2403
cache_init_objs_debug(struct kmem_cache * cachep,struct page * page)2404 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2405 {
2406 #if DEBUG
2407 int i;
2408
2409 for (i = 0; i < cachep->num; i++) {
2410 void *objp = index_to_obj(cachep, page, i);
2411
2412 if (cachep->flags & SLAB_STORE_USER)
2413 *dbg_userword(cachep, objp) = NULL;
2414
2415 if (cachep->flags & SLAB_RED_ZONE) {
2416 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2417 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2418 }
2419 /*
2420 * Constructors are not allowed to allocate memory from the same
2421 * cache which they are a constructor for. Otherwise, deadlock.
2422 * They must also be threaded.
2423 */
2424 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2425 kasan_unpoison_object_data(cachep,
2426 objp + obj_offset(cachep));
2427 cachep->ctor(objp + obj_offset(cachep));
2428 kasan_poison_object_data(
2429 cachep, objp + obj_offset(cachep));
2430 }
2431
2432 if (cachep->flags & SLAB_RED_ZONE) {
2433 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2434 slab_error(cachep, "constructor overwrote the end of an object");
2435 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2436 slab_error(cachep, "constructor overwrote the start of an object");
2437 }
2438 /* need to poison the objs? */
2439 if (cachep->flags & SLAB_POISON) {
2440 poison_obj(cachep, objp, POISON_FREE);
2441 slab_kernel_map(cachep, objp, 0, 0);
2442 }
2443 }
2444 #endif
2445 }
2446
2447 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2448 /* Hold information during a freelist initialization */
2449 union freelist_init_state {
2450 struct {
2451 unsigned int pos;
2452 unsigned int *list;
2453 unsigned int count;
2454 };
2455 struct rnd_state rnd_state;
2456 };
2457
2458 /*
2459 * Initialize the state based on the randomization methode available.
2460 * return true if the pre-computed list is available, false otherwize.
2461 */
freelist_state_initialize(union freelist_init_state * state,struct kmem_cache * cachep,unsigned int count)2462 static bool freelist_state_initialize(union freelist_init_state *state,
2463 struct kmem_cache *cachep,
2464 unsigned int count)
2465 {
2466 bool ret;
2467 unsigned int rand;
2468
2469 /* Use best entropy available to define a random shift */
2470 rand = get_random_int();
2471
2472 /* Use a random state if the pre-computed list is not available */
2473 if (!cachep->random_seq) {
2474 prandom_seed_state(&state->rnd_state, rand);
2475 ret = false;
2476 } else {
2477 state->list = cachep->random_seq;
2478 state->count = count;
2479 state->pos = rand % count;
2480 ret = true;
2481 }
2482 return ret;
2483 }
2484
2485 /* Get the next entry on the list and randomize it using a random shift */
next_random_slot(union freelist_init_state * state)2486 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2487 {
2488 if (state->pos >= state->count)
2489 state->pos = 0;
2490 return state->list[state->pos++];
2491 }
2492
2493 /* Swap two freelist entries */
swap_free_obj(struct page * page,unsigned int a,unsigned int b)2494 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2495 {
2496 swap(((freelist_idx_t *)page->freelist)[a],
2497 ((freelist_idx_t *)page->freelist)[b]);
2498 }
2499
2500 /*
2501 * Shuffle the freelist initialization state based on pre-computed lists.
2502 * return true if the list was successfully shuffled, false otherwise.
2503 */
shuffle_freelist(struct kmem_cache * cachep,struct page * page)2504 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2505 {
2506 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2507 union freelist_init_state state;
2508 bool precomputed;
2509
2510 if (count < 2)
2511 return false;
2512
2513 precomputed = freelist_state_initialize(&state, cachep, count);
2514
2515 /* Take a random entry as the objfreelist */
2516 if (OBJFREELIST_SLAB(cachep)) {
2517 if (!precomputed)
2518 objfreelist = count - 1;
2519 else
2520 objfreelist = next_random_slot(&state);
2521 page->freelist = index_to_obj(cachep, page, objfreelist) +
2522 obj_offset(cachep);
2523 count--;
2524 }
2525
2526 /*
2527 * On early boot, generate the list dynamically.
2528 * Later use a pre-computed list for speed.
2529 */
2530 if (!precomputed) {
2531 for (i = 0; i < count; i++)
2532 set_free_obj(page, i, i);
2533
2534 /* Fisher-Yates shuffle */
2535 for (i = count - 1; i > 0; i--) {
2536 rand = prandom_u32_state(&state.rnd_state);
2537 rand %= (i + 1);
2538 swap_free_obj(page, i, rand);
2539 }
2540 } else {
2541 for (i = 0; i < count; i++)
2542 set_free_obj(page, i, next_random_slot(&state));
2543 }
2544
2545 if (OBJFREELIST_SLAB(cachep))
2546 set_free_obj(page, cachep->num - 1, objfreelist);
2547
2548 return true;
2549 }
2550 #else
shuffle_freelist(struct kmem_cache * cachep,struct page * page)2551 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2552 struct page *page)
2553 {
2554 return false;
2555 }
2556 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2557
cache_init_objs(struct kmem_cache * cachep,struct page * page)2558 static void cache_init_objs(struct kmem_cache *cachep,
2559 struct page *page)
2560 {
2561 int i;
2562 void *objp;
2563 bool shuffled;
2564
2565 cache_init_objs_debug(cachep, page);
2566
2567 /* Try to randomize the freelist if enabled */
2568 shuffled = shuffle_freelist(cachep, page);
2569
2570 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2571 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2572 obj_offset(cachep);
2573 }
2574
2575 for (i = 0; i < cachep->num; i++) {
2576 objp = index_to_obj(cachep, page, i);
2577 kasan_init_slab_obj(cachep, objp);
2578
2579 /* constructor could break poison info */
2580 if (DEBUG == 0 && cachep->ctor) {
2581 kasan_unpoison_object_data(cachep, objp);
2582 cachep->ctor(objp);
2583 kasan_poison_object_data(cachep, objp);
2584 }
2585
2586 if (!shuffled)
2587 set_free_obj(page, i, i);
2588 }
2589 }
2590
slab_get_obj(struct kmem_cache * cachep,struct page * page)2591 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2592 {
2593 void *objp;
2594
2595 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2596 page->active++;
2597
2598 #if DEBUG
2599 if (cachep->flags & SLAB_STORE_USER)
2600 set_store_user_dirty(cachep);
2601 #endif
2602
2603 return objp;
2604 }
2605
slab_put_obj(struct kmem_cache * cachep,struct page * page,void * objp)2606 static void slab_put_obj(struct kmem_cache *cachep,
2607 struct page *page, void *objp)
2608 {
2609 unsigned int objnr = obj_to_index(cachep, page, objp);
2610 #if DEBUG
2611 unsigned int i;
2612
2613 /* Verify double free bug */
2614 for (i = page->active; i < cachep->num; i++) {
2615 if (get_free_obj(page, i) == objnr) {
2616 pr_err("slab: double free detected in cache '%s', objp %px\n",
2617 cachep->name, objp);
2618 BUG();
2619 }
2620 }
2621 #endif
2622 page->active--;
2623 if (!page->freelist)
2624 page->freelist = objp + obj_offset(cachep);
2625
2626 set_free_obj(page, page->active, objnr);
2627 }
2628
2629 /*
2630 * Map pages beginning at addr to the given cache and slab. This is required
2631 * for the slab allocator to be able to lookup the cache and slab of a
2632 * virtual address for kfree, ksize, and slab debugging.
2633 */
slab_map_pages(struct kmem_cache * cache,struct page * page,void * freelist)2634 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2635 void *freelist)
2636 {
2637 page->slab_cache = cache;
2638 page->freelist = freelist;
2639 }
2640
2641 /*
2642 * Grow (by 1) the number of slabs within a cache. This is called by
2643 * kmem_cache_alloc() when there are no active objs left in a cache.
2644 */
cache_grow_begin(struct kmem_cache * cachep,gfp_t flags,int nodeid)2645 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2646 gfp_t flags, int nodeid)
2647 {
2648 void *freelist;
2649 size_t offset;
2650 gfp_t local_flags;
2651 int page_node;
2652 struct kmem_cache_node *n;
2653 struct page *page;
2654
2655 /*
2656 * Be lazy and only check for valid flags here, keeping it out of the
2657 * critical path in kmem_cache_alloc().
2658 */
2659 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2660 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2661 flags &= ~GFP_SLAB_BUG_MASK;
2662 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2663 invalid_mask, &invalid_mask, flags, &flags);
2664 dump_stack();
2665 }
2666 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
2667 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2668
2669 check_irq_off();
2670 if (gfpflags_allow_blocking(local_flags))
2671 local_irq_enable();
2672
2673 /*
2674 * Get mem for the objs. Attempt to allocate a physical page from
2675 * 'nodeid'.
2676 */
2677 page = kmem_getpages(cachep, local_flags, nodeid);
2678 if (!page)
2679 goto failed;
2680
2681 page_node = page_to_nid(page);
2682 n = get_node(cachep, page_node);
2683
2684 /* Get colour for the slab, and cal the next value. */
2685 n->colour_next++;
2686 if (n->colour_next >= cachep->colour)
2687 n->colour_next = 0;
2688
2689 offset = n->colour_next;
2690 if (offset >= cachep->colour)
2691 offset = 0;
2692
2693 offset *= cachep->colour_off;
2694
2695 /* Get slab management. */
2696 freelist = alloc_slabmgmt(cachep, page, offset,
2697 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2698 if (OFF_SLAB(cachep) && !freelist)
2699 goto opps1;
2700
2701 slab_map_pages(cachep, page, freelist);
2702
2703 kasan_poison_slab(page);
2704 cache_init_objs(cachep, page);
2705
2706 if (gfpflags_allow_blocking(local_flags))
2707 local_irq_disable();
2708
2709 return page;
2710
2711 opps1:
2712 kmem_freepages(cachep, page);
2713 failed:
2714 if (gfpflags_allow_blocking(local_flags))
2715 local_irq_disable();
2716 return NULL;
2717 }
2718
cache_grow_end(struct kmem_cache * cachep,struct page * page)2719 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2720 {
2721 struct kmem_cache_node *n;
2722 void *list = NULL;
2723
2724 check_irq_off();
2725
2726 if (!page)
2727 return;
2728
2729 INIT_LIST_HEAD(&page->lru);
2730 n = get_node(cachep, page_to_nid(page));
2731
2732 spin_lock(&n->list_lock);
2733 n->total_slabs++;
2734 if (!page->active) {
2735 list_add_tail(&page->lru, &(n->slabs_free));
2736 n->free_slabs++;
2737 } else
2738 fixup_slab_list(cachep, n, page, &list);
2739
2740 STATS_INC_GROWN(cachep);
2741 n->free_objects += cachep->num - page->active;
2742 spin_unlock(&n->list_lock);
2743
2744 fixup_objfreelist_debug(cachep, &list);
2745 }
2746
2747 #if DEBUG
2748
2749 /*
2750 * Perform extra freeing checks:
2751 * - detect bad pointers.
2752 * - POISON/RED_ZONE checking
2753 */
kfree_debugcheck(const void * objp)2754 static void kfree_debugcheck(const void *objp)
2755 {
2756 if (!virt_addr_valid(objp)) {
2757 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2758 (unsigned long)objp);
2759 BUG();
2760 }
2761 }
2762
verify_redzone_free(struct kmem_cache * cache,void * obj)2763 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2764 {
2765 unsigned long long redzone1, redzone2;
2766
2767 redzone1 = *dbg_redzone1(cache, obj);
2768 redzone2 = *dbg_redzone2(cache, obj);
2769
2770 /*
2771 * Redzone is ok.
2772 */
2773 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2774 return;
2775
2776 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2777 slab_error(cache, "double free detected");
2778 else
2779 slab_error(cache, "memory outside object was overwritten");
2780
2781 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
2782 obj, redzone1, redzone2);
2783 }
2784
cache_free_debugcheck(struct kmem_cache * cachep,void * objp,unsigned long caller)2785 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2786 unsigned long caller)
2787 {
2788 unsigned int objnr;
2789 struct page *page;
2790
2791 BUG_ON(virt_to_cache(objp) != cachep);
2792
2793 objp -= obj_offset(cachep);
2794 kfree_debugcheck(objp);
2795 page = virt_to_head_page(objp);
2796
2797 if (cachep->flags & SLAB_RED_ZONE) {
2798 verify_redzone_free(cachep, objp);
2799 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2800 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2801 }
2802 if (cachep->flags & SLAB_STORE_USER) {
2803 set_store_user_dirty(cachep);
2804 *dbg_userword(cachep, objp) = (void *)caller;
2805 }
2806
2807 objnr = obj_to_index(cachep, page, objp);
2808
2809 BUG_ON(objnr >= cachep->num);
2810 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2811
2812 if (cachep->flags & SLAB_POISON) {
2813 poison_obj(cachep, objp, POISON_FREE);
2814 slab_kernel_map(cachep, objp, 0, caller);
2815 }
2816 return objp;
2817 }
2818
2819 #else
2820 #define kfree_debugcheck(x) do { } while(0)
2821 #define cache_free_debugcheck(x,objp,z) (objp)
2822 #endif
2823
fixup_objfreelist_debug(struct kmem_cache * cachep,void ** list)2824 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2825 void **list)
2826 {
2827 #if DEBUG
2828 void *next = *list;
2829 void *objp;
2830
2831 while (next) {
2832 objp = next - obj_offset(cachep);
2833 next = *(void **)next;
2834 poison_obj(cachep, objp, POISON_FREE);
2835 }
2836 #endif
2837 }
2838
fixup_slab_list(struct kmem_cache * cachep,struct kmem_cache_node * n,struct page * page,void ** list)2839 static inline void fixup_slab_list(struct kmem_cache *cachep,
2840 struct kmem_cache_node *n, struct page *page,
2841 void **list)
2842 {
2843 /* move slabp to correct slabp list: */
2844 list_del(&page->lru);
2845 if (page->active == cachep->num) {
2846 list_add(&page->lru, &n->slabs_full);
2847 if (OBJFREELIST_SLAB(cachep)) {
2848 #if DEBUG
2849 /* Poisoning will be done without holding the lock */
2850 if (cachep->flags & SLAB_POISON) {
2851 void **objp = page->freelist;
2852
2853 *objp = *list;
2854 *list = objp;
2855 }
2856 #endif
2857 page->freelist = NULL;
2858 }
2859 } else
2860 list_add(&page->lru, &n->slabs_partial);
2861 }
2862
2863 /* Try to find non-pfmemalloc slab if needed */
get_valid_first_slab(struct kmem_cache_node * n,struct page * page,bool pfmemalloc)2864 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2865 struct page *page, bool pfmemalloc)
2866 {
2867 if (!page)
2868 return NULL;
2869
2870 if (pfmemalloc)
2871 return page;
2872
2873 if (!PageSlabPfmemalloc(page))
2874 return page;
2875
2876 /* No need to keep pfmemalloc slab if we have enough free objects */
2877 if (n->free_objects > n->free_limit) {
2878 ClearPageSlabPfmemalloc(page);
2879 return page;
2880 }
2881
2882 /* Move pfmemalloc slab to the end of list to speed up next search */
2883 list_del(&page->lru);
2884 if (!page->active) {
2885 list_add_tail(&page->lru, &n->slabs_free);
2886 n->free_slabs++;
2887 } else
2888 list_add_tail(&page->lru, &n->slabs_partial);
2889
2890 list_for_each_entry(page, &n->slabs_partial, lru) {
2891 if (!PageSlabPfmemalloc(page))
2892 return page;
2893 }
2894
2895 n->free_touched = 1;
2896 list_for_each_entry(page, &n->slabs_free, lru) {
2897 if (!PageSlabPfmemalloc(page)) {
2898 n->free_slabs--;
2899 return page;
2900 }
2901 }
2902
2903 return NULL;
2904 }
2905
get_first_slab(struct kmem_cache_node * n,bool pfmemalloc)2906 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2907 {
2908 struct page *page;
2909
2910 assert_spin_locked(&n->list_lock);
2911 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2912 if (!page) {
2913 n->free_touched = 1;
2914 page = list_first_entry_or_null(&n->slabs_free, struct page,
2915 lru);
2916 if (page)
2917 n->free_slabs--;
2918 }
2919
2920 if (sk_memalloc_socks())
2921 page = get_valid_first_slab(n, page, pfmemalloc);
2922
2923 return page;
2924 }
2925
cache_alloc_pfmemalloc(struct kmem_cache * cachep,struct kmem_cache_node * n,gfp_t flags)2926 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2927 struct kmem_cache_node *n, gfp_t flags)
2928 {
2929 struct page *page;
2930 void *obj;
2931 void *list = NULL;
2932
2933 if (!gfp_pfmemalloc_allowed(flags))
2934 return NULL;
2935
2936 spin_lock(&n->list_lock);
2937 page = get_first_slab(n, true);
2938 if (!page) {
2939 spin_unlock(&n->list_lock);
2940 return NULL;
2941 }
2942
2943 obj = slab_get_obj(cachep, page);
2944 n->free_objects--;
2945
2946 fixup_slab_list(cachep, n, page, &list);
2947
2948 spin_unlock(&n->list_lock);
2949 fixup_objfreelist_debug(cachep, &list);
2950
2951 return obj;
2952 }
2953
2954 /*
2955 * Slab list should be fixed up by fixup_slab_list() for existing slab
2956 * or cache_grow_end() for new slab
2957 */
alloc_block(struct kmem_cache * cachep,struct array_cache * ac,struct page * page,int batchcount)2958 static __always_inline int alloc_block(struct kmem_cache *cachep,
2959 struct array_cache *ac, struct page *page, int batchcount)
2960 {
2961 /*
2962 * There must be at least one object available for
2963 * allocation.
2964 */
2965 BUG_ON(page->active >= cachep->num);
2966
2967 while (page->active < cachep->num && batchcount--) {
2968 STATS_INC_ALLOCED(cachep);
2969 STATS_INC_ACTIVE(cachep);
2970 STATS_SET_HIGH(cachep);
2971
2972 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2973 }
2974
2975 return batchcount;
2976 }
2977
cache_alloc_refill(struct kmem_cache * cachep,gfp_t flags)2978 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2979 {
2980 int batchcount;
2981 struct kmem_cache_node *n;
2982 struct array_cache *ac, *shared;
2983 int node;
2984 void *list = NULL;
2985 struct page *page;
2986
2987 check_irq_off();
2988 node = numa_mem_id();
2989
2990 ac = cpu_cache_get(cachep);
2991 batchcount = ac->batchcount;
2992 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2993 /*
2994 * If there was little recent activity on this cache, then
2995 * perform only a partial refill. Otherwise we could generate
2996 * refill bouncing.
2997 */
2998 batchcount = BATCHREFILL_LIMIT;
2999 }
3000 n = get_node(cachep, node);
3001
3002 BUG_ON(ac->avail > 0 || !n);
3003 shared = READ_ONCE(n->shared);
3004 if (!n->free_objects && (!shared || !shared->avail))
3005 goto direct_grow;
3006
3007 spin_lock(&n->list_lock);
3008 shared = READ_ONCE(n->shared);
3009
3010 /* See if we can refill from the shared array */
3011 if (shared && transfer_objects(ac, shared, batchcount)) {
3012 shared->touched = 1;
3013 goto alloc_done;
3014 }
3015
3016 while (batchcount > 0) {
3017 /* Get slab alloc is to come from. */
3018 page = get_first_slab(n, false);
3019 if (!page)
3020 goto must_grow;
3021
3022 check_spinlock_acquired(cachep);
3023
3024 batchcount = alloc_block(cachep, ac, page, batchcount);
3025 fixup_slab_list(cachep, n, page, &list);
3026 }
3027
3028 must_grow:
3029 n->free_objects -= ac->avail;
3030 alloc_done:
3031 spin_unlock(&n->list_lock);
3032 fixup_objfreelist_debug(cachep, &list);
3033
3034 direct_grow:
3035 if (unlikely(!ac->avail)) {
3036 /* Check if we can use obj in pfmemalloc slab */
3037 if (sk_memalloc_socks()) {
3038 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3039
3040 if (obj)
3041 return obj;
3042 }
3043
3044 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3045
3046 /*
3047 * cache_grow_begin() can reenable interrupts,
3048 * then ac could change.
3049 */
3050 ac = cpu_cache_get(cachep);
3051 if (!ac->avail && page)
3052 alloc_block(cachep, ac, page, batchcount);
3053 cache_grow_end(cachep, page);
3054
3055 if (!ac->avail)
3056 return NULL;
3057 }
3058 ac->touched = 1;
3059
3060 return ac->entry[--ac->avail];
3061 }
3062
cache_alloc_debugcheck_before(struct kmem_cache * cachep,gfp_t flags)3063 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3064 gfp_t flags)
3065 {
3066 might_sleep_if(gfpflags_allow_blocking(flags));
3067 }
3068
3069 #if DEBUG
cache_alloc_debugcheck_after(struct kmem_cache * cachep,gfp_t flags,void * objp,unsigned long caller)3070 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3071 gfp_t flags, void *objp, unsigned long caller)
3072 {
3073 WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
3074 if (!objp)
3075 return objp;
3076 if (cachep->flags & SLAB_POISON) {
3077 check_poison_obj(cachep, objp);
3078 slab_kernel_map(cachep, objp, 1, 0);
3079 poison_obj(cachep, objp, POISON_INUSE);
3080 }
3081 if (cachep->flags & SLAB_STORE_USER)
3082 *dbg_userword(cachep, objp) = (void *)caller;
3083
3084 if (cachep->flags & SLAB_RED_ZONE) {
3085 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3086 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3087 slab_error(cachep, "double free, or memory outside object was overwritten");
3088 pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
3089 objp, *dbg_redzone1(cachep, objp),
3090 *dbg_redzone2(cachep, objp));
3091 }
3092 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3093 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3094 }
3095
3096 objp += obj_offset(cachep);
3097 if (cachep->ctor && cachep->flags & SLAB_POISON)
3098 cachep->ctor(objp);
3099 if (ARCH_SLAB_MINALIGN &&
3100 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3101 pr_err("0x%px: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3102 objp, (int)ARCH_SLAB_MINALIGN);
3103 }
3104 return objp;
3105 }
3106 #else
3107 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3108 #endif
3109
____cache_alloc(struct kmem_cache * cachep,gfp_t flags)3110 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3111 {
3112 void *objp;
3113 struct array_cache *ac;
3114
3115 check_irq_off();
3116
3117 ac = cpu_cache_get(cachep);
3118 if (likely(ac->avail)) {
3119 ac->touched = 1;
3120 objp = ac->entry[--ac->avail];
3121
3122 STATS_INC_ALLOCHIT(cachep);
3123 goto out;
3124 }
3125
3126 STATS_INC_ALLOCMISS(cachep);
3127 objp = cache_alloc_refill(cachep, flags);
3128 /*
3129 * the 'ac' may be updated by cache_alloc_refill(),
3130 * and kmemleak_erase() requires its correct value.
3131 */
3132 ac = cpu_cache_get(cachep);
3133
3134 out:
3135 /*
3136 * To avoid a false negative, if an object that is in one of the
3137 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3138 * treat the array pointers as a reference to the object.
3139 */
3140 if (objp)
3141 kmemleak_erase(&ac->entry[ac->avail]);
3142 return objp;
3143 }
3144
3145 #ifdef CONFIG_NUMA
3146 /*
3147 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3148 *
3149 * If we are in_interrupt, then process context, including cpusets and
3150 * mempolicy, may not apply and should not be used for allocation policy.
3151 */
alternate_node_alloc(struct kmem_cache * cachep,gfp_t flags)3152 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3153 {
3154 int nid_alloc, nid_here;
3155
3156 if (in_interrupt() || (flags & __GFP_THISNODE))
3157 return NULL;
3158 nid_alloc = nid_here = numa_mem_id();
3159 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3160 nid_alloc = cpuset_slab_spread_node();
3161 else if (current->mempolicy)
3162 nid_alloc = mempolicy_slab_node();
3163 if (nid_alloc != nid_here)
3164 return ____cache_alloc_node(cachep, flags, nid_alloc);
3165 return NULL;
3166 }
3167
3168 /*
3169 * Fallback function if there was no memory available and no objects on a
3170 * certain node and fall back is permitted. First we scan all the
3171 * available node for available objects. If that fails then we
3172 * perform an allocation without specifying a node. This allows the page
3173 * allocator to do its reclaim / fallback magic. We then insert the
3174 * slab into the proper nodelist and then allocate from it.
3175 */
fallback_alloc(struct kmem_cache * cache,gfp_t flags)3176 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3177 {
3178 struct zonelist *zonelist;
3179 struct zoneref *z;
3180 struct zone *zone;
3181 enum zone_type high_zoneidx = gfp_zone(flags);
3182 void *obj = NULL;
3183 struct page *page;
3184 int nid;
3185 unsigned int cpuset_mems_cookie;
3186
3187 if (flags & __GFP_THISNODE)
3188 return NULL;
3189
3190 retry_cpuset:
3191 cpuset_mems_cookie = read_mems_allowed_begin();
3192 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3193
3194 retry:
3195 /*
3196 * Look through allowed nodes for objects available
3197 * from existing per node queues.
3198 */
3199 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3200 nid = zone_to_nid(zone);
3201
3202 if (cpuset_zone_allowed(zone, flags) &&
3203 get_node(cache, nid) &&
3204 get_node(cache, nid)->free_objects) {
3205 obj = ____cache_alloc_node(cache,
3206 gfp_exact_node(flags), nid);
3207 if (obj)
3208 break;
3209 }
3210 }
3211
3212 if (!obj) {
3213 /*
3214 * This allocation will be performed within the constraints
3215 * of the current cpuset / memory policy requirements.
3216 * We may trigger various forms of reclaim on the allowed
3217 * set and go into memory reserves if necessary.
3218 */
3219 page = cache_grow_begin(cache, flags, numa_mem_id());
3220 cache_grow_end(cache, page);
3221 if (page) {
3222 nid = page_to_nid(page);
3223 obj = ____cache_alloc_node(cache,
3224 gfp_exact_node(flags), nid);
3225
3226 /*
3227 * Another processor may allocate the objects in
3228 * the slab since we are not holding any locks.
3229 */
3230 if (!obj)
3231 goto retry;
3232 }
3233 }
3234
3235 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3236 goto retry_cpuset;
3237 return obj;
3238 }
3239
3240 /*
3241 * A interface to enable slab creation on nodeid
3242 */
____cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3243 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3244 int nodeid)
3245 {
3246 struct page *page;
3247 struct kmem_cache_node *n;
3248 void *obj = NULL;
3249 void *list = NULL;
3250
3251 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3252 n = get_node(cachep, nodeid);
3253 BUG_ON(!n);
3254
3255 check_irq_off();
3256 spin_lock(&n->list_lock);
3257 page = get_first_slab(n, false);
3258 if (!page)
3259 goto must_grow;
3260
3261 check_spinlock_acquired_node(cachep, nodeid);
3262
3263 STATS_INC_NODEALLOCS(cachep);
3264 STATS_INC_ACTIVE(cachep);
3265 STATS_SET_HIGH(cachep);
3266
3267 BUG_ON(page->active == cachep->num);
3268
3269 obj = slab_get_obj(cachep, page);
3270 n->free_objects--;
3271
3272 fixup_slab_list(cachep, n, page, &list);
3273
3274 spin_unlock(&n->list_lock);
3275 fixup_objfreelist_debug(cachep, &list);
3276 return obj;
3277
3278 must_grow:
3279 spin_unlock(&n->list_lock);
3280 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3281 if (page) {
3282 /* This slab isn't counted yet so don't update free_objects */
3283 obj = slab_get_obj(cachep, page);
3284 }
3285 cache_grow_end(cachep, page);
3286
3287 return obj ? obj : fallback_alloc(cachep, flags);
3288 }
3289
3290 static __always_inline void *
slab_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid,unsigned long caller)3291 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3292 unsigned long caller)
3293 {
3294 unsigned long save_flags;
3295 void *ptr;
3296 int slab_node = numa_mem_id();
3297
3298 flags &= gfp_allowed_mask;
3299 cachep = slab_pre_alloc_hook(cachep, flags);
3300 if (unlikely(!cachep))
3301 return NULL;
3302
3303 cache_alloc_debugcheck_before(cachep, flags);
3304 local_irq_save(save_flags);
3305
3306 if (nodeid == NUMA_NO_NODE)
3307 nodeid = slab_node;
3308
3309 if (unlikely(!get_node(cachep, nodeid))) {
3310 /* Node not bootstrapped yet */
3311 ptr = fallback_alloc(cachep, flags);
3312 goto out;
3313 }
3314
3315 if (nodeid == slab_node) {
3316 /*
3317 * Use the locally cached objects if possible.
3318 * However ____cache_alloc does not allow fallback
3319 * to other nodes. It may fail while we still have
3320 * objects on other nodes available.
3321 */
3322 ptr = ____cache_alloc(cachep, flags);
3323 if (ptr)
3324 goto out;
3325 }
3326 /* ___cache_alloc_node can fall back to other nodes */
3327 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3328 out:
3329 local_irq_restore(save_flags);
3330 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3331
3332 if (unlikely(flags & __GFP_ZERO) && ptr)
3333 memset(ptr, 0, cachep->object_size);
3334
3335 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3336 return ptr;
3337 }
3338
3339 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cache,gfp_t flags)3340 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3341 {
3342 void *objp;
3343
3344 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3345 objp = alternate_node_alloc(cache, flags);
3346 if (objp)
3347 goto out;
3348 }
3349 objp = ____cache_alloc(cache, flags);
3350
3351 /*
3352 * We may just have run out of memory on the local node.
3353 * ____cache_alloc_node() knows how to locate memory on other nodes
3354 */
3355 if (!objp)
3356 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3357
3358 out:
3359 return objp;
3360 }
3361 #else
3362
3363 static __always_inline void *
__do_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3364 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3365 {
3366 return ____cache_alloc(cachep, flags);
3367 }
3368
3369 #endif /* CONFIG_NUMA */
3370
3371 static __always_inline void *
slab_alloc(struct kmem_cache * cachep,gfp_t flags,unsigned long caller)3372 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3373 {
3374 unsigned long save_flags;
3375 void *objp;
3376
3377 flags &= gfp_allowed_mask;
3378 cachep = slab_pre_alloc_hook(cachep, flags);
3379 if (unlikely(!cachep))
3380 return NULL;
3381
3382 cache_alloc_debugcheck_before(cachep, flags);
3383 local_irq_save(save_flags);
3384 objp = __do_cache_alloc(cachep, flags);
3385 local_irq_restore(save_flags);
3386 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3387 prefetchw(objp);
3388
3389 if (unlikely(flags & __GFP_ZERO) && objp)
3390 memset(objp, 0, cachep->object_size);
3391
3392 slab_post_alloc_hook(cachep, flags, 1, &objp);
3393 return objp;
3394 }
3395
3396 /*
3397 * Caller needs to acquire correct kmem_cache_node's list_lock
3398 * @list: List of detached free slabs should be freed by caller
3399 */
free_block(struct kmem_cache * cachep,void ** objpp,int nr_objects,int node,struct list_head * list)3400 static void free_block(struct kmem_cache *cachep, void **objpp,
3401 int nr_objects, int node, struct list_head *list)
3402 {
3403 int i;
3404 struct kmem_cache_node *n = get_node(cachep, node);
3405 struct page *page;
3406
3407 n->free_objects += nr_objects;
3408
3409 for (i = 0; i < nr_objects; i++) {
3410 void *objp;
3411 struct page *page;
3412
3413 objp = objpp[i];
3414
3415 page = virt_to_head_page(objp);
3416 list_del(&page->lru);
3417 check_spinlock_acquired_node(cachep, node);
3418 slab_put_obj(cachep, page, objp);
3419 STATS_DEC_ACTIVE(cachep);
3420
3421 /* fixup slab chains */
3422 if (page->active == 0) {
3423 list_add(&page->lru, &n->slabs_free);
3424 n->free_slabs++;
3425 } else {
3426 /* Unconditionally move a slab to the end of the
3427 * partial list on free - maximum time for the
3428 * other objects to be freed, too.
3429 */
3430 list_add_tail(&page->lru, &n->slabs_partial);
3431 }
3432 }
3433
3434 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3435 n->free_objects -= cachep->num;
3436
3437 page = list_last_entry(&n->slabs_free, struct page, lru);
3438 list_move(&page->lru, list);
3439 n->free_slabs--;
3440 n->total_slabs--;
3441 }
3442 }
3443
cache_flusharray(struct kmem_cache * cachep,struct array_cache * ac)3444 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3445 {
3446 int batchcount;
3447 struct kmem_cache_node *n;
3448 int node = numa_mem_id();
3449 LIST_HEAD(list);
3450
3451 batchcount = ac->batchcount;
3452
3453 check_irq_off();
3454 n = get_node(cachep, node);
3455 spin_lock(&n->list_lock);
3456 if (n->shared) {
3457 struct array_cache *shared_array = n->shared;
3458 int max = shared_array->limit - shared_array->avail;
3459 if (max) {
3460 if (batchcount > max)
3461 batchcount = max;
3462 memcpy(&(shared_array->entry[shared_array->avail]),
3463 ac->entry, sizeof(void *) * batchcount);
3464 shared_array->avail += batchcount;
3465 goto free_done;
3466 }
3467 }
3468
3469 free_block(cachep, ac->entry, batchcount, node, &list);
3470 free_done:
3471 #if STATS
3472 {
3473 int i = 0;
3474 struct page *page;
3475
3476 list_for_each_entry(page, &n->slabs_free, lru) {
3477 BUG_ON(page->active);
3478
3479 i++;
3480 }
3481 STATS_SET_FREEABLE(cachep, i);
3482 }
3483 #endif
3484 spin_unlock(&n->list_lock);
3485 slabs_destroy(cachep, &list);
3486 ac->avail -= batchcount;
3487 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3488 }
3489
3490 /*
3491 * Release an obj back to its cache. If the obj has a constructed state, it must
3492 * be in this state _before_ it is released. Called with disabled ints.
3493 */
__cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3494 static __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
3495 unsigned long caller)
3496 {
3497 /* Put the object into the quarantine, don't touch it for now. */
3498 if (kasan_slab_free(cachep, objp, _RET_IP_))
3499 return;
3500
3501 ___cache_free(cachep, objp, caller);
3502 }
3503
___cache_free(struct kmem_cache * cachep,void * objp,unsigned long caller)3504 void ___cache_free(struct kmem_cache *cachep, void *objp,
3505 unsigned long caller)
3506 {
3507 struct array_cache *ac = cpu_cache_get(cachep);
3508
3509 check_irq_off();
3510 kmemleak_free_recursive(objp, cachep->flags);
3511 objp = cache_free_debugcheck(cachep, objp, caller);
3512
3513 /*
3514 * Skip calling cache_free_alien() when the platform is not numa.
3515 * This will avoid cache misses that happen while accessing slabp (which
3516 * is per page memory reference) to get nodeid. Instead use a global
3517 * variable to skip the call, which is mostly likely to be present in
3518 * the cache.
3519 */
3520 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3521 return;
3522
3523 if (ac->avail < ac->limit) {
3524 STATS_INC_FREEHIT(cachep);
3525 } else {
3526 STATS_INC_FREEMISS(cachep);
3527 cache_flusharray(cachep, ac);
3528 }
3529
3530 if (sk_memalloc_socks()) {
3531 struct page *page = virt_to_head_page(objp);
3532
3533 if (unlikely(PageSlabPfmemalloc(page))) {
3534 cache_free_pfmemalloc(cachep, page, objp);
3535 return;
3536 }
3537 }
3538
3539 ac->entry[ac->avail++] = objp;
3540 }
3541
3542 /**
3543 * kmem_cache_alloc - Allocate an object
3544 * @cachep: The cache to allocate from.
3545 * @flags: See kmalloc().
3546 *
3547 * Allocate an object from this cache. The flags are only relevant
3548 * if the cache has no available objects.
3549 */
kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)3550 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3551 {
3552 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3553
3554 kasan_slab_alloc(cachep, ret, flags);
3555 trace_kmem_cache_alloc(_RET_IP_, ret,
3556 cachep->object_size, cachep->size, flags);
3557
3558 return ret;
3559 }
3560 EXPORT_SYMBOL(kmem_cache_alloc);
3561
3562 static __always_inline void
cache_alloc_debugcheck_after_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p,unsigned long caller)3563 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3564 size_t size, void **p, unsigned long caller)
3565 {
3566 size_t i;
3567
3568 for (i = 0; i < size; i++)
3569 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3570 }
3571
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)3572 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3573 void **p)
3574 {
3575 size_t i;
3576
3577 s = slab_pre_alloc_hook(s, flags);
3578 if (!s)
3579 return 0;
3580
3581 cache_alloc_debugcheck_before(s, flags);
3582
3583 local_irq_disable();
3584 for (i = 0; i < size; i++) {
3585 void *objp = __do_cache_alloc(s, flags);
3586
3587 if (unlikely(!objp))
3588 goto error;
3589 p[i] = objp;
3590 }
3591 local_irq_enable();
3592
3593 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3594
3595 /* Clear memory outside IRQ disabled section */
3596 if (unlikely(flags & __GFP_ZERO))
3597 for (i = 0; i < size; i++)
3598 memset(p[i], 0, s->object_size);
3599
3600 slab_post_alloc_hook(s, flags, size, p);
3601 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3602 return size;
3603 error:
3604 local_irq_enable();
3605 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3606 slab_post_alloc_hook(s, flags, i, p);
3607 __kmem_cache_free_bulk(s, i, p);
3608 return 0;
3609 }
3610 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3611
3612 #ifdef CONFIG_TRACING
3613 void *
kmem_cache_alloc_trace(struct kmem_cache * cachep,gfp_t flags,size_t size)3614 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3615 {
3616 void *ret;
3617
3618 ret = slab_alloc(cachep, flags, _RET_IP_);
3619
3620 kasan_kmalloc(cachep, ret, size, flags);
3621 trace_kmalloc(_RET_IP_, ret,
3622 size, cachep->size, flags);
3623 return ret;
3624 }
3625 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3626 #endif
3627
3628 #ifdef CONFIG_NUMA
3629 /**
3630 * kmem_cache_alloc_node - Allocate an object on the specified node
3631 * @cachep: The cache to allocate from.
3632 * @flags: See kmalloc().
3633 * @nodeid: node number of the target node.
3634 *
3635 * Identical to kmem_cache_alloc but it will allocate memory on the given
3636 * node, which can improve the performance for cpu bound structures.
3637 *
3638 * Fallback to other node is possible if __GFP_THISNODE is not set.
3639 */
kmem_cache_alloc_node(struct kmem_cache * cachep,gfp_t flags,int nodeid)3640 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3641 {
3642 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3643
3644 kasan_slab_alloc(cachep, ret, flags);
3645 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3646 cachep->object_size, cachep->size,
3647 flags, nodeid);
3648
3649 return ret;
3650 }
3651 EXPORT_SYMBOL(kmem_cache_alloc_node);
3652
3653 #ifdef CONFIG_TRACING
kmem_cache_alloc_node_trace(struct kmem_cache * cachep,gfp_t flags,int nodeid,size_t size)3654 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3655 gfp_t flags,
3656 int nodeid,
3657 size_t size)
3658 {
3659 void *ret;
3660
3661 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3662
3663 kasan_kmalloc(cachep, ret, size, flags);
3664 trace_kmalloc_node(_RET_IP_, ret,
3665 size, cachep->size,
3666 flags, nodeid);
3667 return ret;
3668 }
3669 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3670 #endif
3671
3672 static __always_inline void *
__do_kmalloc_node(size_t size,gfp_t flags,int node,unsigned long caller)3673 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3674 {
3675 struct kmem_cache *cachep;
3676 void *ret;
3677
3678 cachep = kmalloc_slab(size, flags);
3679 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3680 return cachep;
3681 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3682 kasan_kmalloc(cachep, ret, size, flags);
3683
3684 return ret;
3685 }
3686
__kmalloc_node(size_t size,gfp_t flags,int node)3687 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3688 {
3689 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3690 }
3691 EXPORT_SYMBOL(__kmalloc_node);
3692
__kmalloc_node_track_caller(size_t size,gfp_t flags,int node,unsigned long caller)3693 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3694 int node, unsigned long caller)
3695 {
3696 return __do_kmalloc_node(size, flags, node, caller);
3697 }
3698 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3699 #endif /* CONFIG_NUMA */
3700
3701 /**
3702 * __do_kmalloc - allocate memory
3703 * @size: how many bytes of memory are required.
3704 * @flags: the type of memory to allocate (see kmalloc).
3705 * @caller: function caller for debug tracking of the caller
3706 */
__do_kmalloc(size_t size,gfp_t flags,unsigned long caller)3707 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3708 unsigned long caller)
3709 {
3710 struct kmem_cache *cachep;
3711 void *ret;
3712
3713 cachep = kmalloc_slab(size, flags);
3714 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3715 return cachep;
3716 ret = slab_alloc(cachep, flags, caller);
3717
3718 kasan_kmalloc(cachep, ret, size, flags);
3719 trace_kmalloc(caller, ret,
3720 size, cachep->size, flags);
3721
3722 return ret;
3723 }
3724
__kmalloc(size_t size,gfp_t flags)3725 void *__kmalloc(size_t size, gfp_t flags)
3726 {
3727 return __do_kmalloc(size, flags, _RET_IP_);
3728 }
3729 EXPORT_SYMBOL(__kmalloc);
3730
__kmalloc_track_caller(size_t size,gfp_t flags,unsigned long caller)3731 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3732 {
3733 return __do_kmalloc(size, flags, caller);
3734 }
3735 EXPORT_SYMBOL(__kmalloc_track_caller);
3736
3737 /**
3738 * kmem_cache_free - Deallocate an object
3739 * @cachep: The cache the allocation was from.
3740 * @objp: The previously allocated object.
3741 *
3742 * Free an object which was previously allocated from this
3743 * cache.
3744 */
kmem_cache_free(struct kmem_cache * cachep,void * objp)3745 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3746 {
3747 unsigned long flags;
3748 cachep = cache_from_obj(cachep, objp);
3749 if (!cachep)
3750 return;
3751
3752 local_irq_save(flags);
3753 debug_check_no_locks_freed(objp, cachep->object_size);
3754 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3755 debug_check_no_obj_freed(objp, cachep->object_size);
3756 __cache_free(cachep, objp, _RET_IP_);
3757 local_irq_restore(flags);
3758
3759 trace_kmem_cache_free(_RET_IP_, objp);
3760 }
3761 EXPORT_SYMBOL(kmem_cache_free);
3762
kmem_cache_free_bulk(struct kmem_cache * orig_s,size_t size,void ** p)3763 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3764 {
3765 struct kmem_cache *s;
3766 size_t i;
3767
3768 local_irq_disable();
3769 for (i = 0; i < size; i++) {
3770 void *objp = p[i];
3771
3772 if (!orig_s) /* called via kfree_bulk */
3773 s = virt_to_cache(objp);
3774 else
3775 s = cache_from_obj(orig_s, objp);
3776
3777 debug_check_no_locks_freed(objp, s->object_size);
3778 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3779 debug_check_no_obj_freed(objp, s->object_size);
3780
3781 __cache_free(s, objp, _RET_IP_);
3782 }
3783 local_irq_enable();
3784
3785 /* FIXME: add tracing */
3786 }
3787 EXPORT_SYMBOL(kmem_cache_free_bulk);
3788
3789 /**
3790 * kfree - free previously allocated memory
3791 * @objp: pointer returned by kmalloc.
3792 *
3793 * If @objp is NULL, no operation is performed.
3794 *
3795 * Don't free memory not originally allocated by kmalloc()
3796 * or you will run into trouble.
3797 */
kfree(const void * objp)3798 void kfree(const void *objp)
3799 {
3800 struct kmem_cache *c;
3801 unsigned long flags;
3802
3803 trace_kfree(_RET_IP_, objp);
3804
3805 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3806 return;
3807 local_irq_save(flags);
3808 kfree_debugcheck(objp);
3809 c = virt_to_cache(objp);
3810 debug_check_no_locks_freed(objp, c->object_size);
3811
3812 debug_check_no_obj_freed(objp, c->object_size);
3813 __cache_free(c, (void *)objp, _RET_IP_);
3814 local_irq_restore(flags);
3815 }
3816 EXPORT_SYMBOL(kfree);
3817
3818 /*
3819 * This initializes kmem_cache_node or resizes various caches for all nodes.
3820 */
setup_kmem_cache_nodes(struct kmem_cache * cachep,gfp_t gfp)3821 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3822 {
3823 int ret;
3824 int node;
3825 struct kmem_cache_node *n;
3826
3827 for_each_online_node(node) {
3828 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3829 if (ret)
3830 goto fail;
3831
3832 }
3833
3834 return 0;
3835
3836 fail:
3837 if (!cachep->list.next) {
3838 /* Cache is not active yet. Roll back what we did */
3839 node--;
3840 while (node >= 0) {
3841 n = get_node(cachep, node);
3842 if (n) {
3843 kfree(n->shared);
3844 free_alien_cache(n->alien);
3845 kfree(n);
3846 cachep->node[node] = NULL;
3847 }
3848 node--;
3849 }
3850 }
3851 return -ENOMEM;
3852 }
3853
3854 /* Always called with the slab_mutex held */
__do_tune_cpucache(struct kmem_cache * cachep,int limit,int batchcount,int shared,gfp_t gfp)3855 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3856 int batchcount, int shared, gfp_t gfp)
3857 {
3858 struct array_cache __percpu *cpu_cache, *prev;
3859 int cpu;
3860
3861 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3862 if (!cpu_cache)
3863 return -ENOMEM;
3864
3865 prev = cachep->cpu_cache;
3866 cachep->cpu_cache = cpu_cache;
3867 /*
3868 * Without a previous cpu_cache there's no need to synchronize remote
3869 * cpus, so skip the IPIs.
3870 */
3871 if (prev)
3872 kick_all_cpus_sync();
3873
3874 check_irq_on();
3875 cachep->batchcount = batchcount;
3876 cachep->limit = limit;
3877 cachep->shared = shared;
3878
3879 if (!prev)
3880 goto setup_node;
3881
3882 for_each_online_cpu(cpu) {
3883 LIST_HEAD(list);
3884 int node;
3885 struct kmem_cache_node *n;
3886 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3887
3888 node = cpu_to_mem(cpu);
3889 n = get_node(cachep, node);
3890 spin_lock_irq(&n->list_lock);
3891 free_block(cachep, ac->entry, ac->avail, node, &list);
3892 spin_unlock_irq(&n->list_lock);
3893 slabs_destroy(cachep, &list);
3894 }
3895 free_percpu(prev);
3896
3897 setup_node:
3898 return setup_kmem_cache_nodes(cachep, gfp);
3899 }
3900
do_tune_cpucache(struct kmem_cache * cachep,int limit,int batchcount,int shared,gfp_t gfp)3901 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3902 int batchcount, int shared, gfp_t gfp)
3903 {
3904 int ret;
3905 struct kmem_cache *c;
3906
3907 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3908
3909 if (slab_state < FULL)
3910 return ret;
3911
3912 if ((ret < 0) || !is_root_cache(cachep))
3913 return ret;
3914
3915 lockdep_assert_held(&slab_mutex);
3916 for_each_memcg_cache(c, cachep) {
3917 /* return value determined by the root cache only */
3918 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3919 }
3920
3921 return ret;
3922 }
3923
3924 /* Called with slab_mutex held always */
enable_cpucache(struct kmem_cache * cachep,gfp_t gfp)3925 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3926 {
3927 int err;
3928 int limit = 0;
3929 int shared = 0;
3930 int batchcount = 0;
3931
3932 err = cache_random_seq_create(cachep, cachep->num, gfp);
3933 if (err)
3934 goto end;
3935
3936 if (!is_root_cache(cachep)) {
3937 struct kmem_cache *root = memcg_root_cache(cachep);
3938 limit = root->limit;
3939 shared = root->shared;
3940 batchcount = root->batchcount;
3941 }
3942
3943 if (limit && shared && batchcount)
3944 goto skip_setup;
3945 /*
3946 * The head array serves three purposes:
3947 * - create a LIFO ordering, i.e. return objects that are cache-warm
3948 * - reduce the number of spinlock operations.
3949 * - reduce the number of linked list operations on the slab and
3950 * bufctl chains: array operations are cheaper.
3951 * The numbers are guessed, we should auto-tune as described by
3952 * Bonwick.
3953 */
3954 if (cachep->size > 131072)
3955 limit = 1;
3956 else if (cachep->size > PAGE_SIZE)
3957 limit = 8;
3958 else if (cachep->size > 1024)
3959 limit = 24;
3960 else if (cachep->size > 256)
3961 limit = 54;
3962 else
3963 limit = 120;
3964
3965 /*
3966 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3967 * allocation behaviour: Most allocs on one cpu, most free operations
3968 * on another cpu. For these cases, an efficient object passing between
3969 * cpus is necessary. This is provided by a shared array. The array
3970 * replaces Bonwick's magazine layer.
3971 * On uniprocessor, it's functionally equivalent (but less efficient)
3972 * to a larger limit. Thus disabled by default.
3973 */
3974 shared = 0;
3975 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3976 shared = 8;
3977
3978 #if DEBUG
3979 /*
3980 * With debugging enabled, large batchcount lead to excessively long
3981 * periods with disabled local interrupts. Limit the batchcount
3982 */
3983 if (limit > 32)
3984 limit = 32;
3985 #endif
3986 batchcount = (limit + 1) / 2;
3987 skip_setup:
3988 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3989 end:
3990 if (err)
3991 pr_err("enable_cpucache failed for %s, error %d\n",
3992 cachep->name, -err);
3993 return err;
3994 }
3995
3996 /*
3997 * Drain an array if it contains any elements taking the node lock only if
3998 * necessary. Note that the node listlock also protects the array_cache
3999 * if drain_array() is used on the shared array.
4000 */
drain_array(struct kmem_cache * cachep,struct kmem_cache_node * n,struct array_cache * ac,int node)4001 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4002 struct array_cache *ac, int node)
4003 {
4004 LIST_HEAD(list);
4005
4006 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4007 check_mutex_acquired();
4008
4009 if (!ac || !ac->avail)
4010 return;
4011
4012 if (ac->touched) {
4013 ac->touched = 0;
4014 return;
4015 }
4016
4017 spin_lock_irq(&n->list_lock);
4018 drain_array_locked(cachep, ac, node, false, &list);
4019 spin_unlock_irq(&n->list_lock);
4020
4021 slabs_destroy(cachep, &list);
4022 }
4023
4024 /**
4025 * cache_reap - Reclaim memory from caches.
4026 * @w: work descriptor
4027 *
4028 * Called from workqueue/eventd every few seconds.
4029 * Purpose:
4030 * - clear the per-cpu caches for this CPU.
4031 * - return freeable pages to the main free memory pool.
4032 *
4033 * If we cannot acquire the cache chain mutex then just give up - we'll try
4034 * again on the next iteration.
4035 */
cache_reap(struct work_struct * w)4036 static void cache_reap(struct work_struct *w)
4037 {
4038 struct kmem_cache *searchp;
4039 struct kmem_cache_node *n;
4040 int node = numa_mem_id();
4041 struct delayed_work *work = to_delayed_work(w);
4042
4043 if (!mutex_trylock(&slab_mutex))
4044 /* Give up. Setup the next iteration. */
4045 goto out;
4046
4047 list_for_each_entry(searchp, &slab_caches, list) {
4048 check_irq_on();
4049
4050 /*
4051 * We only take the node lock if absolutely necessary and we
4052 * have established with reasonable certainty that
4053 * we can do some work if the lock was obtained.
4054 */
4055 n = get_node(searchp, node);
4056
4057 reap_alien(searchp, n);
4058
4059 drain_array(searchp, n, cpu_cache_get(searchp), node);
4060
4061 /*
4062 * These are racy checks but it does not matter
4063 * if we skip one check or scan twice.
4064 */
4065 if (time_after(n->next_reap, jiffies))
4066 goto next;
4067
4068 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4069
4070 drain_array(searchp, n, n->shared, node);
4071
4072 if (n->free_touched)
4073 n->free_touched = 0;
4074 else {
4075 int freed;
4076
4077 freed = drain_freelist(searchp, n, (n->free_limit +
4078 5 * searchp->num - 1) / (5 * searchp->num));
4079 STATS_ADD_REAPED(searchp, freed);
4080 }
4081 next:
4082 cond_resched();
4083 }
4084 check_irq_on();
4085 mutex_unlock(&slab_mutex);
4086 next_reap_node();
4087 out:
4088 /* Set up the next iteration */
4089 schedule_delayed_work_on(smp_processor_id(), work,
4090 round_jiffies_relative(REAPTIMEOUT_AC));
4091 }
4092
get_slabinfo(struct kmem_cache * cachep,struct slabinfo * sinfo)4093 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4094 {
4095 unsigned long active_objs, num_objs, active_slabs;
4096 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4097 unsigned long free_slabs = 0;
4098 int node;
4099 struct kmem_cache_node *n;
4100
4101 for_each_kmem_cache_node(cachep, node, n) {
4102 check_irq_on();
4103 spin_lock_irq(&n->list_lock);
4104
4105 total_slabs += n->total_slabs;
4106 free_slabs += n->free_slabs;
4107 free_objs += n->free_objects;
4108
4109 if (n->shared)
4110 shared_avail += n->shared->avail;
4111
4112 spin_unlock_irq(&n->list_lock);
4113 }
4114 num_objs = total_slabs * cachep->num;
4115 active_slabs = total_slabs - free_slabs;
4116 active_objs = num_objs - free_objs;
4117
4118 sinfo->active_objs = active_objs;
4119 sinfo->num_objs = num_objs;
4120 sinfo->active_slabs = active_slabs;
4121 sinfo->num_slabs = total_slabs;
4122 sinfo->shared_avail = shared_avail;
4123 sinfo->limit = cachep->limit;
4124 sinfo->batchcount = cachep->batchcount;
4125 sinfo->shared = cachep->shared;
4126 sinfo->objects_per_slab = cachep->num;
4127 sinfo->cache_order = cachep->gfporder;
4128 }
4129
slabinfo_show_stats(struct seq_file * m,struct kmem_cache * cachep)4130 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4131 {
4132 #if STATS
4133 { /* node stats */
4134 unsigned long high = cachep->high_mark;
4135 unsigned long allocs = cachep->num_allocations;
4136 unsigned long grown = cachep->grown;
4137 unsigned long reaped = cachep->reaped;
4138 unsigned long errors = cachep->errors;
4139 unsigned long max_freeable = cachep->max_freeable;
4140 unsigned long node_allocs = cachep->node_allocs;
4141 unsigned long node_frees = cachep->node_frees;
4142 unsigned long overflows = cachep->node_overflow;
4143
4144 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4145 allocs, high, grown,
4146 reaped, errors, max_freeable, node_allocs,
4147 node_frees, overflows);
4148 }
4149 /* cpu stats */
4150 {
4151 unsigned long allochit = atomic_read(&cachep->allochit);
4152 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4153 unsigned long freehit = atomic_read(&cachep->freehit);
4154 unsigned long freemiss = atomic_read(&cachep->freemiss);
4155
4156 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4157 allochit, allocmiss, freehit, freemiss);
4158 }
4159 #endif
4160 }
4161
4162 #define MAX_SLABINFO_WRITE 128
4163 /**
4164 * slabinfo_write - Tuning for the slab allocator
4165 * @file: unused
4166 * @buffer: user buffer
4167 * @count: data length
4168 * @ppos: unused
4169 */
slabinfo_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)4170 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4171 size_t count, loff_t *ppos)
4172 {
4173 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4174 int limit, batchcount, shared, res;
4175 struct kmem_cache *cachep;
4176
4177 if (count > MAX_SLABINFO_WRITE)
4178 return -EINVAL;
4179 if (copy_from_user(&kbuf, buffer, count))
4180 return -EFAULT;
4181 kbuf[MAX_SLABINFO_WRITE] = '\0';
4182
4183 tmp = strchr(kbuf, ' ');
4184 if (!tmp)
4185 return -EINVAL;
4186 *tmp = '\0';
4187 tmp++;
4188 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4189 return -EINVAL;
4190
4191 /* Find the cache in the chain of caches. */
4192 mutex_lock(&slab_mutex);
4193 res = -EINVAL;
4194 list_for_each_entry(cachep, &slab_caches, list) {
4195 if (!strcmp(cachep->name, kbuf)) {
4196 if (limit < 1 || batchcount < 1 ||
4197 batchcount > limit || shared < 0) {
4198 res = 0;
4199 } else {
4200 res = do_tune_cpucache(cachep, limit,
4201 batchcount, shared,
4202 GFP_KERNEL);
4203 }
4204 break;
4205 }
4206 }
4207 mutex_unlock(&slab_mutex);
4208 if (res >= 0)
4209 res = count;
4210 return res;
4211 }
4212
4213 #ifdef CONFIG_DEBUG_SLAB_LEAK
4214
add_caller(unsigned long * n,unsigned long v)4215 static inline int add_caller(unsigned long *n, unsigned long v)
4216 {
4217 unsigned long *p;
4218 int l;
4219 if (!v)
4220 return 1;
4221 l = n[1];
4222 p = n + 2;
4223 while (l) {
4224 int i = l/2;
4225 unsigned long *q = p + 2 * i;
4226 if (*q == v) {
4227 q[1]++;
4228 return 1;
4229 }
4230 if (*q > v) {
4231 l = i;
4232 } else {
4233 p = q + 2;
4234 l -= i + 1;
4235 }
4236 }
4237 if (++n[1] == n[0])
4238 return 0;
4239 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4240 p[0] = v;
4241 p[1] = 1;
4242 return 1;
4243 }
4244
handle_slab(unsigned long * n,struct kmem_cache * c,struct page * page)4245 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4246 struct page *page)
4247 {
4248 void *p;
4249 int i, j;
4250 unsigned long v;
4251
4252 if (n[0] == n[1])
4253 return;
4254 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4255 bool active = true;
4256
4257 for (j = page->active; j < c->num; j++) {
4258 if (get_free_obj(page, j) == i) {
4259 active = false;
4260 break;
4261 }
4262 }
4263
4264 if (!active)
4265 continue;
4266
4267 /*
4268 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4269 * mapping is established when actual object allocation and
4270 * we could mistakenly access the unmapped object in the cpu
4271 * cache.
4272 */
4273 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4274 continue;
4275
4276 if (!add_caller(n, v))
4277 return;
4278 }
4279 }
4280
show_symbol(struct seq_file * m,unsigned long address)4281 static void show_symbol(struct seq_file *m, unsigned long address)
4282 {
4283 #ifdef CONFIG_KALLSYMS
4284 unsigned long offset, size;
4285 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4286
4287 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4288 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4289 if (modname[0])
4290 seq_printf(m, " [%s]", modname);
4291 return;
4292 }
4293 #endif
4294 seq_printf(m, "%px", (void *)address);
4295 }
4296
leaks_show(struct seq_file * m,void * p)4297 static int leaks_show(struct seq_file *m, void *p)
4298 {
4299 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4300 struct page *page;
4301 struct kmem_cache_node *n;
4302 const char *name;
4303 unsigned long *x = m->private;
4304 int node;
4305 int i;
4306
4307 if (!(cachep->flags & SLAB_STORE_USER))
4308 return 0;
4309 if (!(cachep->flags & SLAB_RED_ZONE))
4310 return 0;
4311
4312 /*
4313 * Set store_user_clean and start to grab stored user information
4314 * for all objects on this cache. If some alloc/free requests comes
4315 * during the processing, information would be wrong so restart
4316 * whole processing.
4317 */
4318 do {
4319 set_store_user_clean(cachep);
4320 drain_cpu_caches(cachep);
4321
4322 x[1] = 0;
4323
4324 for_each_kmem_cache_node(cachep, node, n) {
4325
4326 check_irq_on();
4327 spin_lock_irq(&n->list_lock);
4328
4329 list_for_each_entry(page, &n->slabs_full, lru)
4330 handle_slab(x, cachep, page);
4331 list_for_each_entry(page, &n->slabs_partial, lru)
4332 handle_slab(x, cachep, page);
4333 spin_unlock_irq(&n->list_lock);
4334 }
4335 } while (!is_store_user_clean(cachep));
4336
4337 name = cachep->name;
4338 if (x[0] == x[1]) {
4339 /* Increase the buffer size */
4340 mutex_unlock(&slab_mutex);
4341 m->private = kcalloc(x[0] * 4, sizeof(unsigned long),
4342 GFP_KERNEL);
4343 if (!m->private) {
4344 /* Too bad, we are really out */
4345 m->private = x;
4346 mutex_lock(&slab_mutex);
4347 return -ENOMEM;
4348 }
4349 *(unsigned long *)m->private = x[0] * 2;
4350 kfree(x);
4351 mutex_lock(&slab_mutex);
4352 /* Now make sure this entry will be retried */
4353 m->count = m->size;
4354 return 0;
4355 }
4356 for (i = 0; i < x[1]; i++) {
4357 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4358 show_symbol(m, x[2*i+2]);
4359 seq_putc(m, '\n');
4360 }
4361
4362 return 0;
4363 }
4364
4365 static const struct seq_operations slabstats_op = {
4366 .start = slab_start,
4367 .next = slab_next,
4368 .stop = slab_stop,
4369 .show = leaks_show,
4370 };
4371
slabstats_open(struct inode * inode,struct file * file)4372 static int slabstats_open(struct inode *inode, struct file *file)
4373 {
4374 unsigned long *n;
4375
4376 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4377 if (!n)
4378 return -ENOMEM;
4379
4380 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4381
4382 return 0;
4383 }
4384
4385 static const struct file_operations proc_slabstats_operations = {
4386 .open = slabstats_open,
4387 .read = seq_read,
4388 .llseek = seq_lseek,
4389 .release = seq_release_private,
4390 };
4391 #endif
4392
slab_proc_init(void)4393 static int __init slab_proc_init(void)
4394 {
4395 #ifdef CONFIG_DEBUG_SLAB_LEAK
4396 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4397 #endif
4398 return 0;
4399 }
4400 module_init(slab_proc_init);
4401
4402 #ifdef CONFIG_HARDENED_USERCOPY
4403 /*
4404 * Rejects incorrectly sized objects and objects that are to be copied
4405 * to/from userspace but do not fall entirely within the containing slab
4406 * cache's usercopy region.
4407 *
4408 * Returns NULL if check passes, otherwise const char * to name of cache
4409 * to indicate an error.
4410 */
__check_heap_object(const void * ptr,unsigned long n,struct page * page,bool to_user)4411 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
4412 bool to_user)
4413 {
4414 struct kmem_cache *cachep;
4415 unsigned int objnr;
4416 unsigned long offset;
4417
4418 /* Find and validate object. */
4419 cachep = page->slab_cache;
4420 objnr = obj_to_index(cachep, page, (void *)ptr);
4421 BUG_ON(objnr >= cachep->num);
4422
4423 /* Find offset within object. */
4424 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4425
4426 /* Allow address range falling entirely within usercopy region. */
4427 if (offset >= cachep->useroffset &&
4428 offset - cachep->useroffset <= cachep->usersize &&
4429 n <= cachep->useroffset - offset + cachep->usersize)
4430 return;
4431
4432 /*
4433 * If the copy is still within the allocated object, produce
4434 * a warning instead of rejecting the copy. This is intended
4435 * to be a temporary method to find any missing usercopy
4436 * whitelists.
4437 */
4438 if (usercopy_fallback &&
4439 offset <= cachep->object_size &&
4440 n <= cachep->object_size - offset) {
4441 usercopy_warn("SLAB object", cachep->name, to_user, offset, n);
4442 return;
4443 }
4444
4445 usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
4446 }
4447 #endif /* CONFIG_HARDENED_USERCOPY */
4448
4449 /**
4450 * ksize - get the actual amount of memory allocated for a given object
4451 * @objp: Pointer to the object
4452 *
4453 * kmalloc may internally round up allocations and return more memory
4454 * than requested. ksize() can be used to determine the actual amount of
4455 * memory allocated. The caller may use this additional memory, even though
4456 * a smaller amount of memory was initially specified with the kmalloc call.
4457 * The caller must guarantee that objp points to a valid object previously
4458 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4459 * must not be freed during the duration of the call.
4460 */
ksize(const void * objp)4461 size_t ksize(const void *objp)
4462 {
4463 size_t size;
4464
4465 BUG_ON(!objp);
4466 if (unlikely(objp == ZERO_SIZE_PTR))
4467 return 0;
4468
4469 size = virt_to_cache(objp)->object_size;
4470 /* We assume that ksize callers could use the whole allocated area,
4471 * so we need to unpoison this area.
4472 */
4473 kasan_unpoison_shadow(objp, size);
4474
4475 return size;
4476 }
4477 EXPORT_SYMBOL(ksize);
4478