1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * i_pages lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * i_pages lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
42 *
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
46 */
47
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 #include <linux/memremap.h>
67 #include <linux/userfaultfd_k.h>
68
69 #include <asm/tlbflush.h>
70
71 #include <trace/events/tlb.h>
72
73 #include "internal.h"
74
75 static struct kmem_cache *anon_vma_cachep;
76 static struct kmem_cache *anon_vma_chain_cachep;
77
anon_vma_alloc(void)78 static inline struct anon_vma *anon_vma_alloc(void)
79 {
80 struct anon_vma *anon_vma;
81
82 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
83 if (anon_vma) {
84 atomic_set(&anon_vma->refcount, 1);
85 anon_vma->degree = 1; /* Reference for first vma */
86 anon_vma->parent = anon_vma;
87 /*
88 * Initialise the anon_vma root to point to itself. If called
89 * from fork, the root will be reset to the parents anon_vma.
90 */
91 anon_vma->root = anon_vma;
92 }
93
94 return anon_vma;
95 }
96
anon_vma_free(struct anon_vma * anon_vma)97 static inline void anon_vma_free(struct anon_vma *anon_vma)
98 {
99 VM_BUG_ON(atomic_read(&anon_vma->refcount));
100
101 /*
102 * Synchronize against page_lock_anon_vma_read() such that
103 * we can safely hold the lock without the anon_vma getting
104 * freed.
105 *
106 * Relies on the full mb implied by the atomic_dec_and_test() from
107 * put_anon_vma() against the acquire barrier implied by
108 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
109 *
110 * page_lock_anon_vma_read() VS put_anon_vma()
111 * down_read_trylock() atomic_dec_and_test()
112 * LOCK MB
113 * atomic_read() rwsem_is_locked()
114 *
115 * LOCK should suffice since the actual taking of the lock must
116 * happen _before_ what follows.
117 */
118 might_sleep();
119 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
120 anon_vma_lock_write(anon_vma);
121 anon_vma_unlock_write(anon_vma);
122 }
123
124 kmem_cache_free(anon_vma_cachep, anon_vma);
125 }
126
anon_vma_chain_alloc(gfp_t gfp)127 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
128 {
129 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
130 }
131
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)132 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
133 {
134 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
135 }
136
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)137 static void anon_vma_chain_link(struct vm_area_struct *vma,
138 struct anon_vma_chain *avc,
139 struct anon_vma *anon_vma)
140 {
141 avc->vma = vma;
142 avc->anon_vma = anon_vma;
143 list_add(&avc->same_vma, &vma->anon_vma_chain);
144 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
145 }
146
147 /**
148 * __anon_vma_prepare - attach an anon_vma to a memory region
149 * @vma: the memory region in question
150 *
151 * This makes sure the memory mapping described by 'vma' has
152 * an 'anon_vma' attached to it, so that we can associate the
153 * anonymous pages mapped into it with that anon_vma.
154 *
155 * The common case will be that we already have one, which
156 * is handled inline by anon_vma_prepare(). But if
157 * not we either need to find an adjacent mapping that we
158 * can re-use the anon_vma from (very common when the only
159 * reason for splitting a vma has been mprotect()), or we
160 * allocate a new one.
161 *
162 * Anon-vma allocations are very subtle, because we may have
163 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
164 * and that may actually touch the spinlock even in the newly
165 * allocated vma (it depends on RCU to make sure that the
166 * anon_vma isn't actually destroyed).
167 *
168 * As a result, we need to do proper anon_vma locking even
169 * for the new allocation. At the same time, we do not want
170 * to do any locking for the common case of already having
171 * an anon_vma.
172 *
173 * This must be called with the mmap_sem held for reading.
174 */
__anon_vma_prepare(struct vm_area_struct * vma)175 int __anon_vma_prepare(struct vm_area_struct *vma)
176 {
177 struct mm_struct *mm = vma->vm_mm;
178 struct anon_vma *anon_vma, *allocated;
179 struct anon_vma_chain *avc;
180
181 might_sleep();
182
183 avc = anon_vma_chain_alloc(GFP_KERNEL);
184 if (!avc)
185 goto out_enomem;
186
187 anon_vma = find_mergeable_anon_vma(vma);
188 allocated = NULL;
189 if (!anon_vma) {
190 anon_vma = anon_vma_alloc();
191 if (unlikely(!anon_vma))
192 goto out_enomem_free_avc;
193 allocated = anon_vma;
194 }
195
196 anon_vma_lock_write(anon_vma);
197 /* page_table_lock to protect against threads */
198 spin_lock(&mm->page_table_lock);
199 if (likely(!vma->anon_vma)) {
200 vma->anon_vma = anon_vma;
201 anon_vma_chain_link(vma, avc, anon_vma);
202 /* vma reference or self-parent link for new root */
203 anon_vma->degree++;
204 allocated = NULL;
205 avc = NULL;
206 }
207 spin_unlock(&mm->page_table_lock);
208 anon_vma_unlock_write(anon_vma);
209
210 if (unlikely(allocated))
211 put_anon_vma(allocated);
212 if (unlikely(avc))
213 anon_vma_chain_free(avc);
214
215 return 0;
216
217 out_enomem_free_avc:
218 anon_vma_chain_free(avc);
219 out_enomem:
220 return -ENOMEM;
221 }
222
223 /*
224 * This is a useful helper function for locking the anon_vma root as
225 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
226 * have the same vma.
227 *
228 * Such anon_vma's should have the same root, so you'd expect to see
229 * just a single mutex_lock for the whole traversal.
230 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)231 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
232 {
233 struct anon_vma *new_root = anon_vma->root;
234 if (new_root != root) {
235 if (WARN_ON_ONCE(root))
236 up_write(&root->rwsem);
237 root = new_root;
238 down_write(&root->rwsem);
239 }
240 return root;
241 }
242
unlock_anon_vma_root(struct anon_vma * root)243 static inline void unlock_anon_vma_root(struct anon_vma *root)
244 {
245 if (root)
246 up_write(&root->rwsem);
247 }
248
249 /*
250 * Attach the anon_vmas from src to dst.
251 * Returns 0 on success, -ENOMEM on failure.
252 *
253 * If dst->anon_vma is NULL this function tries to find and reuse existing
254 * anon_vma which has no vmas and only one child anon_vma. This prevents
255 * degradation of anon_vma hierarchy to endless linear chain in case of
256 * constantly forking task. On the other hand, an anon_vma with more than one
257 * child isn't reused even if there was no alive vma, thus rmap walker has a
258 * good chance of avoiding scanning the whole hierarchy when it searches where
259 * page is mapped.
260 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)261 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
262 {
263 struct anon_vma_chain *avc, *pavc;
264 struct anon_vma *root = NULL;
265
266 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
267 struct anon_vma *anon_vma;
268
269 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
270 if (unlikely(!avc)) {
271 unlock_anon_vma_root(root);
272 root = NULL;
273 avc = anon_vma_chain_alloc(GFP_KERNEL);
274 if (!avc)
275 goto enomem_failure;
276 }
277 anon_vma = pavc->anon_vma;
278 root = lock_anon_vma_root(root, anon_vma);
279 anon_vma_chain_link(dst, avc, anon_vma);
280
281 /*
282 * Reuse existing anon_vma if its degree lower than two,
283 * that means it has no vma and only one anon_vma child.
284 *
285 * Do not chose parent anon_vma, otherwise first child
286 * will always reuse it. Root anon_vma is never reused:
287 * it has self-parent reference and at least one child.
288 */
289 if (!dst->anon_vma && anon_vma != src->anon_vma &&
290 anon_vma->degree < 2)
291 dst->anon_vma = anon_vma;
292 }
293 if (dst->anon_vma)
294 dst->anon_vma->degree++;
295 unlock_anon_vma_root(root);
296 return 0;
297
298 enomem_failure:
299 /*
300 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
301 * decremented in unlink_anon_vmas().
302 * We can safely do this because callers of anon_vma_clone() don't care
303 * about dst->anon_vma if anon_vma_clone() failed.
304 */
305 dst->anon_vma = NULL;
306 unlink_anon_vmas(dst);
307 return -ENOMEM;
308 }
309
310 /*
311 * Attach vma to its own anon_vma, as well as to the anon_vmas that
312 * the corresponding VMA in the parent process is attached to.
313 * Returns 0 on success, non-zero on failure.
314 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)315 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
316 {
317 struct anon_vma_chain *avc;
318 struct anon_vma *anon_vma;
319 int error;
320
321 /* Don't bother if the parent process has no anon_vma here. */
322 if (!pvma->anon_vma)
323 return 0;
324
325 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
326 vma->anon_vma = NULL;
327
328 /*
329 * First, attach the new VMA to the parent VMA's anon_vmas,
330 * so rmap can find non-COWed pages in child processes.
331 */
332 error = anon_vma_clone(vma, pvma);
333 if (error)
334 return error;
335
336 /* An existing anon_vma has been reused, all done then. */
337 if (vma->anon_vma)
338 return 0;
339
340 /* Then add our own anon_vma. */
341 anon_vma = anon_vma_alloc();
342 if (!anon_vma)
343 goto out_error;
344 avc = anon_vma_chain_alloc(GFP_KERNEL);
345 if (!avc)
346 goto out_error_free_anon_vma;
347
348 /*
349 * The root anon_vma's spinlock is the lock actually used when we
350 * lock any of the anon_vmas in this anon_vma tree.
351 */
352 anon_vma->root = pvma->anon_vma->root;
353 anon_vma->parent = pvma->anon_vma;
354 /*
355 * With refcounts, an anon_vma can stay around longer than the
356 * process it belongs to. The root anon_vma needs to be pinned until
357 * this anon_vma is freed, because the lock lives in the root.
358 */
359 get_anon_vma(anon_vma->root);
360 /* Mark this anon_vma as the one where our new (COWed) pages go. */
361 vma->anon_vma = anon_vma;
362 anon_vma_lock_write(anon_vma);
363 anon_vma_chain_link(vma, avc, anon_vma);
364 anon_vma->parent->degree++;
365 anon_vma_unlock_write(anon_vma);
366
367 return 0;
368
369 out_error_free_anon_vma:
370 put_anon_vma(anon_vma);
371 out_error:
372 unlink_anon_vmas(vma);
373 return -ENOMEM;
374 }
375
unlink_anon_vmas(struct vm_area_struct * vma)376 void unlink_anon_vmas(struct vm_area_struct *vma)
377 {
378 struct anon_vma_chain *avc, *next;
379 struct anon_vma *root = NULL;
380
381 /*
382 * Unlink each anon_vma chained to the VMA. This list is ordered
383 * from newest to oldest, ensuring the root anon_vma gets freed last.
384 */
385 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
386 struct anon_vma *anon_vma = avc->anon_vma;
387
388 root = lock_anon_vma_root(root, anon_vma);
389 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
390
391 /*
392 * Leave empty anon_vmas on the list - we'll need
393 * to free them outside the lock.
394 */
395 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
396 anon_vma->parent->degree--;
397 continue;
398 }
399
400 list_del(&avc->same_vma);
401 anon_vma_chain_free(avc);
402 }
403 if (vma->anon_vma)
404 vma->anon_vma->degree--;
405 unlock_anon_vma_root(root);
406
407 /*
408 * Iterate the list once more, it now only contains empty and unlinked
409 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
410 * needing to write-acquire the anon_vma->root->rwsem.
411 */
412 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
413 struct anon_vma *anon_vma = avc->anon_vma;
414
415 VM_WARN_ON(anon_vma->degree);
416 put_anon_vma(anon_vma);
417
418 list_del(&avc->same_vma);
419 anon_vma_chain_free(avc);
420 }
421 }
422
anon_vma_ctor(void * data)423 static void anon_vma_ctor(void *data)
424 {
425 struct anon_vma *anon_vma = data;
426
427 init_rwsem(&anon_vma->rwsem);
428 atomic_set(&anon_vma->refcount, 0);
429 anon_vma->rb_root = RB_ROOT_CACHED;
430 }
431
anon_vma_init(void)432 void __init anon_vma_init(void)
433 {
434 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
435 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
436 anon_vma_ctor);
437 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
438 SLAB_PANIC|SLAB_ACCOUNT);
439 }
440
441 /*
442 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
443 *
444 * Since there is no serialization what so ever against page_remove_rmap()
445 * the best this function can do is return a locked anon_vma that might
446 * have been relevant to this page.
447 *
448 * The page might have been remapped to a different anon_vma or the anon_vma
449 * returned may already be freed (and even reused).
450 *
451 * In case it was remapped to a different anon_vma, the new anon_vma will be a
452 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
453 * ensure that any anon_vma obtained from the page will still be valid for as
454 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
455 *
456 * All users of this function must be very careful when walking the anon_vma
457 * chain and verify that the page in question is indeed mapped in it
458 * [ something equivalent to page_mapped_in_vma() ].
459 *
460 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
461 * that the anon_vma pointer from page->mapping is valid if there is a
462 * mapcount, we can dereference the anon_vma after observing those.
463 */
page_get_anon_vma(struct page * page)464 struct anon_vma *page_get_anon_vma(struct page *page)
465 {
466 struct anon_vma *anon_vma = NULL;
467 unsigned long anon_mapping;
468
469 rcu_read_lock();
470 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
471 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
472 goto out;
473 if (!page_mapped(page))
474 goto out;
475
476 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
477 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
478 anon_vma = NULL;
479 goto out;
480 }
481
482 /*
483 * If this page is still mapped, then its anon_vma cannot have been
484 * freed. But if it has been unmapped, we have no security against the
485 * anon_vma structure being freed and reused (for another anon_vma:
486 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
487 * above cannot corrupt).
488 */
489 if (!page_mapped(page)) {
490 rcu_read_unlock();
491 put_anon_vma(anon_vma);
492 return NULL;
493 }
494 out:
495 rcu_read_unlock();
496
497 return anon_vma;
498 }
499
500 /*
501 * Similar to page_get_anon_vma() except it locks the anon_vma.
502 *
503 * Its a little more complex as it tries to keep the fast path to a single
504 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
505 * reference like with page_get_anon_vma() and then block on the mutex.
506 */
page_lock_anon_vma_read(struct page * page)507 struct anon_vma *page_lock_anon_vma_read(struct page *page)
508 {
509 struct anon_vma *anon_vma = NULL;
510 struct anon_vma *root_anon_vma;
511 unsigned long anon_mapping;
512
513 rcu_read_lock();
514 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
515 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
516 goto out;
517 if (!page_mapped(page))
518 goto out;
519
520 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
521 root_anon_vma = READ_ONCE(anon_vma->root);
522 if (down_read_trylock(&root_anon_vma->rwsem)) {
523 /*
524 * If the page is still mapped, then this anon_vma is still
525 * its anon_vma, and holding the mutex ensures that it will
526 * not go away, see anon_vma_free().
527 */
528 if (!page_mapped(page)) {
529 up_read(&root_anon_vma->rwsem);
530 anon_vma = NULL;
531 }
532 goto out;
533 }
534
535 /* trylock failed, we got to sleep */
536 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
537 anon_vma = NULL;
538 goto out;
539 }
540
541 if (!page_mapped(page)) {
542 rcu_read_unlock();
543 put_anon_vma(anon_vma);
544 return NULL;
545 }
546
547 /* we pinned the anon_vma, its safe to sleep */
548 rcu_read_unlock();
549 anon_vma_lock_read(anon_vma);
550
551 if (atomic_dec_and_test(&anon_vma->refcount)) {
552 /*
553 * Oops, we held the last refcount, release the lock
554 * and bail -- can't simply use put_anon_vma() because
555 * we'll deadlock on the anon_vma_lock_write() recursion.
556 */
557 anon_vma_unlock_read(anon_vma);
558 __put_anon_vma(anon_vma);
559 anon_vma = NULL;
560 }
561
562 return anon_vma;
563
564 out:
565 rcu_read_unlock();
566 return anon_vma;
567 }
568
page_unlock_anon_vma_read(struct anon_vma * anon_vma)569 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
570 {
571 anon_vma_unlock_read(anon_vma);
572 }
573
574 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
575 /*
576 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
577 * important if a PTE was dirty when it was unmapped that it's flushed
578 * before any IO is initiated on the page to prevent lost writes. Similarly,
579 * it must be flushed before freeing to prevent data leakage.
580 */
try_to_unmap_flush(void)581 void try_to_unmap_flush(void)
582 {
583 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
584
585 if (!tlb_ubc->flush_required)
586 return;
587
588 arch_tlbbatch_flush(&tlb_ubc->arch);
589 tlb_ubc->flush_required = false;
590 tlb_ubc->writable = false;
591 }
592
593 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)594 void try_to_unmap_flush_dirty(void)
595 {
596 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
597
598 if (tlb_ubc->writable)
599 try_to_unmap_flush();
600 }
601
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)602 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
603 {
604 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
605
606 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
607 tlb_ubc->flush_required = true;
608
609 /*
610 * Ensure compiler does not re-order the setting of tlb_flush_batched
611 * before the PTE is cleared.
612 */
613 barrier();
614 mm->tlb_flush_batched = true;
615
616 /*
617 * If the PTE was dirty then it's best to assume it's writable. The
618 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
619 * before the page is queued for IO.
620 */
621 if (writable)
622 tlb_ubc->writable = true;
623 }
624
625 /*
626 * Returns true if the TLB flush should be deferred to the end of a batch of
627 * unmap operations to reduce IPIs.
628 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)629 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
630 {
631 bool should_defer = false;
632
633 if (!(flags & TTU_BATCH_FLUSH))
634 return false;
635
636 /* If remote CPUs need to be flushed then defer batch the flush */
637 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
638 should_defer = true;
639 put_cpu();
640
641 return should_defer;
642 }
643
644 /*
645 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
646 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
647 * operation such as mprotect or munmap to race between reclaim unmapping
648 * the page and flushing the page. If this race occurs, it potentially allows
649 * access to data via a stale TLB entry. Tracking all mm's that have TLB
650 * batching in flight would be expensive during reclaim so instead track
651 * whether TLB batching occurred in the past and if so then do a flush here
652 * if required. This will cost one additional flush per reclaim cycle paid
653 * by the first operation at risk such as mprotect and mumap.
654 *
655 * This must be called under the PTL so that an access to tlb_flush_batched
656 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
657 * via the PTL.
658 */
flush_tlb_batched_pending(struct mm_struct * mm)659 void flush_tlb_batched_pending(struct mm_struct *mm)
660 {
661 if (mm->tlb_flush_batched) {
662 flush_tlb_mm(mm);
663
664 /*
665 * Do not allow the compiler to re-order the clearing of
666 * tlb_flush_batched before the tlb is flushed.
667 */
668 barrier();
669 mm->tlb_flush_batched = false;
670 }
671 }
672 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)673 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
674 {
675 }
676
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)677 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
678 {
679 return false;
680 }
681 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
682
683 /*
684 * At what user virtual address is page expected in vma?
685 * Caller should check the page is actually part of the vma.
686 */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)687 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
688 {
689 unsigned long address;
690 if (PageAnon(page)) {
691 struct anon_vma *page__anon_vma = page_anon_vma(page);
692 /*
693 * Note: swapoff's unuse_vma() is more efficient with this
694 * check, and needs it to match anon_vma when KSM is active.
695 */
696 if (!vma->anon_vma || !page__anon_vma ||
697 vma->anon_vma->root != page__anon_vma->root)
698 return -EFAULT;
699 } else if (page->mapping) {
700 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
701 return -EFAULT;
702 } else
703 return -EFAULT;
704 address = __vma_address(page, vma);
705 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
706 return -EFAULT;
707 return address;
708 }
709
mm_find_pmd(struct mm_struct * mm,unsigned long address)710 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
711 {
712 pgd_t *pgd;
713 p4d_t *p4d;
714 pud_t *pud;
715 pmd_t *pmd = NULL;
716 pmd_t pmde;
717
718 pgd = pgd_offset(mm, address);
719 if (!pgd_present(*pgd))
720 goto out;
721
722 p4d = p4d_offset(pgd, address);
723 if (!p4d_present(*p4d))
724 goto out;
725
726 pud = pud_offset(p4d, address);
727 if (!pud_present(*pud))
728 goto out;
729
730 pmd = pmd_offset(pud, address);
731 /*
732 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
733 * without holding anon_vma lock for write. So when looking for a
734 * genuine pmde (in which to find pte), test present and !THP together.
735 */
736 pmde = *pmd;
737 barrier();
738 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
739 pmd = NULL;
740 out:
741 return pmd;
742 }
743
744 struct page_referenced_arg {
745 int mapcount;
746 int referenced;
747 unsigned long vm_flags;
748 struct mem_cgroup *memcg;
749 };
750 /*
751 * arg: page_referenced_arg will be passed
752 */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)753 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
754 unsigned long address, void *arg)
755 {
756 struct page_referenced_arg *pra = arg;
757 struct page_vma_mapped_walk pvmw = {
758 .page = page,
759 .vma = vma,
760 .address = address,
761 };
762 int referenced = 0;
763
764 while (page_vma_mapped_walk(&pvmw)) {
765 address = pvmw.address;
766
767 if (vma->vm_flags & VM_LOCKED) {
768 page_vma_mapped_walk_done(&pvmw);
769 pra->vm_flags |= VM_LOCKED;
770 return false; /* To break the loop */
771 }
772
773 if (pvmw.pte) {
774 if (ptep_clear_flush_young_notify(vma, address,
775 pvmw.pte)) {
776 /*
777 * Don't treat a reference through
778 * a sequentially read mapping as such.
779 * If the page has been used in another mapping,
780 * we will catch it; if this other mapping is
781 * already gone, the unmap path will have set
782 * PG_referenced or activated the page.
783 */
784 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
785 referenced++;
786 }
787 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
788 if (pmdp_clear_flush_young_notify(vma, address,
789 pvmw.pmd))
790 referenced++;
791 } else {
792 /* unexpected pmd-mapped page? */
793 WARN_ON_ONCE(1);
794 }
795
796 pra->mapcount--;
797 }
798
799 if (referenced)
800 clear_page_idle(page);
801 if (test_and_clear_page_young(page))
802 referenced++;
803
804 if (referenced) {
805 pra->referenced++;
806 pra->vm_flags |= vma->vm_flags;
807 }
808
809 if (!pra->mapcount)
810 return false; /* To break the loop */
811
812 return true;
813 }
814
invalid_page_referenced_vma(struct vm_area_struct * vma,void * arg)815 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
816 {
817 struct page_referenced_arg *pra = arg;
818 struct mem_cgroup *memcg = pra->memcg;
819
820 if (!mm_match_cgroup(vma->vm_mm, memcg))
821 return true;
822
823 return false;
824 }
825
826 /**
827 * page_referenced - test if the page was referenced
828 * @page: the page to test
829 * @is_locked: caller holds lock on the page
830 * @memcg: target memory cgroup
831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
832 *
833 * Quick test_and_clear_referenced for all mappings to a page,
834 * returns the number of ptes which referenced the page.
835 */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)836 int page_referenced(struct page *page,
837 int is_locked,
838 struct mem_cgroup *memcg,
839 unsigned long *vm_flags)
840 {
841 int we_locked = 0;
842 struct page_referenced_arg pra = {
843 .mapcount = total_mapcount(page),
844 .memcg = memcg,
845 };
846 struct rmap_walk_control rwc = {
847 .rmap_one = page_referenced_one,
848 .arg = (void *)&pra,
849 .anon_lock = page_lock_anon_vma_read,
850 };
851
852 *vm_flags = 0;
853 if (!page_mapped(page))
854 return 0;
855
856 if (!page_rmapping(page))
857 return 0;
858
859 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
860 we_locked = trylock_page(page);
861 if (!we_locked)
862 return 1;
863 }
864
865 /*
866 * If we are reclaiming on behalf of a cgroup, skip
867 * counting on behalf of references from different
868 * cgroups
869 */
870 if (memcg) {
871 rwc.invalid_vma = invalid_page_referenced_vma;
872 }
873
874 rmap_walk(page, &rwc);
875 *vm_flags = pra.vm_flags;
876
877 if (we_locked)
878 unlock_page(page);
879
880 return pra.referenced;
881 }
882
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)883 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
884 unsigned long address, void *arg)
885 {
886 struct page_vma_mapped_walk pvmw = {
887 .page = page,
888 .vma = vma,
889 .address = address,
890 .flags = PVMW_SYNC,
891 };
892 unsigned long start = address, end;
893 int *cleaned = arg;
894
895 /*
896 * We have to assume the worse case ie pmd for invalidation. Note that
897 * the page can not be free from this function.
898 */
899 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
900 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
901
902 while (page_vma_mapped_walk(&pvmw)) {
903 unsigned long cstart;
904 int ret = 0;
905
906 cstart = address = pvmw.address;
907 if (pvmw.pte) {
908 pte_t entry;
909 pte_t *pte = pvmw.pte;
910
911 if (!pte_dirty(*pte) && !pte_write(*pte))
912 continue;
913
914 flush_cache_page(vma, address, pte_pfn(*pte));
915 entry = ptep_clear_flush(vma, address, pte);
916 entry = pte_wrprotect(entry);
917 entry = pte_mkclean(entry);
918 set_pte_at(vma->vm_mm, address, pte, entry);
919 ret = 1;
920 } else {
921 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
922 pmd_t *pmd = pvmw.pmd;
923 pmd_t entry;
924
925 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
926 continue;
927
928 flush_cache_page(vma, address, page_to_pfn(page));
929 entry = pmdp_huge_clear_flush(vma, address, pmd);
930 entry = pmd_wrprotect(entry);
931 entry = pmd_mkclean(entry);
932 set_pmd_at(vma->vm_mm, address, pmd, entry);
933 cstart &= PMD_MASK;
934 ret = 1;
935 #else
936 /* unexpected pmd-mapped page? */
937 WARN_ON_ONCE(1);
938 #endif
939 }
940
941 /*
942 * No need to call mmu_notifier_invalidate_range() as we are
943 * downgrading page table protection not changing it to point
944 * to a new page.
945 *
946 * See Documentation/vm/mmu_notifier.rst
947 */
948 if (ret)
949 (*cleaned)++;
950 }
951
952 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
953
954 return true;
955 }
956
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)957 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
958 {
959 if (vma->vm_flags & VM_SHARED)
960 return false;
961
962 return true;
963 }
964
page_mkclean(struct page * page)965 int page_mkclean(struct page *page)
966 {
967 int cleaned = 0;
968 struct address_space *mapping;
969 struct rmap_walk_control rwc = {
970 .arg = (void *)&cleaned,
971 .rmap_one = page_mkclean_one,
972 .invalid_vma = invalid_mkclean_vma,
973 };
974
975 BUG_ON(!PageLocked(page));
976
977 if (!page_mapped(page))
978 return 0;
979
980 mapping = page_mapping(page);
981 if (!mapping)
982 return 0;
983
984 rmap_walk(page, &rwc);
985
986 return cleaned;
987 }
988 EXPORT_SYMBOL_GPL(page_mkclean);
989
990 /**
991 * page_move_anon_rmap - move a page to our anon_vma
992 * @page: the page to move to our anon_vma
993 * @vma: the vma the page belongs to
994 *
995 * When a page belongs exclusively to one process after a COW event,
996 * that page can be moved into the anon_vma that belongs to just that
997 * process, so the rmap code will not search the parent or sibling
998 * processes.
999 */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma)1000 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1001 {
1002 struct anon_vma *anon_vma = vma->anon_vma;
1003
1004 page = compound_head(page);
1005
1006 VM_BUG_ON_PAGE(!PageLocked(page), page);
1007 VM_BUG_ON_VMA(!anon_vma, vma);
1008
1009 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1010 /*
1011 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1012 * simultaneously, so a concurrent reader (eg page_referenced()'s
1013 * PageAnon()) will not see one without the other.
1014 */
1015 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1016 }
1017
1018 /**
1019 * __page_set_anon_rmap - set up new anonymous rmap
1020 * @page: Page to add to rmap
1021 * @vma: VM area to add page to.
1022 * @address: User virtual address of the mapping
1023 * @exclusive: the page is exclusively owned by the current process
1024 */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1025 static void __page_set_anon_rmap(struct page *page,
1026 struct vm_area_struct *vma, unsigned long address, int exclusive)
1027 {
1028 struct anon_vma *anon_vma = vma->anon_vma;
1029
1030 BUG_ON(!anon_vma);
1031
1032 if (PageAnon(page))
1033 return;
1034
1035 /*
1036 * If the page isn't exclusively mapped into this vma,
1037 * we must use the _oldest_ possible anon_vma for the
1038 * page mapping!
1039 */
1040 if (!exclusive)
1041 anon_vma = anon_vma->root;
1042
1043 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1044 page->mapping = (struct address_space *) anon_vma;
1045 page->index = linear_page_index(vma, address);
1046 }
1047
1048 /**
1049 * __page_check_anon_rmap - sanity check anonymous rmap addition
1050 * @page: the page to add the mapping to
1051 * @vma: the vm area in which the mapping is added
1052 * @address: the user virtual address mapped
1053 */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1054 static void __page_check_anon_rmap(struct page *page,
1055 struct vm_area_struct *vma, unsigned long address)
1056 {
1057 #ifdef CONFIG_DEBUG_VM
1058 /*
1059 * The page's anon-rmap details (mapping and index) are guaranteed to
1060 * be set up correctly at this point.
1061 *
1062 * We have exclusion against page_add_anon_rmap because the caller
1063 * always holds the page locked, except if called from page_dup_rmap,
1064 * in which case the page is already known to be setup.
1065 *
1066 * We have exclusion against page_add_new_anon_rmap because those pages
1067 * are initially only visible via the pagetables, and the pte is locked
1068 * over the call to page_add_new_anon_rmap.
1069 */
1070 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1071 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1072 #endif
1073 }
1074
1075 /**
1076 * page_add_anon_rmap - add pte mapping to an anonymous page
1077 * @page: the page to add the mapping to
1078 * @vma: the vm area in which the mapping is added
1079 * @address: the user virtual address mapped
1080 * @compound: charge the page as compound or small page
1081 *
1082 * The caller needs to hold the pte lock, and the page must be locked in
1083 * the anon_vma case: to serialize mapping,index checking after setting,
1084 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1085 * (but PageKsm is never downgraded to PageAnon).
1086 */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1087 void page_add_anon_rmap(struct page *page,
1088 struct vm_area_struct *vma, unsigned long address, bool compound)
1089 {
1090 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1091 }
1092
1093 /*
1094 * Special version of the above for do_swap_page, which often runs
1095 * into pages that are exclusively owned by the current process.
1096 * Everybody else should continue to use page_add_anon_rmap above.
1097 */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int flags)1098 void do_page_add_anon_rmap(struct page *page,
1099 struct vm_area_struct *vma, unsigned long address, int flags)
1100 {
1101 bool compound = flags & RMAP_COMPOUND;
1102 bool first;
1103
1104 if (compound) {
1105 atomic_t *mapcount;
1106 VM_BUG_ON_PAGE(!PageLocked(page), page);
1107 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1108 mapcount = compound_mapcount_ptr(page);
1109 first = atomic_inc_and_test(mapcount);
1110 } else {
1111 first = atomic_inc_and_test(&page->_mapcount);
1112 }
1113
1114 if (first) {
1115 int nr = compound ? hpage_nr_pages(page) : 1;
1116 /*
1117 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1118 * these counters are not modified in interrupt context, and
1119 * pte lock(a spinlock) is held, which implies preemption
1120 * disabled.
1121 */
1122 if (compound)
1123 __inc_node_page_state(page, NR_ANON_THPS);
1124 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1125 }
1126 if (unlikely(PageKsm(page)))
1127 return;
1128
1129 VM_BUG_ON_PAGE(!PageLocked(page), page);
1130
1131 /* address might be in next vma when migration races vma_adjust */
1132 if (first)
1133 __page_set_anon_rmap(page, vma, address,
1134 flags & RMAP_EXCLUSIVE);
1135 else
1136 __page_check_anon_rmap(page, vma, address);
1137 }
1138
1139 /**
1140 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1141 * @page: the page to add the mapping to
1142 * @vma: the vm area in which the mapping is added
1143 * @address: the user virtual address mapped
1144 * @compound: charge the page as compound or small page
1145 *
1146 * Same as page_add_anon_rmap but must only be called on *new* pages.
1147 * This means the inc-and-test can be bypassed.
1148 * Page does not have to be locked.
1149 */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1150 void page_add_new_anon_rmap(struct page *page,
1151 struct vm_area_struct *vma, unsigned long address, bool compound)
1152 {
1153 int nr = compound ? hpage_nr_pages(page) : 1;
1154
1155 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1156 __SetPageSwapBacked(page);
1157 if (compound) {
1158 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1159 /* increment count (starts at -1) */
1160 atomic_set(compound_mapcount_ptr(page), 0);
1161 __inc_node_page_state(page, NR_ANON_THPS);
1162 } else {
1163 /* Anon THP always mapped first with PMD */
1164 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1165 /* increment count (starts at -1) */
1166 atomic_set(&page->_mapcount, 0);
1167 }
1168 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1169 __page_set_anon_rmap(page, vma, address, 1);
1170 }
1171
1172 /**
1173 * page_add_file_rmap - add pte mapping to a file page
1174 * @page: the page to add the mapping to
1175 * @compound: charge the page as compound or small page
1176 *
1177 * The caller needs to hold the pte lock.
1178 */
page_add_file_rmap(struct page * page,bool compound)1179 void page_add_file_rmap(struct page *page, bool compound)
1180 {
1181 int i, nr = 1;
1182
1183 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1184 lock_page_memcg(page);
1185 if (compound && PageTransHuge(page)) {
1186 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1187 if (atomic_inc_and_test(&page[i]._mapcount))
1188 nr++;
1189 }
1190 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1191 goto out;
1192 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1193 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1194 } else {
1195 if (PageTransCompound(page) && page_mapping(page)) {
1196 VM_WARN_ON_ONCE(!PageLocked(page));
1197
1198 SetPageDoubleMap(compound_head(page));
1199 if (PageMlocked(page))
1200 clear_page_mlock(compound_head(page));
1201 }
1202 if (!atomic_inc_and_test(&page->_mapcount))
1203 goto out;
1204 }
1205 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1206 out:
1207 unlock_page_memcg(page);
1208 }
1209
page_remove_file_rmap(struct page * page,bool compound)1210 static void page_remove_file_rmap(struct page *page, bool compound)
1211 {
1212 int i, nr = 1;
1213
1214 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1215 lock_page_memcg(page);
1216
1217 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1218 if (unlikely(PageHuge(page))) {
1219 /* hugetlb pages are always mapped with pmds */
1220 atomic_dec(compound_mapcount_ptr(page));
1221 goto out;
1222 }
1223
1224 /* page still mapped by someone else? */
1225 if (compound && PageTransHuge(page)) {
1226 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1227 if (atomic_add_negative(-1, &page[i]._mapcount))
1228 nr++;
1229 }
1230 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1231 goto out;
1232 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1233 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1234 } else {
1235 if (!atomic_add_negative(-1, &page->_mapcount))
1236 goto out;
1237 }
1238
1239 /*
1240 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1241 * these counters are not modified in interrupt context, and
1242 * pte lock(a spinlock) is held, which implies preemption disabled.
1243 */
1244 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1245
1246 if (unlikely(PageMlocked(page)))
1247 clear_page_mlock(page);
1248 out:
1249 unlock_page_memcg(page);
1250 }
1251
page_remove_anon_compound_rmap(struct page * page)1252 static void page_remove_anon_compound_rmap(struct page *page)
1253 {
1254 int i, nr;
1255
1256 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1257 return;
1258
1259 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1260 if (unlikely(PageHuge(page)))
1261 return;
1262
1263 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1264 return;
1265
1266 __dec_node_page_state(page, NR_ANON_THPS);
1267
1268 if (TestClearPageDoubleMap(page)) {
1269 /*
1270 * Subpages can be mapped with PTEs too. Check how many of
1271 * themi are still mapped.
1272 */
1273 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1274 if (atomic_add_negative(-1, &page[i]._mapcount))
1275 nr++;
1276 }
1277 } else {
1278 nr = HPAGE_PMD_NR;
1279 }
1280
1281 if (unlikely(PageMlocked(page)))
1282 clear_page_mlock(page);
1283
1284 if (nr) {
1285 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1286 deferred_split_huge_page(page);
1287 }
1288 }
1289
1290 /**
1291 * page_remove_rmap - take down pte mapping from a page
1292 * @page: page to remove mapping from
1293 * @compound: uncharge the page as compound or small page
1294 *
1295 * The caller needs to hold the pte lock.
1296 */
page_remove_rmap(struct page * page,bool compound)1297 void page_remove_rmap(struct page *page, bool compound)
1298 {
1299 if (!PageAnon(page))
1300 return page_remove_file_rmap(page, compound);
1301
1302 if (compound)
1303 return page_remove_anon_compound_rmap(page);
1304
1305 /* page still mapped by someone else? */
1306 if (!atomic_add_negative(-1, &page->_mapcount))
1307 return;
1308
1309 /*
1310 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1311 * these counters are not modified in interrupt context, and
1312 * pte lock(a spinlock) is held, which implies preemption disabled.
1313 */
1314 __dec_node_page_state(page, NR_ANON_MAPPED);
1315
1316 if (unlikely(PageMlocked(page)))
1317 clear_page_mlock(page);
1318
1319 if (PageTransCompound(page))
1320 deferred_split_huge_page(compound_head(page));
1321
1322 /*
1323 * It would be tidy to reset the PageAnon mapping here,
1324 * but that might overwrite a racing page_add_anon_rmap
1325 * which increments mapcount after us but sets mapping
1326 * before us: so leave the reset to free_unref_page,
1327 * and remember that it's only reliable while mapped.
1328 * Leaving it set also helps swapoff to reinstate ptes
1329 * faster for those pages still in swapcache.
1330 */
1331 }
1332
1333 /*
1334 * @arg: enum ttu_flags will be passed to this argument
1335 */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1336 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1337 unsigned long address, void *arg)
1338 {
1339 struct mm_struct *mm = vma->vm_mm;
1340 struct page_vma_mapped_walk pvmw = {
1341 .page = page,
1342 .vma = vma,
1343 .address = address,
1344 };
1345 pte_t pteval;
1346 struct page *subpage;
1347 bool ret = true;
1348 unsigned long start = address, end;
1349 enum ttu_flags flags = (enum ttu_flags)arg;
1350
1351 /* munlock has nothing to gain from examining un-locked vmas */
1352 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1353 return true;
1354
1355 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1356 is_zone_device_page(page) && !is_device_private_page(page))
1357 return true;
1358
1359 if (flags & TTU_SPLIT_HUGE_PMD) {
1360 split_huge_pmd_address(vma, address,
1361 flags & TTU_SPLIT_FREEZE, page);
1362 }
1363
1364 /*
1365 * For THP, we have to assume the worse case ie pmd for invalidation.
1366 * For hugetlb, it could be much worse if we need to do pud
1367 * invalidation in the case of pmd sharing.
1368 *
1369 * Note that the page can not be free in this function as call of
1370 * try_to_unmap() must hold a reference on the page.
1371 */
1372 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
1373 if (PageHuge(page)) {
1374 /*
1375 * If sharing is possible, start and end will be adjusted
1376 * accordingly.
1377 */
1378 adjust_range_if_pmd_sharing_possible(vma, &start, &end);
1379 }
1380 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
1381
1382 while (page_vma_mapped_walk(&pvmw)) {
1383 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1384 /* PMD-mapped THP migration entry */
1385 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1386 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1387
1388 set_pmd_migration_entry(&pvmw, page);
1389 continue;
1390 }
1391 #endif
1392
1393 /*
1394 * If the page is mlock()d, we cannot swap it out.
1395 * If it's recently referenced (perhaps page_referenced
1396 * skipped over this mm) then we should reactivate it.
1397 */
1398 if (!(flags & TTU_IGNORE_MLOCK)) {
1399 if (vma->vm_flags & VM_LOCKED) {
1400 /* PTE-mapped THP are never mlocked */
1401 if (!PageTransCompound(page)) {
1402 /*
1403 * Holding pte lock, we do *not* need
1404 * mmap_sem here
1405 */
1406 mlock_vma_page(page);
1407 }
1408 ret = false;
1409 page_vma_mapped_walk_done(&pvmw);
1410 break;
1411 }
1412 if (flags & TTU_MUNLOCK)
1413 continue;
1414 }
1415
1416 /* Unexpected PMD-mapped THP? */
1417 VM_BUG_ON_PAGE(!pvmw.pte, page);
1418
1419 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1420 address = pvmw.address;
1421
1422 if (PageHuge(page)) {
1423 if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1424 /*
1425 * huge_pmd_unshare unmapped an entire PMD
1426 * page. There is no way of knowing exactly
1427 * which PMDs may be cached for this mm, so
1428 * we must flush them all. start/end were
1429 * already adjusted above to cover this range.
1430 */
1431 flush_cache_range(vma, start, end);
1432 flush_tlb_range(vma, start, end);
1433 mmu_notifier_invalidate_range(mm, start, end);
1434
1435 /*
1436 * The ref count of the PMD page was dropped
1437 * which is part of the way map counting
1438 * is done for shared PMDs. Return 'true'
1439 * here. When there is no other sharing,
1440 * huge_pmd_unshare returns false and we will
1441 * unmap the actual page and drop map count
1442 * to zero.
1443 */
1444 page_vma_mapped_walk_done(&pvmw);
1445 break;
1446 }
1447 }
1448
1449 if (IS_ENABLED(CONFIG_MIGRATION) &&
1450 (flags & TTU_MIGRATION) &&
1451 is_zone_device_page(page)) {
1452 swp_entry_t entry;
1453 pte_t swp_pte;
1454
1455 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1456
1457 /*
1458 * Store the pfn of the page in a special migration
1459 * pte. do_swap_page() will wait until the migration
1460 * pte is removed and then restart fault handling.
1461 */
1462 entry = make_migration_entry(page, 0);
1463 swp_pte = swp_entry_to_pte(entry);
1464 if (pte_soft_dirty(pteval))
1465 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1466 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1467 /*
1468 * No need to invalidate here it will synchronize on
1469 * against the special swap migration pte.
1470 */
1471 goto discard;
1472 }
1473
1474 if (!(flags & TTU_IGNORE_ACCESS)) {
1475 if (ptep_clear_flush_young_notify(vma, address,
1476 pvmw.pte)) {
1477 ret = false;
1478 page_vma_mapped_walk_done(&pvmw);
1479 break;
1480 }
1481 }
1482
1483 /* Nuke the page table entry. */
1484 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1485 if (should_defer_flush(mm, flags)) {
1486 /*
1487 * We clear the PTE but do not flush so potentially
1488 * a remote CPU could still be writing to the page.
1489 * If the entry was previously clean then the
1490 * architecture must guarantee that a clear->dirty
1491 * transition on a cached TLB entry is written through
1492 * and traps if the PTE is unmapped.
1493 */
1494 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1495
1496 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1497 } else {
1498 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1499 }
1500
1501 /* Move the dirty bit to the page. Now the pte is gone. */
1502 if (pte_dirty(pteval))
1503 set_page_dirty(page);
1504
1505 /* Update high watermark before we lower rss */
1506 update_hiwater_rss(mm);
1507
1508 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1509 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1510 if (PageHuge(page)) {
1511 int nr = 1 << compound_order(page);
1512 hugetlb_count_sub(nr, mm);
1513 set_huge_swap_pte_at(mm, address,
1514 pvmw.pte, pteval,
1515 vma_mmu_pagesize(vma));
1516 } else {
1517 dec_mm_counter(mm, mm_counter(page));
1518 set_pte_at(mm, address, pvmw.pte, pteval);
1519 }
1520
1521 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1522 /*
1523 * The guest indicated that the page content is of no
1524 * interest anymore. Simply discard the pte, vmscan
1525 * will take care of the rest.
1526 * A future reference will then fault in a new zero
1527 * page. When userfaultfd is active, we must not drop
1528 * this page though, as its main user (postcopy
1529 * migration) will not expect userfaults on already
1530 * copied pages.
1531 */
1532 dec_mm_counter(mm, mm_counter(page));
1533 /* We have to invalidate as we cleared the pte */
1534 mmu_notifier_invalidate_range(mm, address,
1535 address + PAGE_SIZE);
1536 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1537 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1538 swp_entry_t entry;
1539 pte_t swp_pte;
1540
1541 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1542 set_pte_at(mm, address, pvmw.pte, pteval);
1543 ret = false;
1544 page_vma_mapped_walk_done(&pvmw);
1545 break;
1546 }
1547
1548 /*
1549 * Store the pfn of the page in a special migration
1550 * pte. do_swap_page() will wait until the migration
1551 * pte is removed and then restart fault handling.
1552 */
1553 entry = make_migration_entry(subpage,
1554 pte_write(pteval));
1555 swp_pte = swp_entry_to_pte(entry);
1556 if (pte_soft_dirty(pteval))
1557 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1558 set_pte_at(mm, address, pvmw.pte, swp_pte);
1559 /*
1560 * No need to invalidate here it will synchronize on
1561 * against the special swap migration pte.
1562 */
1563 } else if (PageAnon(page)) {
1564 swp_entry_t entry = { .val = page_private(subpage) };
1565 pte_t swp_pte;
1566 /*
1567 * Store the swap location in the pte.
1568 * See handle_pte_fault() ...
1569 */
1570 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1571 WARN_ON_ONCE(1);
1572 ret = false;
1573 /* We have to invalidate as we cleared the pte */
1574 mmu_notifier_invalidate_range(mm, address,
1575 address + PAGE_SIZE);
1576 page_vma_mapped_walk_done(&pvmw);
1577 break;
1578 }
1579
1580 /* MADV_FREE page check */
1581 if (!PageSwapBacked(page)) {
1582 if (!PageDirty(page)) {
1583 /* Invalidate as we cleared the pte */
1584 mmu_notifier_invalidate_range(mm,
1585 address, address + PAGE_SIZE);
1586 dec_mm_counter(mm, MM_ANONPAGES);
1587 goto discard;
1588 }
1589
1590 /*
1591 * If the page was redirtied, it cannot be
1592 * discarded. Remap the page to page table.
1593 */
1594 set_pte_at(mm, address, pvmw.pte, pteval);
1595 SetPageSwapBacked(page);
1596 ret = false;
1597 page_vma_mapped_walk_done(&pvmw);
1598 break;
1599 }
1600
1601 if (swap_duplicate(entry) < 0) {
1602 set_pte_at(mm, address, pvmw.pte, pteval);
1603 ret = false;
1604 page_vma_mapped_walk_done(&pvmw);
1605 break;
1606 }
1607 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1608 set_pte_at(mm, address, pvmw.pte, pteval);
1609 ret = false;
1610 page_vma_mapped_walk_done(&pvmw);
1611 break;
1612 }
1613 if (list_empty(&mm->mmlist)) {
1614 spin_lock(&mmlist_lock);
1615 if (list_empty(&mm->mmlist))
1616 list_add(&mm->mmlist, &init_mm.mmlist);
1617 spin_unlock(&mmlist_lock);
1618 }
1619 dec_mm_counter(mm, MM_ANONPAGES);
1620 inc_mm_counter(mm, MM_SWAPENTS);
1621 swp_pte = swp_entry_to_pte(entry);
1622 if (pte_soft_dirty(pteval))
1623 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1624 set_pte_at(mm, address, pvmw.pte, swp_pte);
1625 /* Invalidate as we cleared the pte */
1626 mmu_notifier_invalidate_range(mm, address,
1627 address + PAGE_SIZE);
1628 } else {
1629 /*
1630 * We should not need to notify here as we reach this
1631 * case only from freeze_page() itself only call from
1632 * split_huge_page_to_list() so everything below must
1633 * be true:
1634 * - page is not anonymous
1635 * - page is locked
1636 *
1637 * So as it is a locked file back page thus it can not
1638 * be remove from the page cache and replace by a new
1639 * page before mmu_notifier_invalidate_range_end so no
1640 * concurrent thread might update its page table to
1641 * point at new page while a device still is using this
1642 * page.
1643 *
1644 * See Documentation/vm/mmu_notifier.rst
1645 */
1646 dec_mm_counter(mm, mm_counter_file(page));
1647 }
1648 discard:
1649 /*
1650 * No need to call mmu_notifier_invalidate_range() it has be
1651 * done above for all cases requiring it to happen under page
1652 * table lock before mmu_notifier_invalidate_range_end()
1653 *
1654 * See Documentation/vm/mmu_notifier.rst
1655 */
1656 page_remove_rmap(subpage, PageHuge(page));
1657 put_page(page);
1658 }
1659
1660 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
1661
1662 return ret;
1663 }
1664
is_vma_temporary_stack(struct vm_area_struct * vma)1665 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1666 {
1667 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1668
1669 if (!maybe_stack)
1670 return false;
1671
1672 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1673 VM_STACK_INCOMPLETE_SETUP)
1674 return true;
1675
1676 return false;
1677 }
1678
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1679 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1680 {
1681 return is_vma_temporary_stack(vma);
1682 }
1683
page_mapcount_is_zero(struct page * page)1684 static int page_mapcount_is_zero(struct page *page)
1685 {
1686 return !total_mapcount(page);
1687 }
1688
1689 /**
1690 * try_to_unmap - try to remove all page table mappings to a page
1691 * @page: the page to get unmapped
1692 * @flags: action and flags
1693 *
1694 * Tries to remove all the page table entries which are mapping this
1695 * page, used in the pageout path. Caller must hold the page lock.
1696 *
1697 * If unmap is successful, return true. Otherwise, false.
1698 */
try_to_unmap(struct page * page,enum ttu_flags flags)1699 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1700 {
1701 struct rmap_walk_control rwc = {
1702 .rmap_one = try_to_unmap_one,
1703 .arg = (void *)flags,
1704 .done = page_mapcount_is_zero,
1705 .anon_lock = page_lock_anon_vma_read,
1706 };
1707
1708 /*
1709 * During exec, a temporary VMA is setup and later moved.
1710 * The VMA is moved under the anon_vma lock but not the
1711 * page tables leading to a race where migration cannot
1712 * find the migration ptes. Rather than increasing the
1713 * locking requirements of exec(), migration skips
1714 * temporary VMAs until after exec() completes.
1715 */
1716 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1717 && !PageKsm(page) && PageAnon(page))
1718 rwc.invalid_vma = invalid_migration_vma;
1719
1720 if (flags & TTU_RMAP_LOCKED)
1721 rmap_walk_locked(page, &rwc);
1722 else
1723 rmap_walk(page, &rwc);
1724
1725 return !page_mapcount(page) ? true : false;
1726 }
1727
page_not_mapped(struct page * page)1728 static int page_not_mapped(struct page *page)
1729 {
1730 return !page_mapped(page);
1731 };
1732
1733 /**
1734 * try_to_munlock - try to munlock a page
1735 * @page: the page to be munlocked
1736 *
1737 * Called from munlock code. Checks all of the VMAs mapping the page
1738 * to make sure nobody else has this page mlocked. The page will be
1739 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1740 */
1741
try_to_munlock(struct page * page)1742 void try_to_munlock(struct page *page)
1743 {
1744 struct rmap_walk_control rwc = {
1745 .rmap_one = try_to_unmap_one,
1746 .arg = (void *)TTU_MUNLOCK,
1747 .done = page_not_mapped,
1748 .anon_lock = page_lock_anon_vma_read,
1749
1750 };
1751
1752 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1753 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1754
1755 rmap_walk(page, &rwc);
1756 }
1757
__put_anon_vma(struct anon_vma * anon_vma)1758 void __put_anon_vma(struct anon_vma *anon_vma)
1759 {
1760 struct anon_vma *root = anon_vma->root;
1761
1762 anon_vma_free(anon_vma);
1763 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1764 anon_vma_free(root);
1765 }
1766
rmap_walk_anon_lock(struct page * page,struct rmap_walk_control * rwc)1767 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1768 struct rmap_walk_control *rwc)
1769 {
1770 struct anon_vma *anon_vma;
1771
1772 if (rwc->anon_lock)
1773 return rwc->anon_lock(page);
1774
1775 /*
1776 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1777 * because that depends on page_mapped(); but not all its usages
1778 * are holding mmap_sem. Users without mmap_sem are required to
1779 * take a reference count to prevent the anon_vma disappearing
1780 */
1781 anon_vma = page_anon_vma(page);
1782 if (!anon_vma)
1783 return NULL;
1784
1785 anon_vma_lock_read(anon_vma);
1786 return anon_vma;
1787 }
1788
1789 /*
1790 * rmap_walk_anon - do something to anonymous page using the object-based
1791 * rmap method
1792 * @page: the page to be handled
1793 * @rwc: control variable according to each walk type
1794 *
1795 * Find all the mappings of a page using the mapping pointer and the vma chains
1796 * contained in the anon_vma struct it points to.
1797 *
1798 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1799 * where the page was found will be held for write. So, we won't recheck
1800 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1801 * LOCKED.
1802 */
rmap_walk_anon(struct page * page,struct rmap_walk_control * rwc,bool locked)1803 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1804 bool locked)
1805 {
1806 struct anon_vma *anon_vma;
1807 pgoff_t pgoff_start, pgoff_end;
1808 struct anon_vma_chain *avc;
1809
1810 if (locked) {
1811 anon_vma = page_anon_vma(page);
1812 /* anon_vma disappear under us? */
1813 VM_BUG_ON_PAGE(!anon_vma, page);
1814 } else {
1815 anon_vma = rmap_walk_anon_lock(page, rwc);
1816 }
1817 if (!anon_vma)
1818 return;
1819
1820 pgoff_start = page_to_pgoff(page);
1821 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1822 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1823 pgoff_start, pgoff_end) {
1824 struct vm_area_struct *vma = avc->vma;
1825 unsigned long address = vma_address(page, vma);
1826
1827 cond_resched();
1828
1829 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1830 continue;
1831
1832 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1833 break;
1834 if (rwc->done && rwc->done(page))
1835 break;
1836 }
1837
1838 if (!locked)
1839 anon_vma_unlock_read(anon_vma);
1840 }
1841
1842 /*
1843 * rmap_walk_file - do something to file page using the object-based rmap method
1844 * @page: the page to be handled
1845 * @rwc: control variable according to each walk type
1846 *
1847 * Find all the mappings of a page using the mapping pointer and the vma chains
1848 * contained in the address_space struct it points to.
1849 *
1850 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1851 * where the page was found will be held for write. So, we won't recheck
1852 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1853 * LOCKED.
1854 */
rmap_walk_file(struct page * page,struct rmap_walk_control * rwc,bool locked)1855 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1856 bool locked)
1857 {
1858 struct address_space *mapping = page_mapping(page);
1859 pgoff_t pgoff_start, pgoff_end;
1860 struct vm_area_struct *vma;
1861
1862 /*
1863 * The page lock not only makes sure that page->mapping cannot
1864 * suddenly be NULLified by truncation, it makes sure that the
1865 * structure at mapping cannot be freed and reused yet,
1866 * so we can safely take mapping->i_mmap_rwsem.
1867 */
1868 VM_BUG_ON_PAGE(!PageLocked(page), page);
1869
1870 if (!mapping)
1871 return;
1872
1873 pgoff_start = page_to_pgoff(page);
1874 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1875 if (!locked)
1876 i_mmap_lock_read(mapping);
1877 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1878 pgoff_start, pgoff_end) {
1879 unsigned long address = vma_address(page, vma);
1880
1881 cond_resched();
1882
1883 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1884 continue;
1885
1886 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1887 goto done;
1888 if (rwc->done && rwc->done(page))
1889 goto done;
1890 }
1891
1892 done:
1893 if (!locked)
1894 i_mmap_unlock_read(mapping);
1895 }
1896
rmap_walk(struct page * page,struct rmap_walk_control * rwc)1897 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1898 {
1899 if (unlikely(PageKsm(page)))
1900 rmap_walk_ksm(page, rwc);
1901 else if (PageAnon(page))
1902 rmap_walk_anon(page, rwc, false);
1903 else
1904 rmap_walk_file(page, rwc, false);
1905 }
1906
1907 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct page * page,struct rmap_walk_control * rwc)1908 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1909 {
1910 /* no ksm support for now */
1911 VM_BUG_ON_PAGE(PageKsm(page), page);
1912 if (PageAnon(page))
1913 rmap_walk_anon(page, rwc, true);
1914 else
1915 rmap_walk_file(page, rwc, true);
1916 }
1917
1918 #ifdef CONFIG_HUGETLB_PAGE
1919 /*
1920 * The following three functions are for anonymous (private mapped) hugepages.
1921 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1922 * and no lru code, because we handle hugepages differently from common pages.
1923 */
__hugepage_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1924 static void __hugepage_set_anon_rmap(struct page *page,
1925 struct vm_area_struct *vma, unsigned long address, int exclusive)
1926 {
1927 struct anon_vma *anon_vma = vma->anon_vma;
1928
1929 BUG_ON(!anon_vma);
1930
1931 if (PageAnon(page))
1932 return;
1933 if (!exclusive)
1934 anon_vma = anon_vma->root;
1935
1936 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1937 page->mapping = (struct address_space *) anon_vma;
1938 page->index = linear_page_index(vma, address);
1939 }
1940
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1941 void hugepage_add_anon_rmap(struct page *page,
1942 struct vm_area_struct *vma, unsigned long address)
1943 {
1944 struct anon_vma *anon_vma = vma->anon_vma;
1945 int first;
1946
1947 BUG_ON(!PageLocked(page));
1948 BUG_ON(!anon_vma);
1949 /* address might be in next vma when migration races vma_adjust */
1950 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1951 if (first)
1952 __hugepage_set_anon_rmap(page, vma, address, 0);
1953 }
1954
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1955 void hugepage_add_new_anon_rmap(struct page *page,
1956 struct vm_area_struct *vma, unsigned long address)
1957 {
1958 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1959 atomic_set(compound_mapcount_ptr(page), 0);
1960 __hugepage_set_anon_rmap(page, vma, address, 1);
1961 }
1962 #endif /* CONFIG_HUGETLB_PAGE */
1963