1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave     Allocate memory interleaved over a set of nodes,
16  *                with normal fallback if it fails.
17  *                For VMA based allocations this interleaves based on the
18  *                offset into the backing object or offset into the mapping
19  *                for anonymous memory. For process policy an process counter
20  *                is used.
21  *
22  * bind           Only allocate memory on a specific set of nodes,
23  *                no fallback.
24  *                FIXME: memory is allocated starting with the first node
25  *                to the last. It would be better if bind would truly restrict
26  *                the allocation to memory nodes instead
27  *
28  * preferred       Try a specific node first before normal fallback.
29  *                As a special case NUMA_NO_NODE here means do the allocation
30  *                on the local CPU. This is normally identical to default,
31  *                but useful to set in a VMA when you have a non default
32  *                process policy.
33  *
34  * default        Allocate on the local node first, or when on a VMA
35  *                use the process policy. This is what Linux always did
36  *		  in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57    fix mmap readahead to honour policy and enable policy for any page cache
58    object
59    statistics for bigpages
60    global policy for page cache? currently it uses process policy. Requires
61    first item above.
62    handle mremap for shared memory (currently ignored for the policy)
63    grows down?
64    make bind policy root only? It can trigger oom much faster and the
65    kernel is not always grateful with that.
66 */
67 
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69 
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/sched/mm.h>
77 #include <linux/sched/numa_balancing.h>
78 #include <linux/sched/task.h>
79 #include <linux/nodemask.h>
80 #include <linux/cpuset.h>
81 #include <linux/slab.h>
82 #include <linux/string.h>
83 #include <linux/export.h>
84 #include <linux/nsproxy.h>
85 #include <linux/interrupt.h>
86 #include <linux/init.h>
87 #include <linux/compat.h>
88 #include <linux/ptrace.h>
89 #include <linux/swap.h>
90 #include <linux/seq_file.h>
91 #include <linux/proc_fs.h>
92 #include <linux/migrate.h>
93 #include <linux/ksm.h>
94 #include <linux/rmap.h>
95 #include <linux/security.h>
96 #include <linux/syscalls.h>
97 #include <linux/ctype.h>
98 #include <linux/mm_inline.h>
99 #include <linux/mmu_notifier.h>
100 #include <linux/printk.h>
101 #include <linux/swapops.h>
102 
103 #include <asm/tlbflush.h>
104 #include <linux/uaccess.h>
105 
106 #include "internal.h"
107 
108 /* Internal flags */
109 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0)	/* Skip checks for continuous vmas */
110 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1)		/* Invert check for nodemask */
111 
112 static struct kmem_cache *policy_cache;
113 static struct kmem_cache *sn_cache;
114 
115 /* Highest zone. An specific allocation for a zone below that is not
116    policied. */
117 enum zone_type policy_zone = 0;
118 
119 /*
120  * run-time system-wide default policy => local allocation
121  */
122 static struct mempolicy default_policy = {
123 	.refcnt = ATOMIC_INIT(1), /* never free it */
124 	.mode = MPOL_PREFERRED,
125 	.flags = MPOL_F_LOCAL,
126 };
127 
128 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
129 
get_task_policy(struct task_struct * p)130 struct mempolicy *get_task_policy(struct task_struct *p)
131 {
132 	struct mempolicy *pol = p->mempolicy;
133 	int node;
134 
135 	if (pol)
136 		return pol;
137 
138 	node = numa_node_id();
139 	if (node != NUMA_NO_NODE) {
140 		pol = &preferred_node_policy[node];
141 		/* preferred_node_policy is not initialised early in boot */
142 		if (pol->mode)
143 			return pol;
144 	}
145 
146 	return &default_policy;
147 }
148 
149 static const struct mempolicy_operations {
150 	int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
151 	void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
152 } mpol_ops[MPOL_MAX];
153 
mpol_store_user_nodemask(const struct mempolicy * pol)154 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
155 {
156 	return pol->flags & MPOL_MODE_FLAGS;
157 }
158 
mpol_relative_nodemask(nodemask_t * ret,const nodemask_t * orig,const nodemask_t * rel)159 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
160 				   const nodemask_t *rel)
161 {
162 	nodemask_t tmp;
163 	nodes_fold(tmp, *orig, nodes_weight(*rel));
164 	nodes_onto(*ret, tmp, *rel);
165 }
166 
mpol_new_interleave(struct mempolicy * pol,const nodemask_t * nodes)167 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
168 {
169 	if (nodes_empty(*nodes))
170 		return -EINVAL;
171 	pol->v.nodes = *nodes;
172 	return 0;
173 }
174 
mpol_new_preferred(struct mempolicy * pol,const nodemask_t * nodes)175 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 	if (!nodes)
178 		pol->flags |= MPOL_F_LOCAL;	/* local allocation */
179 	else if (nodes_empty(*nodes))
180 		return -EINVAL;			/*  no allowed nodes */
181 	else
182 		pol->v.preferred_node = first_node(*nodes);
183 	return 0;
184 }
185 
mpol_new_bind(struct mempolicy * pol,const nodemask_t * nodes)186 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 	if (nodes_empty(*nodes))
189 		return -EINVAL;
190 	pol->v.nodes = *nodes;
191 	return 0;
192 }
193 
194 /*
195  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
196  * any, for the new policy.  mpol_new() has already validated the nodes
197  * parameter with respect to the policy mode and flags.  But, we need to
198  * handle an empty nodemask with MPOL_PREFERRED here.
199  *
200  * Must be called holding task's alloc_lock to protect task's mems_allowed
201  * and mempolicy.  May also be called holding the mmap_semaphore for write.
202  */
mpol_set_nodemask(struct mempolicy * pol,const nodemask_t * nodes,struct nodemask_scratch * nsc)203 static int mpol_set_nodemask(struct mempolicy *pol,
204 		     const nodemask_t *nodes, struct nodemask_scratch *nsc)
205 {
206 	int ret;
207 
208 	/* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
209 	if (pol == NULL)
210 		return 0;
211 	/* Check N_MEMORY */
212 	nodes_and(nsc->mask1,
213 		  cpuset_current_mems_allowed, node_states[N_MEMORY]);
214 
215 	VM_BUG_ON(!nodes);
216 	if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
217 		nodes = NULL;	/* explicit local allocation */
218 	else {
219 		if (pol->flags & MPOL_F_RELATIVE_NODES)
220 			mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
221 		else
222 			nodes_and(nsc->mask2, *nodes, nsc->mask1);
223 
224 		if (mpol_store_user_nodemask(pol))
225 			pol->w.user_nodemask = *nodes;
226 		else
227 			pol->w.cpuset_mems_allowed =
228 						cpuset_current_mems_allowed;
229 	}
230 
231 	if (nodes)
232 		ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
233 	else
234 		ret = mpol_ops[pol->mode].create(pol, NULL);
235 	return ret;
236 }
237 
238 /*
239  * This function just creates a new policy, does some check and simple
240  * initialization. You must invoke mpol_set_nodemask() to set nodes.
241  */
mpol_new(unsigned short mode,unsigned short flags,nodemask_t * nodes)242 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
243 				  nodemask_t *nodes)
244 {
245 	struct mempolicy *policy;
246 
247 	pr_debug("setting mode %d flags %d nodes[0] %lx\n",
248 		 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
249 
250 	if (mode == MPOL_DEFAULT) {
251 		if (nodes && !nodes_empty(*nodes))
252 			return ERR_PTR(-EINVAL);
253 		return NULL;
254 	}
255 	VM_BUG_ON(!nodes);
256 
257 	/*
258 	 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
259 	 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
260 	 * All other modes require a valid pointer to a non-empty nodemask.
261 	 */
262 	if (mode == MPOL_PREFERRED) {
263 		if (nodes_empty(*nodes)) {
264 			if (((flags & MPOL_F_STATIC_NODES) ||
265 			     (flags & MPOL_F_RELATIVE_NODES)))
266 				return ERR_PTR(-EINVAL);
267 		}
268 	} else if (mode == MPOL_LOCAL) {
269 		if (!nodes_empty(*nodes) ||
270 		    (flags & MPOL_F_STATIC_NODES) ||
271 		    (flags & MPOL_F_RELATIVE_NODES))
272 			return ERR_PTR(-EINVAL);
273 		mode = MPOL_PREFERRED;
274 	} else if (nodes_empty(*nodes))
275 		return ERR_PTR(-EINVAL);
276 	policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
277 	if (!policy)
278 		return ERR_PTR(-ENOMEM);
279 	atomic_set(&policy->refcnt, 1);
280 	policy->mode = mode;
281 	policy->flags = flags;
282 
283 	return policy;
284 }
285 
286 /* Slow path of a mpol destructor. */
__mpol_put(struct mempolicy * p)287 void __mpol_put(struct mempolicy *p)
288 {
289 	if (!atomic_dec_and_test(&p->refcnt))
290 		return;
291 	kmem_cache_free(policy_cache, p);
292 }
293 
mpol_rebind_default(struct mempolicy * pol,const nodemask_t * nodes)294 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
295 {
296 }
297 
mpol_rebind_nodemask(struct mempolicy * pol,const nodemask_t * nodes)298 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes)
299 {
300 	nodemask_t tmp;
301 
302 	if (pol->flags & MPOL_F_STATIC_NODES)
303 		nodes_and(tmp, pol->w.user_nodemask, *nodes);
304 	else if (pol->flags & MPOL_F_RELATIVE_NODES)
305 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
306 	else {
307 		nodes_remap(tmp, pol->v.nodes,pol->w.cpuset_mems_allowed,
308 								*nodes);
309 		pol->w.cpuset_mems_allowed = tmp;
310 	}
311 
312 	if (nodes_empty(tmp))
313 		tmp = *nodes;
314 
315 	pol->v.nodes = tmp;
316 }
317 
mpol_rebind_preferred(struct mempolicy * pol,const nodemask_t * nodes)318 static void mpol_rebind_preferred(struct mempolicy *pol,
319 						const nodemask_t *nodes)
320 {
321 	nodemask_t tmp;
322 
323 	if (pol->flags & MPOL_F_STATIC_NODES) {
324 		int node = first_node(pol->w.user_nodemask);
325 
326 		if (node_isset(node, *nodes)) {
327 			pol->v.preferred_node = node;
328 			pol->flags &= ~MPOL_F_LOCAL;
329 		} else
330 			pol->flags |= MPOL_F_LOCAL;
331 	} else if (pol->flags & MPOL_F_RELATIVE_NODES) {
332 		mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
333 		pol->v.preferred_node = first_node(tmp);
334 	} else if (!(pol->flags & MPOL_F_LOCAL)) {
335 		pol->v.preferred_node = node_remap(pol->v.preferred_node,
336 						   pol->w.cpuset_mems_allowed,
337 						   *nodes);
338 		pol->w.cpuset_mems_allowed = *nodes;
339 	}
340 }
341 
342 /*
343  * mpol_rebind_policy - Migrate a policy to a different set of nodes
344  *
345  * Per-vma policies are protected by mmap_sem. Allocations using per-task
346  * policies are protected by task->mems_allowed_seq to prevent a premature
347  * OOM/allocation failure due to parallel nodemask modification.
348  */
mpol_rebind_policy(struct mempolicy * pol,const nodemask_t * newmask)349 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask)
350 {
351 	if (!pol)
352 		return;
353 	if (!mpol_store_user_nodemask(pol) &&
354 	    nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
355 		return;
356 
357 	mpol_ops[pol->mode].rebind(pol, newmask);
358 }
359 
360 /*
361  * Wrapper for mpol_rebind_policy() that just requires task
362  * pointer, and updates task mempolicy.
363  *
364  * Called with task's alloc_lock held.
365  */
366 
mpol_rebind_task(struct task_struct * tsk,const nodemask_t * new)367 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
368 {
369 	mpol_rebind_policy(tsk->mempolicy, new);
370 }
371 
372 /*
373  * Rebind each vma in mm to new nodemask.
374  *
375  * Call holding a reference to mm.  Takes mm->mmap_sem during call.
376  */
377 
mpol_rebind_mm(struct mm_struct * mm,nodemask_t * new)378 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
379 {
380 	struct vm_area_struct *vma;
381 
382 	down_write(&mm->mmap_sem);
383 	for (vma = mm->mmap; vma; vma = vma->vm_next)
384 		mpol_rebind_policy(vma->vm_policy, new);
385 	up_write(&mm->mmap_sem);
386 }
387 
388 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
389 	[MPOL_DEFAULT] = {
390 		.rebind = mpol_rebind_default,
391 	},
392 	[MPOL_INTERLEAVE] = {
393 		.create = mpol_new_interleave,
394 		.rebind = mpol_rebind_nodemask,
395 	},
396 	[MPOL_PREFERRED] = {
397 		.create = mpol_new_preferred,
398 		.rebind = mpol_rebind_preferred,
399 	},
400 	[MPOL_BIND] = {
401 		.create = mpol_new_bind,
402 		.rebind = mpol_rebind_nodemask,
403 	},
404 };
405 
406 static void migrate_page_add(struct page *page, struct list_head *pagelist,
407 				unsigned long flags);
408 
409 struct queue_pages {
410 	struct list_head *pagelist;
411 	unsigned long flags;
412 	nodemask_t *nmask;
413 	struct vm_area_struct *prev;
414 };
415 
416 /*
417  * Check if the page's nid is in qp->nmask.
418  *
419  * If MPOL_MF_INVERT is set in qp->flags, check if the nid is
420  * in the invert of qp->nmask.
421  */
queue_pages_required(struct page * page,struct queue_pages * qp)422 static inline bool queue_pages_required(struct page *page,
423 					struct queue_pages *qp)
424 {
425 	int nid = page_to_nid(page);
426 	unsigned long flags = qp->flags;
427 
428 	return node_isset(nid, *qp->nmask) == !(flags & MPOL_MF_INVERT);
429 }
430 
queue_pages_pmd(pmd_t * pmd,spinlock_t * ptl,unsigned long addr,unsigned long end,struct mm_walk * walk)431 static int queue_pages_pmd(pmd_t *pmd, spinlock_t *ptl, unsigned long addr,
432 				unsigned long end, struct mm_walk *walk)
433 {
434 	int ret = 0;
435 	struct page *page;
436 	struct queue_pages *qp = walk->private;
437 	unsigned long flags;
438 
439 	if (unlikely(is_pmd_migration_entry(*pmd))) {
440 		ret = 1;
441 		goto unlock;
442 	}
443 	page = pmd_page(*pmd);
444 	if (is_huge_zero_page(page)) {
445 		spin_unlock(ptl);
446 		__split_huge_pmd(walk->vma, pmd, addr, false, NULL);
447 		goto out;
448 	}
449 	if (!queue_pages_required(page, qp)) {
450 		ret = 1;
451 		goto unlock;
452 	}
453 
454 	ret = 1;
455 	flags = qp->flags;
456 	/* go to thp migration */
457 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
458 		migrate_page_add(page, qp->pagelist, flags);
459 unlock:
460 	spin_unlock(ptl);
461 out:
462 	return ret;
463 }
464 
465 /*
466  * Scan through pages checking if pages follow certain conditions,
467  * and move them to the pagelist if they do.
468  */
queue_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)469 static int queue_pages_pte_range(pmd_t *pmd, unsigned long addr,
470 			unsigned long end, struct mm_walk *walk)
471 {
472 	struct vm_area_struct *vma = walk->vma;
473 	struct page *page;
474 	struct queue_pages *qp = walk->private;
475 	unsigned long flags = qp->flags;
476 	int ret;
477 	pte_t *pte;
478 	spinlock_t *ptl;
479 
480 	ptl = pmd_trans_huge_lock(pmd, vma);
481 	if (ptl) {
482 		ret = queue_pages_pmd(pmd, ptl, addr, end, walk);
483 		if (ret)
484 			return 0;
485 	}
486 
487 	if (pmd_trans_unstable(pmd))
488 		return 0;
489 
490 	pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
491 	for (; addr != end; pte++, addr += PAGE_SIZE) {
492 		if (!pte_present(*pte))
493 			continue;
494 		page = vm_normal_page(vma, addr, *pte);
495 		if (!page)
496 			continue;
497 		/*
498 		 * vm_normal_page() filters out zero pages, but there might
499 		 * still be PageReserved pages to skip, perhaps in a VDSO.
500 		 */
501 		if (PageReserved(page))
502 			continue;
503 		if (!queue_pages_required(page, qp))
504 			continue;
505 		migrate_page_add(page, qp->pagelist, flags);
506 	}
507 	pte_unmap_unlock(pte - 1, ptl);
508 	cond_resched();
509 	return 0;
510 }
511 
queue_pages_hugetlb(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)512 static int queue_pages_hugetlb(pte_t *pte, unsigned long hmask,
513 			       unsigned long addr, unsigned long end,
514 			       struct mm_walk *walk)
515 {
516 #ifdef CONFIG_HUGETLB_PAGE
517 	struct queue_pages *qp = walk->private;
518 	unsigned long flags = qp->flags;
519 	struct page *page;
520 	spinlock_t *ptl;
521 	pte_t entry;
522 
523 	ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
524 	entry = huge_ptep_get(pte);
525 	if (!pte_present(entry))
526 		goto unlock;
527 	page = pte_page(entry);
528 	if (!queue_pages_required(page, qp))
529 		goto unlock;
530 	/* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
531 	if (flags & (MPOL_MF_MOVE_ALL) ||
532 	    (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
533 		isolate_huge_page(page, qp->pagelist);
534 unlock:
535 	spin_unlock(ptl);
536 #else
537 	BUG();
538 #endif
539 	return 0;
540 }
541 
542 #ifdef CONFIG_NUMA_BALANCING
543 /*
544  * This is used to mark a range of virtual addresses to be inaccessible.
545  * These are later cleared by a NUMA hinting fault. Depending on these
546  * faults, pages may be migrated for better NUMA placement.
547  *
548  * This is assuming that NUMA faults are handled using PROT_NONE. If
549  * an architecture makes a different choice, it will need further
550  * changes to the core.
551  */
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)552 unsigned long change_prot_numa(struct vm_area_struct *vma,
553 			unsigned long addr, unsigned long end)
554 {
555 	int nr_updated;
556 
557 	nr_updated = change_protection(vma, addr, end, PAGE_NONE, 0, 1);
558 	if (nr_updated)
559 		count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
560 
561 	return nr_updated;
562 }
563 #else
change_prot_numa(struct vm_area_struct * vma,unsigned long addr,unsigned long end)564 static unsigned long change_prot_numa(struct vm_area_struct *vma,
565 			unsigned long addr, unsigned long end)
566 {
567 	return 0;
568 }
569 #endif /* CONFIG_NUMA_BALANCING */
570 
queue_pages_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)571 static int queue_pages_test_walk(unsigned long start, unsigned long end,
572 				struct mm_walk *walk)
573 {
574 	struct vm_area_struct *vma = walk->vma;
575 	struct queue_pages *qp = walk->private;
576 	unsigned long endvma = vma->vm_end;
577 	unsigned long flags = qp->flags;
578 
579 	if (!vma_migratable(vma))
580 		return 1;
581 
582 	if (endvma > end)
583 		endvma = end;
584 	if (vma->vm_start > start)
585 		start = vma->vm_start;
586 
587 	if (!(flags & MPOL_MF_DISCONTIG_OK)) {
588 		if (!vma->vm_next && vma->vm_end < end)
589 			return -EFAULT;
590 		if (qp->prev && qp->prev->vm_end < vma->vm_start)
591 			return -EFAULT;
592 	}
593 
594 	qp->prev = vma;
595 
596 	if (flags & MPOL_MF_LAZY) {
597 		/* Similar to task_numa_work, skip inaccessible VMAs */
598 		if (!is_vm_hugetlb_page(vma) &&
599 			(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)) &&
600 			!(vma->vm_flags & VM_MIXEDMAP))
601 			change_prot_numa(vma, start, endvma);
602 		return 1;
603 	}
604 
605 	/* queue pages from current vma */
606 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
607 		return 0;
608 	return 1;
609 }
610 
611 /*
612  * Walk through page tables and collect pages to be migrated.
613  *
614  * If pages found in a given range are on a set of nodes (determined by
615  * @nodes and @flags,) it's isolated and queued to the pagelist which is
616  * passed via @private.)
617  */
618 static int
queue_pages_range(struct mm_struct * mm,unsigned long start,unsigned long end,nodemask_t * nodes,unsigned long flags,struct list_head * pagelist)619 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
620 		nodemask_t *nodes, unsigned long flags,
621 		struct list_head *pagelist)
622 {
623 	struct queue_pages qp = {
624 		.pagelist = pagelist,
625 		.flags = flags,
626 		.nmask = nodes,
627 		.prev = NULL,
628 	};
629 	struct mm_walk queue_pages_walk = {
630 		.hugetlb_entry = queue_pages_hugetlb,
631 		.pmd_entry = queue_pages_pte_range,
632 		.test_walk = queue_pages_test_walk,
633 		.mm = mm,
634 		.private = &qp,
635 	};
636 
637 	return walk_page_range(start, end, &queue_pages_walk);
638 }
639 
640 /*
641  * Apply policy to a single VMA
642  * This must be called with the mmap_sem held for writing.
643  */
vma_replace_policy(struct vm_area_struct * vma,struct mempolicy * pol)644 static int vma_replace_policy(struct vm_area_struct *vma,
645 						struct mempolicy *pol)
646 {
647 	int err;
648 	struct mempolicy *old;
649 	struct mempolicy *new;
650 
651 	pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
652 		 vma->vm_start, vma->vm_end, vma->vm_pgoff,
653 		 vma->vm_ops, vma->vm_file,
654 		 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
655 
656 	new = mpol_dup(pol);
657 	if (IS_ERR(new))
658 		return PTR_ERR(new);
659 
660 	if (vma->vm_ops && vma->vm_ops->set_policy) {
661 		err = vma->vm_ops->set_policy(vma, new);
662 		if (err)
663 			goto err_out;
664 	}
665 
666 	old = vma->vm_policy;
667 	vma->vm_policy = new; /* protected by mmap_sem */
668 	mpol_put(old);
669 
670 	return 0;
671  err_out:
672 	mpol_put(new);
673 	return err;
674 }
675 
676 /* Step 2: apply policy to a range and do splits. */
mbind_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct mempolicy * new_pol)677 static int mbind_range(struct mm_struct *mm, unsigned long start,
678 		       unsigned long end, struct mempolicy *new_pol)
679 {
680 	struct vm_area_struct *next;
681 	struct vm_area_struct *prev;
682 	struct vm_area_struct *vma;
683 	int err = 0;
684 	pgoff_t pgoff;
685 	unsigned long vmstart;
686 	unsigned long vmend;
687 
688 	vma = find_vma(mm, start);
689 	if (!vma || vma->vm_start > start)
690 		return -EFAULT;
691 
692 	prev = vma->vm_prev;
693 	if (start > vma->vm_start)
694 		prev = vma;
695 
696 	for (; vma && vma->vm_start < end; prev = vma, vma = next) {
697 		next = vma->vm_next;
698 		vmstart = max(start, vma->vm_start);
699 		vmend   = min(end, vma->vm_end);
700 
701 		if (mpol_equal(vma_policy(vma), new_pol))
702 			continue;
703 
704 		pgoff = vma->vm_pgoff +
705 			((vmstart - vma->vm_start) >> PAGE_SHIFT);
706 		prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
707 				 vma->anon_vma, vma->vm_file, pgoff,
708 				 new_pol, vma->vm_userfaultfd_ctx);
709 		if (prev) {
710 			vma = prev;
711 			next = vma->vm_next;
712 			if (mpol_equal(vma_policy(vma), new_pol))
713 				continue;
714 			/* vma_merge() joined vma && vma->next, case 8 */
715 			goto replace;
716 		}
717 		if (vma->vm_start != vmstart) {
718 			err = split_vma(vma->vm_mm, vma, vmstart, 1);
719 			if (err)
720 				goto out;
721 		}
722 		if (vma->vm_end != vmend) {
723 			err = split_vma(vma->vm_mm, vma, vmend, 0);
724 			if (err)
725 				goto out;
726 		}
727  replace:
728 		err = vma_replace_policy(vma, new_pol);
729 		if (err)
730 			goto out;
731 	}
732 
733  out:
734 	return err;
735 }
736 
737 /* Set the process memory policy */
do_set_mempolicy(unsigned short mode,unsigned short flags,nodemask_t * nodes)738 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
739 			     nodemask_t *nodes)
740 {
741 	struct mempolicy *new, *old;
742 	NODEMASK_SCRATCH(scratch);
743 	int ret;
744 
745 	if (!scratch)
746 		return -ENOMEM;
747 
748 	new = mpol_new(mode, flags, nodes);
749 	if (IS_ERR(new)) {
750 		ret = PTR_ERR(new);
751 		goto out;
752 	}
753 
754 	task_lock(current);
755 	ret = mpol_set_nodemask(new, nodes, scratch);
756 	if (ret) {
757 		task_unlock(current);
758 		mpol_put(new);
759 		goto out;
760 	}
761 	old = current->mempolicy;
762 	current->mempolicy = new;
763 	if (new && new->mode == MPOL_INTERLEAVE)
764 		current->il_prev = MAX_NUMNODES-1;
765 	task_unlock(current);
766 	mpol_put(old);
767 	ret = 0;
768 out:
769 	NODEMASK_SCRATCH_FREE(scratch);
770 	return ret;
771 }
772 
773 /*
774  * Return nodemask for policy for get_mempolicy() query
775  *
776  * Called with task's alloc_lock held
777  */
get_policy_nodemask(struct mempolicy * p,nodemask_t * nodes)778 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
779 {
780 	nodes_clear(*nodes);
781 	if (p == &default_policy)
782 		return;
783 
784 	switch (p->mode) {
785 	case MPOL_BIND:
786 		/* Fall through */
787 	case MPOL_INTERLEAVE:
788 		*nodes = p->v.nodes;
789 		break;
790 	case MPOL_PREFERRED:
791 		if (!(p->flags & MPOL_F_LOCAL))
792 			node_set(p->v.preferred_node, *nodes);
793 		/* else return empty node mask for local allocation */
794 		break;
795 	default:
796 		BUG();
797 	}
798 }
799 
lookup_node(unsigned long addr)800 static int lookup_node(unsigned long addr)
801 {
802 	struct page *p;
803 	int err;
804 
805 	err = get_user_pages(addr & PAGE_MASK, 1, 0, &p, NULL);
806 	if (err >= 0) {
807 		err = page_to_nid(p);
808 		put_page(p);
809 	}
810 	return err;
811 }
812 
813 /* Retrieve NUMA policy */
do_get_mempolicy(int * policy,nodemask_t * nmask,unsigned long addr,unsigned long flags)814 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
815 			     unsigned long addr, unsigned long flags)
816 {
817 	int err;
818 	struct mm_struct *mm = current->mm;
819 	struct vm_area_struct *vma = NULL;
820 	struct mempolicy *pol = current->mempolicy;
821 
822 	if (flags &
823 		~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
824 		return -EINVAL;
825 
826 	if (flags & MPOL_F_MEMS_ALLOWED) {
827 		if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
828 			return -EINVAL;
829 		*policy = 0;	/* just so it's initialized */
830 		task_lock(current);
831 		*nmask  = cpuset_current_mems_allowed;
832 		task_unlock(current);
833 		return 0;
834 	}
835 
836 	if (flags & MPOL_F_ADDR) {
837 		/*
838 		 * Do NOT fall back to task policy if the
839 		 * vma/shared policy at addr is NULL.  We
840 		 * want to return MPOL_DEFAULT in this case.
841 		 */
842 		down_read(&mm->mmap_sem);
843 		vma = find_vma_intersection(mm, addr, addr+1);
844 		if (!vma) {
845 			up_read(&mm->mmap_sem);
846 			return -EFAULT;
847 		}
848 		if (vma->vm_ops && vma->vm_ops->get_policy)
849 			pol = vma->vm_ops->get_policy(vma, addr);
850 		else
851 			pol = vma->vm_policy;
852 	} else if (addr)
853 		return -EINVAL;
854 
855 	if (!pol)
856 		pol = &default_policy;	/* indicates default behavior */
857 
858 	if (flags & MPOL_F_NODE) {
859 		if (flags & MPOL_F_ADDR) {
860 			err = lookup_node(addr);
861 			if (err < 0)
862 				goto out;
863 			*policy = err;
864 		} else if (pol == current->mempolicy &&
865 				pol->mode == MPOL_INTERLEAVE) {
866 			*policy = next_node_in(current->il_prev, pol->v.nodes);
867 		} else {
868 			err = -EINVAL;
869 			goto out;
870 		}
871 	} else {
872 		*policy = pol == &default_policy ? MPOL_DEFAULT :
873 						pol->mode;
874 		/*
875 		 * Internal mempolicy flags must be masked off before exposing
876 		 * the policy to userspace.
877 		 */
878 		*policy |= (pol->flags & MPOL_MODE_FLAGS);
879 	}
880 
881 	err = 0;
882 	if (nmask) {
883 		if (mpol_store_user_nodemask(pol)) {
884 			*nmask = pol->w.user_nodemask;
885 		} else {
886 			task_lock(current);
887 			get_policy_nodemask(pol, nmask);
888 			task_unlock(current);
889 		}
890 	}
891 
892  out:
893 	mpol_cond_put(pol);
894 	if (vma)
895 		up_read(&current->mm->mmap_sem);
896 	return err;
897 }
898 
899 #ifdef CONFIG_MIGRATION
900 /*
901  * page migration, thp tail pages can be passed.
902  */
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)903 static void migrate_page_add(struct page *page, struct list_head *pagelist,
904 				unsigned long flags)
905 {
906 	struct page *head = compound_head(page);
907 	/*
908 	 * Avoid migrating a page that is shared with others.
909 	 */
910 	if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(head) == 1) {
911 		if (!isolate_lru_page(head)) {
912 			list_add_tail(&head->lru, pagelist);
913 			mod_node_page_state(page_pgdat(head),
914 				NR_ISOLATED_ANON + page_is_file_cache(head),
915 				hpage_nr_pages(head));
916 		}
917 	}
918 }
919 
920 /* page allocation callback for NUMA node migration */
alloc_new_node_page(struct page * page,unsigned long node)921 struct page *alloc_new_node_page(struct page *page, unsigned long node)
922 {
923 	if (PageHuge(page))
924 		return alloc_huge_page_node(page_hstate(compound_head(page)),
925 					node);
926 	else if (PageTransHuge(page)) {
927 		struct page *thp;
928 
929 		thp = alloc_pages_node(node,
930 			(GFP_TRANSHUGE | __GFP_THISNODE),
931 			HPAGE_PMD_ORDER);
932 		if (!thp)
933 			return NULL;
934 		prep_transhuge_page(thp);
935 		return thp;
936 	} else
937 		return __alloc_pages_node(node, GFP_HIGHUSER_MOVABLE |
938 						    __GFP_THISNODE, 0);
939 }
940 
941 /*
942  * Migrate pages from one node to a target node.
943  * Returns error or the number of pages not migrated.
944  */
migrate_to_node(struct mm_struct * mm,int source,int dest,int flags)945 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
946 			   int flags)
947 {
948 	nodemask_t nmask;
949 	LIST_HEAD(pagelist);
950 	int err = 0;
951 
952 	nodes_clear(nmask);
953 	node_set(source, nmask);
954 
955 	/*
956 	 * This does not "check" the range but isolates all pages that
957 	 * need migration.  Between passing in the full user address
958 	 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
959 	 */
960 	VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
961 	queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
962 			flags | MPOL_MF_DISCONTIG_OK, &pagelist);
963 
964 	if (!list_empty(&pagelist)) {
965 		err = migrate_pages(&pagelist, alloc_new_node_page, NULL, dest,
966 					MIGRATE_SYNC, MR_SYSCALL);
967 		if (err)
968 			putback_movable_pages(&pagelist);
969 	}
970 
971 	return err;
972 }
973 
974 /*
975  * Move pages between the two nodesets so as to preserve the physical
976  * layout as much as possible.
977  *
978  * Returns the number of page that could not be moved.
979  */
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)980 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
981 		     const nodemask_t *to, int flags)
982 {
983 	int busy = 0;
984 	int err;
985 	nodemask_t tmp;
986 
987 	err = migrate_prep();
988 	if (err)
989 		return err;
990 
991 	down_read(&mm->mmap_sem);
992 
993 	/*
994 	 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
995 	 * bit in 'to' is not also set in 'tmp'.  Clear the found 'source'
996 	 * bit in 'tmp', and return that <source, dest> pair for migration.
997 	 * The pair of nodemasks 'to' and 'from' define the map.
998 	 *
999 	 * If no pair of bits is found that way, fallback to picking some
1000 	 * pair of 'source' and 'dest' bits that are not the same.  If the
1001 	 * 'source' and 'dest' bits are the same, this represents a node
1002 	 * that will be migrating to itself, so no pages need move.
1003 	 *
1004 	 * If no bits are left in 'tmp', or if all remaining bits left
1005 	 * in 'tmp' correspond to the same bit in 'to', return false
1006 	 * (nothing left to migrate).
1007 	 *
1008 	 * This lets us pick a pair of nodes to migrate between, such that
1009 	 * if possible the dest node is not already occupied by some other
1010 	 * source node, minimizing the risk of overloading the memory on a
1011 	 * node that would happen if we migrated incoming memory to a node
1012 	 * before migrating outgoing memory source that same node.
1013 	 *
1014 	 * A single scan of tmp is sufficient.  As we go, we remember the
1015 	 * most recent <s, d> pair that moved (s != d).  If we find a pair
1016 	 * that not only moved, but what's better, moved to an empty slot
1017 	 * (d is not set in tmp), then we break out then, with that pair.
1018 	 * Otherwise when we finish scanning from_tmp, we at least have the
1019 	 * most recent <s, d> pair that moved.  If we get all the way through
1020 	 * the scan of tmp without finding any node that moved, much less
1021 	 * moved to an empty node, then there is nothing left worth migrating.
1022 	 */
1023 
1024 	tmp = *from;
1025 	while (!nodes_empty(tmp)) {
1026 		int s,d;
1027 		int source = NUMA_NO_NODE;
1028 		int dest = 0;
1029 
1030 		for_each_node_mask(s, tmp) {
1031 
1032 			/*
1033 			 * do_migrate_pages() tries to maintain the relative
1034 			 * node relationship of the pages established between
1035 			 * threads and memory areas.
1036                          *
1037 			 * However if the number of source nodes is not equal to
1038 			 * the number of destination nodes we can not preserve
1039 			 * this node relative relationship.  In that case, skip
1040 			 * copying memory from a node that is in the destination
1041 			 * mask.
1042 			 *
1043 			 * Example: [2,3,4] -> [3,4,5] moves everything.
1044 			 *          [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1045 			 */
1046 
1047 			if ((nodes_weight(*from) != nodes_weight(*to)) &&
1048 						(node_isset(s, *to)))
1049 				continue;
1050 
1051 			d = node_remap(s, *from, *to);
1052 			if (s == d)
1053 				continue;
1054 
1055 			source = s;	/* Node moved. Memorize */
1056 			dest = d;
1057 
1058 			/* dest not in remaining from nodes? */
1059 			if (!node_isset(dest, tmp))
1060 				break;
1061 		}
1062 		if (source == NUMA_NO_NODE)
1063 			break;
1064 
1065 		node_clear(source, tmp);
1066 		err = migrate_to_node(mm, source, dest, flags);
1067 		if (err > 0)
1068 			busy += err;
1069 		if (err < 0)
1070 			break;
1071 	}
1072 	up_read(&mm->mmap_sem);
1073 	if (err < 0)
1074 		return err;
1075 	return busy;
1076 
1077 }
1078 
1079 /*
1080  * Allocate a new page for page migration based on vma policy.
1081  * Start by assuming the page is mapped by the same vma as contains @start.
1082  * Search forward from there, if not.  N.B., this assumes that the
1083  * list of pages handed to migrate_pages()--which is how we get here--
1084  * is in virtual address order.
1085  */
new_page(struct page * page,unsigned long start)1086 static struct page *new_page(struct page *page, unsigned long start)
1087 {
1088 	struct vm_area_struct *vma;
1089 	unsigned long uninitialized_var(address);
1090 
1091 	vma = find_vma(current->mm, start);
1092 	while (vma) {
1093 		address = page_address_in_vma(page, vma);
1094 		if (address != -EFAULT)
1095 			break;
1096 		vma = vma->vm_next;
1097 	}
1098 
1099 	if (PageHuge(page)) {
1100 		return alloc_huge_page_vma(page_hstate(compound_head(page)),
1101 				vma, address);
1102 	} else if (PageTransHuge(page)) {
1103 		struct page *thp;
1104 
1105 		thp = alloc_hugepage_vma(GFP_TRANSHUGE, vma, address,
1106 					 HPAGE_PMD_ORDER);
1107 		if (!thp)
1108 			return NULL;
1109 		prep_transhuge_page(thp);
1110 		return thp;
1111 	}
1112 	/*
1113 	 * if !vma, alloc_page_vma() will use task or system default policy
1114 	 */
1115 	return alloc_page_vma(GFP_HIGHUSER_MOVABLE | __GFP_RETRY_MAYFAIL,
1116 			vma, address);
1117 }
1118 #else
1119 
migrate_page_add(struct page * page,struct list_head * pagelist,unsigned long flags)1120 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1121 				unsigned long flags)
1122 {
1123 }
1124 
do_migrate_pages(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to,int flags)1125 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1126 		     const nodemask_t *to, int flags)
1127 {
1128 	return -ENOSYS;
1129 }
1130 
new_page(struct page * page,unsigned long start)1131 static struct page *new_page(struct page *page, unsigned long start)
1132 {
1133 	return NULL;
1134 }
1135 #endif
1136 
do_mbind(unsigned long start,unsigned long len,unsigned short mode,unsigned short mode_flags,nodemask_t * nmask,unsigned long flags)1137 static long do_mbind(unsigned long start, unsigned long len,
1138 		     unsigned short mode, unsigned short mode_flags,
1139 		     nodemask_t *nmask, unsigned long flags)
1140 {
1141 	struct mm_struct *mm = current->mm;
1142 	struct mempolicy *new;
1143 	unsigned long end;
1144 	int err;
1145 	LIST_HEAD(pagelist);
1146 
1147 	if (flags & ~(unsigned long)MPOL_MF_VALID)
1148 		return -EINVAL;
1149 	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1150 		return -EPERM;
1151 
1152 	if (start & ~PAGE_MASK)
1153 		return -EINVAL;
1154 
1155 	if (mode == MPOL_DEFAULT)
1156 		flags &= ~MPOL_MF_STRICT;
1157 
1158 	len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1159 	end = start + len;
1160 
1161 	if (end < start)
1162 		return -EINVAL;
1163 	if (end == start)
1164 		return 0;
1165 
1166 	new = mpol_new(mode, mode_flags, nmask);
1167 	if (IS_ERR(new))
1168 		return PTR_ERR(new);
1169 
1170 	if (flags & MPOL_MF_LAZY)
1171 		new->flags |= MPOL_F_MOF;
1172 
1173 	/*
1174 	 * If we are using the default policy then operation
1175 	 * on discontinuous address spaces is okay after all
1176 	 */
1177 	if (!new)
1178 		flags |= MPOL_MF_DISCONTIG_OK;
1179 
1180 	pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1181 		 start, start + len, mode, mode_flags,
1182 		 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1183 
1184 	if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1185 
1186 		err = migrate_prep();
1187 		if (err)
1188 			goto mpol_out;
1189 	}
1190 	{
1191 		NODEMASK_SCRATCH(scratch);
1192 		if (scratch) {
1193 			down_write(&mm->mmap_sem);
1194 			task_lock(current);
1195 			err = mpol_set_nodemask(new, nmask, scratch);
1196 			task_unlock(current);
1197 			if (err)
1198 				up_write(&mm->mmap_sem);
1199 		} else
1200 			err = -ENOMEM;
1201 		NODEMASK_SCRATCH_FREE(scratch);
1202 	}
1203 	if (err)
1204 		goto mpol_out;
1205 
1206 	err = queue_pages_range(mm, start, end, nmask,
1207 			  flags | MPOL_MF_INVERT, &pagelist);
1208 	if (!err)
1209 		err = mbind_range(mm, start, end, new);
1210 
1211 	if (!err) {
1212 		int nr_failed = 0;
1213 
1214 		if (!list_empty(&pagelist)) {
1215 			WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1216 			nr_failed = migrate_pages(&pagelist, new_page, NULL,
1217 				start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1218 			if (nr_failed)
1219 				putback_movable_pages(&pagelist);
1220 		}
1221 
1222 		if (nr_failed && (flags & MPOL_MF_STRICT))
1223 			err = -EIO;
1224 	} else
1225 		putback_movable_pages(&pagelist);
1226 
1227 	up_write(&mm->mmap_sem);
1228  mpol_out:
1229 	mpol_put(new);
1230 	return err;
1231 }
1232 
1233 /*
1234  * User space interface with variable sized bitmaps for nodelists.
1235  */
1236 
1237 /* Copy a node mask from user space. */
get_nodes(nodemask_t * nodes,const unsigned long __user * nmask,unsigned long maxnode)1238 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1239 		     unsigned long maxnode)
1240 {
1241 	unsigned long k;
1242 	unsigned long t;
1243 	unsigned long nlongs;
1244 	unsigned long endmask;
1245 
1246 	--maxnode;
1247 	nodes_clear(*nodes);
1248 	if (maxnode == 0 || !nmask)
1249 		return 0;
1250 	if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1251 		return -EINVAL;
1252 
1253 	nlongs = BITS_TO_LONGS(maxnode);
1254 	if ((maxnode % BITS_PER_LONG) == 0)
1255 		endmask = ~0UL;
1256 	else
1257 		endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1258 
1259 	/*
1260 	 * When the user specified more nodes than supported just check
1261 	 * if the non supported part is all zero.
1262 	 *
1263 	 * If maxnode have more longs than MAX_NUMNODES, check
1264 	 * the bits in that area first. And then go through to
1265 	 * check the rest bits which equal or bigger than MAX_NUMNODES.
1266 	 * Otherwise, just check bits [MAX_NUMNODES, maxnode).
1267 	 */
1268 	if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1269 		for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1270 			if (get_user(t, nmask + k))
1271 				return -EFAULT;
1272 			if (k == nlongs - 1) {
1273 				if (t & endmask)
1274 					return -EINVAL;
1275 			} else if (t)
1276 				return -EINVAL;
1277 		}
1278 		nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1279 		endmask = ~0UL;
1280 	}
1281 
1282 	if (maxnode > MAX_NUMNODES && MAX_NUMNODES % BITS_PER_LONG != 0) {
1283 		unsigned long valid_mask = endmask;
1284 
1285 		valid_mask &= ~((1UL << (MAX_NUMNODES % BITS_PER_LONG)) - 1);
1286 		if (get_user(t, nmask + nlongs - 1))
1287 			return -EFAULT;
1288 		if (t & valid_mask)
1289 			return -EINVAL;
1290 	}
1291 
1292 	if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1293 		return -EFAULT;
1294 	nodes_addr(*nodes)[nlongs-1] &= endmask;
1295 	return 0;
1296 }
1297 
1298 /* Copy a kernel node mask to user space */
copy_nodes_to_user(unsigned long __user * mask,unsigned long maxnode,nodemask_t * nodes)1299 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1300 			      nodemask_t *nodes)
1301 {
1302 	unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1303 	const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1304 
1305 	if (copy > nbytes) {
1306 		if (copy > PAGE_SIZE)
1307 			return -EINVAL;
1308 		if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1309 			return -EFAULT;
1310 		copy = nbytes;
1311 	}
1312 	return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1313 }
1314 
kernel_mbind(unsigned long start,unsigned long len,unsigned long mode,const unsigned long __user * nmask,unsigned long maxnode,unsigned int flags)1315 static long kernel_mbind(unsigned long start, unsigned long len,
1316 			 unsigned long mode, const unsigned long __user *nmask,
1317 			 unsigned long maxnode, unsigned int flags)
1318 {
1319 	nodemask_t nodes;
1320 	int err;
1321 	unsigned short mode_flags;
1322 
1323 	mode_flags = mode & MPOL_MODE_FLAGS;
1324 	mode &= ~MPOL_MODE_FLAGS;
1325 	if (mode >= MPOL_MAX)
1326 		return -EINVAL;
1327 	if ((mode_flags & MPOL_F_STATIC_NODES) &&
1328 	    (mode_flags & MPOL_F_RELATIVE_NODES))
1329 		return -EINVAL;
1330 	err = get_nodes(&nodes, nmask, maxnode);
1331 	if (err)
1332 		return err;
1333 	return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1334 }
1335 
SYSCALL_DEFINE6(mbind,unsigned long,start,unsigned long,len,unsigned long,mode,const unsigned long __user *,nmask,unsigned long,maxnode,unsigned int,flags)1336 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1337 		unsigned long, mode, const unsigned long __user *, nmask,
1338 		unsigned long, maxnode, unsigned int, flags)
1339 {
1340 	return kernel_mbind(start, len, mode, nmask, maxnode, flags);
1341 }
1342 
1343 /* Set the process memory policy */
kernel_set_mempolicy(int mode,const unsigned long __user * nmask,unsigned long maxnode)1344 static long kernel_set_mempolicy(int mode, const unsigned long __user *nmask,
1345 				 unsigned long maxnode)
1346 {
1347 	int err;
1348 	nodemask_t nodes;
1349 	unsigned short flags;
1350 
1351 	flags = mode & MPOL_MODE_FLAGS;
1352 	mode &= ~MPOL_MODE_FLAGS;
1353 	if ((unsigned int)mode >= MPOL_MAX)
1354 		return -EINVAL;
1355 	if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1356 		return -EINVAL;
1357 	err = get_nodes(&nodes, nmask, maxnode);
1358 	if (err)
1359 		return err;
1360 	return do_set_mempolicy(mode, flags, &nodes);
1361 }
1362 
SYSCALL_DEFINE3(set_mempolicy,int,mode,const unsigned long __user *,nmask,unsigned long,maxnode)1363 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1364 		unsigned long, maxnode)
1365 {
1366 	return kernel_set_mempolicy(mode, nmask, maxnode);
1367 }
1368 
kernel_migrate_pages(pid_t pid,unsigned long maxnode,const unsigned long __user * old_nodes,const unsigned long __user * new_nodes)1369 static int kernel_migrate_pages(pid_t pid, unsigned long maxnode,
1370 				const unsigned long __user *old_nodes,
1371 				const unsigned long __user *new_nodes)
1372 {
1373 	struct mm_struct *mm = NULL;
1374 	struct task_struct *task;
1375 	nodemask_t task_nodes;
1376 	int err;
1377 	nodemask_t *old;
1378 	nodemask_t *new;
1379 	NODEMASK_SCRATCH(scratch);
1380 
1381 	if (!scratch)
1382 		return -ENOMEM;
1383 
1384 	old = &scratch->mask1;
1385 	new = &scratch->mask2;
1386 
1387 	err = get_nodes(old, old_nodes, maxnode);
1388 	if (err)
1389 		goto out;
1390 
1391 	err = get_nodes(new, new_nodes, maxnode);
1392 	if (err)
1393 		goto out;
1394 
1395 	/* Find the mm_struct */
1396 	rcu_read_lock();
1397 	task = pid ? find_task_by_vpid(pid) : current;
1398 	if (!task) {
1399 		rcu_read_unlock();
1400 		err = -ESRCH;
1401 		goto out;
1402 	}
1403 	get_task_struct(task);
1404 
1405 	err = -EINVAL;
1406 
1407 	/*
1408 	 * Check if this process has the right to modify the specified process.
1409 	 * Use the regular "ptrace_may_access()" checks.
1410 	 */
1411 	if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1412 		rcu_read_unlock();
1413 		err = -EPERM;
1414 		goto out_put;
1415 	}
1416 	rcu_read_unlock();
1417 
1418 	task_nodes = cpuset_mems_allowed(task);
1419 	/* Is the user allowed to access the target nodes? */
1420 	if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1421 		err = -EPERM;
1422 		goto out_put;
1423 	}
1424 
1425 	task_nodes = cpuset_mems_allowed(current);
1426 	nodes_and(*new, *new, task_nodes);
1427 	if (nodes_empty(*new))
1428 		goto out_put;
1429 
1430 	nodes_and(*new, *new, node_states[N_MEMORY]);
1431 	if (nodes_empty(*new))
1432 		goto out_put;
1433 
1434 	err = security_task_movememory(task);
1435 	if (err)
1436 		goto out_put;
1437 
1438 	mm = get_task_mm(task);
1439 	put_task_struct(task);
1440 
1441 	if (!mm) {
1442 		err = -EINVAL;
1443 		goto out;
1444 	}
1445 
1446 	err = do_migrate_pages(mm, old, new,
1447 		capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1448 
1449 	mmput(mm);
1450 out:
1451 	NODEMASK_SCRATCH_FREE(scratch);
1452 
1453 	return err;
1454 
1455 out_put:
1456 	put_task_struct(task);
1457 	goto out;
1458 
1459 }
1460 
SYSCALL_DEFINE4(migrate_pages,pid_t,pid,unsigned long,maxnode,const unsigned long __user *,old_nodes,const unsigned long __user *,new_nodes)1461 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1462 		const unsigned long __user *, old_nodes,
1463 		const unsigned long __user *, new_nodes)
1464 {
1465 	return kernel_migrate_pages(pid, maxnode, old_nodes, new_nodes);
1466 }
1467 
1468 
1469 /* Retrieve NUMA policy */
kernel_get_mempolicy(int __user * policy,unsigned long __user * nmask,unsigned long maxnode,unsigned long addr,unsigned long flags)1470 static int kernel_get_mempolicy(int __user *policy,
1471 				unsigned long __user *nmask,
1472 				unsigned long maxnode,
1473 				unsigned long addr,
1474 				unsigned long flags)
1475 {
1476 	int err;
1477 	int uninitialized_var(pval);
1478 	nodemask_t nodes;
1479 
1480 	if (nmask != NULL && maxnode < MAX_NUMNODES)
1481 		return -EINVAL;
1482 
1483 	err = do_get_mempolicy(&pval, &nodes, addr, flags);
1484 
1485 	if (err)
1486 		return err;
1487 
1488 	if (policy && put_user(pval, policy))
1489 		return -EFAULT;
1490 
1491 	if (nmask)
1492 		err = copy_nodes_to_user(nmask, maxnode, &nodes);
1493 
1494 	return err;
1495 }
1496 
SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,unsigned long __user *,nmask,unsigned long,maxnode,unsigned long,addr,unsigned long,flags)1497 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1498 		unsigned long __user *, nmask, unsigned long, maxnode,
1499 		unsigned long, addr, unsigned long, flags)
1500 {
1501 	return kernel_get_mempolicy(policy, nmask, maxnode, addr, flags);
1502 }
1503 
1504 #ifdef CONFIG_COMPAT
1505 
COMPAT_SYSCALL_DEFINE5(get_mempolicy,int __user *,policy,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,addr,compat_ulong_t,flags)1506 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1507 		       compat_ulong_t __user *, nmask,
1508 		       compat_ulong_t, maxnode,
1509 		       compat_ulong_t, addr, compat_ulong_t, flags)
1510 {
1511 	long err;
1512 	unsigned long __user *nm = NULL;
1513 	unsigned long nr_bits, alloc_size;
1514 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1515 
1516 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1517 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1518 
1519 	if (nmask)
1520 		nm = compat_alloc_user_space(alloc_size);
1521 
1522 	err = kernel_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1523 
1524 	if (!err && nmask) {
1525 		unsigned long copy_size;
1526 		copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1527 		err = copy_from_user(bm, nm, copy_size);
1528 		/* ensure entire bitmap is zeroed */
1529 		err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1530 		err |= compat_put_bitmap(nmask, bm, nr_bits);
1531 	}
1532 
1533 	return err;
1534 }
1535 
COMPAT_SYSCALL_DEFINE3(set_mempolicy,int,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode)1536 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1537 		       compat_ulong_t, maxnode)
1538 {
1539 	unsigned long __user *nm = NULL;
1540 	unsigned long nr_bits, alloc_size;
1541 	DECLARE_BITMAP(bm, MAX_NUMNODES);
1542 
1543 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1544 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1545 
1546 	if (nmask) {
1547 		if (compat_get_bitmap(bm, nmask, nr_bits))
1548 			return -EFAULT;
1549 		nm = compat_alloc_user_space(alloc_size);
1550 		if (copy_to_user(nm, bm, alloc_size))
1551 			return -EFAULT;
1552 	}
1553 
1554 	return kernel_set_mempolicy(mode, nm, nr_bits+1);
1555 }
1556 
COMPAT_SYSCALL_DEFINE6(mbind,compat_ulong_t,start,compat_ulong_t,len,compat_ulong_t,mode,compat_ulong_t __user *,nmask,compat_ulong_t,maxnode,compat_ulong_t,flags)1557 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1558 		       compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1559 		       compat_ulong_t, maxnode, compat_ulong_t, flags)
1560 {
1561 	unsigned long __user *nm = NULL;
1562 	unsigned long nr_bits, alloc_size;
1563 	nodemask_t bm;
1564 
1565 	nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1566 	alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1567 
1568 	if (nmask) {
1569 		if (compat_get_bitmap(nodes_addr(bm), nmask, nr_bits))
1570 			return -EFAULT;
1571 		nm = compat_alloc_user_space(alloc_size);
1572 		if (copy_to_user(nm, nodes_addr(bm), alloc_size))
1573 			return -EFAULT;
1574 	}
1575 
1576 	return kernel_mbind(start, len, mode, nm, nr_bits+1, flags);
1577 }
1578 
COMPAT_SYSCALL_DEFINE4(migrate_pages,compat_pid_t,pid,compat_ulong_t,maxnode,const compat_ulong_t __user *,old_nodes,const compat_ulong_t __user *,new_nodes)1579 COMPAT_SYSCALL_DEFINE4(migrate_pages, compat_pid_t, pid,
1580 		       compat_ulong_t, maxnode,
1581 		       const compat_ulong_t __user *, old_nodes,
1582 		       const compat_ulong_t __user *, new_nodes)
1583 {
1584 	unsigned long __user *old = NULL;
1585 	unsigned long __user *new = NULL;
1586 	nodemask_t tmp_mask;
1587 	unsigned long nr_bits;
1588 	unsigned long size;
1589 
1590 	nr_bits = min_t(unsigned long, maxnode - 1, MAX_NUMNODES);
1591 	size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1592 	if (old_nodes) {
1593 		if (compat_get_bitmap(nodes_addr(tmp_mask), old_nodes, nr_bits))
1594 			return -EFAULT;
1595 		old = compat_alloc_user_space(new_nodes ? size * 2 : size);
1596 		if (new_nodes)
1597 			new = old + size / sizeof(unsigned long);
1598 		if (copy_to_user(old, nodes_addr(tmp_mask), size))
1599 			return -EFAULT;
1600 	}
1601 	if (new_nodes) {
1602 		if (compat_get_bitmap(nodes_addr(tmp_mask), new_nodes, nr_bits))
1603 			return -EFAULT;
1604 		if (new == NULL)
1605 			new = compat_alloc_user_space(size);
1606 		if (copy_to_user(new, nodes_addr(tmp_mask), size))
1607 			return -EFAULT;
1608 	}
1609 	return kernel_migrate_pages(pid, nr_bits + 1, old, new);
1610 }
1611 
1612 #endif /* CONFIG_COMPAT */
1613 
__get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1614 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1615 						unsigned long addr)
1616 {
1617 	struct mempolicy *pol = NULL;
1618 
1619 	if (vma) {
1620 		if (vma->vm_ops && vma->vm_ops->get_policy) {
1621 			pol = vma->vm_ops->get_policy(vma, addr);
1622 		} else if (vma->vm_policy) {
1623 			pol = vma->vm_policy;
1624 
1625 			/*
1626 			 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1627 			 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1628 			 * count on these policies which will be dropped by
1629 			 * mpol_cond_put() later
1630 			 */
1631 			if (mpol_needs_cond_ref(pol))
1632 				mpol_get(pol);
1633 		}
1634 	}
1635 
1636 	return pol;
1637 }
1638 
1639 /*
1640  * get_vma_policy(@vma, @addr)
1641  * @vma: virtual memory area whose policy is sought
1642  * @addr: address in @vma for shared policy lookup
1643  *
1644  * Returns effective policy for a VMA at specified address.
1645  * Falls back to current->mempolicy or system default policy, as necessary.
1646  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1647  * count--added by the get_policy() vm_op, as appropriate--to protect against
1648  * freeing by another task.  It is the caller's responsibility to free the
1649  * extra reference for shared policies.
1650  */
get_vma_policy(struct vm_area_struct * vma,unsigned long addr)1651 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1652 						unsigned long addr)
1653 {
1654 	struct mempolicy *pol = __get_vma_policy(vma, addr);
1655 
1656 	if (!pol)
1657 		pol = get_task_policy(current);
1658 
1659 	return pol;
1660 }
1661 
vma_policy_mof(struct vm_area_struct * vma)1662 bool vma_policy_mof(struct vm_area_struct *vma)
1663 {
1664 	struct mempolicy *pol;
1665 
1666 	if (vma->vm_ops && vma->vm_ops->get_policy) {
1667 		bool ret = false;
1668 
1669 		pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1670 		if (pol && (pol->flags & MPOL_F_MOF))
1671 			ret = true;
1672 		mpol_cond_put(pol);
1673 
1674 		return ret;
1675 	}
1676 
1677 	pol = vma->vm_policy;
1678 	if (!pol)
1679 		pol = get_task_policy(current);
1680 
1681 	return pol->flags & MPOL_F_MOF;
1682 }
1683 
apply_policy_zone(struct mempolicy * policy,enum zone_type zone)1684 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1685 {
1686 	enum zone_type dynamic_policy_zone = policy_zone;
1687 
1688 	BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1689 
1690 	/*
1691 	 * if policy->v.nodes has movable memory only,
1692 	 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1693 	 *
1694 	 * policy->v.nodes is intersect with node_states[N_MEMORY].
1695 	 * so if the following test faile, it implies
1696 	 * policy->v.nodes has movable memory only.
1697 	 */
1698 	if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1699 		dynamic_policy_zone = ZONE_MOVABLE;
1700 
1701 	return zone >= dynamic_policy_zone;
1702 }
1703 
1704 /*
1705  * Return a nodemask representing a mempolicy for filtering nodes for
1706  * page allocation
1707  */
policy_nodemask(gfp_t gfp,struct mempolicy * policy)1708 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1709 {
1710 	/* Lower zones don't get a nodemask applied for MPOL_BIND */
1711 	if (unlikely(policy->mode == MPOL_BIND) &&
1712 			apply_policy_zone(policy, gfp_zone(gfp)) &&
1713 			cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1714 		return &policy->v.nodes;
1715 
1716 	return NULL;
1717 }
1718 
1719 /* Return the node id preferred by the given mempolicy, or the given id */
policy_node(gfp_t gfp,struct mempolicy * policy,int nd)1720 static int policy_node(gfp_t gfp, struct mempolicy *policy,
1721 								int nd)
1722 {
1723 	if (policy->mode == MPOL_PREFERRED && !(policy->flags & MPOL_F_LOCAL))
1724 		nd = policy->v.preferred_node;
1725 	else {
1726 		/*
1727 		 * __GFP_THISNODE shouldn't even be used with the bind policy
1728 		 * because we might easily break the expectation to stay on the
1729 		 * requested node and not break the policy.
1730 		 */
1731 		WARN_ON_ONCE(policy->mode == MPOL_BIND && (gfp & __GFP_THISNODE));
1732 	}
1733 
1734 	return nd;
1735 }
1736 
1737 /* Do dynamic interleaving for a process */
interleave_nodes(struct mempolicy * policy)1738 static unsigned interleave_nodes(struct mempolicy *policy)
1739 {
1740 	unsigned next;
1741 	struct task_struct *me = current;
1742 
1743 	next = next_node_in(me->il_prev, policy->v.nodes);
1744 	if (next < MAX_NUMNODES)
1745 		me->il_prev = next;
1746 	return next;
1747 }
1748 
1749 /*
1750  * Depending on the memory policy provide a node from which to allocate the
1751  * next slab entry.
1752  */
mempolicy_slab_node(void)1753 unsigned int mempolicy_slab_node(void)
1754 {
1755 	struct mempolicy *policy;
1756 	int node = numa_mem_id();
1757 
1758 	if (in_interrupt())
1759 		return node;
1760 
1761 	policy = current->mempolicy;
1762 	if (!policy || policy->flags & MPOL_F_LOCAL)
1763 		return node;
1764 
1765 	switch (policy->mode) {
1766 	case MPOL_PREFERRED:
1767 		/*
1768 		 * handled MPOL_F_LOCAL above
1769 		 */
1770 		return policy->v.preferred_node;
1771 
1772 	case MPOL_INTERLEAVE:
1773 		return interleave_nodes(policy);
1774 
1775 	case MPOL_BIND: {
1776 		struct zoneref *z;
1777 
1778 		/*
1779 		 * Follow bind policy behavior and start allocation at the
1780 		 * first node.
1781 		 */
1782 		struct zonelist *zonelist;
1783 		enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1784 		zonelist = &NODE_DATA(node)->node_zonelists[ZONELIST_FALLBACK];
1785 		z = first_zones_zonelist(zonelist, highest_zoneidx,
1786 							&policy->v.nodes);
1787 		return z->zone ? zone_to_nid(z->zone) : node;
1788 	}
1789 
1790 	default:
1791 		BUG();
1792 	}
1793 }
1794 
1795 /*
1796  * Do static interleaving for a VMA with known offset @n.  Returns the n'th
1797  * node in pol->v.nodes (starting from n=0), wrapping around if n exceeds the
1798  * number of present nodes.
1799  */
offset_il_node(struct mempolicy * pol,unsigned long n)1800 static unsigned offset_il_node(struct mempolicy *pol, unsigned long n)
1801 {
1802 	unsigned nnodes = nodes_weight(pol->v.nodes);
1803 	unsigned target;
1804 	int i;
1805 	int nid;
1806 
1807 	if (!nnodes)
1808 		return numa_node_id();
1809 	target = (unsigned int)n % nnodes;
1810 	nid = first_node(pol->v.nodes);
1811 	for (i = 0; i < target; i++)
1812 		nid = next_node(nid, pol->v.nodes);
1813 	return nid;
1814 }
1815 
1816 /* Determine a node number for interleave */
interleave_nid(struct mempolicy * pol,struct vm_area_struct * vma,unsigned long addr,int shift)1817 static inline unsigned interleave_nid(struct mempolicy *pol,
1818 		 struct vm_area_struct *vma, unsigned long addr, int shift)
1819 {
1820 	if (vma) {
1821 		unsigned long off;
1822 
1823 		/*
1824 		 * for small pages, there is no difference between
1825 		 * shift and PAGE_SHIFT, so the bit-shift is safe.
1826 		 * for huge pages, since vm_pgoff is in units of small
1827 		 * pages, we need to shift off the always 0 bits to get
1828 		 * a useful offset.
1829 		 */
1830 		BUG_ON(shift < PAGE_SHIFT);
1831 		off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1832 		off += (addr - vma->vm_start) >> shift;
1833 		return offset_il_node(pol, off);
1834 	} else
1835 		return interleave_nodes(pol);
1836 }
1837 
1838 #ifdef CONFIG_HUGETLBFS
1839 /*
1840  * huge_node(@vma, @addr, @gfp_flags, @mpol)
1841  * @vma: virtual memory area whose policy is sought
1842  * @addr: address in @vma for shared policy lookup and interleave policy
1843  * @gfp_flags: for requested zone
1844  * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1845  * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1846  *
1847  * Returns a nid suitable for a huge page allocation and a pointer
1848  * to the struct mempolicy for conditional unref after allocation.
1849  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1850  * @nodemask for filtering the zonelist.
1851  *
1852  * Must be protected by read_mems_allowed_begin()
1853  */
huge_node(struct vm_area_struct * vma,unsigned long addr,gfp_t gfp_flags,struct mempolicy ** mpol,nodemask_t ** nodemask)1854 int huge_node(struct vm_area_struct *vma, unsigned long addr, gfp_t gfp_flags,
1855 				struct mempolicy **mpol, nodemask_t **nodemask)
1856 {
1857 	int nid;
1858 
1859 	*mpol = get_vma_policy(vma, addr);
1860 	*nodemask = NULL;	/* assume !MPOL_BIND */
1861 
1862 	if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1863 		nid = interleave_nid(*mpol, vma, addr,
1864 					huge_page_shift(hstate_vma(vma)));
1865 	} else {
1866 		nid = policy_node(gfp_flags, *mpol, numa_node_id());
1867 		if ((*mpol)->mode == MPOL_BIND)
1868 			*nodemask = &(*mpol)->v.nodes;
1869 	}
1870 	return nid;
1871 }
1872 
1873 /*
1874  * init_nodemask_of_mempolicy
1875  *
1876  * If the current task's mempolicy is "default" [NULL], return 'false'
1877  * to indicate default policy.  Otherwise, extract the policy nodemask
1878  * for 'bind' or 'interleave' policy into the argument nodemask, or
1879  * initialize the argument nodemask to contain the single node for
1880  * 'preferred' or 'local' policy and return 'true' to indicate presence
1881  * of non-default mempolicy.
1882  *
1883  * We don't bother with reference counting the mempolicy [mpol_get/put]
1884  * because the current task is examining it's own mempolicy and a task's
1885  * mempolicy is only ever changed by the task itself.
1886  *
1887  * N.B., it is the caller's responsibility to free a returned nodemask.
1888  */
init_nodemask_of_mempolicy(nodemask_t * mask)1889 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1890 {
1891 	struct mempolicy *mempolicy;
1892 	int nid;
1893 
1894 	if (!(mask && current->mempolicy))
1895 		return false;
1896 
1897 	task_lock(current);
1898 	mempolicy = current->mempolicy;
1899 	switch (mempolicy->mode) {
1900 	case MPOL_PREFERRED:
1901 		if (mempolicy->flags & MPOL_F_LOCAL)
1902 			nid = numa_node_id();
1903 		else
1904 			nid = mempolicy->v.preferred_node;
1905 		init_nodemask_of_node(mask, nid);
1906 		break;
1907 
1908 	case MPOL_BIND:
1909 		/* Fall through */
1910 	case MPOL_INTERLEAVE:
1911 		*mask =  mempolicy->v.nodes;
1912 		break;
1913 
1914 	default:
1915 		BUG();
1916 	}
1917 	task_unlock(current);
1918 
1919 	return true;
1920 }
1921 #endif
1922 
1923 /*
1924  * mempolicy_nodemask_intersects
1925  *
1926  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1927  * policy.  Otherwise, check for intersection between mask and the policy
1928  * nodemask for 'bind' or 'interleave' policy.  For 'perferred' or 'local'
1929  * policy, always return true since it may allocate elsewhere on fallback.
1930  *
1931  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1932  */
mempolicy_nodemask_intersects(struct task_struct * tsk,const nodemask_t * mask)1933 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1934 					const nodemask_t *mask)
1935 {
1936 	struct mempolicy *mempolicy;
1937 	bool ret = true;
1938 
1939 	if (!mask)
1940 		return ret;
1941 	task_lock(tsk);
1942 	mempolicy = tsk->mempolicy;
1943 	if (!mempolicy)
1944 		goto out;
1945 
1946 	switch (mempolicy->mode) {
1947 	case MPOL_PREFERRED:
1948 		/*
1949 		 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1950 		 * allocate from, they may fallback to other nodes when oom.
1951 		 * Thus, it's possible for tsk to have allocated memory from
1952 		 * nodes in mask.
1953 		 */
1954 		break;
1955 	case MPOL_BIND:
1956 	case MPOL_INTERLEAVE:
1957 		ret = nodes_intersects(mempolicy->v.nodes, *mask);
1958 		break;
1959 	default:
1960 		BUG();
1961 	}
1962 out:
1963 	task_unlock(tsk);
1964 	return ret;
1965 }
1966 
1967 /* Allocate a page in interleaved policy.
1968    Own path because it needs to do special accounting. */
alloc_page_interleave(gfp_t gfp,unsigned order,unsigned nid)1969 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1970 					unsigned nid)
1971 {
1972 	struct page *page;
1973 
1974 	page = __alloc_pages(gfp, order, nid);
1975 	/* skip NUMA_INTERLEAVE_HIT counter update if numa stats is disabled */
1976 	if (!static_branch_likely(&vm_numa_stat_key))
1977 		return page;
1978 	if (page && page_to_nid(page) == nid) {
1979 		preempt_disable();
1980 		__inc_numa_state(page_zone(page), NUMA_INTERLEAVE_HIT);
1981 		preempt_enable();
1982 	}
1983 	return page;
1984 }
1985 
1986 /**
1987  * 	alloc_pages_vma	- Allocate a page for a VMA.
1988  *
1989  * 	@gfp:
1990  *      %GFP_USER    user allocation.
1991  *      %GFP_KERNEL  kernel allocations,
1992  *      %GFP_HIGHMEM highmem/user allocations,
1993  *      %GFP_FS      allocation should not call back into a file system.
1994  *      %GFP_ATOMIC  don't sleep.
1995  *
1996  *	@order:Order of the GFP allocation.
1997  * 	@vma:  Pointer to VMA or NULL if not available.
1998  *	@addr: Virtual Address of the allocation. Must be inside the VMA.
1999  *	@node: Which node to prefer for allocation (modulo policy).
2000  *	@hugepage: for hugepages try only the preferred node if possible
2001  *
2002  * 	This function allocates a page from the kernel page pool and applies
2003  *	a NUMA policy associated with the VMA or the current process.
2004  *	When VMA is not NULL caller must hold down_read on the mmap_sem of the
2005  *	mm_struct of the VMA to prevent it from going away. Should be used for
2006  *	all allocations for pages that will be mapped into user space. Returns
2007  *	NULL when no page can be allocated.
2008  */
2009 struct page *
alloc_pages_vma(gfp_t gfp,int order,struct vm_area_struct * vma,unsigned long addr,int node,bool hugepage)2010 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2011 		unsigned long addr, int node, bool hugepage)
2012 {
2013 	struct mempolicy *pol;
2014 	struct page *page;
2015 	int preferred_nid;
2016 	nodemask_t *nmask;
2017 
2018 	pol = get_vma_policy(vma, addr);
2019 
2020 	if (pol->mode == MPOL_INTERLEAVE) {
2021 		unsigned nid;
2022 
2023 		nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2024 		mpol_cond_put(pol);
2025 		page = alloc_page_interleave(gfp, order, nid);
2026 		goto out;
2027 	}
2028 
2029 	if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && hugepage)) {
2030 		int hpage_node = node;
2031 
2032 		/*
2033 		 * For hugepage allocation and non-interleave policy which
2034 		 * allows the current node (or other explicitly preferred
2035 		 * node) we only try to allocate from the current/preferred
2036 		 * node and don't fall back to other nodes, as the cost of
2037 		 * remote accesses would likely offset THP benefits.
2038 		 *
2039 		 * If the policy is interleave, or does not allow the current
2040 		 * node in its nodemask, we allocate the standard way.
2041 		 */
2042 		if (pol->mode == MPOL_PREFERRED &&
2043 						!(pol->flags & MPOL_F_LOCAL))
2044 			hpage_node = pol->v.preferred_node;
2045 
2046 		nmask = policy_nodemask(gfp, pol);
2047 		if (!nmask || node_isset(hpage_node, *nmask)) {
2048 			mpol_cond_put(pol);
2049 			page = __alloc_pages_node(hpage_node,
2050 						gfp | __GFP_THISNODE, order);
2051 			goto out;
2052 		}
2053 	}
2054 
2055 	nmask = policy_nodemask(gfp, pol);
2056 	preferred_nid = policy_node(gfp, pol, node);
2057 	page = __alloc_pages_nodemask(gfp, order, preferred_nid, nmask);
2058 	mpol_cond_put(pol);
2059 out:
2060 	return page;
2061 }
2062 
2063 /**
2064  * 	alloc_pages_current - Allocate pages.
2065  *
2066  *	@gfp:
2067  *		%GFP_USER   user allocation,
2068  *      	%GFP_KERNEL kernel allocation,
2069  *      	%GFP_HIGHMEM highmem allocation,
2070  *      	%GFP_FS     don't call back into a file system.
2071  *      	%GFP_ATOMIC don't sleep.
2072  *	@order: Power of two of allocation size in pages. 0 is a single page.
2073  *
2074  *	Allocate a page from the kernel page pool.  When not in
2075  *	interrupt context and apply the current process NUMA policy.
2076  *	Returns NULL when no page can be allocated.
2077  */
alloc_pages_current(gfp_t gfp,unsigned order)2078 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2079 {
2080 	struct mempolicy *pol = &default_policy;
2081 	struct page *page;
2082 
2083 	if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2084 		pol = get_task_policy(current);
2085 
2086 	/*
2087 	 * No reference counting needed for current->mempolicy
2088 	 * nor system default_policy
2089 	 */
2090 	if (pol->mode == MPOL_INTERLEAVE)
2091 		page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2092 	else
2093 		page = __alloc_pages_nodemask(gfp, order,
2094 				policy_node(gfp, pol, numa_node_id()),
2095 				policy_nodemask(gfp, pol));
2096 
2097 	return page;
2098 }
2099 EXPORT_SYMBOL(alloc_pages_current);
2100 
vma_dup_policy(struct vm_area_struct * src,struct vm_area_struct * dst)2101 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2102 {
2103 	struct mempolicy *pol = mpol_dup(vma_policy(src));
2104 
2105 	if (IS_ERR(pol))
2106 		return PTR_ERR(pol);
2107 	dst->vm_policy = pol;
2108 	return 0;
2109 }
2110 
2111 /*
2112  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2113  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2114  * with the mems_allowed returned by cpuset_mems_allowed().  This
2115  * keeps mempolicies cpuset relative after its cpuset moves.  See
2116  * further kernel/cpuset.c update_nodemask().
2117  *
2118  * current's mempolicy may be rebinded by the other task(the task that changes
2119  * cpuset's mems), so we needn't do rebind work for current task.
2120  */
2121 
2122 /* Slow path of a mempolicy duplicate */
__mpol_dup(struct mempolicy * old)2123 struct mempolicy *__mpol_dup(struct mempolicy *old)
2124 {
2125 	struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2126 
2127 	if (!new)
2128 		return ERR_PTR(-ENOMEM);
2129 
2130 	/* task's mempolicy is protected by alloc_lock */
2131 	if (old == current->mempolicy) {
2132 		task_lock(current);
2133 		*new = *old;
2134 		task_unlock(current);
2135 	} else
2136 		*new = *old;
2137 
2138 	if (current_cpuset_is_being_rebound()) {
2139 		nodemask_t mems = cpuset_mems_allowed(current);
2140 		mpol_rebind_policy(new, &mems);
2141 	}
2142 	atomic_set(&new->refcnt, 1);
2143 	return new;
2144 }
2145 
2146 /* Slow path of a mempolicy comparison */
__mpol_equal(struct mempolicy * a,struct mempolicy * b)2147 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2148 {
2149 	if (!a || !b)
2150 		return false;
2151 	if (a->mode != b->mode)
2152 		return false;
2153 	if (a->flags != b->flags)
2154 		return false;
2155 	if (mpol_store_user_nodemask(a))
2156 		if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2157 			return false;
2158 
2159 	switch (a->mode) {
2160 	case MPOL_BIND:
2161 		/* Fall through */
2162 	case MPOL_INTERLEAVE:
2163 		return !!nodes_equal(a->v.nodes, b->v.nodes);
2164 	case MPOL_PREFERRED:
2165 		/* a's ->flags is the same as b's */
2166 		if (a->flags & MPOL_F_LOCAL)
2167 			return true;
2168 		return a->v.preferred_node == b->v.preferred_node;
2169 	default:
2170 		BUG();
2171 		return false;
2172 	}
2173 }
2174 
2175 /*
2176  * Shared memory backing store policy support.
2177  *
2178  * Remember policies even when nobody has shared memory mapped.
2179  * The policies are kept in Red-Black tree linked from the inode.
2180  * They are protected by the sp->lock rwlock, which should be held
2181  * for any accesses to the tree.
2182  */
2183 
2184 /*
2185  * lookup first element intersecting start-end.  Caller holds sp->lock for
2186  * reading or for writing
2187  */
2188 static struct sp_node *
sp_lookup(struct shared_policy * sp,unsigned long start,unsigned long end)2189 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2190 {
2191 	struct rb_node *n = sp->root.rb_node;
2192 
2193 	while (n) {
2194 		struct sp_node *p = rb_entry(n, struct sp_node, nd);
2195 
2196 		if (start >= p->end)
2197 			n = n->rb_right;
2198 		else if (end <= p->start)
2199 			n = n->rb_left;
2200 		else
2201 			break;
2202 	}
2203 	if (!n)
2204 		return NULL;
2205 	for (;;) {
2206 		struct sp_node *w = NULL;
2207 		struct rb_node *prev = rb_prev(n);
2208 		if (!prev)
2209 			break;
2210 		w = rb_entry(prev, struct sp_node, nd);
2211 		if (w->end <= start)
2212 			break;
2213 		n = prev;
2214 	}
2215 	return rb_entry(n, struct sp_node, nd);
2216 }
2217 
2218 /*
2219  * Insert a new shared policy into the list.  Caller holds sp->lock for
2220  * writing.
2221  */
sp_insert(struct shared_policy * sp,struct sp_node * new)2222 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2223 {
2224 	struct rb_node **p = &sp->root.rb_node;
2225 	struct rb_node *parent = NULL;
2226 	struct sp_node *nd;
2227 
2228 	while (*p) {
2229 		parent = *p;
2230 		nd = rb_entry(parent, struct sp_node, nd);
2231 		if (new->start < nd->start)
2232 			p = &(*p)->rb_left;
2233 		else if (new->end > nd->end)
2234 			p = &(*p)->rb_right;
2235 		else
2236 			BUG();
2237 	}
2238 	rb_link_node(&new->nd, parent, p);
2239 	rb_insert_color(&new->nd, &sp->root);
2240 	pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2241 		 new->policy ? new->policy->mode : 0);
2242 }
2243 
2244 /* Find shared policy intersecting idx */
2245 struct mempolicy *
mpol_shared_policy_lookup(struct shared_policy * sp,unsigned long idx)2246 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2247 {
2248 	struct mempolicy *pol = NULL;
2249 	struct sp_node *sn;
2250 
2251 	if (!sp->root.rb_node)
2252 		return NULL;
2253 	read_lock(&sp->lock);
2254 	sn = sp_lookup(sp, idx, idx+1);
2255 	if (sn) {
2256 		mpol_get(sn->policy);
2257 		pol = sn->policy;
2258 	}
2259 	read_unlock(&sp->lock);
2260 	return pol;
2261 }
2262 
sp_free(struct sp_node * n)2263 static void sp_free(struct sp_node *n)
2264 {
2265 	mpol_put(n->policy);
2266 	kmem_cache_free(sn_cache, n);
2267 }
2268 
2269 /**
2270  * mpol_misplaced - check whether current page node is valid in policy
2271  *
2272  * @page: page to be checked
2273  * @vma: vm area where page mapped
2274  * @addr: virtual address where page mapped
2275  *
2276  * Lookup current policy node id for vma,addr and "compare to" page's
2277  * node id.
2278  *
2279  * Returns:
2280  *	-1	- not misplaced, page is in the right node
2281  *	node	- node id where the page should be
2282  *
2283  * Policy determination "mimics" alloc_page_vma().
2284  * Called from fault path where we know the vma and faulting address.
2285  */
mpol_misplaced(struct page * page,struct vm_area_struct * vma,unsigned long addr)2286 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2287 {
2288 	struct mempolicy *pol;
2289 	struct zoneref *z;
2290 	int curnid = page_to_nid(page);
2291 	unsigned long pgoff;
2292 	int thiscpu = raw_smp_processor_id();
2293 	int thisnid = cpu_to_node(thiscpu);
2294 	int polnid = -1;
2295 	int ret = -1;
2296 
2297 	pol = get_vma_policy(vma, addr);
2298 	if (!(pol->flags & MPOL_F_MOF))
2299 		goto out;
2300 
2301 	switch (pol->mode) {
2302 	case MPOL_INTERLEAVE:
2303 		pgoff = vma->vm_pgoff;
2304 		pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2305 		polnid = offset_il_node(pol, pgoff);
2306 		break;
2307 
2308 	case MPOL_PREFERRED:
2309 		if (pol->flags & MPOL_F_LOCAL)
2310 			polnid = numa_node_id();
2311 		else
2312 			polnid = pol->v.preferred_node;
2313 		break;
2314 
2315 	case MPOL_BIND:
2316 
2317 		/*
2318 		 * allows binding to multiple nodes.
2319 		 * use current page if in policy nodemask,
2320 		 * else select nearest allowed node, if any.
2321 		 * If no allowed nodes, use current [!misplaced].
2322 		 */
2323 		if (node_isset(curnid, pol->v.nodes))
2324 			goto out;
2325 		z = first_zones_zonelist(
2326 				node_zonelist(numa_node_id(), GFP_HIGHUSER),
2327 				gfp_zone(GFP_HIGHUSER),
2328 				&pol->v.nodes);
2329 		polnid = zone_to_nid(z->zone);
2330 		break;
2331 
2332 	default:
2333 		BUG();
2334 	}
2335 
2336 	/* Migrate the page towards the node whose CPU is referencing it */
2337 	if (pol->flags & MPOL_F_MORON) {
2338 		polnid = thisnid;
2339 
2340 		if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2341 			goto out;
2342 	}
2343 
2344 	if (curnid != polnid)
2345 		ret = polnid;
2346 out:
2347 	mpol_cond_put(pol);
2348 
2349 	return ret;
2350 }
2351 
2352 /*
2353  * Drop the (possibly final) reference to task->mempolicy.  It needs to be
2354  * dropped after task->mempolicy is set to NULL so that any allocation done as
2355  * part of its kmem_cache_free(), such as by KASAN, doesn't reference a freed
2356  * policy.
2357  */
mpol_put_task_policy(struct task_struct * task)2358 void mpol_put_task_policy(struct task_struct *task)
2359 {
2360 	struct mempolicy *pol;
2361 
2362 	task_lock(task);
2363 	pol = task->mempolicy;
2364 	task->mempolicy = NULL;
2365 	task_unlock(task);
2366 	mpol_put(pol);
2367 }
2368 
sp_delete(struct shared_policy * sp,struct sp_node * n)2369 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2370 {
2371 	pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2372 	rb_erase(&n->nd, &sp->root);
2373 	sp_free(n);
2374 }
2375 
sp_node_init(struct sp_node * node,unsigned long start,unsigned long end,struct mempolicy * pol)2376 static void sp_node_init(struct sp_node *node, unsigned long start,
2377 			unsigned long end, struct mempolicy *pol)
2378 {
2379 	node->start = start;
2380 	node->end = end;
2381 	node->policy = pol;
2382 }
2383 
sp_alloc(unsigned long start,unsigned long end,struct mempolicy * pol)2384 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2385 				struct mempolicy *pol)
2386 {
2387 	struct sp_node *n;
2388 	struct mempolicy *newpol;
2389 
2390 	n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2391 	if (!n)
2392 		return NULL;
2393 
2394 	newpol = mpol_dup(pol);
2395 	if (IS_ERR(newpol)) {
2396 		kmem_cache_free(sn_cache, n);
2397 		return NULL;
2398 	}
2399 	newpol->flags |= MPOL_F_SHARED;
2400 	sp_node_init(n, start, end, newpol);
2401 
2402 	return n;
2403 }
2404 
2405 /* Replace a policy range. */
shared_policy_replace(struct shared_policy * sp,unsigned long start,unsigned long end,struct sp_node * new)2406 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2407 				 unsigned long end, struct sp_node *new)
2408 {
2409 	struct sp_node *n;
2410 	struct sp_node *n_new = NULL;
2411 	struct mempolicy *mpol_new = NULL;
2412 	int ret = 0;
2413 
2414 restart:
2415 	write_lock(&sp->lock);
2416 	n = sp_lookup(sp, start, end);
2417 	/* Take care of old policies in the same range. */
2418 	while (n && n->start < end) {
2419 		struct rb_node *next = rb_next(&n->nd);
2420 		if (n->start >= start) {
2421 			if (n->end <= end)
2422 				sp_delete(sp, n);
2423 			else
2424 				n->start = end;
2425 		} else {
2426 			/* Old policy spanning whole new range. */
2427 			if (n->end > end) {
2428 				if (!n_new)
2429 					goto alloc_new;
2430 
2431 				*mpol_new = *n->policy;
2432 				atomic_set(&mpol_new->refcnt, 1);
2433 				sp_node_init(n_new, end, n->end, mpol_new);
2434 				n->end = start;
2435 				sp_insert(sp, n_new);
2436 				n_new = NULL;
2437 				mpol_new = NULL;
2438 				break;
2439 			} else
2440 				n->end = start;
2441 		}
2442 		if (!next)
2443 			break;
2444 		n = rb_entry(next, struct sp_node, nd);
2445 	}
2446 	if (new)
2447 		sp_insert(sp, new);
2448 	write_unlock(&sp->lock);
2449 	ret = 0;
2450 
2451 err_out:
2452 	if (mpol_new)
2453 		mpol_put(mpol_new);
2454 	if (n_new)
2455 		kmem_cache_free(sn_cache, n_new);
2456 
2457 	return ret;
2458 
2459 alloc_new:
2460 	write_unlock(&sp->lock);
2461 	ret = -ENOMEM;
2462 	n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2463 	if (!n_new)
2464 		goto err_out;
2465 	mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2466 	if (!mpol_new)
2467 		goto err_out;
2468 	goto restart;
2469 }
2470 
2471 /**
2472  * mpol_shared_policy_init - initialize shared policy for inode
2473  * @sp: pointer to inode shared policy
2474  * @mpol:  struct mempolicy to install
2475  *
2476  * Install non-NULL @mpol in inode's shared policy rb-tree.
2477  * On entry, the current task has a reference on a non-NULL @mpol.
2478  * This must be released on exit.
2479  * This is called at get_inode() calls and we can use GFP_KERNEL.
2480  */
mpol_shared_policy_init(struct shared_policy * sp,struct mempolicy * mpol)2481 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2482 {
2483 	int ret;
2484 
2485 	sp->root = RB_ROOT;		/* empty tree == default mempolicy */
2486 	rwlock_init(&sp->lock);
2487 
2488 	if (mpol) {
2489 		struct vm_area_struct pvma;
2490 		struct mempolicy *new;
2491 		NODEMASK_SCRATCH(scratch);
2492 
2493 		if (!scratch)
2494 			goto put_mpol;
2495 		/* contextualize the tmpfs mount point mempolicy */
2496 		new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2497 		if (IS_ERR(new))
2498 			goto free_scratch; /* no valid nodemask intersection */
2499 
2500 		task_lock(current);
2501 		ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2502 		task_unlock(current);
2503 		if (ret)
2504 			goto put_new;
2505 
2506 		/* Create pseudo-vma that contains just the policy */
2507 		vma_init(&pvma, NULL);
2508 		pvma.vm_end = TASK_SIZE;	/* policy covers entire file */
2509 		mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2510 
2511 put_new:
2512 		mpol_put(new);			/* drop initial ref */
2513 free_scratch:
2514 		NODEMASK_SCRATCH_FREE(scratch);
2515 put_mpol:
2516 		mpol_put(mpol);	/* drop our incoming ref on sb mpol */
2517 	}
2518 }
2519 
mpol_set_shared_policy(struct shared_policy * info,struct vm_area_struct * vma,struct mempolicy * npol)2520 int mpol_set_shared_policy(struct shared_policy *info,
2521 			struct vm_area_struct *vma, struct mempolicy *npol)
2522 {
2523 	int err;
2524 	struct sp_node *new = NULL;
2525 	unsigned long sz = vma_pages(vma);
2526 
2527 	pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2528 		 vma->vm_pgoff,
2529 		 sz, npol ? npol->mode : -1,
2530 		 npol ? npol->flags : -1,
2531 		 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2532 
2533 	if (npol) {
2534 		new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2535 		if (!new)
2536 			return -ENOMEM;
2537 	}
2538 	err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2539 	if (err && new)
2540 		sp_free(new);
2541 	return err;
2542 }
2543 
2544 /* Free a backing policy store on inode delete. */
mpol_free_shared_policy(struct shared_policy * p)2545 void mpol_free_shared_policy(struct shared_policy *p)
2546 {
2547 	struct sp_node *n;
2548 	struct rb_node *next;
2549 
2550 	if (!p->root.rb_node)
2551 		return;
2552 	write_lock(&p->lock);
2553 	next = rb_first(&p->root);
2554 	while (next) {
2555 		n = rb_entry(next, struct sp_node, nd);
2556 		next = rb_next(&n->nd);
2557 		sp_delete(p, n);
2558 	}
2559 	write_unlock(&p->lock);
2560 }
2561 
2562 #ifdef CONFIG_NUMA_BALANCING
2563 static int __initdata numabalancing_override;
2564 
check_numabalancing_enable(void)2565 static void __init check_numabalancing_enable(void)
2566 {
2567 	bool numabalancing_default = false;
2568 
2569 	if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2570 		numabalancing_default = true;
2571 
2572 	/* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2573 	if (numabalancing_override)
2574 		set_numabalancing_state(numabalancing_override == 1);
2575 
2576 	if (num_online_nodes() > 1 && !numabalancing_override) {
2577 		pr_info("%s automatic NUMA balancing. Configure with numa_balancing= or the kernel.numa_balancing sysctl\n",
2578 			numabalancing_default ? "Enabling" : "Disabling");
2579 		set_numabalancing_state(numabalancing_default);
2580 	}
2581 }
2582 
setup_numabalancing(char * str)2583 static int __init setup_numabalancing(char *str)
2584 {
2585 	int ret = 0;
2586 	if (!str)
2587 		goto out;
2588 
2589 	if (!strcmp(str, "enable")) {
2590 		numabalancing_override = 1;
2591 		ret = 1;
2592 	} else if (!strcmp(str, "disable")) {
2593 		numabalancing_override = -1;
2594 		ret = 1;
2595 	}
2596 out:
2597 	if (!ret)
2598 		pr_warn("Unable to parse numa_balancing=\n");
2599 
2600 	return ret;
2601 }
2602 __setup("numa_balancing=", setup_numabalancing);
2603 #else
check_numabalancing_enable(void)2604 static inline void __init check_numabalancing_enable(void)
2605 {
2606 }
2607 #endif /* CONFIG_NUMA_BALANCING */
2608 
2609 /* assumes fs == KERNEL_DS */
numa_policy_init(void)2610 void __init numa_policy_init(void)
2611 {
2612 	nodemask_t interleave_nodes;
2613 	unsigned long largest = 0;
2614 	int nid, prefer = 0;
2615 
2616 	policy_cache = kmem_cache_create("numa_policy",
2617 					 sizeof(struct mempolicy),
2618 					 0, SLAB_PANIC, NULL);
2619 
2620 	sn_cache = kmem_cache_create("shared_policy_node",
2621 				     sizeof(struct sp_node),
2622 				     0, SLAB_PANIC, NULL);
2623 
2624 	for_each_node(nid) {
2625 		preferred_node_policy[nid] = (struct mempolicy) {
2626 			.refcnt = ATOMIC_INIT(1),
2627 			.mode = MPOL_PREFERRED,
2628 			.flags = MPOL_F_MOF | MPOL_F_MORON,
2629 			.v = { .preferred_node = nid, },
2630 		};
2631 	}
2632 
2633 	/*
2634 	 * Set interleaving policy for system init. Interleaving is only
2635 	 * enabled across suitably sized nodes (default is >= 16MB), or
2636 	 * fall back to the largest node if they're all smaller.
2637 	 */
2638 	nodes_clear(interleave_nodes);
2639 	for_each_node_state(nid, N_MEMORY) {
2640 		unsigned long total_pages = node_present_pages(nid);
2641 
2642 		/* Preserve the largest node */
2643 		if (largest < total_pages) {
2644 			largest = total_pages;
2645 			prefer = nid;
2646 		}
2647 
2648 		/* Interleave this node? */
2649 		if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2650 			node_set(nid, interleave_nodes);
2651 	}
2652 
2653 	/* All too small, use the largest */
2654 	if (unlikely(nodes_empty(interleave_nodes)))
2655 		node_set(prefer, interleave_nodes);
2656 
2657 	if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2658 		pr_err("%s: interleaving failed\n", __func__);
2659 
2660 	check_numabalancing_enable();
2661 }
2662 
2663 /* Reset policy of current process to default */
numa_default_policy(void)2664 void numa_default_policy(void)
2665 {
2666 	do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2667 }
2668 
2669 /*
2670  * Parse and format mempolicy from/to strings
2671  */
2672 
2673 /*
2674  * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2675  */
2676 static const char * const policy_modes[] =
2677 {
2678 	[MPOL_DEFAULT]    = "default",
2679 	[MPOL_PREFERRED]  = "prefer",
2680 	[MPOL_BIND]       = "bind",
2681 	[MPOL_INTERLEAVE] = "interleave",
2682 	[MPOL_LOCAL]      = "local",
2683 };
2684 
2685 
2686 #ifdef CONFIG_TMPFS
2687 /**
2688  * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2689  * @str:  string containing mempolicy to parse
2690  * @mpol:  pointer to struct mempolicy pointer, returned on success.
2691  *
2692  * Format of input:
2693  *	<mode>[=<flags>][:<nodelist>]
2694  *
2695  * On success, returns 0, else 1
2696  */
mpol_parse_str(char * str,struct mempolicy ** mpol)2697 int mpol_parse_str(char *str, struct mempolicy **mpol)
2698 {
2699 	struct mempolicy *new = NULL;
2700 	unsigned short mode;
2701 	unsigned short mode_flags;
2702 	nodemask_t nodes;
2703 	char *nodelist = strchr(str, ':');
2704 	char *flags = strchr(str, '=');
2705 	int err = 1;
2706 
2707 	if (nodelist) {
2708 		/* NUL-terminate mode or flags string */
2709 		*nodelist++ = '\0';
2710 		if (nodelist_parse(nodelist, nodes))
2711 			goto out;
2712 		if (!nodes_subset(nodes, node_states[N_MEMORY]))
2713 			goto out;
2714 	} else
2715 		nodes_clear(nodes);
2716 
2717 	if (flags)
2718 		*flags++ = '\0';	/* terminate mode string */
2719 
2720 	for (mode = 0; mode < MPOL_MAX; mode++) {
2721 		if (!strcmp(str, policy_modes[mode])) {
2722 			break;
2723 		}
2724 	}
2725 	if (mode >= MPOL_MAX)
2726 		goto out;
2727 
2728 	switch (mode) {
2729 	case MPOL_PREFERRED:
2730 		/*
2731 		 * Insist on a nodelist of one node only
2732 		 */
2733 		if (nodelist) {
2734 			char *rest = nodelist;
2735 			while (isdigit(*rest))
2736 				rest++;
2737 			if (*rest)
2738 				goto out;
2739 		}
2740 		break;
2741 	case MPOL_INTERLEAVE:
2742 		/*
2743 		 * Default to online nodes with memory if no nodelist
2744 		 */
2745 		if (!nodelist)
2746 			nodes = node_states[N_MEMORY];
2747 		break;
2748 	case MPOL_LOCAL:
2749 		/*
2750 		 * Don't allow a nodelist;  mpol_new() checks flags
2751 		 */
2752 		if (nodelist)
2753 			goto out;
2754 		mode = MPOL_PREFERRED;
2755 		break;
2756 	case MPOL_DEFAULT:
2757 		/*
2758 		 * Insist on a empty nodelist
2759 		 */
2760 		if (!nodelist)
2761 			err = 0;
2762 		goto out;
2763 	case MPOL_BIND:
2764 		/*
2765 		 * Insist on a nodelist
2766 		 */
2767 		if (!nodelist)
2768 			goto out;
2769 	}
2770 
2771 	mode_flags = 0;
2772 	if (flags) {
2773 		/*
2774 		 * Currently, we only support two mutually exclusive
2775 		 * mode flags.
2776 		 */
2777 		if (!strcmp(flags, "static"))
2778 			mode_flags |= MPOL_F_STATIC_NODES;
2779 		else if (!strcmp(flags, "relative"))
2780 			mode_flags |= MPOL_F_RELATIVE_NODES;
2781 		else
2782 			goto out;
2783 	}
2784 
2785 	new = mpol_new(mode, mode_flags, &nodes);
2786 	if (IS_ERR(new))
2787 		goto out;
2788 
2789 	/*
2790 	 * Save nodes for mpol_to_str() to show the tmpfs mount options
2791 	 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2792 	 */
2793 	if (mode != MPOL_PREFERRED)
2794 		new->v.nodes = nodes;
2795 	else if (nodelist)
2796 		new->v.preferred_node = first_node(nodes);
2797 	else
2798 		new->flags |= MPOL_F_LOCAL;
2799 
2800 	/*
2801 	 * Save nodes for contextualization: this will be used to "clone"
2802 	 * the mempolicy in a specific context [cpuset] at a later time.
2803 	 */
2804 	new->w.user_nodemask = nodes;
2805 
2806 	err = 0;
2807 
2808 out:
2809 	/* Restore string for error message */
2810 	if (nodelist)
2811 		*--nodelist = ':';
2812 	if (flags)
2813 		*--flags = '=';
2814 	if (!err)
2815 		*mpol = new;
2816 	return err;
2817 }
2818 #endif /* CONFIG_TMPFS */
2819 
2820 /**
2821  * mpol_to_str - format a mempolicy structure for printing
2822  * @buffer:  to contain formatted mempolicy string
2823  * @maxlen:  length of @buffer
2824  * @pol:  pointer to mempolicy to be formatted
2825  *
2826  * Convert @pol into a string.  If @buffer is too short, truncate the string.
2827  * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2828  * longest flag, "relative", and to display at least a few node ids.
2829  */
mpol_to_str(char * buffer,int maxlen,struct mempolicy * pol)2830 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2831 {
2832 	char *p = buffer;
2833 	nodemask_t nodes = NODE_MASK_NONE;
2834 	unsigned short mode = MPOL_DEFAULT;
2835 	unsigned short flags = 0;
2836 
2837 	if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2838 		mode = pol->mode;
2839 		flags = pol->flags;
2840 	}
2841 
2842 	switch (mode) {
2843 	case MPOL_DEFAULT:
2844 		break;
2845 	case MPOL_PREFERRED:
2846 		if (flags & MPOL_F_LOCAL)
2847 			mode = MPOL_LOCAL;
2848 		else
2849 			node_set(pol->v.preferred_node, nodes);
2850 		break;
2851 	case MPOL_BIND:
2852 	case MPOL_INTERLEAVE:
2853 		nodes = pol->v.nodes;
2854 		break;
2855 	default:
2856 		WARN_ON_ONCE(1);
2857 		snprintf(p, maxlen, "unknown");
2858 		return;
2859 	}
2860 
2861 	p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2862 
2863 	if (flags & MPOL_MODE_FLAGS) {
2864 		p += snprintf(p, buffer + maxlen - p, "=");
2865 
2866 		/*
2867 		 * Currently, the only defined flags are mutually exclusive
2868 		 */
2869 		if (flags & MPOL_F_STATIC_NODES)
2870 			p += snprintf(p, buffer + maxlen - p, "static");
2871 		else if (flags & MPOL_F_RELATIVE_NODES)
2872 			p += snprintf(p, buffer + maxlen - p, "relative");
2873 	}
2874 
2875 	if (!nodes_empty(nodes))
2876 		p += scnprintf(p, buffer + maxlen - p, ":%*pbl",
2877 			       nodemask_pr_args(&nodes));
2878 }
2879