1 /*
2    Copyright (C) 2002 Richard Henderson
3    Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
4 
5     This program is free software; you can redistribute it and/or modify
6     it under the terms of the GNU General Public License as published by
7     the Free Software Foundation; either version 2 of the License, or
8     (at your option) any later version.
9 
10     This program is distributed in the hope that it will be useful,
11     but WITHOUT ANY WARRANTY; without even the implied warranty of
12     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13     GNU General Public License for more details.
14 
15     You should have received a copy of the GNU General Public License
16     along with this program; if not, write to the Free Software
17     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 */
19 #include <linux/export.h>
20 #include <linux/extable.h>
21 #include <linux/moduleloader.h>
22 #include <linux/trace_events.h>
23 #include <linux/init.h>
24 #include <linux/kallsyms.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/elf.h>
32 #include <linux/proc_fs.h>
33 #include <linux/security.h>
34 #include <linux/seq_file.h>
35 #include <linux/syscalls.h>
36 #include <linux/fcntl.h>
37 #include <linux/rcupdate.h>
38 #include <linux/capability.h>
39 #include <linux/cpu.h>
40 #include <linux/moduleparam.h>
41 #include <linux/errno.h>
42 #include <linux/err.h>
43 #include <linux/vermagic.h>
44 #include <linux/notifier.h>
45 #include <linux/sched.h>
46 #include <linux/device.h>
47 #include <linux/string.h>
48 #include <linux/mutex.h>
49 #include <linux/rculist.h>
50 #include <linux/uaccess.h>
51 #include <asm/cacheflush.h>
52 #include <linux/set_memory.h>
53 #include <asm/mmu_context.h>
54 #include <linux/license.h>
55 #include <asm/sections.h>
56 #include <linux/tracepoint.h>
57 #include <linux/ftrace.h>
58 #include <linux/livepatch.h>
59 #include <linux/async.h>
60 #include <linux/percpu.h>
61 #include <linux/kmemleak.h>
62 #include <linux/jump_label.h>
63 #include <linux/pfn.h>
64 #include <linux/bsearch.h>
65 #include <linux/dynamic_debug.h>
66 #include <linux/audit.h>
67 #include <uapi/linux/module.h>
68 #include "module-internal.h"
69 
70 #define CREATE_TRACE_POINTS
71 #include <trace/events/module.h>
72 
73 #ifndef ARCH_SHF_SMALL
74 #define ARCH_SHF_SMALL 0
75 #endif
76 
77 /*
78  * Modules' sections will be aligned on page boundaries
79  * to ensure complete separation of code and data, but
80  * only when CONFIG_STRICT_MODULE_RWX=y
81  */
82 #ifdef CONFIG_STRICT_MODULE_RWX
83 # define debug_align(X) ALIGN(X, PAGE_SIZE)
84 #else
85 # define debug_align(X) (X)
86 #endif
87 
88 /* If this is set, the section belongs in the init part of the module */
89 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
90 
91 /*
92  * Mutex protects:
93  * 1) List of modules (also safely readable with preempt_disable),
94  * 2) module_use links,
95  * 3) module_addr_min/module_addr_max.
96  * (delete and add uses RCU list operations). */
97 DEFINE_MUTEX(module_mutex);
98 EXPORT_SYMBOL_GPL(module_mutex);
99 static LIST_HEAD(modules);
100 
101 #ifdef CONFIG_MODULES_TREE_LOOKUP
102 
103 /*
104  * Use a latched RB-tree for __module_address(); this allows us to use
105  * RCU-sched lookups of the address from any context.
106  *
107  * This is conditional on PERF_EVENTS || TRACING because those can really hit
108  * __module_address() hard by doing a lot of stack unwinding; potentially from
109  * NMI context.
110  */
111 
__mod_tree_val(struct latch_tree_node * n)112 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
113 {
114 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
115 
116 	return (unsigned long)layout->base;
117 }
118 
__mod_tree_size(struct latch_tree_node * n)119 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
120 {
121 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
122 
123 	return (unsigned long)layout->size;
124 }
125 
126 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)127 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
128 {
129 	return __mod_tree_val(a) < __mod_tree_val(b);
130 }
131 
132 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)133 mod_tree_comp(void *key, struct latch_tree_node *n)
134 {
135 	unsigned long val = (unsigned long)key;
136 	unsigned long start, end;
137 
138 	start = __mod_tree_val(n);
139 	if (val < start)
140 		return -1;
141 
142 	end = start + __mod_tree_size(n);
143 	if (val >= end)
144 		return 1;
145 
146 	return 0;
147 }
148 
149 static const struct latch_tree_ops mod_tree_ops = {
150 	.less = mod_tree_less,
151 	.comp = mod_tree_comp,
152 };
153 
154 static struct mod_tree_root {
155 	struct latch_tree_root root;
156 	unsigned long addr_min;
157 	unsigned long addr_max;
158 } mod_tree __cacheline_aligned = {
159 	.addr_min = -1UL,
160 };
161 
162 #define module_addr_min mod_tree.addr_min
163 #define module_addr_max mod_tree.addr_max
164 
__mod_tree_insert(struct mod_tree_node * node)165 static noinline void __mod_tree_insert(struct mod_tree_node *node)
166 {
167 	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
168 }
169 
__mod_tree_remove(struct mod_tree_node * node)170 static void __mod_tree_remove(struct mod_tree_node *node)
171 {
172 	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
173 }
174 
175 /*
176  * These modifications: insert, remove_init and remove; are serialized by the
177  * module_mutex.
178  */
mod_tree_insert(struct module * mod)179 static void mod_tree_insert(struct module *mod)
180 {
181 	mod->core_layout.mtn.mod = mod;
182 	mod->init_layout.mtn.mod = mod;
183 
184 	__mod_tree_insert(&mod->core_layout.mtn);
185 	if (mod->init_layout.size)
186 		__mod_tree_insert(&mod->init_layout.mtn);
187 }
188 
mod_tree_remove_init(struct module * mod)189 static void mod_tree_remove_init(struct module *mod)
190 {
191 	if (mod->init_layout.size)
192 		__mod_tree_remove(&mod->init_layout.mtn);
193 }
194 
mod_tree_remove(struct module * mod)195 static void mod_tree_remove(struct module *mod)
196 {
197 	__mod_tree_remove(&mod->core_layout.mtn);
198 	mod_tree_remove_init(mod);
199 }
200 
mod_find(unsigned long addr)201 static struct module *mod_find(unsigned long addr)
202 {
203 	struct latch_tree_node *ltn;
204 
205 	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
206 	if (!ltn)
207 		return NULL;
208 
209 	return container_of(ltn, struct mod_tree_node, node)->mod;
210 }
211 
212 #else /* MODULES_TREE_LOOKUP */
213 
214 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
215 
mod_tree_insert(struct module * mod)216 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)217 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)218 static void mod_tree_remove(struct module *mod) { }
219 
mod_find(unsigned long addr)220 static struct module *mod_find(unsigned long addr)
221 {
222 	struct module *mod;
223 
224 	list_for_each_entry_rcu(mod, &modules, list) {
225 		if (within_module(addr, mod))
226 			return mod;
227 	}
228 
229 	return NULL;
230 }
231 
232 #endif /* MODULES_TREE_LOOKUP */
233 
234 /*
235  * Bounds of module text, for speeding up __module_address.
236  * Protected by module_mutex.
237  */
__mod_update_bounds(void * base,unsigned int size)238 static void __mod_update_bounds(void *base, unsigned int size)
239 {
240 	unsigned long min = (unsigned long)base;
241 	unsigned long max = min + size;
242 
243 	if (min < module_addr_min)
244 		module_addr_min = min;
245 	if (max > module_addr_max)
246 		module_addr_max = max;
247 }
248 
mod_update_bounds(struct module * mod)249 static void mod_update_bounds(struct module *mod)
250 {
251 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
252 	if (mod->init_layout.size)
253 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
254 }
255 
256 #ifdef CONFIG_KGDB_KDB
257 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
258 #endif /* CONFIG_KGDB_KDB */
259 
module_assert_mutex(void)260 static void module_assert_mutex(void)
261 {
262 	lockdep_assert_held(&module_mutex);
263 }
264 
module_assert_mutex_or_preempt(void)265 static void module_assert_mutex_or_preempt(void)
266 {
267 #ifdef CONFIG_LOCKDEP
268 	if (unlikely(!debug_locks))
269 		return;
270 
271 	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
272 		!lockdep_is_held(&module_mutex));
273 #endif
274 }
275 
276 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
277 module_param(sig_enforce, bool_enable_only, 0644);
278 
279 /*
280  * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
281  * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
282  */
is_module_sig_enforced(void)283 bool is_module_sig_enforced(void)
284 {
285 	return sig_enforce;
286 }
287 EXPORT_SYMBOL(is_module_sig_enforced);
288 
289 /* Block module loading/unloading? */
290 int modules_disabled = 0;
291 core_param(nomodule, modules_disabled, bint, 0);
292 
293 /* Waiting for a module to finish initializing? */
294 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
295 
296 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
297 
register_module_notifier(struct notifier_block * nb)298 int register_module_notifier(struct notifier_block *nb)
299 {
300 	return blocking_notifier_chain_register(&module_notify_list, nb);
301 }
302 EXPORT_SYMBOL(register_module_notifier);
303 
unregister_module_notifier(struct notifier_block * nb)304 int unregister_module_notifier(struct notifier_block *nb)
305 {
306 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
307 }
308 EXPORT_SYMBOL(unregister_module_notifier);
309 
310 /*
311  * We require a truly strong try_module_get(): 0 means success.
312  * Otherwise an error is returned due to ongoing or failed
313  * initialization etc.
314  */
strong_try_module_get(struct module * mod)315 static inline int strong_try_module_get(struct module *mod)
316 {
317 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
318 	if (mod && mod->state == MODULE_STATE_COMING)
319 		return -EBUSY;
320 	if (try_module_get(mod))
321 		return 0;
322 	else
323 		return -ENOENT;
324 }
325 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)326 static inline void add_taint_module(struct module *mod, unsigned flag,
327 				    enum lockdep_ok lockdep_ok)
328 {
329 	add_taint(flag, lockdep_ok);
330 	set_bit(flag, &mod->taints);
331 }
332 
333 /*
334  * A thread that wants to hold a reference to a module only while it
335  * is running can call this to safely exit.  nfsd and lockd use this.
336  */
__module_put_and_exit(struct module * mod,long code)337 void __noreturn __module_put_and_exit(struct module *mod, long code)
338 {
339 	module_put(mod);
340 	do_exit(code);
341 }
342 EXPORT_SYMBOL(__module_put_and_exit);
343 
344 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)345 static unsigned int find_sec(const struct load_info *info, const char *name)
346 {
347 	unsigned int i;
348 
349 	for (i = 1; i < info->hdr->e_shnum; i++) {
350 		Elf_Shdr *shdr = &info->sechdrs[i];
351 		/* Alloc bit cleared means "ignore it." */
352 		if ((shdr->sh_flags & SHF_ALLOC)
353 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
354 			return i;
355 	}
356 	return 0;
357 }
358 
359 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)360 static void *section_addr(const struct load_info *info, const char *name)
361 {
362 	/* Section 0 has sh_addr 0. */
363 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
364 }
365 
366 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)367 static void *section_objs(const struct load_info *info,
368 			  const char *name,
369 			  size_t object_size,
370 			  unsigned int *num)
371 {
372 	unsigned int sec = find_sec(info, name);
373 
374 	/* Section 0 has sh_addr 0 and sh_size 0. */
375 	*num = info->sechdrs[sec].sh_size / object_size;
376 	return (void *)info->sechdrs[sec].sh_addr;
377 }
378 
379 /* Provided by the linker */
380 extern const struct kernel_symbol __start___ksymtab[];
381 extern const struct kernel_symbol __stop___ksymtab[];
382 extern const struct kernel_symbol __start___ksymtab_gpl[];
383 extern const struct kernel_symbol __stop___ksymtab_gpl[];
384 extern const struct kernel_symbol __start___ksymtab_gpl_future[];
385 extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
386 extern const s32 __start___kcrctab[];
387 extern const s32 __start___kcrctab_gpl[];
388 extern const s32 __start___kcrctab_gpl_future[];
389 #ifdef CONFIG_UNUSED_SYMBOLS
390 extern const struct kernel_symbol __start___ksymtab_unused[];
391 extern const struct kernel_symbol __stop___ksymtab_unused[];
392 extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
393 extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
394 extern const s32 __start___kcrctab_unused[];
395 extern const s32 __start___kcrctab_unused_gpl[];
396 #endif
397 
398 #ifndef CONFIG_MODVERSIONS
399 #define symversion(base, idx) NULL
400 #else
401 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
402 #endif
403 
each_symbol_in_section(const struct symsearch * arr,unsigned int arrsize,struct module * owner,bool (* fn)(const struct symsearch * syms,struct module * owner,void * data),void * data)404 static bool each_symbol_in_section(const struct symsearch *arr,
405 				   unsigned int arrsize,
406 				   struct module *owner,
407 				   bool (*fn)(const struct symsearch *syms,
408 					      struct module *owner,
409 					      void *data),
410 				   void *data)
411 {
412 	unsigned int j;
413 
414 	for (j = 0; j < arrsize; j++) {
415 		if (fn(&arr[j], owner, data))
416 			return true;
417 	}
418 
419 	return false;
420 }
421 
422 /* Returns true as soon as fn returns true, otherwise false. */
each_symbol_section(bool (* fn)(const struct symsearch * arr,struct module * owner,void * data),void * data)423 bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
424 				    struct module *owner,
425 				    void *data),
426 			 void *data)
427 {
428 	struct module *mod;
429 	static const struct symsearch arr[] = {
430 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
431 		  NOT_GPL_ONLY, false },
432 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
433 		  __start___kcrctab_gpl,
434 		  GPL_ONLY, false },
435 		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
436 		  __start___kcrctab_gpl_future,
437 		  WILL_BE_GPL_ONLY, false },
438 #ifdef CONFIG_UNUSED_SYMBOLS
439 		{ __start___ksymtab_unused, __stop___ksymtab_unused,
440 		  __start___kcrctab_unused,
441 		  NOT_GPL_ONLY, true },
442 		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
443 		  __start___kcrctab_unused_gpl,
444 		  GPL_ONLY, true },
445 #endif
446 	};
447 
448 	module_assert_mutex_or_preempt();
449 
450 	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
451 		return true;
452 
453 	list_for_each_entry_rcu(mod, &modules, list) {
454 		struct symsearch arr[] = {
455 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
456 			  NOT_GPL_ONLY, false },
457 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
458 			  mod->gpl_crcs,
459 			  GPL_ONLY, false },
460 			{ mod->gpl_future_syms,
461 			  mod->gpl_future_syms + mod->num_gpl_future_syms,
462 			  mod->gpl_future_crcs,
463 			  WILL_BE_GPL_ONLY, false },
464 #ifdef CONFIG_UNUSED_SYMBOLS
465 			{ mod->unused_syms,
466 			  mod->unused_syms + mod->num_unused_syms,
467 			  mod->unused_crcs,
468 			  NOT_GPL_ONLY, true },
469 			{ mod->unused_gpl_syms,
470 			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
471 			  mod->unused_gpl_crcs,
472 			  GPL_ONLY, true },
473 #endif
474 		};
475 
476 		if (mod->state == MODULE_STATE_UNFORMED)
477 			continue;
478 
479 		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
480 			return true;
481 	}
482 	return false;
483 }
484 EXPORT_SYMBOL_GPL(each_symbol_section);
485 
486 struct find_symbol_arg {
487 	/* Input */
488 	const char *name;
489 	bool gplok;
490 	bool warn;
491 
492 	/* Output */
493 	struct module *owner;
494 	const s32 *crc;
495 	const struct kernel_symbol *sym;
496 };
497 
check_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)498 static bool check_symbol(const struct symsearch *syms,
499 				 struct module *owner,
500 				 unsigned int symnum, void *data)
501 {
502 	struct find_symbol_arg *fsa = data;
503 
504 	if (!fsa->gplok) {
505 		if (syms->licence == GPL_ONLY)
506 			return false;
507 		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
508 			pr_warn("Symbol %s is being used by a non-GPL module, "
509 				"which will not be allowed in the future\n",
510 				fsa->name);
511 		}
512 	}
513 
514 #ifdef CONFIG_UNUSED_SYMBOLS
515 	if (syms->unused && fsa->warn) {
516 		pr_warn("Symbol %s is marked as UNUSED, however this module is "
517 			"using it.\n", fsa->name);
518 		pr_warn("This symbol will go away in the future.\n");
519 		pr_warn("Please evaluate if this is the right api to use and "
520 			"if it really is, submit a report to the linux kernel "
521 			"mailing list together with submitting your code for "
522 			"inclusion.\n");
523 	}
524 #endif
525 
526 	fsa->owner = owner;
527 	fsa->crc = symversion(syms->crcs, symnum);
528 	fsa->sym = &syms->start[symnum];
529 	return true;
530 }
531 
kernel_symbol_value(const struct kernel_symbol * sym)532 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
533 {
534 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
535 	return (unsigned long)offset_to_ptr(&sym->value_offset);
536 #else
537 	return sym->value;
538 #endif
539 }
540 
kernel_symbol_name(const struct kernel_symbol * sym)541 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
542 {
543 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
544 	return offset_to_ptr(&sym->name_offset);
545 #else
546 	return sym->name;
547 #endif
548 }
549 
cmp_name(const void * va,const void * vb)550 static int cmp_name(const void *va, const void *vb)
551 {
552 	const char *a;
553 	const struct kernel_symbol *b;
554 	a = va; b = vb;
555 	return strcmp(a, kernel_symbol_name(b));
556 }
557 
find_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)558 static bool find_symbol_in_section(const struct symsearch *syms,
559 				   struct module *owner,
560 				   void *data)
561 {
562 	struct find_symbol_arg *fsa = data;
563 	struct kernel_symbol *sym;
564 
565 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
566 			sizeof(struct kernel_symbol), cmp_name);
567 
568 	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
569 		return true;
570 
571 	return false;
572 }
573 
574 /* Find a symbol and return it, along with, (optional) crc and
575  * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
find_symbol(const char * name,struct module ** owner,const s32 ** crc,bool gplok,bool warn)576 const struct kernel_symbol *find_symbol(const char *name,
577 					struct module **owner,
578 					const s32 **crc,
579 					bool gplok,
580 					bool warn)
581 {
582 	struct find_symbol_arg fsa;
583 
584 	fsa.name = name;
585 	fsa.gplok = gplok;
586 	fsa.warn = warn;
587 
588 	if (each_symbol_section(find_symbol_in_section, &fsa)) {
589 		if (owner)
590 			*owner = fsa.owner;
591 		if (crc)
592 			*crc = fsa.crc;
593 		return fsa.sym;
594 	}
595 
596 	pr_debug("Failed to find symbol %s\n", name);
597 	return NULL;
598 }
599 EXPORT_SYMBOL_GPL(find_symbol);
600 
601 /*
602  * Search for module by name: must hold module_mutex (or preempt disabled
603  * for read-only access).
604  */
find_module_all(const char * name,size_t len,bool even_unformed)605 static struct module *find_module_all(const char *name, size_t len,
606 				      bool even_unformed)
607 {
608 	struct module *mod;
609 
610 	module_assert_mutex_or_preempt();
611 
612 	list_for_each_entry_rcu(mod, &modules, list) {
613 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
614 			continue;
615 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
616 			return mod;
617 	}
618 	return NULL;
619 }
620 
find_module(const char * name)621 struct module *find_module(const char *name)
622 {
623 	module_assert_mutex();
624 	return find_module_all(name, strlen(name), false);
625 }
626 EXPORT_SYMBOL_GPL(find_module);
627 
628 #ifdef CONFIG_SMP
629 
mod_percpu(struct module * mod)630 static inline void __percpu *mod_percpu(struct module *mod)
631 {
632 	return mod->percpu;
633 }
634 
percpu_modalloc(struct module * mod,struct load_info * info)635 static int percpu_modalloc(struct module *mod, struct load_info *info)
636 {
637 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
638 	unsigned long align = pcpusec->sh_addralign;
639 
640 	if (!pcpusec->sh_size)
641 		return 0;
642 
643 	if (align > PAGE_SIZE) {
644 		pr_warn("%s: per-cpu alignment %li > %li\n",
645 			mod->name, align, PAGE_SIZE);
646 		align = PAGE_SIZE;
647 	}
648 
649 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
650 	if (!mod->percpu) {
651 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
652 			mod->name, (unsigned long)pcpusec->sh_size);
653 		return -ENOMEM;
654 	}
655 	mod->percpu_size = pcpusec->sh_size;
656 	return 0;
657 }
658 
percpu_modfree(struct module * mod)659 static void percpu_modfree(struct module *mod)
660 {
661 	free_percpu(mod->percpu);
662 }
663 
find_pcpusec(struct load_info * info)664 static unsigned int find_pcpusec(struct load_info *info)
665 {
666 	return find_sec(info, ".data..percpu");
667 }
668 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)669 static void percpu_modcopy(struct module *mod,
670 			   const void *from, unsigned long size)
671 {
672 	int cpu;
673 
674 	for_each_possible_cpu(cpu)
675 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
676 }
677 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)678 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
679 {
680 	struct module *mod;
681 	unsigned int cpu;
682 
683 	preempt_disable();
684 
685 	list_for_each_entry_rcu(mod, &modules, list) {
686 		if (mod->state == MODULE_STATE_UNFORMED)
687 			continue;
688 		if (!mod->percpu_size)
689 			continue;
690 		for_each_possible_cpu(cpu) {
691 			void *start = per_cpu_ptr(mod->percpu, cpu);
692 			void *va = (void *)addr;
693 
694 			if (va >= start && va < start + mod->percpu_size) {
695 				if (can_addr) {
696 					*can_addr = (unsigned long) (va - start);
697 					*can_addr += (unsigned long)
698 						per_cpu_ptr(mod->percpu,
699 							    get_boot_cpu_id());
700 				}
701 				preempt_enable();
702 				return true;
703 			}
704 		}
705 	}
706 
707 	preempt_enable();
708 	return false;
709 }
710 
711 /**
712  * is_module_percpu_address - test whether address is from module static percpu
713  * @addr: address to test
714  *
715  * Test whether @addr belongs to module static percpu area.
716  *
717  * RETURNS:
718  * %true if @addr is from module static percpu area
719  */
is_module_percpu_address(unsigned long addr)720 bool is_module_percpu_address(unsigned long addr)
721 {
722 	return __is_module_percpu_address(addr, NULL);
723 }
724 
725 #else /* ... !CONFIG_SMP */
726 
mod_percpu(struct module * mod)727 static inline void __percpu *mod_percpu(struct module *mod)
728 {
729 	return NULL;
730 }
percpu_modalloc(struct module * mod,struct load_info * info)731 static int percpu_modalloc(struct module *mod, struct load_info *info)
732 {
733 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
734 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
735 		return -ENOMEM;
736 	return 0;
737 }
percpu_modfree(struct module * mod)738 static inline void percpu_modfree(struct module *mod)
739 {
740 }
find_pcpusec(struct load_info * info)741 static unsigned int find_pcpusec(struct load_info *info)
742 {
743 	return 0;
744 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)745 static inline void percpu_modcopy(struct module *mod,
746 				  const void *from, unsigned long size)
747 {
748 	/* pcpusec should be 0, and size of that section should be 0. */
749 	BUG_ON(size != 0);
750 }
is_module_percpu_address(unsigned long addr)751 bool is_module_percpu_address(unsigned long addr)
752 {
753 	return false;
754 }
755 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)756 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
757 {
758 	return false;
759 }
760 
761 #endif /* CONFIG_SMP */
762 
763 #define MODINFO_ATTR(field)	\
764 static void setup_modinfo_##field(struct module *mod, const char *s)  \
765 {                                                                     \
766 	mod->field = kstrdup(s, GFP_KERNEL);                          \
767 }                                                                     \
768 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
769 			struct module_kobject *mk, char *buffer)      \
770 {                                                                     \
771 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
772 }                                                                     \
773 static int modinfo_##field##_exists(struct module *mod)               \
774 {                                                                     \
775 	return mod->field != NULL;                                    \
776 }                                                                     \
777 static void free_modinfo_##field(struct module *mod)                  \
778 {                                                                     \
779 	kfree(mod->field);                                            \
780 	mod->field = NULL;                                            \
781 }                                                                     \
782 static struct module_attribute modinfo_##field = {                    \
783 	.attr = { .name = __stringify(field), .mode = 0444 },         \
784 	.show = show_modinfo_##field,                                 \
785 	.setup = setup_modinfo_##field,                               \
786 	.test = modinfo_##field##_exists,                             \
787 	.free = free_modinfo_##field,                                 \
788 };
789 
790 MODINFO_ATTR(version);
791 MODINFO_ATTR(srcversion);
792 
793 static char last_unloaded_module[MODULE_NAME_LEN+1];
794 
795 #ifdef CONFIG_MODULE_UNLOAD
796 
797 EXPORT_TRACEPOINT_SYMBOL(module_get);
798 
799 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
800 #define MODULE_REF_BASE	1
801 
802 /* Init the unload section of the module. */
module_unload_init(struct module * mod)803 static int module_unload_init(struct module *mod)
804 {
805 	/*
806 	 * Initialize reference counter to MODULE_REF_BASE.
807 	 * refcnt == 0 means module is going.
808 	 */
809 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
810 
811 	INIT_LIST_HEAD(&mod->source_list);
812 	INIT_LIST_HEAD(&mod->target_list);
813 
814 	/* Hold reference count during initialization. */
815 	atomic_inc(&mod->refcnt);
816 
817 	return 0;
818 }
819 
820 /* Does a already use b? */
already_uses(struct module * a,struct module * b)821 static int already_uses(struct module *a, struct module *b)
822 {
823 	struct module_use *use;
824 
825 	list_for_each_entry(use, &b->source_list, source_list) {
826 		if (use->source == a) {
827 			pr_debug("%s uses %s!\n", a->name, b->name);
828 			return 1;
829 		}
830 	}
831 	pr_debug("%s does not use %s!\n", a->name, b->name);
832 	return 0;
833 }
834 
835 /*
836  * Module a uses b
837  *  - we add 'a' as a "source", 'b' as a "target" of module use
838  *  - the module_use is added to the list of 'b' sources (so
839  *    'b' can walk the list to see who sourced them), and of 'a'
840  *    targets (so 'a' can see what modules it targets).
841  */
add_module_usage(struct module * a,struct module * b)842 static int add_module_usage(struct module *a, struct module *b)
843 {
844 	struct module_use *use;
845 
846 	pr_debug("Allocating new usage for %s.\n", a->name);
847 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
848 	if (!use)
849 		return -ENOMEM;
850 
851 	use->source = a;
852 	use->target = b;
853 	list_add(&use->source_list, &b->source_list);
854 	list_add(&use->target_list, &a->target_list);
855 	return 0;
856 }
857 
858 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)859 int ref_module(struct module *a, struct module *b)
860 {
861 	int err;
862 
863 	if (b == NULL || already_uses(a, b))
864 		return 0;
865 
866 	/* If module isn't available, we fail. */
867 	err = strong_try_module_get(b);
868 	if (err)
869 		return err;
870 
871 	err = add_module_usage(a, b);
872 	if (err) {
873 		module_put(b);
874 		return err;
875 	}
876 	return 0;
877 }
878 EXPORT_SYMBOL_GPL(ref_module);
879 
880 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)881 static void module_unload_free(struct module *mod)
882 {
883 	struct module_use *use, *tmp;
884 
885 	mutex_lock(&module_mutex);
886 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
887 		struct module *i = use->target;
888 		pr_debug("%s unusing %s\n", mod->name, i->name);
889 		module_put(i);
890 		list_del(&use->source_list);
891 		list_del(&use->target_list);
892 		kfree(use);
893 	}
894 	mutex_unlock(&module_mutex);
895 }
896 
897 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)898 static inline int try_force_unload(unsigned int flags)
899 {
900 	int ret = (flags & O_TRUNC);
901 	if (ret)
902 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
903 	return ret;
904 }
905 #else
try_force_unload(unsigned int flags)906 static inline int try_force_unload(unsigned int flags)
907 {
908 	return 0;
909 }
910 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
911 
912 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)913 static int try_release_module_ref(struct module *mod)
914 {
915 	int ret;
916 
917 	/* Try to decrement refcnt which we set at loading */
918 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
919 	BUG_ON(ret < 0);
920 	if (ret)
921 		/* Someone can put this right now, recover with checking */
922 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
923 
924 	return ret;
925 }
926 
try_stop_module(struct module * mod,int flags,int * forced)927 static int try_stop_module(struct module *mod, int flags, int *forced)
928 {
929 	/* If it's not unused, quit unless we're forcing. */
930 	if (try_release_module_ref(mod) != 0) {
931 		*forced = try_force_unload(flags);
932 		if (!(*forced))
933 			return -EWOULDBLOCK;
934 	}
935 
936 	/* Mark it as dying. */
937 	mod->state = MODULE_STATE_GOING;
938 
939 	return 0;
940 }
941 
942 /**
943  * module_refcount - return the refcount or -1 if unloading
944  *
945  * @mod:	the module we're checking
946  *
947  * Returns:
948  *	-1 if the module is in the process of unloading
949  *	otherwise the number of references in the kernel to the module
950  */
module_refcount(struct module * mod)951 int module_refcount(struct module *mod)
952 {
953 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
954 }
955 EXPORT_SYMBOL(module_refcount);
956 
957 /* This exists whether we can unload or not */
958 static void free_module(struct module *mod);
959 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)960 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
961 		unsigned int, flags)
962 {
963 	struct module *mod;
964 	char name[MODULE_NAME_LEN];
965 	int ret, forced = 0;
966 
967 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
968 		return -EPERM;
969 
970 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
971 		return -EFAULT;
972 	name[MODULE_NAME_LEN-1] = '\0';
973 
974 	audit_log_kern_module(name);
975 
976 	if (mutex_lock_interruptible(&module_mutex) != 0)
977 		return -EINTR;
978 
979 	mod = find_module(name);
980 	if (!mod) {
981 		ret = -ENOENT;
982 		goto out;
983 	}
984 
985 	if (!list_empty(&mod->source_list)) {
986 		/* Other modules depend on us: get rid of them first. */
987 		ret = -EWOULDBLOCK;
988 		goto out;
989 	}
990 
991 	/* Doing init or already dying? */
992 	if (mod->state != MODULE_STATE_LIVE) {
993 		/* FIXME: if (force), slam module count damn the torpedoes */
994 		pr_debug("%s already dying\n", mod->name);
995 		ret = -EBUSY;
996 		goto out;
997 	}
998 
999 	/* If it has an init func, it must have an exit func to unload */
1000 	if (mod->init && !mod->exit) {
1001 		forced = try_force_unload(flags);
1002 		if (!forced) {
1003 			/* This module can't be removed */
1004 			ret = -EBUSY;
1005 			goto out;
1006 		}
1007 	}
1008 
1009 	/* Stop the machine so refcounts can't move and disable module. */
1010 	ret = try_stop_module(mod, flags, &forced);
1011 	if (ret != 0)
1012 		goto out;
1013 
1014 	mutex_unlock(&module_mutex);
1015 	/* Final destruction now no one is using it. */
1016 	if (mod->exit != NULL)
1017 		mod->exit();
1018 	blocking_notifier_call_chain(&module_notify_list,
1019 				     MODULE_STATE_GOING, mod);
1020 	klp_module_going(mod);
1021 	ftrace_release_mod(mod);
1022 
1023 	async_synchronize_full();
1024 
1025 	/* Store the name of the last unloaded module for diagnostic purposes */
1026 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
1027 
1028 	free_module(mod);
1029 	return 0;
1030 out:
1031 	mutex_unlock(&module_mutex);
1032 	return ret;
1033 }
1034 
print_unload_info(struct seq_file * m,struct module * mod)1035 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1036 {
1037 	struct module_use *use;
1038 	int printed_something = 0;
1039 
1040 	seq_printf(m, " %i ", module_refcount(mod));
1041 
1042 	/*
1043 	 * Always include a trailing , so userspace can differentiate
1044 	 * between this and the old multi-field proc format.
1045 	 */
1046 	list_for_each_entry(use, &mod->source_list, source_list) {
1047 		printed_something = 1;
1048 		seq_printf(m, "%s,", use->source->name);
1049 	}
1050 
1051 	if (mod->init != NULL && mod->exit == NULL) {
1052 		printed_something = 1;
1053 		seq_puts(m, "[permanent],");
1054 	}
1055 
1056 	if (!printed_something)
1057 		seq_puts(m, "-");
1058 }
1059 
__symbol_put(const char * symbol)1060 void __symbol_put(const char *symbol)
1061 {
1062 	struct module *owner;
1063 
1064 	preempt_disable();
1065 	if (!find_symbol(symbol, &owner, NULL, true, false))
1066 		BUG();
1067 	module_put(owner);
1068 	preempt_enable();
1069 }
1070 EXPORT_SYMBOL(__symbol_put);
1071 
1072 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1073 void symbol_put_addr(void *addr)
1074 {
1075 	struct module *modaddr;
1076 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1077 
1078 	if (core_kernel_text(a))
1079 		return;
1080 
1081 	/*
1082 	 * Even though we hold a reference on the module; we still need to
1083 	 * disable preemption in order to safely traverse the data structure.
1084 	 */
1085 	preempt_disable();
1086 	modaddr = __module_text_address(a);
1087 	BUG_ON(!modaddr);
1088 	module_put(modaddr);
1089 	preempt_enable();
1090 }
1091 EXPORT_SYMBOL_GPL(symbol_put_addr);
1092 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1093 static ssize_t show_refcnt(struct module_attribute *mattr,
1094 			   struct module_kobject *mk, char *buffer)
1095 {
1096 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1097 }
1098 
1099 static struct module_attribute modinfo_refcnt =
1100 	__ATTR(refcnt, 0444, show_refcnt, NULL);
1101 
__module_get(struct module * module)1102 void __module_get(struct module *module)
1103 {
1104 	if (module) {
1105 		preempt_disable();
1106 		atomic_inc(&module->refcnt);
1107 		trace_module_get(module, _RET_IP_);
1108 		preempt_enable();
1109 	}
1110 }
1111 EXPORT_SYMBOL(__module_get);
1112 
try_module_get(struct module * module)1113 bool try_module_get(struct module *module)
1114 {
1115 	bool ret = true;
1116 
1117 	if (module) {
1118 		preempt_disable();
1119 		/* Note: here, we can fail to get a reference */
1120 		if (likely(module_is_live(module) &&
1121 			   atomic_inc_not_zero(&module->refcnt) != 0))
1122 			trace_module_get(module, _RET_IP_);
1123 		else
1124 			ret = false;
1125 
1126 		preempt_enable();
1127 	}
1128 	return ret;
1129 }
1130 EXPORT_SYMBOL(try_module_get);
1131 
module_put(struct module * module)1132 void module_put(struct module *module)
1133 {
1134 	int ret;
1135 
1136 	if (module) {
1137 		preempt_disable();
1138 		ret = atomic_dec_if_positive(&module->refcnt);
1139 		WARN_ON(ret < 0);	/* Failed to put refcount */
1140 		trace_module_put(module, _RET_IP_);
1141 		preempt_enable();
1142 	}
1143 }
1144 EXPORT_SYMBOL(module_put);
1145 
1146 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1147 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1148 {
1149 	/* We don't know the usage count, or what modules are using. */
1150 	seq_puts(m, " - -");
1151 }
1152 
module_unload_free(struct module * mod)1153 static inline void module_unload_free(struct module *mod)
1154 {
1155 }
1156 
ref_module(struct module * a,struct module * b)1157 int ref_module(struct module *a, struct module *b)
1158 {
1159 	return strong_try_module_get(b);
1160 }
1161 EXPORT_SYMBOL_GPL(ref_module);
1162 
module_unload_init(struct module * mod)1163 static inline int module_unload_init(struct module *mod)
1164 {
1165 	return 0;
1166 }
1167 #endif /* CONFIG_MODULE_UNLOAD */
1168 
module_flags_taint(struct module * mod,char * buf)1169 static size_t module_flags_taint(struct module *mod, char *buf)
1170 {
1171 	size_t l = 0;
1172 	int i;
1173 
1174 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1175 		if (taint_flags[i].module && test_bit(i, &mod->taints))
1176 			buf[l++] = taint_flags[i].c_true;
1177 	}
1178 
1179 	return l;
1180 }
1181 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1182 static ssize_t show_initstate(struct module_attribute *mattr,
1183 			      struct module_kobject *mk, char *buffer)
1184 {
1185 	const char *state = "unknown";
1186 
1187 	switch (mk->mod->state) {
1188 	case MODULE_STATE_LIVE:
1189 		state = "live";
1190 		break;
1191 	case MODULE_STATE_COMING:
1192 		state = "coming";
1193 		break;
1194 	case MODULE_STATE_GOING:
1195 		state = "going";
1196 		break;
1197 	default:
1198 		BUG();
1199 	}
1200 	return sprintf(buffer, "%s\n", state);
1201 }
1202 
1203 static struct module_attribute modinfo_initstate =
1204 	__ATTR(initstate, 0444, show_initstate, NULL);
1205 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1206 static ssize_t store_uevent(struct module_attribute *mattr,
1207 			    struct module_kobject *mk,
1208 			    const char *buffer, size_t count)
1209 {
1210 	kobject_synth_uevent(&mk->kobj, buffer, count);
1211 	return count;
1212 }
1213 
1214 struct module_attribute module_uevent =
1215 	__ATTR(uevent, 0200, NULL, store_uevent);
1216 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1217 static ssize_t show_coresize(struct module_attribute *mattr,
1218 			     struct module_kobject *mk, char *buffer)
1219 {
1220 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1221 }
1222 
1223 static struct module_attribute modinfo_coresize =
1224 	__ATTR(coresize, 0444, show_coresize, NULL);
1225 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1226 static ssize_t show_initsize(struct module_attribute *mattr,
1227 			     struct module_kobject *mk, char *buffer)
1228 {
1229 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1230 }
1231 
1232 static struct module_attribute modinfo_initsize =
1233 	__ATTR(initsize, 0444, show_initsize, NULL);
1234 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1235 static ssize_t show_taint(struct module_attribute *mattr,
1236 			  struct module_kobject *mk, char *buffer)
1237 {
1238 	size_t l;
1239 
1240 	l = module_flags_taint(mk->mod, buffer);
1241 	buffer[l++] = '\n';
1242 	return l;
1243 }
1244 
1245 static struct module_attribute modinfo_taint =
1246 	__ATTR(taint, 0444, show_taint, NULL);
1247 
1248 static struct module_attribute *modinfo_attrs[] = {
1249 	&module_uevent,
1250 	&modinfo_version,
1251 	&modinfo_srcversion,
1252 	&modinfo_initstate,
1253 	&modinfo_coresize,
1254 	&modinfo_initsize,
1255 	&modinfo_taint,
1256 #ifdef CONFIG_MODULE_UNLOAD
1257 	&modinfo_refcnt,
1258 #endif
1259 	NULL,
1260 };
1261 
1262 static const char vermagic[] = VERMAGIC_STRING;
1263 
try_to_force_load(struct module * mod,const char * reason)1264 static int try_to_force_load(struct module *mod, const char *reason)
1265 {
1266 #ifdef CONFIG_MODULE_FORCE_LOAD
1267 	if (!test_taint(TAINT_FORCED_MODULE))
1268 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1269 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1270 	return 0;
1271 #else
1272 	return -ENOEXEC;
1273 #endif
1274 }
1275 
1276 #ifdef CONFIG_MODVERSIONS
1277 
resolve_rel_crc(const s32 * crc)1278 static u32 resolve_rel_crc(const s32 *crc)
1279 {
1280 	return *(u32 *)((void *)crc + *crc);
1281 }
1282 
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1283 static int check_version(const struct load_info *info,
1284 			 const char *symname,
1285 			 struct module *mod,
1286 			 const s32 *crc)
1287 {
1288 	Elf_Shdr *sechdrs = info->sechdrs;
1289 	unsigned int versindex = info->index.vers;
1290 	unsigned int i, num_versions;
1291 	struct modversion_info *versions;
1292 
1293 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1294 	if (!crc)
1295 		return 1;
1296 
1297 	/* No versions at all?  modprobe --force does this. */
1298 	if (versindex == 0)
1299 		return try_to_force_load(mod, symname) == 0;
1300 
1301 	versions = (void *) sechdrs[versindex].sh_addr;
1302 	num_versions = sechdrs[versindex].sh_size
1303 		/ sizeof(struct modversion_info);
1304 
1305 	for (i = 0; i < num_versions; i++) {
1306 		u32 crcval;
1307 
1308 		if (strcmp(versions[i].name, symname) != 0)
1309 			continue;
1310 
1311 		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1312 			crcval = resolve_rel_crc(crc);
1313 		else
1314 			crcval = *crc;
1315 		if (versions[i].crc == crcval)
1316 			return 1;
1317 		pr_debug("Found checksum %X vs module %lX\n",
1318 			 crcval, versions[i].crc);
1319 		goto bad_version;
1320 	}
1321 
1322 	/* Broken toolchain. Warn once, then let it go.. */
1323 	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1324 	return 1;
1325 
1326 bad_version:
1327 	pr_warn("%s: disagrees about version of symbol %s\n",
1328 	       info->name, symname);
1329 	return 0;
1330 }
1331 
check_modstruct_version(const struct load_info * info,struct module * mod)1332 static inline int check_modstruct_version(const struct load_info *info,
1333 					  struct module *mod)
1334 {
1335 	const s32 *crc;
1336 
1337 	/*
1338 	 * Since this should be found in kernel (which can't be removed), no
1339 	 * locking is necessary -- use preempt_disable() to placate lockdep.
1340 	 */
1341 	preempt_disable();
1342 	if (!find_symbol("module_layout", NULL, &crc, true, false)) {
1343 		preempt_enable();
1344 		BUG();
1345 	}
1346 	preempt_enable();
1347 	return check_version(info, "module_layout", mod, crc);
1348 }
1349 
1350 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1351 static inline int same_magic(const char *amagic, const char *bmagic,
1352 			     bool has_crcs)
1353 {
1354 	if (has_crcs) {
1355 		amagic += strcspn(amagic, " ");
1356 		bmagic += strcspn(bmagic, " ");
1357 	}
1358 	return strcmp(amagic, bmagic) == 0;
1359 }
1360 #else
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1361 static inline int check_version(const struct load_info *info,
1362 				const char *symname,
1363 				struct module *mod,
1364 				const s32 *crc)
1365 {
1366 	return 1;
1367 }
1368 
check_modstruct_version(const struct load_info * info,struct module * mod)1369 static inline int check_modstruct_version(const struct load_info *info,
1370 					  struct module *mod)
1371 {
1372 	return 1;
1373 }
1374 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1375 static inline int same_magic(const char *amagic, const char *bmagic,
1376 			     bool has_crcs)
1377 {
1378 	return strcmp(amagic, bmagic) == 0;
1379 }
1380 #endif /* CONFIG_MODVERSIONS */
1381 
1382 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1383 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1384 						  const struct load_info *info,
1385 						  const char *name,
1386 						  char ownername[])
1387 {
1388 	struct module *owner;
1389 	const struct kernel_symbol *sym;
1390 	const s32 *crc;
1391 	int err;
1392 
1393 	/*
1394 	 * The module_mutex should not be a heavily contended lock;
1395 	 * if we get the occasional sleep here, we'll go an extra iteration
1396 	 * in the wait_event_interruptible(), which is harmless.
1397 	 */
1398 	sched_annotate_sleep();
1399 	mutex_lock(&module_mutex);
1400 	sym = find_symbol(name, &owner, &crc,
1401 			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1402 	if (!sym)
1403 		goto unlock;
1404 
1405 	if (!check_version(info, name, mod, crc)) {
1406 		sym = ERR_PTR(-EINVAL);
1407 		goto getname;
1408 	}
1409 
1410 	err = ref_module(mod, owner);
1411 	if (err) {
1412 		sym = ERR_PTR(err);
1413 		goto getname;
1414 	}
1415 
1416 getname:
1417 	/* We must make copy under the lock if we failed to get ref. */
1418 	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1419 unlock:
1420 	mutex_unlock(&module_mutex);
1421 	return sym;
1422 }
1423 
1424 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1425 resolve_symbol_wait(struct module *mod,
1426 		    const struct load_info *info,
1427 		    const char *name)
1428 {
1429 	const struct kernel_symbol *ksym;
1430 	char owner[MODULE_NAME_LEN];
1431 
1432 	if (wait_event_interruptible_timeout(module_wq,
1433 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1434 			|| PTR_ERR(ksym) != -EBUSY,
1435 					     30 * HZ) <= 0) {
1436 		pr_warn("%s: gave up waiting for init of module %s.\n",
1437 			mod->name, owner);
1438 	}
1439 	return ksym;
1440 }
1441 
1442 /*
1443  * /sys/module/foo/sections stuff
1444  * J. Corbet <corbet@lwn.net>
1445  */
1446 #ifdef CONFIG_SYSFS
1447 
1448 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1449 static inline bool sect_empty(const Elf_Shdr *sect)
1450 {
1451 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1452 }
1453 
1454 struct module_sect_attr {
1455 	struct module_attribute mattr;
1456 	char *name;
1457 	unsigned long address;
1458 };
1459 
1460 struct module_sect_attrs {
1461 	struct attribute_group grp;
1462 	unsigned int nsections;
1463 	struct module_sect_attr attrs[0];
1464 };
1465 
module_sect_show(struct module_attribute * mattr,struct module_kobject * mk,char * buf)1466 static ssize_t module_sect_show(struct module_attribute *mattr,
1467 				struct module_kobject *mk, char *buf)
1468 {
1469 	struct module_sect_attr *sattr =
1470 		container_of(mattr, struct module_sect_attr, mattr);
1471 	return sprintf(buf, "0x%px\n", kptr_restrict < 2 ?
1472 		       (void *)sattr->address : NULL);
1473 }
1474 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1475 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1476 {
1477 	unsigned int section;
1478 
1479 	for (section = 0; section < sect_attrs->nsections; section++)
1480 		kfree(sect_attrs->attrs[section].name);
1481 	kfree(sect_attrs);
1482 }
1483 
add_sect_attrs(struct module * mod,const struct load_info * info)1484 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1485 {
1486 	unsigned int nloaded = 0, i, size[2];
1487 	struct module_sect_attrs *sect_attrs;
1488 	struct module_sect_attr *sattr;
1489 	struct attribute **gattr;
1490 
1491 	/* Count loaded sections and allocate structures */
1492 	for (i = 0; i < info->hdr->e_shnum; i++)
1493 		if (!sect_empty(&info->sechdrs[i]))
1494 			nloaded++;
1495 	size[0] = ALIGN(sizeof(*sect_attrs)
1496 			+ nloaded * sizeof(sect_attrs->attrs[0]),
1497 			sizeof(sect_attrs->grp.attrs[0]));
1498 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1499 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1500 	if (sect_attrs == NULL)
1501 		return;
1502 
1503 	/* Setup section attributes. */
1504 	sect_attrs->grp.name = "sections";
1505 	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1506 
1507 	sect_attrs->nsections = 0;
1508 	sattr = &sect_attrs->attrs[0];
1509 	gattr = &sect_attrs->grp.attrs[0];
1510 	for (i = 0; i < info->hdr->e_shnum; i++) {
1511 		Elf_Shdr *sec = &info->sechdrs[i];
1512 		if (sect_empty(sec))
1513 			continue;
1514 		sattr->address = sec->sh_addr;
1515 		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1516 					GFP_KERNEL);
1517 		if (sattr->name == NULL)
1518 			goto out;
1519 		sect_attrs->nsections++;
1520 		sysfs_attr_init(&sattr->mattr.attr);
1521 		sattr->mattr.show = module_sect_show;
1522 		sattr->mattr.store = NULL;
1523 		sattr->mattr.attr.name = sattr->name;
1524 		sattr->mattr.attr.mode = S_IRUSR;
1525 		*(gattr++) = &(sattr++)->mattr.attr;
1526 	}
1527 	*gattr = NULL;
1528 
1529 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1530 		goto out;
1531 
1532 	mod->sect_attrs = sect_attrs;
1533 	return;
1534   out:
1535 	free_sect_attrs(sect_attrs);
1536 }
1537 
remove_sect_attrs(struct module * mod)1538 static void remove_sect_attrs(struct module *mod)
1539 {
1540 	if (mod->sect_attrs) {
1541 		sysfs_remove_group(&mod->mkobj.kobj,
1542 				   &mod->sect_attrs->grp);
1543 		/* We are positive that no one is using any sect attrs
1544 		 * at this point.  Deallocate immediately. */
1545 		free_sect_attrs(mod->sect_attrs);
1546 		mod->sect_attrs = NULL;
1547 	}
1548 }
1549 
1550 /*
1551  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1552  */
1553 
1554 struct module_notes_attrs {
1555 	struct kobject *dir;
1556 	unsigned int notes;
1557 	struct bin_attribute attrs[0];
1558 };
1559 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1560 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1561 				 struct bin_attribute *bin_attr,
1562 				 char *buf, loff_t pos, size_t count)
1563 {
1564 	/*
1565 	 * The caller checked the pos and count against our size.
1566 	 */
1567 	memcpy(buf, bin_attr->private + pos, count);
1568 	return count;
1569 }
1570 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1571 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1572 			     unsigned int i)
1573 {
1574 	if (notes_attrs->dir) {
1575 		while (i-- > 0)
1576 			sysfs_remove_bin_file(notes_attrs->dir,
1577 					      &notes_attrs->attrs[i]);
1578 		kobject_put(notes_attrs->dir);
1579 	}
1580 	kfree(notes_attrs);
1581 }
1582 
add_notes_attrs(struct module * mod,const struct load_info * info)1583 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1584 {
1585 	unsigned int notes, loaded, i;
1586 	struct module_notes_attrs *notes_attrs;
1587 	struct bin_attribute *nattr;
1588 
1589 	/* failed to create section attributes, so can't create notes */
1590 	if (!mod->sect_attrs)
1591 		return;
1592 
1593 	/* Count notes sections and allocate structures.  */
1594 	notes = 0;
1595 	for (i = 0; i < info->hdr->e_shnum; i++)
1596 		if (!sect_empty(&info->sechdrs[i]) &&
1597 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1598 			++notes;
1599 
1600 	if (notes == 0)
1601 		return;
1602 
1603 	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1604 			      GFP_KERNEL);
1605 	if (notes_attrs == NULL)
1606 		return;
1607 
1608 	notes_attrs->notes = notes;
1609 	nattr = &notes_attrs->attrs[0];
1610 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1611 		if (sect_empty(&info->sechdrs[i]))
1612 			continue;
1613 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1614 			sysfs_bin_attr_init(nattr);
1615 			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1616 			nattr->attr.mode = S_IRUGO;
1617 			nattr->size = info->sechdrs[i].sh_size;
1618 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1619 			nattr->read = module_notes_read;
1620 			++nattr;
1621 		}
1622 		++loaded;
1623 	}
1624 
1625 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1626 	if (!notes_attrs->dir)
1627 		goto out;
1628 
1629 	for (i = 0; i < notes; ++i)
1630 		if (sysfs_create_bin_file(notes_attrs->dir,
1631 					  &notes_attrs->attrs[i]))
1632 			goto out;
1633 
1634 	mod->notes_attrs = notes_attrs;
1635 	return;
1636 
1637   out:
1638 	free_notes_attrs(notes_attrs, i);
1639 }
1640 
remove_notes_attrs(struct module * mod)1641 static void remove_notes_attrs(struct module *mod)
1642 {
1643 	if (mod->notes_attrs)
1644 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1645 }
1646 
1647 #else
1648 
add_sect_attrs(struct module * mod,const struct load_info * info)1649 static inline void add_sect_attrs(struct module *mod,
1650 				  const struct load_info *info)
1651 {
1652 }
1653 
remove_sect_attrs(struct module * mod)1654 static inline void remove_sect_attrs(struct module *mod)
1655 {
1656 }
1657 
add_notes_attrs(struct module * mod,const struct load_info * info)1658 static inline void add_notes_attrs(struct module *mod,
1659 				   const struct load_info *info)
1660 {
1661 }
1662 
remove_notes_attrs(struct module * mod)1663 static inline void remove_notes_attrs(struct module *mod)
1664 {
1665 }
1666 #endif /* CONFIG_KALLSYMS */
1667 
del_usage_links(struct module * mod)1668 static void del_usage_links(struct module *mod)
1669 {
1670 #ifdef CONFIG_MODULE_UNLOAD
1671 	struct module_use *use;
1672 
1673 	mutex_lock(&module_mutex);
1674 	list_for_each_entry(use, &mod->target_list, target_list)
1675 		sysfs_remove_link(use->target->holders_dir, mod->name);
1676 	mutex_unlock(&module_mutex);
1677 #endif
1678 }
1679 
add_usage_links(struct module * mod)1680 static int add_usage_links(struct module *mod)
1681 {
1682 	int ret = 0;
1683 #ifdef CONFIG_MODULE_UNLOAD
1684 	struct module_use *use;
1685 
1686 	mutex_lock(&module_mutex);
1687 	list_for_each_entry(use, &mod->target_list, target_list) {
1688 		ret = sysfs_create_link(use->target->holders_dir,
1689 					&mod->mkobj.kobj, mod->name);
1690 		if (ret)
1691 			break;
1692 	}
1693 	mutex_unlock(&module_mutex);
1694 	if (ret)
1695 		del_usage_links(mod);
1696 #endif
1697 	return ret;
1698 }
1699 
module_add_modinfo_attrs(struct module * mod)1700 static int module_add_modinfo_attrs(struct module *mod)
1701 {
1702 	struct module_attribute *attr;
1703 	struct module_attribute *temp_attr;
1704 	int error = 0;
1705 	int i;
1706 
1707 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1708 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1709 					GFP_KERNEL);
1710 	if (!mod->modinfo_attrs)
1711 		return -ENOMEM;
1712 
1713 	temp_attr = mod->modinfo_attrs;
1714 	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1715 		if (!attr->test || attr->test(mod)) {
1716 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1717 			sysfs_attr_init(&temp_attr->attr);
1718 			error = sysfs_create_file(&mod->mkobj.kobj,
1719 					&temp_attr->attr);
1720 			++temp_attr;
1721 		}
1722 	}
1723 	return error;
1724 }
1725 
module_remove_modinfo_attrs(struct module * mod)1726 static void module_remove_modinfo_attrs(struct module *mod)
1727 {
1728 	struct module_attribute *attr;
1729 	int i;
1730 
1731 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1732 		/* pick a field to test for end of list */
1733 		if (!attr->attr.name)
1734 			break;
1735 		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1736 		if (attr->free)
1737 			attr->free(mod);
1738 	}
1739 	kfree(mod->modinfo_attrs);
1740 }
1741 
mod_kobject_put(struct module * mod)1742 static void mod_kobject_put(struct module *mod)
1743 {
1744 	DECLARE_COMPLETION_ONSTACK(c);
1745 	mod->mkobj.kobj_completion = &c;
1746 	kobject_put(&mod->mkobj.kobj);
1747 	wait_for_completion(&c);
1748 }
1749 
mod_sysfs_init(struct module * mod)1750 static int mod_sysfs_init(struct module *mod)
1751 {
1752 	int err;
1753 	struct kobject *kobj;
1754 
1755 	if (!module_sysfs_initialized) {
1756 		pr_err("%s: module sysfs not initialized\n", mod->name);
1757 		err = -EINVAL;
1758 		goto out;
1759 	}
1760 
1761 	kobj = kset_find_obj(module_kset, mod->name);
1762 	if (kobj) {
1763 		pr_err("%s: module is already loaded\n", mod->name);
1764 		kobject_put(kobj);
1765 		err = -EINVAL;
1766 		goto out;
1767 	}
1768 
1769 	mod->mkobj.mod = mod;
1770 
1771 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1772 	mod->mkobj.kobj.kset = module_kset;
1773 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1774 				   "%s", mod->name);
1775 	if (err)
1776 		mod_kobject_put(mod);
1777 
1778 	/* delay uevent until full sysfs population */
1779 out:
1780 	return err;
1781 }
1782 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1783 static int mod_sysfs_setup(struct module *mod,
1784 			   const struct load_info *info,
1785 			   struct kernel_param *kparam,
1786 			   unsigned int num_params)
1787 {
1788 	int err;
1789 
1790 	err = mod_sysfs_init(mod);
1791 	if (err)
1792 		goto out;
1793 
1794 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1795 	if (!mod->holders_dir) {
1796 		err = -ENOMEM;
1797 		goto out_unreg;
1798 	}
1799 
1800 	err = module_param_sysfs_setup(mod, kparam, num_params);
1801 	if (err)
1802 		goto out_unreg_holders;
1803 
1804 	err = module_add_modinfo_attrs(mod);
1805 	if (err)
1806 		goto out_unreg_param;
1807 
1808 	err = add_usage_links(mod);
1809 	if (err)
1810 		goto out_unreg_modinfo_attrs;
1811 
1812 	add_sect_attrs(mod, info);
1813 	add_notes_attrs(mod, info);
1814 
1815 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1816 	return 0;
1817 
1818 out_unreg_modinfo_attrs:
1819 	module_remove_modinfo_attrs(mod);
1820 out_unreg_param:
1821 	module_param_sysfs_remove(mod);
1822 out_unreg_holders:
1823 	kobject_put(mod->holders_dir);
1824 out_unreg:
1825 	mod_kobject_put(mod);
1826 out:
1827 	return err;
1828 }
1829 
mod_sysfs_fini(struct module * mod)1830 static void mod_sysfs_fini(struct module *mod)
1831 {
1832 	remove_notes_attrs(mod);
1833 	remove_sect_attrs(mod);
1834 	mod_kobject_put(mod);
1835 }
1836 
init_param_lock(struct module * mod)1837 static void init_param_lock(struct module *mod)
1838 {
1839 	mutex_init(&mod->param_lock);
1840 }
1841 #else /* !CONFIG_SYSFS */
1842 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1843 static int mod_sysfs_setup(struct module *mod,
1844 			   const struct load_info *info,
1845 			   struct kernel_param *kparam,
1846 			   unsigned int num_params)
1847 {
1848 	return 0;
1849 }
1850 
mod_sysfs_fini(struct module * mod)1851 static void mod_sysfs_fini(struct module *mod)
1852 {
1853 }
1854 
module_remove_modinfo_attrs(struct module * mod)1855 static void module_remove_modinfo_attrs(struct module *mod)
1856 {
1857 }
1858 
del_usage_links(struct module * mod)1859 static void del_usage_links(struct module *mod)
1860 {
1861 }
1862 
init_param_lock(struct module * mod)1863 static void init_param_lock(struct module *mod)
1864 {
1865 }
1866 #endif /* CONFIG_SYSFS */
1867 
mod_sysfs_teardown(struct module * mod)1868 static void mod_sysfs_teardown(struct module *mod)
1869 {
1870 	del_usage_links(mod);
1871 	module_remove_modinfo_attrs(mod);
1872 	module_param_sysfs_remove(mod);
1873 	kobject_put(mod->mkobj.drivers_dir);
1874 	kobject_put(mod->holders_dir);
1875 	mod_sysfs_fini(mod);
1876 }
1877 
1878 #ifdef CONFIG_STRICT_MODULE_RWX
1879 /*
1880  * LKM RO/NX protection: protect module's text/ro-data
1881  * from modification and any data from execution.
1882  *
1883  * General layout of module is:
1884  *          [text] [read-only-data] [ro-after-init] [writable data]
1885  * text_size -----^                ^               ^               ^
1886  * ro_size ------------------------|               |               |
1887  * ro_after_init_size -----------------------------|               |
1888  * size -----------------------------------------------------------|
1889  *
1890  * These values are always page-aligned (as is base)
1891  */
frob_text(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1892 static void frob_text(const struct module_layout *layout,
1893 		      int (*set_memory)(unsigned long start, int num_pages))
1894 {
1895 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1896 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1897 	set_memory((unsigned long)layout->base,
1898 		   layout->text_size >> PAGE_SHIFT);
1899 }
1900 
frob_rodata(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1901 static void frob_rodata(const struct module_layout *layout,
1902 			int (*set_memory)(unsigned long start, int num_pages))
1903 {
1904 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1905 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1906 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1907 	set_memory((unsigned long)layout->base + layout->text_size,
1908 		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1909 }
1910 
frob_ro_after_init(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1911 static void frob_ro_after_init(const struct module_layout *layout,
1912 				int (*set_memory)(unsigned long start, int num_pages))
1913 {
1914 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1915 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1916 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1917 	set_memory((unsigned long)layout->base + layout->ro_size,
1918 		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1919 }
1920 
frob_writable_data(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1921 static void frob_writable_data(const struct module_layout *layout,
1922 			       int (*set_memory)(unsigned long start, int num_pages))
1923 {
1924 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1925 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1926 	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1927 	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1928 		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1929 }
1930 
1931 /* livepatching wants to disable read-only so it can frob module. */
module_disable_ro(const struct module * mod)1932 void module_disable_ro(const struct module *mod)
1933 {
1934 	if (!rodata_enabled)
1935 		return;
1936 
1937 	frob_text(&mod->core_layout, set_memory_rw);
1938 	frob_rodata(&mod->core_layout, set_memory_rw);
1939 	frob_ro_after_init(&mod->core_layout, set_memory_rw);
1940 	frob_text(&mod->init_layout, set_memory_rw);
1941 	frob_rodata(&mod->init_layout, set_memory_rw);
1942 }
1943 
module_enable_ro(const struct module * mod,bool after_init)1944 void module_enable_ro(const struct module *mod, bool after_init)
1945 {
1946 	if (!rodata_enabled)
1947 		return;
1948 
1949 	frob_text(&mod->core_layout, set_memory_ro);
1950 	frob_rodata(&mod->core_layout, set_memory_ro);
1951 	frob_text(&mod->init_layout, set_memory_ro);
1952 	frob_rodata(&mod->init_layout, set_memory_ro);
1953 
1954 	if (after_init)
1955 		frob_ro_after_init(&mod->core_layout, set_memory_ro);
1956 }
1957 
module_enable_nx(const struct module * mod)1958 static void module_enable_nx(const struct module *mod)
1959 {
1960 	frob_rodata(&mod->core_layout, set_memory_nx);
1961 	frob_ro_after_init(&mod->core_layout, set_memory_nx);
1962 	frob_writable_data(&mod->core_layout, set_memory_nx);
1963 	frob_rodata(&mod->init_layout, set_memory_nx);
1964 	frob_writable_data(&mod->init_layout, set_memory_nx);
1965 }
1966 
module_disable_nx(const struct module * mod)1967 static void module_disable_nx(const struct module *mod)
1968 {
1969 	frob_rodata(&mod->core_layout, set_memory_x);
1970 	frob_ro_after_init(&mod->core_layout, set_memory_x);
1971 	frob_writable_data(&mod->core_layout, set_memory_x);
1972 	frob_rodata(&mod->init_layout, set_memory_x);
1973 	frob_writable_data(&mod->init_layout, set_memory_x);
1974 }
1975 
1976 /* Iterate through all modules and set each module's text as RW */
set_all_modules_text_rw(void)1977 void set_all_modules_text_rw(void)
1978 {
1979 	struct module *mod;
1980 
1981 	if (!rodata_enabled)
1982 		return;
1983 
1984 	mutex_lock(&module_mutex);
1985 	list_for_each_entry_rcu(mod, &modules, list) {
1986 		if (mod->state == MODULE_STATE_UNFORMED)
1987 			continue;
1988 
1989 		frob_text(&mod->core_layout, set_memory_rw);
1990 		frob_text(&mod->init_layout, set_memory_rw);
1991 	}
1992 	mutex_unlock(&module_mutex);
1993 }
1994 
1995 /* Iterate through all modules and set each module's text as RO */
set_all_modules_text_ro(void)1996 void set_all_modules_text_ro(void)
1997 {
1998 	struct module *mod;
1999 
2000 	if (!rodata_enabled)
2001 		return;
2002 
2003 	mutex_lock(&module_mutex);
2004 	list_for_each_entry_rcu(mod, &modules, list) {
2005 		/*
2006 		 * Ignore going modules since it's possible that ro
2007 		 * protection has already been disabled, otherwise we'll
2008 		 * run into protection faults at module deallocation.
2009 		 */
2010 		if (mod->state == MODULE_STATE_UNFORMED ||
2011 			mod->state == MODULE_STATE_GOING)
2012 			continue;
2013 
2014 		frob_text(&mod->core_layout, set_memory_ro);
2015 		frob_text(&mod->init_layout, set_memory_ro);
2016 	}
2017 	mutex_unlock(&module_mutex);
2018 }
2019 
disable_ro_nx(const struct module_layout * layout)2020 static void disable_ro_nx(const struct module_layout *layout)
2021 {
2022 	if (rodata_enabled) {
2023 		frob_text(layout, set_memory_rw);
2024 		frob_rodata(layout, set_memory_rw);
2025 		frob_ro_after_init(layout, set_memory_rw);
2026 	}
2027 	frob_rodata(layout, set_memory_x);
2028 	frob_ro_after_init(layout, set_memory_x);
2029 	frob_writable_data(layout, set_memory_x);
2030 }
2031 
2032 #else
disable_ro_nx(const struct module_layout * layout)2033 static void disable_ro_nx(const struct module_layout *layout) { }
module_enable_nx(const struct module * mod)2034 static void module_enable_nx(const struct module *mod) { }
module_disable_nx(const struct module * mod)2035 static void module_disable_nx(const struct module *mod) { }
2036 #endif
2037 
2038 #ifdef CONFIG_LIVEPATCH
2039 /*
2040  * Persist Elf information about a module. Copy the Elf header,
2041  * section header table, section string table, and symtab section
2042  * index from info to mod->klp_info.
2043  */
copy_module_elf(struct module * mod,struct load_info * info)2044 static int copy_module_elf(struct module *mod, struct load_info *info)
2045 {
2046 	unsigned int size, symndx;
2047 	int ret;
2048 
2049 	size = sizeof(*mod->klp_info);
2050 	mod->klp_info = kmalloc(size, GFP_KERNEL);
2051 	if (mod->klp_info == NULL)
2052 		return -ENOMEM;
2053 
2054 	/* Elf header */
2055 	size = sizeof(mod->klp_info->hdr);
2056 	memcpy(&mod->klp_info->hdr, info->hdr, size);
2057 
2058 	/* Elf section header table */
2059 	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2060 	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2061 	if (mod->klp_info->sechdrs == NULL) {
2062 		ret = -ENOMEM;
2063 		goto free_info;
2064 	}
2065 
2066 	/* Elf section name string table */
2067 	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2068 	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2069 	if (mod->klp_info->secstrings == NULL) {
2070 		ret = -ENOMEM;
2071 		goto free_sechdrs;
2072 	}
2073 
2074 	/* Elf symbol section index */
2075 	symndx = info->index.sym;
2076 	mod->klp_info->symndx = symndx;
2077 
2078 	/*
2079 	 * For livepatch modules, core_kallsyms.symtab is a complete
2080 	 * copy of the original symbol table. Adjust sh_addr to point
2081 	 * to core_kallsyms.symtab since the copy of the symtab in module
2082 	 * init memory is freed at the end of do_init_module().
2083 	 */
2084 	mod->klp_info->sechdrs[symndx].sh_addr = \
2085 		(unsigned long) mod->core_kallsyms.symtab;
2086 
2087 	return 0;
2088 
2089 free_sechdrs:
2090 	kfree(mod->klp_info->sechdrs);
2091 free_info:
2092 	kfree(mod->klp_info);
2093 	return ret;
2094 }
2095 
free_module_elf(struct module * mod)2096 static void free_module_elf(struct module *mod)
2097 {
2098 	kfree(mod->klp_info->sechdrs);
2099 	kfree(mod->klp_info->secstrings);
2100 	kfree(mod->klp_info);
2101 }
2102 #else /* !CONFIG_LIVEPATCH */
copy_module_elf(struct module * mod,struct load_info * info)2103 static int copy_module_elf(struct module *mod, struct load_info *info)
2104 {
2105 	return 0;
2106 }
2107 
free_module_elf(struct module * mod)2108 static void free_module_elf(struct module *mod)
2109 {
2110 }
2111 #endif /* CONFIG_LIVEPATCH */
2112 
module_memfree(void * module_region)2113 void __weak module_memfree(void *module_region)
2114 {
2115 	vfree(module_region);
2116 }
2117 
module_arch_cleanup(struct module * mod)2118 void __weak module_arch_cleanup(struct module *mod)
2119 {
2120 }
2121 
module_arch_freeing_init(struct module * mod)2122 void __weak module_arch_freeing_init(struct module *mod)
2123 {
2124 }
2125 
2126 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2127 static void free_module(struct module *mod)
2128 {
2129 	trace_module_free(mod);
2130 
2131 	mod_sysfs_teardown(mod);
2132 
2133 	/* We leave it in list to prevent duplicate loads, but make sure
2134 	 * that noone uses it while it's being deconstructed. */
2135 	mutex_lock(&module_mutex);
2136 	mod->state = MODULE_STATE_UNFORMED;
2137 	mutex_unlock(&module_mutex);
2138 
2139 	/* Remove dynamic debug info */
2140 	ddebug_remove_module(mod->name);
2141 
2142 	/* Arch-specific cleanup. */
2143 	module_arch_cleanup(mod);
2144 
2145 	/* Module unload stuff */
2146 	module_unload_free(mod);
2147 
2148 	/* Free any allocated parameters. */
2149 	destroy_params(mod->kp, mod->num_kp);
2150 
2151 	if (is_livepatch_module(mod))
2152 		free_module_elf(mod);
2153 
2154 	/* Now we can delete it from the lists */
2155 	mutex_lock(&module_mutex);
2156 	/* Unlink carefully: kallsyms could be walking list. */
2157 	list_del_rcu(&mod->list);
2158 	mod_tree_remove(mod);
2159 	/* Remove this module from bug list, this uses list_del_rcu */
2160 	module_bug_cleanup(mod);
2161 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2162 	synchronize_sched();
2163 	mutex_unlock(&module_mutex);
2164 
2165 	/* This may be empty, but that's OK */
2166 	disable_ro_nx(&mod->init_layout);
2167 	module_arch_freeing_init(mod);
2168 	module_memfree(mod->init_layout.base);
2169 	kfree(mod->args);
2170 	percpu_modfree(mod);
2171 
2172 	/* Free lock-classes; relies on the preceding sync_rcu(). */
2173 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2174 
2175 	/* Finally, free the core (containing the module structure) */
2176 	disable_ro_nx(&mod->core_layout);
2177 	module_memfree(mod->core_layout.base);
2178 }
2179 
__symbol_get(const char * symbol)2180 void *__symbol_get(const char *symbol)
2181 {
2182 	struct module *owner;
2183 	const struct kernel_symbol *sym;
2184 
2185 	preempt_disable();
2186 	sym = find_symbol(symbol, &owner, NULL, true, true);
2187 	if (sym && strong_try_module_get(owner))
2188 		sym = NULL;
2189 	preempt_enable();
2190 
2191 	return sym ? (void *)kernel_symbol_value(sym) : NULL;
2192 }
2193 EXPORT_SYMBOL_GPL(__symbol_get);
2194 
2195 /*
2196  * Ensure that an exported symbol [global namespace] does not already exist
2197  * in the kernel or in some other module's exported symbol table.
2198  *
2199  * You must hold the module_mutex.
2200  */
verify_export_symbols(struct module * mod)2201 static int verify_export_symbols(struct module *mod)
2202 {
2203 	unsigned int i;
2204 	struct module *owner;
2205 	const struct kernel_symbol *s;
2206 	struct {
2207 		const struct kernel_symbol *sym;
2208 		unsigned int num;
2209 	} arr[] = {
2210 		{ mod->syms, mod->num_syms },
2211 		{ mod->gpl_syms, mod->num_gpl_syms },
2212 		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2213 #ifdef CONFIG_UNUSED_SYMBOLS
2214 		{ mod->unused_syms, mod->num_unused_syms },
2215 		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2216 #endif
2217 	};
2218 
2219 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2220 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2221 			if (find_symbol(kernel_symbol_name(s), &owner, NULL,
2222 					true, false)) {
2223 				pr_err("%s: exports duplicate symbol %s"
2224 				       " (owned by %s)\n",
2225 				       mod->name, kernel_symbol_name(s),
2226 				       module_name(owner));
2227 				return -ENOEXEC;
2228 			}
2229 		}
2230 	}
2231 	return 0;
2232 }
2233 
2234 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2235 static int simplify_symbols(struct module *mod, const struct load_info *info)
2236 {
2237 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2238 	Elf_Sym *sym = (void *)symsec->sh_addr;
2239 	unsigned long secbase;
2240 	unsigned int i;
2241 	int ret = 0;
2242 	const struct kernel_symbol *ksym;
2243 
2244 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2245 		const char *name = info->strtab + sym[i].st_name;
2246 
2247 		switch (sym[i].st_shndx) {
2248 		case SHN_COMMON:
2249 			/* Ignore common symbols */
2250 			if (!strncmp(name, "__gnu_lto", 9))
2251 				break;
2252 
2253 			/* We compiled with -fno-common.  These are not
2254 			   supposed to happen.  */
2255 			pr_debug("Common symbol: %s\n", name);
2256 			pr_warn("%s: please compile with -fno-common\n",
2257 			       mod->name);
2258 			ret = -ENOEXEC;
2259 			break;
2260 
2261 		case SHN_ABS:
2262 			/* Don't need to do anything */
2263 			pr_debug("Absolute symbol: 0x%08lx\n",
2264 			       (long)sym[i].st_value);
2265 			break;
2266 
2267 		case SHN_LIVEPATCH:
2268 			/* Livepatch symbols are resolved by livepatch */
2269 			break;
2270 
2271 		case SHN_UNDEF:
2272 			ksym = resolve_symbol_wait(mod, info, name);
2273 			/* Ok if resolved.  */
2274 			if (ksym && !IS_ERR(ksym)) {
2275 				sym[i].st_value = kernel_symbol_value(ksym);
2276 				break;
2277 			}
2278 
2279 			/* Ok if weak.  */
2280 			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2281 				break;
2282 
2283 			ret = PTR_ERR(ksym) ?: -ENOENT;
2284 			pr_warn("%s: Unknown symbol %s (err %d)\n",
2285 				mod->name, name, ret);
2286 			break;
2287 
2288 		default:
2289 			/* Divert to percpu allocation if a percpu var. */
2290 			if (sym[i].st_shndx == info->index.pcpu)
2291 				secbase = (unsigned long)mod_percpu(mod);
2292 			else
2293 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2294 			sym[i].st_value += secbase;
2295 			break;
2296 		}
2297 	}
2298 
2299 	return ret;
2300 }
2301 
apply_relocations(struct module * mod,const struct load_info * info)2302 static int apply_relocations(struct module *mod, const struct load_info *info)
2303 {
2304 	unsigned int i;
2305 	int err = 0;
2306 
2307 	/* Now do relocations. */
2308 	for (i = 1; i < info->hdr->e_shnum; i++) {
2309 		unsigned int infosec = info->sechdrs[i].sh_info;
2310 
2311 		/* Not a valid relocation section? */
2312 		if (infosec >= info->hdr->e_shnum)
2313 			continue;
2314 
2315 		/* Don't bother with non-allocated sections */
2316 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2317 			continue;
2318 
2319 		/* Livepatch relocation sections are applied by livepatch */
2320 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2321 			continue;
2322 
2323 		if (info->sechdrs[i].sh_type == SHT_REL)
2324 			err = apply_relocate(info->sechdrs, info->strtab,
2325 					     info->index.sym, i, mod);
2326 		else if (info->sechdrs[i].sh_type == SHT_RELA)
2327 			err = apply_relocate_add(info->sechdrs, info->strtab,
2328 						 info->index.sym, i, mod);
2329 		if (err < 0)
2330 			break;
2331 	}
2332 	return err;
2333 }
2334 
2335 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2336 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2337 					     unsigned int section)
2338 {
2339 	/* default implementation just returns zero */
2340 	return 0;
2341 }
2342 
2343 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2344 static long get_offset(struct module *mod, unsigned int *size,
2345 		       Elf_Shdr *sechdr, unsigned int section)
2346 {
2347 	long ret;
2348 
2349 	*size += arch_mod_section_prepend(mod, section);
2350 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2351 	*size = ret + sechdr->sh_size;
2352 	return ret;
2353 }
2354 
2355 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2356    might -- code, read-only data, read-write data, small data.  Tally
2357    sizes, and place the offsets into sh_entsize fields: high bit means it
2358    belongs in init. */
layout_sections(struct module * mod,struct load_info * info)2359 static void layout_sections(struct module *mod, struct load_info *info)
2360 {
2361 	static unsigned long const masks[][2] = {
2362 		/* NOTE: all executable code must be the first section
2363 		 * in this array; otherwise modify the text_size
2364 		 * finder in the two loops below */
2365 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2366 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2367 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2368 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2369 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2370 	};
2371 	unsigned int m, i;
2372 
2373 	for (i = 0; i < info->hdr->e_shnum; i++)
2374 		info->sechdrs[i].sh_entsize = ~0UL;
2375 
2376 	pr_debug("Core section allocation order:\n");
2377 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2378 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2379 			Elf_Shdr *s = &info->sechdrs[i];
2380 			const char *sname = info->secstrings + s->sh_name;
2381 
2382 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2383 			    || (s->sh_flags & masks[m][1])
2384 			    || s->sh_entsize != ~0UL
2385 			    || strstarts(sname, ".init"))
2386 				continue;
2387 			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2388 			pr_debug("\t%s\n", sname);
2389 		}
2390 		switch (m) {
2391 		case 0: /* executable */
2392 			mod->core_layout.size = debug_align(mod->core_layout.size);
2393 			mod->core_layout.text_size = mod->core_layout.size;
2394 			break;
2395 		case 1: /* RO: text and ro-data */
2396 			mod->core_layout.size = debug_align(mod->core_layout.size);
2397 			mod->core_layout.ro_size = mod->core_layout.size;
2398 			break;
2399 		case 2: /* RO after init */
2400 			mod->core_layout.size = debug_align(mod->core_layout.size);
2401 			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2402 			break;
2403 		case 4: /* whole core */
2404 			mod->core_layout.size = debug_align(mod->core_layout.size);
2405 			break;
2406 		}
2407 	}
2408 
2409 	pr_debug("Init section allocation order:\n");
2410 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2411 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2412 			Elf_Shdr *s = &info->sechdrs[i];
2413 			const char *sname = info->secstrings + s->sh_name;
2414 
2415 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2416 			    || (s->sh_flags & masks[m][1])
2417 			    || s->sh_entsize != ~0UL
2418 			    || !strstarts(sname, ".init"))
2419 				continue;
2420 			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2421 					 | INIT_OFFSET_MASK);
2422 			pr_debug("\t%s\n", sname);
2423 		}
2424 		switch (m) {
2425 		case 0: /* executable */
2426 			mod->init_layout.size = debug_align(mod->init_layout.size);
2427 			mod->init_layout.text_size = mod->init_layout.size;
2428 			break;
2429 		case 1: /* RO: text and ro-data */
2430 			mod->init_layout.size = debug_align(mod->init_layout.size);
2431 			mod->init_layout.ro_size = mod->init_layout.size;
2432 			break;
2433 		case 2:
2434 			/*
2435 			 * RO after init doesn't apply to init_layout (only
2436 			 * core_layout), so it just takes the value of ro_size.
2437 			 */
2438 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2439 			break;
2440 		case 4: /* whole init */
2441 			mod->init_layout.size = debug_align(mod->init_layout.size);
2442 			break;
2443 		}
2444 	}
2445 }
2446 
set_license(struct module * mod,const char * license)2447 static void set_license(struct module *mod, const char *license)
2448 {
2449 	if (!license)
2450 		license = "unspecified";
2451 
2452 	if (!license_is_gpl_compatible(license)) {
2453 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2454 			pr_warn("%s: module license '%s' taints kernel.\n",
2455 				mod->name, license);
2456 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2457 				 LOCKDEP_NOW_UNRELIABLE);
2458 	}
2459 }
2460 
2461 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2462 static char *next_string(char *string, unsigned long *secsize)
2463 {
2464 	/* Skip non-zero chars */
2465 	while (string[0]) {
2466 		string++;
2467 		if ((*secsize)-- <= 1)
2468 			return NULL;
2469 	}
2470 
2471 	/* Skip any zero padding. */
2472 	while (!string[0]) {
2473 		string++;
2474 		if ((*secsize)-- <= 1)
2475 			return NULL;
2476 	}
2477 	return string;
2478 }
2479 
get_modinfo(struct load_info * info,const char * tag)2480 static char *get_modinfo(struct load_info *info, const char *tag)
2481 {
2482 	char *p;
2483 	unsigned int taglen = strlen(tag);
2484 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2485 	unsigned long size = infosec->sh_size;
2486 
2487 	/*
2488 	 * get_modinfo() calls made before rewrite_section_headers()
2489 	 * must use sh_offset, as sh_addr isn't set!
2490 	 */
2491 	for (p = (char *)info->hdr + infosec->sh_offset; p; p = next_string(p, &size)) {
2492 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2493 			return p + taglen + 1;
2494 	}
2495 	return NULL;
2496 }
2497 
setup_modinfo(struct module * mod,struct load_info * info)2498 static void setup_modinfo(struct module *mod, struct load_info *info)
2499 {
2500 	struct module_attribute *attr;
2501 	int i;
2502 
2503 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2504 		if (attr->setup)
2505 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2506 	}
2507 }
2508 
free_modinfo(struct module * mod)2509 static void free_modinfo(struct module *mod)
2510 {
2511 	struct module_attribute *attr;
2512 	int i;
2513 
2514 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2515 		if (attr->free)
2516 			attr->free(mod);
2517 	}
2518 }
2519 
2520 #ifdef CONFIG_KALLSYMS
2521 
2522 /* lookup symbol in given range of kernel_symbols */
lookup_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2523 static const struct kernel_symbol *lookup_symbol(const char *name,
2524 	const struct kernel_symbol *start,
2525 	const struct kernel_symbol *stop)
2526 {
2527 	return bsearch(name, start, stop - start,
2528 			sizeof(struct kernel_symbol), cmp_name);
2529 }
2530 
is_exported(const char * name,unsigned long value,const struct module * mod)2531 static int is_exported(const char *name, unsigned long value,
2532 		       const struct module *mod)
2533 {
2534 	const struct kernel_symbol *ks;
2535 	if (!mod)
2536 		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2537 	else
2538 		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2539 	return ks != NULL && kernel_symbol_value(ks) == value;
2540 }
2541 
2542 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2543 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2544 {
2545 	const Elf_Shdr *sechdrs = info->sechdrs;
2546 
2547 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2548 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2549 			return 'v';
2550 		else
2551 			return 'w';
2552 	}
2553 	if (sym->st_shndx == SHN_UNDEF)
2554 		return 'U';
2555 	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2556 		return 'a';
2557 	if (sym->st_shndx >= SHN_LORESERVE)
2558 		return '?';
2559 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2560 		return 't';
2561 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2562 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2563 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2564 			return 'r';
2565 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2566 			return 'g';
2567 		else
2568 			return 'd';
2569 	}
2570 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2571 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2572 			return 's';
2573 		else
2574 			return 'b';
2575 	}
2576 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2577 		      ".debug")) {
2578 		return 'n';
2579 	}
2580 	return '?';
2581 }
2582 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2583 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2584 			unsigned int shnum, unsigned int pcpundx)
2585 {
2586 	const Elf_Shdr *sec;
2587 
2588 	if (src->st_shndx == SHN_UNDEF
2589 	    || src->st_shndx >= shnum
2590 	    || !src->st_name)
2591 		return false;
2592 
2593 #ifdef CONFIG_KALLSYMS_ALL
2594 	if (src->st_shndx == pcpundx)
2595 		return true;
2596 #endif
2597 
2598 	sec = sechdrs + src->st_shndx;
2599 	if (!(sec->sh_flags & SHF_ALLOC)
2600 #ifndef CONFIG_KALLSYMS_ALL
2601 	    || !(sec->sh_flags & SHF_EXECINSTR)
2602 #endif
2603 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2604 		return false;
2605 
2606 	return true;
2607 }
2608 
2609 /*
2610  * We only allocate and copy the strings needed by the parts of symtab
2611  * we keep.  This is simple, but has the effect of making multiple
2612  * copies of duplicates.  We could be more sophisticated, see
2613  * linux-kernel thread starting with
2614  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2615  */
layout_symtab(struct module * mod,struct load_info * info)2616 static void layout_symtab(struct module *mod, struct load_info *info)
2617 {
2618 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2619 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2620 	const Elf_Sym *src;
2621 	unsigned int i, nsrc, ndst, strtab_size = 0;
2622 
2623 	/* Put symbol section at end of init part of module. */
2624 	symsect->sh_flags |= SHF_ALLOC;
2625 	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2626 					 info->index.sym) | INIT_OFFSET_MASK;
2627 	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2628 
2629 	src = (void *)info->hdr + symsect->sh_offset;
2630 	nsrc = symsect->sh_size / sizeof(*src);
2631 
2632 	/* Compute total space required for the core symbols' strtab. */
2633 	for (ndst = i = 0; i < nsrc; i++) {
2634 		if (i == 0 || is_livepatch_module(mod) ||
2635 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2636 				   info->index.pcpu)) {
2637 			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2638 			ndst++;
2639 		}
2640 	}
2641 
2642 	/* Append room for core symbols at end of core part. */
2643 	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2644 	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2645 	mod->core_layout.size += strtab_size;
2646 	mod->core_layout.size = debug_align(mod->core_layout.size);
2647 
2648 	/* Put string table section at end of init part of module. */
2649 	strsect->sh_flags |= SHF_ALLOC;
2650 	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2651 					 info->index.str) | INIT_OFFSET_MASK;
2652 	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2653 
2654 	/* We'll tack temporary mod_kallsyms on the end. */
2655 	mod->init_layout.size = ALIGN(mod->init_layout.size,
2656 				      __alignof__(struct mod_kallsyms));
2657 	info->mod_kallsyms_init_off = mod->init_layout.size;
2658 	mod->init_layout.size += sizeof(struct mod_kallsyms);
2659 	mod->init_layout.size = debug_align(mod->init_layout.size);
2660 }
2661 
2662 /*
2663  * We use the full symtab and strtab which layout_symtab arranged to
2664  * be appended to the init section.  Later we switch to the cut-down
2665  * core-only ones.
2666  */
add_kallsyms(struct module * mod,const struct load_info * info)2667 static void add_kallsyms(struct module *mod, const struct load_info *info)
2668 {
2669 	unsigned int i, ndst;
2670 	const Elf_Sym *src;
2671 	Elf_Sym *dst;
2672 	char *s;
2673 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2674 
2675 	/* Set up to point into init section. */
2676 	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2677 
2678 	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2679 	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2680 	/* Make sure we get permanent strtab: don't use info->strtab. */
2681 	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2682 
2683 	/* Set types up while we still have access to sections. */
2684 	for (i = 0; i < mod->kallsyms->num_symtab; i++)
2685 		mod->kallsyms->symtab[i].st_info
2686 			= elf_type(&mod->kallsyms->symtab[i], info);
2687 
2688 	/* Now populate the cut down core kallsyms for after init. */
2689 	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2690 	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2691 	src = mod->kallsyms->symtab;
2692 	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2693 		if (i == 0 || is_livepatch_module(mod) ||
2694 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2695 				   info->index.pcpu)) {
2696 			dst[ndst] = src[i];
2697 			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2698 			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2699 				     KSYM_NAME_LEN) + 1;
2700 		}
2701 	}
2702 	mod->core_kallsyms.num_symtab = ndst;
2703 }
2704 #else
layout_symtab(struct module * mod,struct load_info * info)2705 static inline void layout_symtab(struct module *mod, struct load_info *info)
2706 {
2707 }
2708 
add_kallsyms(struct module * mod,const struct load_info * info)2709 static void add_kallsyms(struct module *mod, const struct load_info *info)
2710 {
2711 }
2712 #endif /* CONFIG_KALLSYMS */
2713 
dynamic_debug_setup(struct module * mod,struct _ddebug * debug,unsigned int num)2714 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2715 {
2716 	if (!debug)
2717 		return;
2718 #ifdef CONFIG_DYNAMIC_DEBUG
2719 	if (ddebug_add_module(debug, num, mod->name))
2720 		pr_err("dynamic debug error adding module: %s\n",
2721 			debug->modname);
2722 #endif
2723 }
2724 
dynamic_debug_remove(struct module * mod,struct _ddebug * debug)2725 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2726 {
2727 	if (debug)
2728 		ddebug_remove_module(mod->name);
2729 }
2730 
module_alloc(unsigned long size)2731 void * __weak module_alloc(unsigned long size)
2732 {
2733 	return vmalloc_exec(size);
2734 }
2735 
2736 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2737 static void kmemleak_load_module(const struct module *mod,
2738 				 const struct load_info *info)
2739 {
2740 	unsigned int i;
2741 
2742 	/* only scan the sections containing data */
2743 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2744 
2745 	for (i = 1; i < info->hdr->e_shnum; i++) {
2746 		/* Scan all writable sections that's not executable */
2747 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2748 		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2749 		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2750 			continue;
2751 
2752 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2753 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2754 	}
2755 }
2756 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2757 static inline void kmemleak_load_module(const struct module *mod,
2758 					const struct load_info *info)
2759 {
2760 }
2761 #endif
2762 
2763 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2764 static int module_sig_check(struct load_info *info, int flags)
2765 {
2766 	int err = -ENOKEY;
2767 	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2768 	const void *mod = info->hdr;
2769 
2770 	/*
2771 	 * Require flags == 0, as a module with version information
2772 	 * removed is no longer the module that was signed
2773 	 */
2774 	if (flags == 0 &&
2775 	    info->len > markerlen &&
2776 	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2777 		/* We truncate the module to discard the signature */
2778 		info->len -= markerlen;
2779 		err = mod_verify_sig(mod, info);
2780 	}
2781 
2782 	if (!err) {
2783 		info->sig_ok = true;
2784 		return 0;
2785 	}
2786 
2787 	/* Not having a signature is only an error if we're strict. */
2788 	if (err == -ENOKEY && !is_module_sig_enforced())
2789 		err = 0;
2790 
2791 	return err;
2792 }
2793 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2794 static int module_sig_check(struct load_info *info, int flags)
2795 {
2796 	return 0;
2797 }
2798 #endif /* !CONFIG_MODULE_SIG */
2799 
2800 /* Sanity checks against invalid binaries, wrong arch, weird elf version. */
elf_header_check(struct load_info * info)2801 static int elf_header_check(struct load_info *info)
2802 {
2803 	if (info->len < sizeof(*(info->hdr)))
2804 		return -ENOEXEC;
2805 
2806 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2807 	    || info->hdr->e_type != ET_REL
2808 	    || !elf_check_arch(info->hdr)
2809 	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2810 		return -ENOEXEC;
2811 
2812 	if (info->hdr->e_shoff >= info->len
2813 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2814 		info->len - info->hdr->e_shoff))
2815 		return -ENOEXEC;
2816 
2817 	return 0;
2818 }
2819 
2820 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2821 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2822 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2823 {
2824 	do {
2825 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2826 
2827 		if (copy_from_user(dst, usrc, n) != 0)
2828 			return -EFAULT;
2829 		cond_resched();
2830 		dst += n;
2831 		usrc += n;
2832 		len -= n;
2833 	} while (len);
2834 	return 0;
2835 }
2836 
2837 #ifdef CONFIG_LIVEPATCH
check_modinfo_livepatch(struct module * mod,struct load_info * info)2838 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2839 {
2840 	if (get_modinfo(info, "livepatch")) {
2841 		mod->klp = true;
2842 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2843 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2844 			       mod->name);
2845 	}
2846 
2847 	return 0;
2848 }
2849 #else /* !CONFIG_LIVEPATCH */
check_modinfo_livepatch(struct module * mod,struct load_info * info)2850 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2851 {
2852 	if (get_modinfo(info, "livepatch")) {
2853 		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2854 		       mod->name);
2855 		return -ENOEXEC;
2856 	}
2857 
2858 	return 0;
2859 }
2860 #endif /* CONFIG_LIVEPATCH */
2861 
check_modinfo_retpoline(struct module * mod,struct load_info * info)2862 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2863 {
2864 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2865 		return;
2866 
2867 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2868 		mod->name);
2869 }
2870 
2871 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2872 static int copy_module_from_user(const void __user *umod, unsigned long len,
2873 				  struct load_info *info)
2874 {
2875 	int err;
2876 
2877 	info->len = len;
2878 	if (info->len < sizeof(*(info->hdr)))
2879 		return -ENOEXEC;
2880 
2881 	err = security_kernel_load_data(LOADING_MODULE);
2882 	if (err)
2883 		return err;
2884 
2885 	/* Suck in entire file: we'll want most of it. */
2886 	info->hdr = __vmalloc(info->len,
2887 			GFP_KERNEL | __GFP_NOWARN, PAGE_KERNEL);
2888 	if (!info->hdr)
2889 		return -ENOMEM;
2890 
2891 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2892 		vfree(info->hdr);
2893 		return -EFAULT;
2894 	}
2895 
2896 	return 0;
2897 }
2898 
free_copy(struct load_info * info)2899 static void free_copy(struct load_info *info)
2900 {
2901 	vfree(info->hdr);
2902 }
2903 
rewrite_section_headers(struct load_info * info,int flags)2904 static int rewrite_section_headers(struct load_info *info, int flags)
2905 {
2906 	unsigned int i;
2907 
2908 	/* This should always be true, but let's be sure. */
2909 	info->sechdrs[0].sh_addr = 0;
2910 
2911 	for (i = 1; i < info->hdr->e_shnum; i++) {
2912 		Elf_Shdr *shdr = &info->sechdrs[i];
2913 		if (shdr->sh_type != SHT_NOBITS
2914 		    && info->len < shdr->sh_offset + shdr->sh_size) {
2915 			pr_err("Module len %lu truncated\n", info->len);
2916 			return -ENOEXEC;
2917 		}
2918 
2919 		/* Mark all sections sh_addr with their address in the
2920 		   temporary image. */
2921 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2922 
2923 #ifndef CONFIG_MODULE_UNLOAD
2924 		/* Don't load .exit sections */
2925 		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2926 			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2927 #endif
2928 	}
2929 
2930 	/* Track but don't keep modinfo and version sections. */
2931 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2932 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2933 
2934 	return 0;
2935 }
2936 
2937 /*
2938  * Set up our basic convenience variables (pointers to section headers,
2939  * search for module section index etc), and do some basic section
2940  * verification.
2941  *
2942  * Set info->mod to the temporary copy of the module in info->hdr. The final one
2943  * will be allocated in move_module().
2944  */
setup_load_info(struct load_info * info,int flags)2945 static int setup_load_info(struct load_info *info, int flags)
2946 {
2947 	unsigned int i;
2948 
2949 	/* Set up the convenience variables */
2950 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2951 	info->secstrings = (void *)info->hdr
2952 		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2953 
2954 	/* Try to find a name early so we can log errors with a module name */
2955 	info->index.info = find_sec(info, ".modinfo");
2956 	if (!info->index.info)
2957 		info->name = "(missing .modinfo section)";
2958 	else
2959 		info->name = get_modinfo(info, "name");
2960 
2961 	/* Find internal symbols and strings. */
2962 	for (i = 1; i < info->hdr->e_shnum; i++) {
2963 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2964 			info->index.sym = i;
2965 			info->index.str = info->sechdrs[i].sh_link;
2966 			info->strtab = (char *)info->hdr
2967 				+ info->sechdrs[info->index.str].sh_offset;
2968 			break;
2969 		}
2970 	}
2971 
2972 	if (info->index.sym == 0) {
2973 		pr_warn("%s: module has no symbols (stripped?)\n", info->name);
2974 		return -ENOEXEC;
2975 	}
2976 
2977 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2978 	if (!info->index.mod) {
2979 		pr_warn("%s: No module found in object\n",
2980 			info->name ?: "(missing .modinfo name field)");
2981 		return -ENOEXEC;
2982 	}
2983 	/* This is temporary: point mod into copy of data. */
2984 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2985 
2986 	/*
2987 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2988 	 * on-disk struct mod 'name' field.
2989 	 */
2990 	if (!info->name)
2991 		info->name = info->mod->name;
2992 
2993 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2994 		info->index.vers = 0; /* Pretend no __versions section! */
2995 	else
2996 		info->index.vers = find_sec(info, "__versions");
2997 
2998 	info->index.pcpu = find_pcpusec(info);
2999 
3000 	return 0;
3001 }
3002 
check_modinfo(struct module * mod,struct load_info * info,int flags)3003 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3004 {
3005 	const char *modmagic = get_modinfo(info, "vermagic");
3006 	int err;
3007 
3008 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3009 		modmagic = NULL;
3010 
3011 	/* This is allowed: modprobe --force will invalidate it. */
3012 	if (!modmagic) {
3013 		err = try_to_force_load(mod, "bad vermagic");
3014 		if (err)
3015 			return err;
3016 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3017 		pr_err("%s: version magic '%s' should be '%s'\n",
3018 		       info->name, modmagic, vermagic);
3019 		return -ENOEXEC;
3020 	}
3021 
3022 	if (!get_modinfo(info, "intree")) {
3023 		if (!test_taint(TAINT_OOT_MODULE))
3024 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3025 				mod->name);
3026 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3027 	}
3028 
3029 	check_modinfo_retpoline(mod, info);
3030 
3031 	if (get_modinfo(info, "staging")) {
3032 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3033 		pr_warn("%s: module is from the staging directory, the quality "
3034 			"is unknown, you have been warned.\n", mod->name);
3035 	}
3036 
3037 	err = check_modinfo_livepatch(mod, info);
3038 	if (err)
3039 		return err;
3040 
3041 	/* Set up license info based on the info section */
3042 	set_license(mod, get_modinfo(info, "license"));
3043 
3044 	return 0;
3045 }
3046 
find_module_sections(struct module * mod,struct load_info * info)3047 static int find_module_sections(struct module *mod, struct load_info *info)
3048 {
3049 	mod->kp = section_objs(info, "__param",
3050 			       sizeof(*mod->kp), &mod->num_kp);
3051 	mod->syms = section_objs(info, "__ksymtab",
3052 				 sizeof(*mod->syms), &mod->num_syms);
3053 	mod->crcs = section_addr(info, "__kcrctab");
3054 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3055 				     sizeof(*mod->gpl_syms),
3056 				     &mod->num_gpl_syms);
3057 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3058 	mod->gpl_future_syms = section_objs(info,
3059 					    "__ksymtab_gpl_future",
3060 					    sizeof(*mod->gpl_future_syms),
3061 					    &mod->num_gpl_future_syms);
3062 	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3063 
3064 #ifdef CONFIG_UNUSED_SYMBOLS
3065 	mod->unused_syms = section_objs(info, "__ksymtab_unused",
3066 					sizeof(*mod->unused_syms),
3067 					&mod->num_unused_syms);
3068 	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3069 	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3070 					    sizeof(*mod->unused_gpl_syms),
3071 					    &mod->num_unused_gpl_syms);
3072 	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3073 #endif
3074 #ifdef CONFIG_CONSTRUCTORS
3075 	mod->ctors = section_objs(info, ".ctors",
3076 				  sizeof(*mod->ctors), &mod->num_ctors);
3077 	if (!mod->ctors)
3078 		mod->ctors = section_objs(info, ".init_array",
3079 				sizeof(*mod->ctors), &mod->num_ctors);
3080 	else if (find_sec(info, ".init_array")) {
3081 		/*
3082 		 * This shouldn't happen with same compiler and binutils
3083 		 * building all parts of the module.
3084 		 */
3085 		pr_warn("%s: has both .ctors and .init_array.\n",
3086 		       mod->name);
3087 		return -EINVAL;
3088 	}
3089 #endif
3090 
3091 #ifdef CONFIG_TRACEPOINTS
3092 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3093 					     sizeof(*mod->tracepoints_ptrs),
3094 					     &mod->num_tracepoints);
3095 #endif
3096 #ifdef HAVE_JUMP_LABEL
3097 	mod->jump_entries = section_objs(info, "__jump_table",
3098 					sizeof(*mod->jump_entries),
3099 					&mod->num_jump_entries);
3100 #endif
3101 #ifdef CONFIG_EVENT_TRACING
3102 	mod->trace_events = section_objs(info, "_ftrace_events",
3103 					 sizeof(*mod->trace_events),
3104 					 &mod->num_trace_events);
3105 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3106 					sizeof(*mod->trace_evals),
3107 					&mod->num_trace_evals);
3108 #endif
3109 #ifdef CONFIG_TRACING
3110 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3111 					 sizeof(*mod->trace_bprintk_fmt_start),
3112 					 &mod->num_trace_bprintk_fmt);
3113 #endif
3114 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3115 	/* sechdrs[0].sh_size is always zero */
3116 	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3117 					     sizeof(*mod->ftrace_callsites),
3118 					     &mod->num_ftrace_callsites);
3119 #endif
3120 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3121 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3122 					    sizeof(*mod->ei_funcs),
3123 					    &mod->num_ei_funcs);
3124 #endif
3125 	mod->extable = section_objs(info, "__ex_table",
3126 				    sizeof(*mod->extable), &mod->num_exentries);
3127 
3128 	if (section_addr(info, "__obsparm"))
3129 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3130 
3131 	info->debug = section_objs(info, "__verbose",
3132 				   sizeof(*info->debug), &info->num_debug);
3133 
3134 	return 0;
3135 }
3136 
move_module(struct module * mod,struct load_info * info)3137 static int move_module(struct module *mod, struct load_info *info)
3138 {
3139 	int i;
3140 	void *ptr;
3141 
3142 	/* Do the allocs. */
3143 	ptr = module_alloc(mod->core_layout.size);
3144 	/*
3145 	 * The pointer to this block is stored in the module structure
3146 	 * which is inside the block. Just mark it as not being a
3147 	 * leak.
3148 	 */
3149 	kmemleak_not_leak(ptr);
3150 	if (!ptr)
3151 		return -ENOMEM;
3152 
3153 	memset(ptr, 0, mod->core_layout.size);
3154 	mod->core_layout.base = ptr;
3155 
3156 	if (mod->init_layout.size) {
3157 		ptr = module_alloc(mod->init_layout.size);
3158 		/*
3159 		 * The pointer to this block is stored in the module structure
3160 		 * which is inside the block. This block doesn't need to be
3161 		 * scanned as it contains data and code that will be freed
3162 		 * after the module is initialized.
3163 		 */
3164 		kmemleak_ignore(ptr);
3165 		if (!ptr) {
3166 			module_memfree(mod->core_layout.base);
3167 			return -ENOMEM;
3168 		}
3169 		memset(ptr, 0, mod->init_layout.size);
3170 		mod->init_layout.base = ptr;
3171 	} else
3172 		mod->init_layout.base = NULL;
3173 
3174 	/* Transfer each section which specifies SHF_ALLOC */
3175 	pr_debug("final section addresses:\n");
3176 	for (i = 0; i < info->hdr->e_shnum; i++) {
3177 		void *dest;
3178 		Elf_Shdr *shdr = &info->sechdrs[i];
3179 
3180 		if (!(shdr->sh_flags & SHF_ALLOC))
3181 			continue;
3182 
3183 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3184 			dest = mod->init_layout.base
3185 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3186 		else
3187 			dest = mod->core_layout.base + shdr->sh_entsize;
3188 
3189 		if (shdr->sh_type != SHT_NOBITS)
3190 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3191 		/* Update sh_addr to point to copy in image. */
3192 		shdr->sh_addr = (unsigned long)dest;
3193 		pr_debug("\t0x%lx %s\n",
3194 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3195 	}
3196 
3197 	return 0;
3198 }
3199 
check_module_license_and_versions(struct module * mod)3200 static int check_module_license_and_versions(struct module *mod)
3201 {
3202 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3203 
3204 	/*
3205 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3206 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3207 	 * using GPL-only symbols it needs.
3208 	 */
3209 	if (strcmp(mod->name, "ndiswrapper") == 0)
3210 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3211 
3212 	/* driverloader was caught wrongly pretending to be under GPL */
3213 	if (strcmp(mod->name, "driverloader") == 0)
3214 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3215 				 LOCKDEP_NOW_UNRELIABLE);
3216 
3217 	/* lve claims to be GPL but upstream won't provide source */
3218 	if (strcmp(mod->name, "lve") == 0)
3219 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3220 				 LOCKDEP_NOW_UNRELIABLE);
3221 
3222 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3223 		pr_warn("%s: module license taints kernel.\n", mod->name);
3224 
3225 #ifdef CONFIG_MODVERSIONS
3226 	if ((mod->num_syms && !mod->crcs)
3227 	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3228 	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3229 #ifdef CONFIG_UNUSED_SYMBOLS
3230 	    || (mod->num_unused_syms && !mod->unused_crcs)
3231 	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3232 #endif
3233 		) {
3234 		return try_to_force_load(mod,
3235 					 "no versions for exported symbols");
3236 	}
3237 #endif
3238 	return 0;
3239 }
3240 
flush_module_icache(const struct module * mod)3241 static void flush_module_icache(const struct module *mod)
3242 {
3243 	mm_segment_t old_fs;
3244 
3245 	/* flush the icache in correct context */
3246 	old_fs = get_fs();
3247 	set_fs(KERNEL_DS);
3248 
3249 	/*
3250 	 * Flush the instruction cache, since we've played with text.
3251 	 * Do it before processing of module parameters, so the module
3252 	 * can provide parameter accessor functions of its own.
3253 	 */
3254 	if (mod->init_layout.base)
3255 		flush_icache_range((unsigned long)mod->init_layout.base,
3256 				   (unsigned long)mod->init_layout.base
3257 				   + mod->init_layout.size);
3258 	flush_icache_range((unsigned long)mod->core_layout.base,
3259 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3260 
3261 	set_fs(old_fs);
3262 }
3263 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3264 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3265 				     Elf_Shdr *sechdrs,
3266 				     char *secstrings,
3267 				     struct module *mod)
3268 {
3269 	return 0;
3270 }
3271 
3272 /* module_blacklist is a comma-separated list of module names */
3273 static char *module_blacklist;
blacklisted(const char * module_name)3274 static bool blacklisted(const char *module_name)
3275 {
3276 	const char *p;
3277 	size_t len;
3278 
3279 	if (!module_blacklist)
3280 		return false;
3281 
3282 	for (p = module_blacklist; *p; p += len) {
3283 		len = strcspn(p, ",");
3284 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3285 			return true;
3286 		if (p[len] == ',')
3287 			len++;
3288 	}
3289 	return false;
3290 }
3291 core_param(module_blacklist, module_blacklist, charp, 0400);
3292 
layout_and_allocate(struct load_info * info,int flags)3293 static struct module *layout_and_allocate(struct load_info *info, int flags)
3294 {
3295 	struct module *mod;
3296 	unsigned int ndx;
3297 	int err;
3298 
3299 	err = check_modinfo(info->mod, info, flags);
3300 	if (err)
3301 		return ERR_PTR(err);
3302 
3303 	/* Allow arches to frob section contents and sizes.  */
3304 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3305 					info->secstrings, info->mod);
3306 	if (err < 0)
3307 		return ERR_PTR(err);
3308 
3309 	/* We will do a special allocation for per-cpu sections later. */
3310 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3311 
3312 	/*
3313 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3314 	 * layout_sections() can put it in the right place.
3315 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3316 	 */
3317 	ndx = find_sec(info, ".data..ro_after_init");
3318 	if (ndx)
3319 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3320 
3321 	/* Determine total sizes, and put offsets in sh_entsize.  For now
3322 	   this is done generically; there doesn't appear to be any
3323 	   special cases for the architectures. */
3324 	layout_sections(info->mod, info);
3325 	layout_symtab(info->mod, info);
3326 
3327 	/* Allocate and move to the final place */
3328 	err = move_module(info->mod, info);
3329 	if (err)
3330 		return ERR_PTR(err);
3331 
3332 	/* Module has been copied to its final place now: return it. */
3333 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3334 	kmemleak_load_module(mod, info);
3335 	return mod;
3336 }
3337 
3338 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3339 static void module_deallocate(struct module *mod, struct load_info *info)
3340 {
3341 	percpu_modfree(mod);
3342 	module_arch_freeing_init(mod);
3343 	module_memfree(mod->init_layout.base);
3344 	module_memfree(mod->core_layout.base);
3345 }
3346 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3347 int __weak module_finalize(const Elf_Ehdr *hdr,
3348 			   const Elf_Shdr *sechdrs,
3349 			   struct module *me)
3350 {
3351 	return 0;
3352 }
3353 
post_relocation(struct module * mod,const struct load_info * info)3354 static int post_relocation(struct module *mod, const struct load_info *info)
3355 {
3356 	/* Sort exception table now relocations are done. */
3357 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3358 
3359 	/* Copy relocated percpu area over. */
3360 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3361 		       info->sechdrs[info->index.pcpu].sh_size);
3362 
3363 	/* Setup kallsyms-specific fields. */
3364 	add_kallsyms(mod, info);
3365 
3366 	/* Arch-specific module finalizing. */
3367 	return module_finalize(info->hdr, info->sechdrs, mod);
3368 }
3369 
3370 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3371 static bool finished_loading(const char *name)
3372 {
3373 	struct module *mod;
3374 	bool ret;
3375 
3376 	/*
3377 	 * The module_mutex should not be a heavily contended lock;
3378 	 * if we get the occasional sleep here, we'll go an extra iteration
3379 	 * in the wait_event_interruptible(), which is harmless.
3380 	 */
3381 	sched_annotate_sleep();
3382 	mutex_lock(&module_mutex);
3383 	mod = find_module_all(name, strlen(name), true);
3384 	ret = !mod || mod->state == MODULE_STATE_LIVE
3385 		|| mod->state == MODULE_STATE_GOING;
3386 	mutex_unlock(&module_mutex);
3387 
3388 	return ret;
3389 }
3390 
3391 /* Call module constructors. */
do_mod_ctors(struct module * mod)3392 static void do_mod_ctors(struct module *mod)
3393 {
3394 #ifdef CONFIG_CONSTRUCTORS
3395 	unsigned long i;
3396 
3397 	for (i = 0; i < mod->num_ctors; i++)
3398 		mod->ctors[i]();
3399 #endif
3400 }
3401 
3402 /* For freeing module_init on success, in case kallsyms traversing */
3403 struct mod_initfree {
3404 	struct rcu_head rcu;
3405 	void *module_init;
3406 };
3407 
do_free_init(struct rcu_head * head)3408 static void do_free_init(struct rcu_head *head)
3409 {
3410 	struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3411 	module_memfree(m->module_init);
3412 	kfree(m);
3413 }
3414 
3415 /*
3416  * This is where the real work happens.
3417  *
3418  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3419  * helper command 'lx-symbols'.
3420  */
do_init_module(struct module * mod)3421 static noinline int do_init_module(struct module *mod)
3422 {
3423 	int ret = 0;
3424 	struct mod_initfree *freeinit;
3425 
3426 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3427 	if (!freeinit) {
3428 		ret = -ENOMEM;
3429 		goto fail;
3430 	}
3431 	freeinit->module_init = mod->init_layout.base;
3432 
3433 	/*
3434 	 * We want to find out whether @mod uses async during init.  Clear
3435 	 * PF_USED_ASYNC.  async_schedule*() will set it.
3436 	 */
3437 	current->flags &= ~PF_USED_ASYNC;
3438 
3439 	do_mod_ctors(mod);
3440 	/* Start the module */
3441 	if (mod->init != NULL)
3442 		ret = do_one_initcall(mod->init);
3443 	if (ret < 0) {
3444 		goto fail_free_freeinit;
3445 	}
3446 	if (ret > 0) {
3447 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3448 			"follow 0/-E convention\n"
3449 			"%s: loading module anyway...\n",
3450 			__func__, mod->name, ret, __func__);
3451 		dump_stack();
3452 	}
3453 
3454 	/* Now it's a first class citizen! */
3455 	mod->state = MODULE_STATE_LIVE;
3456 	blocking_notifier_call_chain(&module_notify_list,
3457 				     MODULE_STATE_LIVE, mod);
3458 
3459 	/*
3460 	 * We need to finish all async code before the module init sequence
3461 	 * is done.  This has potential to deadlock.  For example, a newly
3462 	 * detected block device can trigger request_module() of the
3463 	 * default iosched from async probing task.  Once userland helper
3464 	 * reaches here, async_synchronize_full() will wait on the async
3465 	 * task waiting on request_module() and deadlock.
3466 	 *
3467 	 * This deadlock is avoided by perfomring async_synchronize_full()
3468 	 * iff module init queued any async jobs.  This isn't a full
3469 	 * solution as it will deadlock the same if module loading from
3470 	 * async jobs nests more than once; however, due to the various
3471 	 * constraints, this hack seems to be the best option for now.
3472 	 * Please refer to the following thread for details.
3473 	 *
3474 	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3475 	 */
3476 	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3477 		async_synchronize_full();
3478 
3479 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3480 			mod->init_layout.size);
3481 	mutex_lock(&module_mutex);
3482 	/* Drop initial reference. */
3483 	module_put(mod);
3484 	trim_init_extable(mod);
3485 #ifdef CONFIG_KALLSYMS
3486 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3487 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3488 #endif
3489 	module_enable_ro(mod, true);
3490 	mod_tree_remove_init(mod);
3491 	disable_ro_nx(&mod->init_layout);
3492 	module_arch_freeing_init(mod);
3493 	mod->init_layout.base = NULL;
3494 	mod->init_layout.size = 0;
3495 	mod->init_layout.ro_size = 0;
3496 	mod->init_layout.ro_after_init_size = 0;
3497 	mod->init_layout.text_size = 0;
3498 	/*
3499 	 * We want to free module_init, but be aware that kallsyms may be
3500 	 * walking this with preempt disabled.  In all the failure paths, we
3501 	 * call synchronize_sched(), but we don't want to slow down the success
3502 	 * path, so use actual RCU here.
3503 	 * Note that module_alloc() on most architectures creates W+X page
3504 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3505 	 * code such as mark_rodata_ro() which depends on those mappings to
3506 	 * be cleaned up needs to sync with the queued work - ie
3507 	 * rcu_barrier_sched()
3508 	 */
3509 	call_rcu_sched(&freeinit->rcu, do_free_init);
3510 	mutex_unlock(&module_mutex);
3511 	wake_up_all(&module_wq);
3512 
3513 	return 0;
3514 
3515 fail_free_freeinit:
3516 	kfree(freeinit);
3517 fail:
3518 	/* Try to protect us from buggy refcounters. */
3519 	mod->state = MODULE_STATE_GOING;
3520 	synchronize_sched();
3521 	module_put(mod);
3522 	blocking_notifier_call_chain(&module_notify_list,
3523 				     MODULE_STATE_GOING, mod);
3524 	klp_module_going(mod);
3525 	ftrace_release_mod(mod);
3526 	free_module(mod);
3527 	wake_up_all(&module_wq);
3528 	return ret;
3529 }
3530 
may_init_module(void)3531 static int may_init_module(void)
3532 {
3533 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3534 		return -EPERM;
3535 
3536 	return 0;
3537 }
3538 
3539 /*
3540  * We try to place it in the list now to make sure it's unique before
3541  * we dedicate too many resources.  In particular, temporary percpu
3542  * memory exhaustion.
3543  */
add_unformed_module(struct module * mod)3544 static int add_unformed_module(struct module *mod)
3545 {
3546 	int err;
3547 	struct module *old;
3548 
3549 	mod->state = MODULE_STATE_UNFORMED;
3550 
3551 again:
3552 	mutex_lock(&module_mutex);
3553 	old = find_module_all(mod->name, strlen(mod->name), true);
3554 	if (old != NULL) {
3555 		if (old->state == MODULE_STATE_COMING
3556 		    || old->state == MODULE_STATE_UNFORMED) {
3557 			/* Wait in case it fails to load. */
3558 			mutex_unlock(&module_mutex);
3559 			err = wait_event_interruptible(module_wq,
3560 					       finished_loading(mod->name));
3561 			if (err)
3562 				goto out_unlocked;
3563 			goto again;
3564 		}
3565 		err = -EEXIST;
3566 		goto out;
3567 	}
3568 	mod_update_bounds(mod);
3569 	list_add_rcu(&mod->list, &modules);
3570 	mod_tree_insert(mod);
3571 	err = 0;
3572 
3573 out:
3574 	mutex_unlock(&module_mutex);
3575 out_unlocked:
3576 	return err;
3577 }
3578 
complete_formation(struct module * mod,struct load_info * info)3579 static int complete_formation(struct module *mod, struct load_info *info)
3580 {
3581 	int err;
3582 
3583 	mutex_lock(&module_mutex);
3584 
3585 	/* Find duplicate symbols (must be called under lock). */
3586 	err = verify_export_symbols(mod);
3587 	if (err < 0)
3588 		goto out;
3589 
3590 	/* This relies on module_mutex for list integrity. */
3591 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3592 
3593 	module_enable_ro(mod, false);
3594 	module_enable_nx(mod);
3595 
3596 	/* Mark state as coming so strong_try_module_get() ignores us,
3597 	 * but kallsyms etc. can see us. */
3598 	mod->state = MODULE_STATE_COMING;
3599 	mutex_unlock(&module_mutex);
3600 
3601 	return 0;
3602 
3603 out:
3604 	mutex_unlock(&module_mutex);
3605 	return err;
3606 }
3607 
prepare_coming_module(struct module * mod)3608 static int prepare_coming_module(struct module *mod)
3609 {
3610 	int err;
3611 
3612 	ftrace_module_enable(mod);
3613 	err = klp_module_coming(mod);
3614 	if (err)
3615 		return err;
3616 
3617 	blocking_notifier_call_chain(&module_notify_list,
3618 				     MODULE_STATE_COMING, mod);
3619 	return 0;
3620 }
3621 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3622 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3623 				   void *arg)
3624 {
3625 	struct module *mod = arg;
3626 	int ret;
3627 
3628 	if (strcmp(param, "async_probe") == 0) {
3629 		mod->async_probe_requested = true;
3630 		return 0;
3631 	}
3632 
3633 	/* Check for magic 'dyndbg' arg */
3634 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3635 	if (ret != 0)
3636 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3637 	return 0;
3638 }
3639 
3640 /* Allocate and load the module: note that size of section 0 is always
3641    zero, and we rely on this for optional sections. */
load_module(struct load_info * info,const char __user * uargs,int flags)3642 static int load_module(struct load_info *info, const char __user *uargs,
3643 		       int flags)
3644 {
3645 	struct module *mod;
3646 	long err = 0;
3647 	char *after_dashes;
3648 
3649 	err = elf_header_check(info);
3650 	if (err)
3651 		goto free_copy;
3652 
3653 	err = setup_load_info(info, flags);
3654 	if (err)
3655 		goto free_copy;
3656 
3657 	if (blacklisted(info->name)) {
3658 		err = -EPERM;
3659 		goto free_copy;
3660 	}
3661 
3662 	err = module_sig_check(info, flags);
3663 	if (err)
3664 		goto free_copy;
3665 
3666 	err = rewrite_section_headers(info, flags);
3667 	if (err)
3668 		goto free_copy;
3669 
3670 	/* Check module struct version now, before we try to use module. */
3671 	if (!check_modstruct_version(info, info->mod)) {
3672 		err = -ENOEXEC;
3673 		goto free_copy;
3674 	}
3675 
3676 	/* Figure out module layout, and allocate all the memory. */
3677 	mod = layout_and_allocate(info, flags);
3678 	if (IS_ERR(mod)) {
3679 		err = PTR_ERR(mod);
3680 		goto free_copy;
3681 	}
3682 
3683 	audit_log_kern_module(mod->name);
3684 
3685 	/* Reserve our place in the list. */
3686 	err = add_unformed_module(mod);
3687 	if (err)
3688 		goto free_module;
3689 
3690 #ifdef CONFIG_MODULE_SIG
3691 	mod->sig_ok = info->sig_ok;
3692 	if (!mod->sig_ok) {
3693 		pr_notice_once("%s: module verification failed: signature "
3694 			       "and/or required key missing - tainting "
3695 			       "kernel\n", mod->name);
3696 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3697 	}
3698 #endif
3699 
3700 	/* To avoid stressing percpu allocator, do this once we're unique. */
3701 	err = percpu_modalloc(mod, info);
3702 	if (err)
3703 		goto unlink_mod;
3704 
3705 	/* Now module is in final location, initialize linked lists, etc. */
3706 	err = module_unload_init(mod);
3707 	if (err)
3708 		goto unlink_mod;
3709 
3710 	init_param_lock(mod);
3711 
3712 	/* Now we've got everything in the final locations, we can
3713 	 * find optional sections. */
3714 	err = find_module_sections(mod, info);
3715 	if (err)
3716 		goto free_unload;
3717 
3718 	err = check_module_license_and_versions(mod);
3719 	if (err)
3720 		goto free_unload;
3721 
3722 	/* Set up MODINFO_ATTR fields */
3723 	setup_modinfo(mod, info);
3724 
3725 	/* Fix up syms, so that st_value is a pointer to location. */
3726 	err = simplify_symbols(mod, info);
3727 	if (err < 0)
3728 		goto free_modinfo;
3729 
3730 	err = apply_relocations(mod, info);
3731 	if (err < 0)
3732 		goto free_modinfo;
3733 
3734 	err = post_relocation(mod, info);
3735 	if (err < 0)
3736 		goto free_modinfo;
3737 
3738 	flush_module_icache(mod);
3739 
3740 	/* Now copy in args */
3741 	mod->args = strndup_user(uargs, ~0UL >> 1);
3742 	if (IS_ERR(mod->args)) {
3743 		err = PTR_ERR(mod->args);
3744 		goto free_arch_cleanup;
3745 	}
3746 
3747 	dynamic_debug_setup(mod, info->debug, info->num_debug);
3748 
3749 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3750 	ftrace_module_init(mod);
3751 
3752 	/* Finally it's fully formed, ready to start executing. */
3753 	err = complete_formation(mod, info);
3754 	if (err)
3755 		goto ddebug_cleanup;
3756 
3757 	err = prepare_coming_module(mod);
3758 	if (err)
3759 		goto bug_cleanup;
3760 
3761 	/* Module is ready to execute: parsing args may do that. */
3762 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3763 				  -32768, 32767, mod,
3764 				  unknown_module_param_cb);
3765 	if (IS_ERR(after_dashes)) {
3766 		err = PTR_ERR(after_dashes);
3767 		goto coming_cleanup;
3768 	} else if (after_dashes) {
3769 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3770 		       mod->name, after_dashes);
3771 	}
3772 
3773 	/* Link in to sysfs. */
3774 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3775 	if (err < 0)
3776 		goto coming_cleanup;
3777 
3778 	if (is_livepatch_module(mod)) {
3779 		err = copy_module_elf(mod, info);
3780 		if (err < 0)
3781 			goto sysfs_cleanup;
3782 	}
3783 
3784 	/* Get rid of temporary copy. */
3785 	free_copy(info);
3786 
3787 	/* Done! */
3788 	trace_module_load(mod);
3789 
3790 	return do_init_module(mod);
3791 
3792  sysfs_cleanup:
3793 	mod_sysfs_teardown(mod);
3794  coming_cleanup:
3795 	mod->state = MODULE_STATE_GOING;
3796 	destroy_params(mod->kp, mod->num_kp);
3797 	blocking_notifier_call_chain(&module_notify_list,
3798 				     MODULE_STATE_GOING, mod);
3799 	klp_module_going(mod);
3800  bug_cleanup:
3801 	/* module_bug_cleanup needs module_mutex protection */
3802 	mutex_lock(&module_mutex);
3803 	module_bug_cleanup(mod);
3804 	mutex_unlock(&module_mutex);
3805 
3806 	/* we can't deallocate the module until we clear memory protection */
3807 	module_disable_ro(mod);
3808 	module_disable_nx(mod);
3809 
3810  ddebug_cleanup:
3811 	ftrace_release_mod(mod);
3812 	dynamic_debug_remove(mod, info->debug);
3813 	synchronize_sched();
3814 	kfree(mod->args);
3815  free_arch_cleanup:
3816 	module_arch_cleanup(mod);
3817  free_modinfo:
3818 	free_modinfo(mod);
3819  free_unload:
3820 	module_unload_free(mod);
3821  unlink_mod:
3822 	mutex_lock(&module_mutex);
3823 	/* Unlink carefully: kallsyms could be walking list. */
3824 	list_del_rcu(&mod->list);
3825 	mod_tree_remove(mod);
3826 	wake_up_all(&module_wq);
3827 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3828 	synchronize_sched();
3829 	mutex_unlock(&module_mutex);
3830  free_module:
3831 	/* Free lock-classes; relies on the preceding sync_rcu() */
3832 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3833 
3834 	module_deallocate(mod, info);
3835  free_copy:
3836 	free_copy(info);
3837 	return err;
3838 }
3839 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3840 SYSCALL_DEFINE3(init_module, void __user *, umod,
3841 		unsigned long, len, const char __user *, uargs)
3842 {
3843 	int err;
3844 	struct load_info info = { };
3845 
3846 	err = may_init_module();
3847 	if (err)
3848 		return err;
3849 
3850 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3851 	       umod, len, uargs);
3852 
3853 	err = copy_module_from_user(umod, len, &info);
3854 	if (err)
3855 		return err;
3856 
3857 	return load_module(&info, uargs, 0);
3858 }
3859 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3860 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3861 {
3862 	struct load_info info = { };
3863 	loff_t size;
3864 	void *hdr;
3865 	int err;
3866 
3867 	err = may_init_module();
3868 	if (err)
3869 		return err;
3870 
3871 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3872 
3873 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3874 		      |MODULE_INIT_IGNORE_VERMAGIC))
3875 		return -EINVAL;
3876 
3877 	err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3878 				       READING_MODULE);
3879 	if (err)
3880 		return err;
3881 	info.hdr = hdr;
3882 	info.len = size;
3883 
3884 	return load_module(&info, uargs, flags);
3885 }
3886 
within(unsigned long addr,void * start,unsigned long size)3887 static inline int within(unsigned long addr, void *start, unsigned long size)
3888 {
3889 	return ((void *)addr >= start && (void *)addr < start + size);
3890 }
3891 
3892 #ifdef CONFIG_KALLSYMS
3893 /*
3894  * This ignores the intensely annoying "mapping symbols" found
3895  * in ARM ELF files: $a, $t and $d.
3896  */
is_arm_mapping_symbol(const char * str)3897 static inline int is_arm_mapping_symbol(const char *str)
3898 {
3899 	if (str[0] == '.' && str[1] == 'L')
3900 		return true;
3901 	return str[0] == '$' && strchr("axtd", str[1])
3902 	       && (str[2] == '\0' || str[2] == '.');
3903 }
3904 
symname(struct mod_kallsyms * kallsyms,unsigned int symnum)3905 static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3906 {
3907 	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3908 }
3909 
get_ksymbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)3910 static const char *get_ksymbol(struct module *mod,
3911 			       unsigned long addr,
3912 			       unsigned long *size,
3913 			       unsigned long *offset)
3914 {
3915 	unsigned int i, best = 0;
3916 	unsigned long nextval;
3917 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3918 
3919 	/* At worse, next value is at end of module */
3920 	if (within_module_init(addr, mod))
3921 		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3922 	else
3923 		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3924 
3925 	/* Scan for closest preceding symbol, and next symbol. (ELF
3926 	   starts real symbols at 1). */
3927 	for (i = 1; i < kallsyms->num_symtab; i++) {
3928 		if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3929 			continue;
3930 
3931 		/* We ignore unnamed symbols: they're uninformative
3932 		 * and inserted at a whim. */
3933 		if (*symname(kallsyms, i) == '\0'
3934 		    || is_arm_mapping_symbol(symname(kallsyms, i)))
3935 			continue;
3936 
3937 		if (kallsyms->symtab[i].st_value <= addr
3938 		    && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3939 			best = i;
3940 		if (kallsyms->symtab[i].st_value > addr
3941 		    && kallsyms->symtab[i].st_value < nextval)
3942 			nextval = kallsyms->symtab[i].st_value;
3943 	}
3944 
3945 	if (!best)
3946 		return NULL;
3947 
3948 	if (size)
3949 		*size = nextval - kallsyms->symtab[best].st_value;
3950 	if (offset)
3951 		*offset = addr - kallsyms->symtab[best].st_value;
3952 	return symname(kallsyms, best);
3953 }
3954 
dereference_module_function_descriptor(struct module * mod,void * ptr)3955 void * __weak dereference_module_function_descriptor(struct module *mod,
3956 						     void *ptr)
3957 {
3958 	return ptr;
3959 }
3960 
3961 /* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3962  * not to lock to avoid deadlock on oopses, simply disable preemption. */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,char * namebuf)3963 const char *module_address_lookup(unsigned long addr,
3964 			    unsigned long *size,
3965 			    unsigned long *offset,
3966 			    char **modname,
3967 			    char *namebuf)
3968 {
3969 	const char *ret = NULL;
3970 	struct module *mod;
3971 
3972 	preempt_disable();
3973 	mod = __module_address(addr);
3974 	if (mod) {
3975 		if (modname)
3976 			*modname = mod->name;
3977 		ret = get_ksymbol(mod, addr, size, offset);
3978 	}
3979 	/* Make a copy in here where it's safe */
3980 	if (ret) {
3981 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3982 		ret = namebuf;
3983 	}
3984 	preempt_enable();
3985 
3986 	return ret;
3987 }
3988 
lookup_module_symbol_name(unsigned long addr,char * symname)3989 int lookup_module_symbol_name(unsigned long addr, char *symname)
3990 {
3991 	struct module *mod;
3992 
3993 	preempt_disable();
3994 	list_for_each_entry_rcu(mod, &modules, list) {
3995 		if (mod->state == MODULE_STATE_UNFORMED)
3996 			continue;
3997 		if (within_module(addr, mod)) {
3998 			const char *sym;
3999 
4000 			sym = get_ksymbol(mod, addr, NULL, NULL);
4001 			if (!sym)
4002 				goto out;
4003 			strlcpy(symname, sym, KSYM_NAME_LEN);
4004 			preempt_enable();
4005 			return 0;
4006 		}
4007 	}
4008 out:
4009 	preempt_enable();
4010 	return -ERANGE;
4011 }
4012 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)4013 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4014 			unsigned long *offset, char *modname, char *name)
4015 {
4016 	struct module *mod;
4017 
4018 	preempt_disable();
4019 	list_for_each_entry_rcu(mod, &modules, list) {
4020 		if (mod->state == MODULE_STATE_UNFORMED)
4021 			continue;
4022 		if (within_module(addr, mod)) {
4023 			const char *sym;
4024 
4025 			sym = get_ksymbol(mod, addr, size, offset);
4026 			if (!sym)
4027 				goto out;
4028 			if (modname)
4029 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4030 			if (name)
4031 				strlcpy(name, sym, KSYM_NAME_LEN);
4032 			preempt_enable();
4033 			return 0;
4034 		}
4035 	}
4036 out:
4037 	preempt_enable();
4038 	return -ERANGE;
4039 }
4040 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)4041 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4042 			char *name, char *module_name, int *exported)
4043 {
4044 	struct module *mod;
4045 
4046 	preempt_disable();
4047 	list_for_each_entry_rcu(mod, &modules, list) {
4048 		struct mod_kallsyms *kallsyms;
4049 
4050 		if (mod->state == MODULE_STATE_UNFORMED)
4051 			continue;
4052 		kallsyms = rcu_dereference_sched(mod->kallsyms);
4053 		if (symnum < kallsyms->num_symtab) {
4054 			*value = kallsyms->symtab[symnum].st_value;
4055 			*type = kallsyms->symtab[symnum].st_info;
4056 			strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
4057 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4058 			*exported = is_exported(name, *value, mod);
4059 			preempt_enable();
4060 			return 0;
4061 		}
4062 		symnum -= kallsyms->num_symtab;
4063 	}
4064 	preempt_enable();
4065 	return -ERANGE;
4066 }
4067 
mod_find_symname(struct module * mod,const char * name)4068 static unsigned long mod_find_symname(struct module *mod, const char *name)
4069 {
4070 	unsigned int i;
4071 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4072 
4073 	for (i = 0; i < kallsyms->num_symtab; i++)
4074 		if (strcmp(name, symname(kallsyms, i)) == 0 &&
4075 		    kallsyms->symtab[i].st_shndx != SHN_UNDEF)
4076 			return kallsyms->symtab[i].st_value;
4077 	return 0;
4078 }
4079 
4080 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)4081 unsigned long module_kallsyms_lookup_name(const char *name)
4082 {
4083 	struct module *mod;
4084 	char *colon;
4085 	unsigned long ret = 0;
4086 
4087 	/* Don't lock: we're in enough trouble already. */
4088 	preempt_disable();
4089 	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4090 		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4091 			ret = mod_find_symname(mod, colon+1);
4092 	} else {
4093 		list_for_each_entry_rcu(mod, &modules, list) {
4094 			if (mod->state == MODULE_STATE_UNFORMED)
4095 				continue;
4096 			if ((ret = mod_find_symname(mod, name)) != 0)
4097 				break;
4098 		}
4099 	}
4100 	preempt_enable();
4101 	return ret;
4102 }
4103 
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)4104 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4105 					     struct module *, unsigned long),
4106 				   void *data)
4107 {
4108 	struct module *mod;
4109 	unsigned int i;
4110 	int ret;
4111 
4112 	module_assert_mutex();
4113 
4114 	list_for_each_entry(mod, &modules, list) {
4115 		/* We hold module_mutex: no need for rcu_dereference_sched */
4116 		struct mod_kallsyms *kallsyms = mod->kallsyms;
4117 
4118 		if (mod->state == MODULE_STATE_UNFORMED)
4119 			continue;
4120 		for (i = 0; i < kallsyms->num_symtab; i++) {
4121 
4122 			if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
4123 				continue;
4124 
4125 			ret = fn(data, symname(kallsyms, i),
4126 				 mod, kallsyms->symtab[i].st_value);
4127 			if (ret != 0)
4128 				return ret;
4129 		}
4130 	}
4131 	return 0;
4132 }
4133 #endif /* CONFIG_KALLSYMS */
4134 
4135 /* Maximum number of characters written by module_flags() */
4136 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4137 
4138 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf)4139 static char *module_flags(struct module *mod, char *buf)
4140 {
4141 	int bx = 0;
4142 
4143 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4144 	if (mod->taints ||
4145 	    mod->state == MODULE_STATE_GOING ||
4146 	    mod->state == MODULE_STATE_COMING) {
4147 		buf[bx++] = '(';
4148 		bx += module_flags_taint(mod, buf + bx);
4149 		/* Show a - for module-is-being-unloaded */
4150 		if (mod->state == MODULE_STATE_GOING)
4151 			buf[bx++] = '-';
4152 		/* Show a + for module-is-being-loaded */
4153 		if (mod->state == MODULE_STATE_COMING)
4154 			buf[bx++] = '+';
4155 		buf[bx++] = ')';
4156 	}
4157 	buf[bx] = '\0';
4158 
4159 	return buf;
4160 }
4161 
4162 #ifdef CONFIG_PROC_FS
4163 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)4164 static void *m_start(struct seq_file *m, loff_t *pos)
4165 {
4166 	mutex_lock(&module_mutex);
4167 	return seq_list_start(&modules, *pos);
4168 }
4169 
m_next(struct seq_file * m,void * p,loff_t * pos)4170 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4171 {
4172 	return seq_list_next(p, &modules, pos);
4173 }
4174 
m_stop(struct seq_file * m,void * p)4175 static void m_stop(struct seq_file *m, void *p)
4176 {
4177 	mutex_unlock(&module_mutex);
4178 }
4179 
m_show(struct seq_file * m,void * p)4180 static int m_show(struct seq_file *m, void *p)
4181 {
4182 	struct module *mod = list_entry(p, struct module, list);
4183 	char buf[MODULE_FLAGS_BUF_SIZE];
4184 	void *value;
4185 
4186 	/* We always ignore unformed modules. */
4187 	if (mod->state == MODULE_STATE_UNFORMED)
4188 		return 0;
4189 
4190 	seq_printf(m, "%s %u",
4191 		   mod->name, mod->init_layout.size + mod->core_layout.size);
4192 	print_unload_info(m, mod);
4193 
4194 	/* Informative for users. */
4195 	seq_printf(m, " %s",
4196 		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4197 		   mod->state == MODULE_STATE_COMING ? "Loading" :
4198 		   "Live");
4199 	/* Used by oprofile and other similar tools. */
4200 	value = m->private ? NULL : mod->core_layout.base;
4201 	seq_printf(m, " 0x%px", value);
4202 
4203 	/* Taints info */
4204 	if (mod->taints)
4205 		seq_printf(m, " %s", module_flags(mod, buf));
4206 
4207 	seq_puts(m, "\n");
4208 	return 0;
4209 }
4210 
4211 /* Format: modulename size refcount deps address
4212 
4213    Where refcount is a number or -, and deps is a comma-separated list
4214    of depends or -.
4215 */
4216 static const struct seq_operations modules_op = {
4217 	.start	= m_start,
4218 	.next	= m_next,
4219 	.stop	= m_stop,
4220 	.show	= m_show
4221 };
4222 
4223 /*
4224  * This also sets the "private" pointer to non-NULL if the
4225  * kernel pointers should be hidden (so you can just test
4226  * "m->private" to see if you should keep the values private).
4227  *
4228  * We use the same logic as for /proc/kallsyms.
4229  */
modules_open(struct inode * inode,struct file * file)4230 static int modules_open(struct inode *inode, struct file *file)
4231 {
4232 	int err = seq_open(file, &modules_op);
4233 
4234 	if (!err) {
4235 		struct seq_file *m = file->private_data;
4236 		m->private = kallsyms_show_value() ? NULL : (void *)8ul;
4237 	}
4238 
4239 	return err;
4240 }
4241 
4242 static const struct file_operations proc_modules_operations = {
4243 	.open		= modules_open,
4244 	.read		= seq_read,
4245 	.llseek		= seq_lseek,
4246 	.release	= seq_release,
4247 };
4248 
proc_modules_init(void)4249 static int __init proc_modules_init(void)
4250 {
4251 	proc_create("modules", 0, NULL, &proc_modules_operations);
4252 	return 0;
4253 }
4254 module_init(proc_modules_init);
4255 #endif
4256 
4257 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4258 const struct exception_table_entry *search_module_extables(unsigned long addr)
4259 {
4260 	const struct exception_table_entry *e = NULL;
4261 	struct module *mod;
4262 
4263 	preempt_disable();
4264 	mod = __module_address(addr);
4265 	if (!mod)
4266 		goto out;
4267 
4268 	if (!mod->num_exentries)
4269 		goto out;
4270 
4271 	e = search_extable(mod->extable,
4272 			   mod->num_exentries,
4273 			   addr);
4274 out:
4275 	preempt_enable();
4276 
4277 	/*
4278 	 * Now, if we found one, we are running inside it now, hence
4279 	 * we cannot unload the module, hence no refcnt needed.
4280 	 */
4281 	return e;
4282 }
4283 
4284 /*
4285  * is_module_address - is this address inside a module?
4286  * @addr: the address to check.
4287  *
4288  * See is_module_text_address() if you simply want to see if the address
4289  * is code (not data).
4290  */
is_module_address(unsigned long addr)4291 bool is_module_address(unsigned long addr)
4292 {
4293 	bool ret;
4294 
4295 	preempt_disable();
4296 	ret = __module_address(addr) != NULL;
4297 	preempt_enable();
4298 
4299 	return ret;
4300 }
4301 
4302 /*
4303  * __module_address - get the module which contains an address.
4304  * @addr: the address.
4305  *
4306  * Must be called with preempt disabled or module mutex held so that
4307  * module doesn't get freed during this.
4308  */
__module_address(unsigned long addr)4309 struct module *__module_address(unsigned long addr)
4310 {
4311 	struct module *mod;
4312 
4313 	if (addr < module_addr_min || addr > module_addr_max)
4314 		return NULL;
4315 
4316 	module_assert_mutex_or_preempt();
4317 
4318 	mod = mod_find(addr);
4319 	if (mod) {
4320 		BUG_ON(!within_module(addr, mod));
4321 		if (mod->state == MODULE_STATE_UNFORMED)
4322 			mod = NULL;
4323 	}
4324 	return mod;
4325 }
4326 EXPORT_SYMBOL_GPL(__module_address);
4327 
4328 /*
4329  * is_module_text_address - is this address inside module code?
4330  * @addr: the address to check.
4331  *
4332  * See is_module_address() if you simply want to see if the address is
4333  * anywhere in a module.  See kernel_text_address() for testing if an
4334  * address corresponds to kernel or module code.
4335  */
is_module_text_address(unsigned long addr)4336 bool is_module_text_address(unsigned long addr)
4337 {
4338 	bool ret;
4339 
4340 	preempt_disable();
4341 	ret = __module_text_address(addr) != NULL;
4342 	preempt_enable();
4343 
4344 	return ret;
4345 }
4346 
4347 /*
4348  * __module_text_address - get the module whose code contains an address.
4349  * @addr: the address.
4350  *
4351  * Must be called with preempt disabled or module mutex held so that
4352  * module doesn't get freed during this.
4353  */
__module_text_address(unsigned long addr)4354 struct module *__module_text_address(unsigned long addr)
4355 {
4356 	struct module *mod = __module_address(addr);
4357 	if (mod) {
4358 		/* Make sure it's within the text section. */
4359 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4360 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4361 			mod = NULL;
4362 	}
4363 	return mod;
4364 }
4365 EXPORT_SYMBOL_GPL(__module_text_address);
4366 
4367 /* Don't grab lock, we're oopsing. */
print_modules(void)4368 void print_modules(void)
4369 {
4370 	struct module *mod;
4371 	char buf[MODULE_FLAGS_BUF_SIZE];
4372 
4373 	printk(KERN_DEFAULT "Modules linked in:");
4374 	/* Most callers should already have preempt disabled, but make sure */
4375 	preempt_disable();
4376 	list_for_each_entry_rcu(mod, &modules, list) {
4377 		if (mod->state == MODULE_STATE_UNFORMED)
4378 			continue;
4379 		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4380 	}
4381 	preempt_enable();
4382 	if (last_unloaded_module[0])
4383 		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4384 	pr_cont("\n");
4385 }
4386 
4387 #ifdef CONFIG_MODVERSIONS
4388 /* Generate the signature for all relevant module structures here.
4389  * If these change, we don't want to try to parse the module. */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4390 void module_layout(struct module *mod,
4391 		   struct modversion_info *ver,
4392 		   struct kernel_param *kp,
4393 		   struct kernel_symbol *ks,
4394 		   struct tracepoint * const *tp)
4395 {
4396 }
4397 EXPORT_SYMBOL(module_layout);
4398 #endif
4399