1 /*
2  * kernel/stop_machine.c
3  *
4  * Copyright (C) 2008, 2005	IBM Corporation.
5  * Copyright (C) 2008, 2005	Rusty Russell rusty@rustcorp.com.au
6  * Copyright (C) 2010		SUSE Linux Products GmbH
7  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
8  *
9  * This file is released under the GPLv2 and any later version.
10  */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25 
26 /*
27  * Structure to determine completion condition and record errors.  May
28  * be shared by works on different cpus.
29  */
30 struct cpu_stop_done {
31 	atomic_t		nr_todo;	/* nr left to execute */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	struct task_struct	*thread;
39 
40 	raw_spinlock_t		lock;
41 	bool			enabled;	/* is this stopper enabled? */
42 	struct list_head	works;		/* list of pending works */
43 
44 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45 };
46 
47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48 static bool stop_machine_initialized = false;
49 
50 /* static data for stop_cpus */
51 static DEFINE_MUTEX(stop_cpus_mutex);
52 static bool stop_cpus_in_progress;
53 
cpu_stop_init_done(struct cpu_stop_done * done,unsigned int nr_todo)54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
55 {
56 	memset(done, 0, sizeof(*done));
57 	atomic_set(&done->nr_todo, nr_todo);
58 	init_completion(&done->completion);
59 }
60 
61 /* signal completion unless @done is NULL */
cpu_stop_signal_done(struct cpu_stop_done * done)62 static void cpu_stop_signal_done(struct cpu_stop_done *done)
63 {
64 	if (atomic_dec_and_test(&done->nr_todo))
65 		complete(&done->completion);
66 }
67 
__cpu_stop_queue_work(struct cpu_stopper * stopper,struct cpu_stop_work * work,struct wake_q_head * wakeq)68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
69 					struct cpu_stop_work *work,
70 					struct wake_q_head *wakeq)
71 {
72 	list_add_tail(&work->list, &stopper->works);
73 	wake_q_add(wakeq, stopper->thread);
74 }
75 
76 /* queue @work to @stopper.  if offline, @work is completed immediately */
cpu_stop_queue_work(unsigned int cpu,struct cpu_stop_work * work)77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78 {
79 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80 	DEFINE_WAKE_Q(wakeq);
81 	unsigned long flags;
82 	bool enabled;
83 
84 	preempt_disable();
85 	raw_spin_lock_irqsave(&stopper->lock, flags);
86 	enabled = stopper->enabled;
87 	if (enabled)
88 		__cpu_stop_queue_work(stopper, work, &wakeq);
89 	else if (work->done)
90 		cpu_stop_signal_done(work->done);
91 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
92 
93 	wake_up_q(&wakeq);
94 	preempt_enable();
95 
96 	return enabled;
97 }
98 
99 /**
100  * stop_one_cpu - stop a cpu
101  * @cpu: cpu to stop
102  * @fn: function to execute
103  * @arg: argument to @fn
104  *
105  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
106  * the highest priority preempting any task on the cpu and
107  * monopolizing it.  This function returns after the execution is
108  * complete.
109  *
110  * This function doesn't guarantee @cpu stays online till @fn
111  * completes.  If @cpu goes down in the middle, execution may happen
112  * partially or fully on different cpus.  @fn should either be ready
113  * for that or the caller should ensure that @cpu stays online until
114  * this function completes.
115  *
116  * CONTEXT:
117  * Might sleep.
118  *
119  * RETURNS:
120  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
121  * otherwise, the return value of @fn.
122  */
stop_one_cpu(unsigned int cpu,cpu_stop_fn_t fn,void * arg)123 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
124 {
125 	struct cpu_stop_done done;
126 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
127 
128 	cpu_stop_init_done(&done, 1);
129 	if (!cpu_stop_queue_work(cpu, &work))
130 		return -ENOENT;
131 	/*
132 	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
133 	 * cycle by doing a preemption:
134 	 */
135 	cond_resched();
136 	wait_for_completion(&done.completion);
137 	return done.ret;
138 }
139 
140 /* This controls the threads on each CPU. */
141 enum multi_stop_state {
142 	/* Dummy starting state for thread. */
143 	MULTI_STOP_NONE,
144 	/* Awaiting everyone to be scheduled. */
145 	MULTI_STOP_PREPARE,
146 	/* Disable interrupts. */
147 	MULTI_STOP_DISABLE_IRQ,
148 	/* Run the function */
149 	MULTI_STOP_RUN,
150 	/* Exit */
151 	MULTI_STOP_EXIT,
152 };
153 
154 struct multi_stop_data {
155 	cpu_stop_fn_t		fn;
156 	void			*data;
157 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
158 	unsigned int		num_threads;
159 	const struct cpumask	*active_cpus;
160 
161 	enum multi_stop_state	state;
162 	atomic_t		thread_ack;
163 };
164 
set_state(struct multi_stop_data * msdata,enum multi_stop_state newstate)165 static void set_state(struct multi_stop_data *msdata,
166 		      enum multi_stop_state newstate)
167 {
168 	/* Reset ack counter. */
169 	atomic_set(&msdata->thread_ack, msdata->num_threads);
170 	smp_wmb();
171 	msdata->state = newstate;
172 }
173 
174 /* Last one to ack a state moves to the next state. */
ack_state(struct multi_stop_data * msdata)175 static void ack_state(struct multi_stop_data *msdata)
176 {
177 	if (atomic_dec_and_test(&msdata->thread_ack))
178 		set_state(msdata, msdata->state + 1);
179 }
180 
181 /* This is the cpu_stop function which stops the CPU. */
multi_cpu_stop(void * data)182 static int multi_cpu_stop(void *data)
183 {
184 	struct multi_stop_data *msdata = data;
185 	enum multi_stop_state curstate = MULTI_STOP_NONE;
186 	int cpu = smp_processor_id(), err = 0;
187 	unsigned long flags;
188 	bool is_active;
189 
190 	/*
191 	 * When called from stop_machine_from_inactive_cpu(), irq might
192 	 * already be disabled.  Save the state and restore it on exit.
193 	 */
194 	local_save_flags(flags);
195 
196 	if (!msdata->active_cpus)
197 		is_active = cpu == cpumask_first(cpu_online_mask);
198 	else
199 		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
200 
201 	/* Simple state machine */
202 	do {
203 		/* Chill out and ensure we re-read multi_stop_state. */
204 		cpu_relax_yield();
205 		if (msdata->state != curstate) {
206 			curstate = msdata->state;
207 			switch (curstate) {
208 			case MULTI_STOP_DISABLE_IRQ:
209 				local_irq_disable();
210 				hard_irq_disable();
211 				break;
212 			case MULTI_STOP_RUN:
213 				if (is_active)
214 					err = msdata->fn(msdata->data);
215 				break;
216 			default:
217 				break;
218 			}
219 			ack_state(msdata);
220 		} else if (curstate > MULTI_STOP_PREPARE) {
221 			/*
222 			 * At this stage all other CPUs we depend on must spin
223 			 * in the same loop. Any reason for hard-lockup should
224 			 * be detected and reported on their side.
225 			 */
226 			touch_nmi_watchdog();
227 		}
228 	} while (curstate != MULTI_STOP_EXIT);
229 
230 	local_irq_restore(flags);
231 	return err;
232 }
233 
cpu_stop_queue_two_works(int cpu1,struct cpu_stop_work * work1,int cpu2,struct cpu_stop_work * work2)234 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
235 				    int cpu2, struct cpu_stop_work *work2)
236 {
237 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
238 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
239 	DEFINE_WAKE_Q(wakeq);
240 	int err;
241 
242 retry:
243 	/*
244 	 * The waking up of stopper threads has to happen in the same
245 	 * scheduling context as the queueing.  Otherwise, there is a
246 	 * possibility of one of the above stoppers being woken up by another
247 	 * CPU, and preempting us. This will cause us to not wake up the other
248 	 * stopper forever.
249 	 */
250 	preempt_disable();
251 	raw_spin_lock_irq(&stopper1->lock);
252 	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
253 
254 	if (!stopper1->enabled || !stopper2->enabled) {
255 		err = -ENOENT;
256 		goto unlock;
257 	}
258 
259 	/*
260 	 * Ensure that if we race with __stop_cpus() the stoppers won't get
261 	 * queued up in reverse order leading to system deadlock.
262 	 *
263 	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
264 	 * queued a work on cpu1 but not on cpu2, we hold both locks.
265 	 *
266 	 * It can be falsely true but it is safe to spin until it is cleared,
267 	 * queue_stop_cpus_work() does everything under preempt_disable().
268 	 */
269 	if (unlikely(stop_cpus_in_progress)) {
270 		err = -EDEADLK;
271 		goto unlock;
272 	}
273 
274 	err = 0;
275 	__cpu_stop_queue_work(stopper1, work1, &wakeq);
276 	__cpu_stop_queue_work(stopper2, work2, &wakeq);
277 
278 unlock:
279 	raw_spin_unlock(&stopper2->lock);
280 	raw_spin_unlock_irq(&stopper1->lock);
281 
282 	if (unlikely(err == -EDEADLK)) {
283 		preempt_enable();
284 
285 		while (stop_cpus_in_progress)
286 			cpu_relax();
287 
288 		goto retry;
289 	}
290 
291 	wake_up_q(&wakeq);
292 	preempt_enable();
293 
294 	return err;
295 }
296 /**
297  * stop_two_cpus - stops two cpus
298  * @cpu1: the cpu to stop
299  * @cpu2: the other cpu to stop
300  * @fn: function to execute
301  * @arg: argument to @fn
302  *
303  * Stops both the current and specified CPU and runs @fn on one of them.
304  *
305  * returns when both are completed.
306  */
stop_two_cpus(unsigned int cpu1,unsigned int cpu2,cpu_stop_fn_t fn,void * arg)307 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
308 {
309 	struct cpu_stop_done done;
310 	struct cpu_stop_work work1, work2;
311 	struct multi_stop_data msdata;
312 
313 	msdata = (struct multi_stop_data){
314 		.fn = fn,
315 		.data = arg,
316 		.num_threads = 2,
317 		.active_cpus = cpumask_of(cpu1),
318 	};
319 
320 	work1 = work2 = (struct cpu_stop_work){
321 		.fn = multi_cpu_stop,
322 		.arg = &msdata,
323 		.done = &done
324 	};
325 
326 	cpu_stop_init_done(&done, 2);
327 	set_state(&msdata, MULTI_STOP_PREPARE);
328 
329 	if (cpu1 > cpu2)
330 		swap(cpu1, cpu2);
331 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
332 		return -ENOENT;
333 
334 	wait_for_completion(&done.completion);
335 	return done.ret;
336 }
337 
338 /**
339  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
340  * @cpu: cpu to stop
341  * @fn: function to execute
342  * @arg: argument to @fn
343  * @work_buf: pointer to cpu_stop_work structure
344  *
345  * Similar to stop_one_cpu() but doesn't wait for completion.  The
346  * caller is responsible for ensuring @work_buf is currently unused
347  * and will remain untouched until stopper starts executing @fn.
348  *
349  * CONTEXT:
350  * Don't care.
351  *
352  * RETURNS:
353  * true if cpu_stop_work was queued successfully and @fn will be called,
354  * false otherwise.
355  */
stop_one_cpu_nowait(unsigned int cpu,cpu_stop_fn_t fn,void * arg,struct cpu_stop_work * work_buf)356 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
357 			struct cpu_stop_work *work_buf)
358 {
359 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
360 	return cpu_stop_queue_work(cpu, work_buf);
361 }
362 
queue_stop_cpus_work(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg,struct cpu_stop_done * done)363 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
364 				 cpu_stop_fn_t fn, void *arg,
365 				 struct cpu_stop_done *done)
366 {
367 	struct cpu_stop_work *work;
368 	unsigned int cpu;
369 	bool queued = false;
370 
371 	/*
372 	 * Disable preemption while queueing to avoid getting
373 	 * preempted by a stopper which might wait for other stoppers
374 	 * to enter @fn which can lead to deadlock.
375 	 */
376 	preempt_disable();
377 	stop_cpus_in_progress = true;
378 	for_each_cpu(cpu, cpumask) {
379 		work = &per_cpu(cpu_stopper.stop_work, cpu);
380 		work->fn = fn;
381 		work->arg = arg;
382 		work->done = done;
383 		if (cpu_stop_queue_work(cpu, work))
384 			queued = true;
385 	}
386 	stop_cpus_in_progress = false;
387 	preempt_enable();
388 
389 	return queued;
390 }
391 
__stop_cpus(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg)392 static int __stop_cpus(const struct cpumask *cpumask,
393 		       cpu_stop_fn_t fn, void *arg)
394 {
395 	struct cpu_stop_done done;
396 
397 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
398 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
399 		return -ENOENT;
400 	wait_for_completion(&done.completion);
401 	return done.ret;
402 }
403 
404 /**
405  * stop_cpus - stop multiple cpus
406  * @cpumask: cpus to stop
407  * @fn: function to execute
408  * @arg: argument to @fn
409  *
410  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
411  * @fn is run in a process context with the highest priority
412  * preempting any task on the cpu and monopolizing it.  This function
413  * returns after all executions are complete.
414  *
415  * This function doesn't guarantee the cpus in @cpumask stay online
416  * till @fn completes.  If some cpus go down in the middle, execution
417  * on the cpu may happen partially or fully on different cpus.  @fn
418  * should either be ready for that or the caller should ensure that
419  * the cpus stay online until this function completes.
420  *
421  * All stop_cpus() calls are serialized making it safe for @fn to wait
422  * for all cpus to start executing it.
423  *
424  * CONTEXT:
425  * Might sleep.
426  *
427  * RETURNS:
428  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
429  * @cpumask were offline; otherwise, 0 if all executions of @fn
430  * returned 0, any non zero return value if any returned non zero.
431  */
stop_cpus(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg)432 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
433 {
434 	int ret;
435 
436 	/* static works are used, process one request at a time */
437 	mutex_lock(&stop_cpus_mutex);
438 	ret = __stop_cpus(cpumask, fn, arg);
439 	mutex_unlock(&stop_cpus_mutex);
440 	return ret;
441 }
442 
443 /**
444  * try_stop_cpus - try to stop multiple cpus
445  * @cpumask: cpus to stop
446  * @fn: function to execute
447  * @arg: argument to @fn
448  *
449  * Identical to stop_cpus() except that it fails with -EAGAIN if
450  * someone else is already using the facility.
451  *
452  * CONTEXT:
453  * Might sleep.
454  *
455  * RETURNS:
456  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
457  * @fn(@arg) was not executed at all because all cpus in @cpumask were
458  * offline; otherwise, 0 if all executions of @fn returned 0, any non
459  * zero return value if any returned non zero.
460  */
try_stop_cpus(const struct cpumask * cpumask,cpu_stop_fn_t fn,void * arg)461 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
462 {
463 	int ret;
464 
465 	/* static works are used, process one request at a time */
466 	if (!mutex_trylock(&stop_cpus_mutex))
467 		return -EAGAIN;
468 	ret = __stop_cpus(cpumask, fn, arg);
469 	mutex_unlock(&stop_cpus_mutex);
470 	return ret;
471 }
472 
cpu_stop_should_run(unsigned int cpu)473 static int cpu_stop_should_run(unsigned int cpu)
474 {
475 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
476 	unsigned long flags;
477 	int run;
478 
479 	raw_spin_lock_irqsave(&stopper->lock, flags);
480 	run = !list_empty(&stopper->works);
481 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
482 	return run;
483 }
484 
cpu_stopper_thread(unsigned int cpu)485 static void cpu_stopper_thread(unsigned int cpu)
486 {
487 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
488 	struct cpu_stop_work *work;
489 
490 repeat:
491 	work = NULL;
492 	raw_spin_lock_irq(&stopper->lock);
493 	if (!list_empty(&stopper->works)) {
494 		work = list_first_entry(&stopper->works,
495 					struct cpu_stop_work, list);
496 		list_del_init(&work->list);
497 	}
498 	raw_spin_unlock_irq(&stopper->lock);
499 
500 	if (work) {
501 		cpu_stop_fn_t fn = work->fn;
502 		void *arg = work->arg;
503 		struct cpu_stop_done *done = work->done;
504 		int ret;
505 
506 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
507 		preempt_count_inc();
508 		ret = fn(arg);
509 		if (done) {
510 			if (ret)
511 				done->ret = ret;
512 			cpu_stop_signal_done(done);
513 		}
514 		preempt_count_dec();
515 		WARN_ONCE(preempt_count(),
516 			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
517 		goto repeat;
518 	}
519 }
520 
stop_machine_park(int cpu)521 void stop_machine_park(int cpu)
522 {
523 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
524 	/*
525 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
526 	 * the pending works before it parks, until then it is fine to queue
527 	 * the new works.
528 	 */
529 	stopper->enabled = false;
530 	kthread_park(stopper->thread);
531 }
532 
533 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
534 
cpu_stop_create(unsigned int cpu)535 static void cpu_stop_create(unsigned int cpu)
536 {
537 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
538 }
539 
cpu_stop_park(unsigned int cpu)540 static void cpu_stop_park(unsigned int cpu)
541 {
542 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
543 
544 	WARN_ON(!list_empty(&stopper->works));
545 }
546 
stop_machine_unpark(int cpu)547 void stop_machine_unpark(int cpu)
548 {
549 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
550 
551 	stopper->enabled = true;
552 	kthread_unpark(stopper->thread);
553 }
554 
555 static struct smp_hotplug_thread cpu_stop_threads = {
556 	.store			= &cpu_stopper.thread,
557 	.thread_should_run	= cpu_stop_should_run,
558 	.thread_fn		= cpu_stopper_thread,
559 	.thread_comm		= "migration/%u",
560 	.create			= cpu_stop_create,
561 	.park			= cpu_stop_park,
562 	.selfparking		= true,
563 };
564 
cpu_stop_init(void)565 static int __init cpu_stop_init(void)
566 {
567 	unsigned int cpu;
568 
569 	for_each_possible_cpu(cpu) {
570 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
571 
572 		raw_spin_lock_init(&stopper->lock);
573 		INIT_LIST_HEAD(&stopper->works);
574 	}
575 
576 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
577 	stop_machine_unpark(raw_smp_processor_id());
578 	stop_machine_initialized = true;
579 	return 0;
580 }
581 early_initcall(cpu_stop_init);
582 
stop_machine_cpuslocked(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)583 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
584 			    const struct cpumask *cpus)
585 {
586 	struct multi_stop_data msdata = {
587 		.fn = fn,
588 		.data = data,
589 		.num_threads = num_online_cpus(),
590 		.active_cpus = cpus,
591 	};
592 
593 	lockdep_assert_cpus_held();
594 
595 	if (!stop_machine_initialized) {
596 		/*
597 		 * Handle the case where stop_machine() is called
598 		 * early in boot before stop_machine() has been
599 		 * initialized.
600 		 */
601 		unsigned long flags;
602 		int ret;
603 
604 		WARN_ON_ONCE(msdata.num_threads != 1);
605 
606 		local_irq_save(flags);
607 		hard_irq_disable();
608 		ret = (*fn)(data);
609 		local_irq_restore(flags);
610 
611 		return ret;
612 	}
613 
614 	/* Set the initial state and stop all online cpus. */
615 	set_state(&msdata, MULTI_STOP_PREPARE);
616 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
617 }
618 
stop_machine(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)619 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
620 {
621 	int ret;
622 
623 	/* No CPUs can come up or down during this. */
624 	cpus_read_lock();
625 	ret = stop_machine_cpuslocked(fn, data, cpus);
626 	cpus_read_unlock();
627 	return ret;
628 }
629 EXPORT_SYMBOL_GPL(stop_machine);
630 
631 /**
632  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
633  * @fn: the function to run
634  * @data: the data ptr for the @fn()
635  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
636  *
637  * This is identical to stop_machine() but can be called from a CPU which
638  * is not active.  The local CPU is in the process of hotplug (so no other
639  * CPU hotplug can start) and not marked active and doesn't have enough
640  * context to sleep.
641  *
642  * This function provides stop_machine() functionality for such state by
643  * using busy-wait for synchronization and executing @fn directly for local
644  * CPU.
645  *
646  * CONTEXT:
647  * Local CPU is inactive.  Temporarily stops all active CPUs.
648  *
649  * RETURNS:
650  * 0 if all executions of @fn returned 0, any non zero return value if any
651  * returned non zero.
652  */
stop_machine_from_inactive_cpu(cpu_stop_fn_t fn,void * data,const struct cpumask * cpus)653 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
654 				  const struct cpumask *cpus)
655 {
656 	struct multi_stop_data msdata = { .fn = fn, .data = data,
657 					    .active_cpus = cpus };
658 	struct cpu_stop_done done;
659 	int ret;
660 
661 	/* Local CPU must be inactive and CPU hotplug in progress. */
662 	BUG_ON(cpu_active(raw_smp_processor_id()));
663 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
664 
665 	/* No proper task established and can't sleep - busy wait for lock. */
666 	while (!mutex_trylock(&stop_cpus_mutex))
667 		cpu_relax();
668 
669 	/* Schedule work on other CPUs and execute directly for local CPU */
670 	set_state(&msdata, MULTI_STOP_PREPARE);
671 	cpu_stop_init_done(&done, num_active_cpus());
672 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
673 			     &done);
674 	ret = multi_cpu_stop(&msdata);
675 
676 	/* Busy wait for completion. */
677 	while (!completion_done(&done.completion))
678 		cpu_relax();
679 
680 	mutex_unlock(&stop_cpus_mutex);
681 	return ret ?: done.ret;
682 }
683