1 /*
2  *  linux/kernel/fork.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  *  'fork.c' contains the help-routines for the 'fork' system call
9  * (see also entry.S and others).
10  * Fork is rather simple, once you get the hang of it, but the memory
11  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12  */
13 
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94 
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101 
102 #include <trace/events/sched.h>
103 
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106 
107 /*
108  * Minimum number of threads to boot the kernel
109  */
110 #define MIN_THREADS 20
111 
112 /*
113  * Maximum number of threads
114  */
115 #define MAX_THREADS FUTEX_TID_MASK
116 
117 /*
118  * Protected counters by write_lock_irq(&tasklist_lock)
119  */
120 unsigned long total_forks;	/* Handle normal Linux uptimes. */
121 int nr_threads;			/* The idle threads do not count.. */
122 
123 int max_threads;		/* tunable limit on nr_threads */
124 
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126 
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
128 
129 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)130 int lockdep_tasklist_lock_is_held(void)
131 {
132 	return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136 
nr_processes(void)137 int nr_processes(void)
138 {
139 	int cpu;
140 	int total = 0;
141 
142 	for_each_possible_cpu(cpu)
143 		total += per_cpu(process_counts, cpu);
144 
145 	return total;
146 }
147 
arch_release_task_struct(struct task_struct * tsk)148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151 
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154 
alloc_task_struct_node(int node)155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159 
free_task_struct(struct task_struct * tsk)160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 	kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165 
arch_release_thread_stack(unsigned long * stack)166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169 
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171 
172 /*
173  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174  * kmemcache based allocator.
175  */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177 
178 #ifdef CONFIG_VMAP_STACK
179 /*
180  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181  * flush.  Try to minimize the number of calls by caching stacks.
182  */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185 
free_vm_stack_cache(unsigned int cpu)186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 	int i;
190 
191 	for (i = 0; i < NR_CACHED_STACKS; i++) {
192 		struct vm_struct *vm_stack = cached_vm_stacks[i];
193 
194 		if (!vm_stack)
195 			continue;
196 
197 		vfree(vm_stack->addr);
198 		cached_vm_stacks[i] = NULL;
199 	}
200 
201 	return 0;
202 }
203 #endif
204 
alloc_thread_stack_node(struct task_struct * tsk,int node)205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 	void *stack;
209 	int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *s;
213 
214 		s = this_cpu_xchg(cached_stacks[i], NULL);
215 
216 		if (!s)
217 			continue;
218 
219 		/* Clear stale pointers from reused stack. */
220 		memset(s->addr, 0, THREAD_SIZE);
221 
222 		tsk->stack_vm_area = s;
223 		return s->addr;
224 	}
225 
226 	stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
227 				     VMALLOC_START, VMALLOC_END,
228 				     THREADINFO_GFP,
229 				     PAGE_KERNEL,
230 				     0, node, __builtin_return_address(0));
231 
232 	/*
233 	 * We can't call find_vm_area() in interrupt context, and
234 	 * free_thread_stack() can be called in interrupt context,
235 	 * so cache the vm_struct.
236 	 */
237 	if (stack)
238 		tsk->stack_vm_area = find_vm_area(stack);
239 	return stack;
240 #else
241 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
242 					     THREAD_SIZE_ORDER);
243 
244 	return page ? page_address(page) : NULL;
245 #endif
246 }
247 
free_thread_stack(struct task_struct * tsk)248 static inline void free_thread_stack(struct task_struct *tsk)
249 {
250 #ifdef CONFIG_VMAP_STACK
251 	if (task_stack_vm_area(tsk)) {
252 		int i;
253 
254 		for (i = 0; i < NR_CACHED_STACKS; i++) {
255 			if (this_cpu_cmpxchg(cached_stacks[i],
256 					NULL, tsk->stack_vm_area) != NULL)
257 				continue;
258 
259 			return;
260 		}
261 
262 		vfree_atomic(tsk->stack);
263 		return;
264 	}
265 #endif
266 
267 	__free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
268 }
269 # else
270 static struct kmem_cache *thread_stack_cache;
271 
alloc_thread_stack_node(struct task_struct * tsk,int node)272 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
273 						  int node)
274 {
275 	return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
276 }
277 
free_thread_stack(struct task_struct * tsk)278 static void free_thread_stack(struct task_struct *tsk)
279 {
280 	kmem_cache_free(thread_stack_cache, tsk->stack);
281 }
282 
thread_stack_cache_init(void)283 void thread_stack_cache_init(void)
284 {
285 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
286 					THREAD_SIZE, THREAD_SIZE, 0, 0,
287 					THREAD_SIZE, NULL);
288 	BUG_ON(thread_stack_cache == NULL);
289 }
290 # endif
291 #endif
292 
293 /* SLAB cache for signal_struct structures (tsk->signal) */
294 static struct kmem_cache *signal_cachep;
295 
296 /* SLAB cache for sighand_struct structures (tsk->sighand) */
297 struct kmem_cache *sighand_cachep;
298 
299 /* SLAB cache for files_struct structures (tsk->files) */
300 struct kmem_cache *files_cachep;
301 
302 /* SLAB cache for fs_struct structures (tsk->fs) */
303 struct kmem_cache *fs_cachep;
304 
305 /* SLAB cache for vm_area_struct structures */
306 static struct kmem_cache *vm_area_cachep;
307 
308 /* SLAB cache for mm_struct structures (tsk->mm) */
309 static struct kmem_cache *mm_cachep;
310 
vm_area_alloc(struct mm_struct * mm)311 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
312 {
313 	struct vm_area_struct *vma;
314 
315 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
316 	if (vma)
317 		vma_init(vma, mm);
318 	return vma;
319 }
320 
vm_area_dup(struct vm_area_struct * orig)321 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
322 {
323 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
324 
325 	if (new) {
326 		*new = *orig;
327 		INIT_LIST_HEAD(&new->anon_vma_chain);
328 	}
329 	return new;
330 }
331 
vm_area_free(struct vm_area_struct * vma)332 void vm_area_free(struct vm_area_struct *vma)
333 {
334 	kmem_cache_free(vm_area_cachep, vma);
335 }
336 
account_kernel_stack(struct task_struct * tsk,int account)337 static void account_kernel_stack(struct task_struct *tsk, int account)
338 {
339 	void *stack = task_stack_page(tsk);
340 	struct vm_struct *vm = task_stack_vm_area(tsk);
341 
342 	BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
343 
344 	if (vm) {
345 		int i;
346 
347 		BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
348 
349 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
350 			mod_zone_page_state(page_zone(vm->pages[i]),
351 					    NR_KERNEL_STACK_KB,
352 					    PAGE_SIZE / 1024 * account);
353 		}
354 
355 		/* All stack pages belong to the same memcg. */
356 		mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
357 				     account * (THREAD_SIZE / 1024));
358 	} else {
359 		/*
360 		 * All stack pages are in the same zone and belong to the
361 		 * same memcg.
362 		 */
363 		struct page *first_page = virt_to_page(stack);
364 
365 		mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
366 				    THREAD_SIZE / 1024 * account);
367 
368 		mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
369 				     account * (THREAD_SIZE / 1024));
370 	}
371 }
372 
release_task_stack(struct task_struct * tsk)373 static void release_task_stack(struct task_struct *tsk)
374 {
375 	if (WARN_ON(tsk->state != TASK_DEAD))
376 		return;  /* Better to leak the stack than to free prematurely */
377 
378 	account_kernel_stack(tsk, -1);
379 	arch_release_thread_stack(tsk->stack);
380 	free_thread_stack(tsk);
381 	tsk->stack = NULL;
382 #ifdef CONFIG_VMAP_STACK
383 	tsk->stack_vm_area = NULL;
384 #endif
385 }
386 
387 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)388 void put_task_stack(struct task_struct *tsk)
389 {
390 	if (atomic_dec_and_test(&tsk->stack_refcount))
391 		release_task_stack(tsk);
392 }
393 #endif
394 
free_task(struct task_struct * tsk)395 void free_task(struct task_struct *tsk)
396 {
397 #ifndef CONFIG_THREAD_INFO_IN_TASK
398 	/*
399 	 * The task is finally done with both the stack and thread_info,
400 	 * so free both.
401 	 */
402 	release_task_stack(tsk);
403 #else
404 	/*
405 	 * If the task had a separate stack allocation, it should be gone
406 	 * by now.
407 	 */
408 	WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
409 #endif
410 	rt_mutex_debug_task_free(tsk);
411 	ftrace_graph_exit_task(tsk);
412 	put_seccomp_filter(tsk);
413 	arch_release_task_struct(tsk);
414 	if (tsk->flags & PF_KTHREAD)
415 		free_kthread_struct(tsk);
416 	free_task_struct(tsk);
417 }
418 EXPORT_SYMBOL(free_task);
419 
420 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)421 static __latent_entropy int dup_mmap(struct mm_struct *mm,
422 					struct mm_struct *oldmm)
423 {
424 	struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
425 	struct rb_node **rb_link, *rb_parent;
426 	int retval;
427 	unsigned long charge;
428 	LIST_HEAD(uf);
429 
430 	uprobe_start_dup_mmap();
431 	if (down_write_killable(&oldmm->mmap_sem)) {
432 		retval = -EINTR;
433 		goto fail_uprobe_end;
434 	}
435 	flush_cache_dup_mm(oldmm);
436 	uprobe_dup_mmap(oldmm, mm);
437 	/*
438 	 * Not linked in yet - no deadlock potential:
439 	 */
440 	down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
441 
442 	/* No ordering required: file already has been exposed. */
443 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
444 
445 	mm->total_vm = oldmm->total_vm;
446 	mm->data_vm = oldmm->data_vm;
447 	mm->exec_vm = oldmm->exec_vm;
448 	mm->stack_vm = oldmm->stack_vm;
449 
450 	rb_link = &mm->mm_rb.rb_node;
451 	rb_parent = NULL;
452 	pprev = &mm->mmap;
453 	retval = ksm_fork(mm, oldmm);
454 	if (retval)
455 		goto out;
456 	retval = khugepaged_fork(mm, oldmm);
457 	if (retval)
458 		goto out;
459 
460 	prev = NULL;
461 	for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
462 		struct file *file;
463 
464 		if (mpnt->vm_flags & VM_DONTCOPY) {
465 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
466 			continue;
467 		}
468 		charge = 0;
469 		/*
470 		 * Don't duplicate many vmas if we've been oom-killed (for
471 		 * example)
472 		 */
473 		if (fatal_signal_pending(current)) {
474 			retval = -EINTR;
475 			goto out;
476 		}
477 		if (mpnt->vm_flags & VM_ACCOUNT) {
478 			unsigned long len = vma_pages(mpnt);
479 
480 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
481 				goto fail_nomem;
482 			charge = len;
483 		}
484 		tmp = vm_area_dup(mpnt);
485 		if (!tmp)
486 			goto fail_nomem;
487 		retval = vma_dup_policy(mpnt, tmp);
488 		if (retval)
489 			goto fail_nomem_policy;
490 		tmp->vm_mm = mm;
491 		retval = dup_userfaultfd(tmp, &uf);
492 		if (retval)
493 			goto fail_nomem_anon_vma_fork;
494 		if (tmp->vm_flags & VM_WIPEONFORK) {
495 			/* VM_WIPEONFORK gets a clean slate in the child. */
496 			tmp->anon_vma = NULL;
497 			if (anon_vma_prepare(tmp))
498 				goto fail_nomem_anon_vma_fork;
499 		} else if (anon_vma_fork(tmp, mpnt))
500 			goto fail_nomem_anon_vma_fork;
501 		tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
502 		tmp->vm_next = tmp->vm_prev = NULL;
503 		file = tmp->vm_file;
504 		if (file) {
505 			struct inode *inode = file_inode(file);
506 			struct address_space *mapping = file->f_mapping;
507 
508 			get_file(file);
509 			if (tmp->vm_flags & VM_DENYWRITE)
510 				atomic_dec(&inode->i_writecount);
511 			i_mmap_lock_write(mapping);
512 			if (tmp->vm_flags & VM_SHARED)
513 				atomic_inc(&mapping->i_mmap_writable);
514 			flush_dcache_mmap_lock(mapping);
515 			/* insert tmp into the share list, just after mpnt */
516 			vma_interval_tree_insert_after(tmp, mpnt,
517 					&mapping->i_mmap);
518 			flush_dcache_mmap_unlock(mapping);
519 			i_mmap_unlock_write(mapping);
520 		}
521 
522 		/*
523 		 * Clear hugetlb-related page reserves for children. This only
524 		 * affects MAP_PRIVATE mappings. Faults generated by the child
525 		 * are not guaranteed to succeed, even if read-only
526 		 */
527 		if (is_vm_hugetlb_page(tmp))
528 			reset_vma_resv_huge_pages(tmp);
529 
530 		/*
531 		 * Link in the new vma and copy the page table entries.
532 		 */
533 		*pprev = tmp;
534 		pprev = &tmp->vm_next;
535 		tmp->vm_prev = prev;
536 		prev = tmp;
537 
538 		__vma_link_rb(mm, tmp, rb_link, rb_parent);
539 		rb_link = &tmp->vm_rb.rb_right;
540 		rb_parent = &tmp->vm_rb;
541 
542 		mm->map_count++;
543 		if (!(tmp->vm_flags & VM_WIPEONFORK))
544 			retval = copy_page_range(mm, oldmm, mpnt);
545 
546 		if (tmp->vm_ops && tmp->vm_ops->open)
547 			tmp->vm_ops->open(tmp);
548 
549 		if (retval)
550 			goto out;
551 	}
552 	/* a new mm has just been created */
553 	retval = arch_dup_mmap(oldmm, mm);
554 out:
555 	up_write(&mm->mmap_sem);
556 	flush_tlb_mm(oldmm);
557 	up_write(&oldmm->mmap_sem);
558 	dup_userfaultfd_complete(&uf);
559 fail_uprobe_end:
560 	uprobe_end_dup_mmap();
561 	return retval;
562 fail_nomem_anon_vma_fork:
563 	mpol_put(vma_policy(tmp));
564 fail_nomem_policy:
565 	vm_area_free(tmp);
566 fail_nomem:
567 	retval = -ENOMEM;
568 	vm_unacct_memory(charge);
569 	goto out;
570 }
571 
mm_alloc_pgd(struct mm_struct * mm)572 static inline int mm_alloc_pgd(struct mm_struct *mm)
573 {
574 	mm->pgd = pgd_alloc(mm);
575 	if (unlikely(!mm->pgd))
576 		return -ENOMEM;
577 	return 0;
578 }
579 
mm_free_pgd(struct mm_struct * mm)580 static inline void mm_free_pgd(struct mm_struct *mm)
581 {
582 	pgd_free(mm, mm->pgd);
583 }
584 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)585 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
586 {
587 	down_write(&oldmm->mmap_sem);
588 	RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
589 	up_write(&oldmm->mmap_sem);
590 	return 0;
591 }
592 #define mm_alloc_pgd(mm)	(0)
593 #define mm_free_pgd(mm)
594 #endif /* CONFIG_MMU */
595 
check_mm(struct mm_struct * mm)596 static void check_mm(struct mm_struct *mm)
597 {
598 	int i;
599 
600 	for (i = 0; i < NR_MM_COUNTERS; i++) {
601 		long x = atomic_long_read(&mm->rss_stat.count[i]);
602 
603 		if (unlikely(x))
604 			printk(KERN_ALERT "BUG: Bad rss-counter state "
605 					  "mm:%p idx:%d val:%ld\n", mm, i, x);
606 	}
607 
608 	if (mm_pgtables_bytes(mm))
609 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
610 				mm_pgtables_bytes(mm));
611 
612 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
613 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
614 #endif
615 }
616 
617 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
618 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
619 
620 /*
621  * Called when the last reference to the mm
622  * is dropped: either by a lazy thread or by
623  * mmput. Free the page directory and the mm.
624  */
__mmdrop(struct mm_struct * mm)625 void __mmdrop(struct mm_struct *mm)
626 {
627 	BUG_ON(mm == &init_mm);
628 	WARN_ON_ONCE(mm == current->mm);
629 	WARN_ON_ONCE(mm == current->active_mm);
630 	mm_free_pgd(mm);
631 	destroy_context(mm);
632 	hmm_mm_destroy(mm);
633 	mmu_notifier_mm_destroy(mm);
634 	check_mm(mm);
635 	put_user_ns(mm->user_ns);
636 	free_mm(mm);
637 }
638 EXPORT_SYMBOL_GPL(__mmdrop);
639 
mmdrop_async_fn(struct work_struct * work)640 static void mmdrop_async_fn(struct work_struct *work)
641 {
642 	struct mm_struct *mm;
643 
644 	mm = container_of(work, struct mm_struct, async_put_work);
645 	__mmdrop(mm);
646 }
647 
mmdrop_async(struct mm_struct * mm)648 static void mmdrop_async(struct mm_struct *mm)
649 {
650 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
651 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
652 		schedule_work(&mm->async_put_work);
653 	}
654 }
655 
free_signal_struct(struct signal_struct * sig)656 static inline void free_signal_struct(struct signal_struct *sig)
657 {
658 	taskstats_tgid_free(sig);
659 	sched_autogroup_exit(sig);
660 	/*
661 	 * __mmdrop is not safe to call from softirq context on x86 due to
662 	 * pgd_dtor so postpone it to the async context
663 	 */
664 	if (sig->oom_mm)
665 		mmdrop_async(sig->oom_mm);
666 	kmem_cache_free(signal_cachep, sig);
667 }
668 
put_signal_struct(struct signal_struct * sig)669 static inline void put_signal_struct(struct signal_struct *sig)
670 {
671 	if (atomic_dec_and_test(&sig->sigcnt))
672 		free_signal_struct(sig);
673 }
674 
__put_task_struct(struct task_struct * tsk)675 void __put_task_struct(struct task_struct *tsk)
676 {
677 	WARN_ON(!tsk->exit_state);
678 	WARN_ON(atomic_read(&tsk->usage));
679 	WARN_ON(tsk == current);
680 
681 	cgroup_free(tsk);
682 	task_numa_free(tsk);
683 	security_task_free(tsk);
684 	exit_creds(tsk);
685 	delayacct_tsk_free(tsk);
686 	put_signal_struct(tsk->signal);
687 
688 	if (!profile_handoff_task(tsk))
689 		free_task(tsk);
690 }
691 EXPORT_SYMBOL_GPL(__put_task_struct);
692 
arch_task_cache_init(void)693 void __init __weak arch_task_cache_init(void) { }
694 
695 /*
696  * set_max_threads
697  */
set_max_threads(unsigned int max_threads_suggested)698 static void set_max_threads(unsigned int max_threads_suggested)
699 {
700 	u64 threads;
701 
702 	/*
703 	 * The number of threads shall be limited such that the thread
704 	 * structures may only consume a small part of the available memory.
705 	 */
706 	if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
707 		threads = MAX_THREADS;
708 	else
709 		threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
710 				    (u64) THREAD_SIZE * 8UL);
711 
712 	if (threads > max_threads_suggested)
713 		threads = max_threads_suggested;
714 
715 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
716 }
717 
718 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
719 /* Initialized by the architecture: */
720 int arch_task_struct_size __read_mostly;
721 #endif
722 
task_struct_whitelist(unsigned long * offset,unsigned long * size)723 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
724 {
725 	/* Fetch thread_struct whitelist for the architecture. */
726 	arch_thread_struct_whitelist(offset, size);
727 
728 	/*
729 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
730 	 * adjust offset to position of thread_struct in task_struct.
731 	 */
732 	if (unlikely(*size == 0))
733 		*offset = 0;
734 	else
735 		*offset += offsetof(struct task_struct, thread);
736 }
737 
fork_init(void)738 void __init fork_init(void)
739 {
740 	int i;
741 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
742 #ifndef ARCH_MIN_TASKALIGN
743 #define ARCH_MIN_TASKALIGN	0
744 #endif
745 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
746 	unsigned long useroffset, usersize;
747 
748 	/* create a slab on which task_structs can be allocated */
749 	task_struct_whitelist(&useroffset, &usersize);
750 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
751 			arch_task_struct_size, align,
752 			SLAB_PANIC|SLAB_ACCOUNT,
753 			useroffset, usersize, NULL);
754 #endif
755 
756 	/* do the arch specific task caches init */
757 	arch_task_cache_init();
758 
759 	set_max_threads(MAX_THREADS);
760 
761 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
762 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
763 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
764 		init_task.signal->rlim[RLIMIT_NPROC];
765 
766 	for (i = 0; i < UCOUNT_COUNTS; i++) {
767 		init_user_ns.ucount_max[i] = max_threads/2;
768 	}
769 
770 #ifdef CONFIG_VMAP_STACK
771 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
772 			  NULL, free_vm_stack_cache);
773 #endif
774 
775 	lockdep_init_task(&init_task);
776 }
777 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)778 int __weak arch_dup_task_struct(struct task_struct *dst,
779 					       struct task_struct *src)
780 {
781 	*dst = *src;
782 	return 0;
783 }
784 
set_task_stack_end_magic(struct task_struct * tsk)785 void set_task_stack_end_magic(struct task_struct *tsk)
786 {
787 	unsigned long *stackend;
788 
789 	stackend = end_of_stack(tsk);
790 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
791 }
792 
dup_task_struct(struct task_struct * orig,int node)793 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
794 {
795 	struct task_struct *tsk;
796 	unsigned long *stack;
797 	struct vm_struct *stack_vm_area;
798 	int err;
799 
800 	if (node == NUMA_NO_NODE)
801 		node = tsk_fork_get_node(orig);
802 	tsk = alloc_task_struct_node(node);
803 	if (!tsk)
804 		return NULL;
805 
806 	stack = alloc_thread_stack_node(tsk, node);
807 	if (!stack)
808 		goto free_tsk;
809 
810 	stack_vm_area = task_stack_vm_area(tsk);
811 
812 	err = arch_dup_task_struct(tsk, orig);
813 
814 	/*
815 	 * arch_dup_task_struct() clobbers the stack-related fields.  Make
816 	 * sure they're properly initialized before using any stack-related
817 	 * functions again.
818 	 */
819 	tsk->stack = stack;
820 #ifdef CONFIG_VMAP_STACK
821 	tsk->stack_vm_area = stack_vm_area;
822 #endif
823 #ifdef CONFIG_THREAD_INFO_IN_TASK
824 	atomic_set(&tsk->stack_refcount, 1);
825 #endif
826 
827 	if (err)
828 		goto free_stack;
829 
830 #ifdef CONFIG_SECCOMP
831 	/*
832 	 * We must handle setting up seccomp filters once we're under
833 	 * the sighand lock in case orig has changed between now and
834 	 * then. Until then, filter must be NULL to avoid messing up
835 	 * the usage counts on the error path calling free_task.
836 	 */
837 	tsk->seccomp.filter = NULL;
838 #endif
839 
840 	setup_thread_stack(tsk, orig);
841 	clear_user_return_notifier(tsk);
842 	clear_tsk_need_resched(tsk);
843 	set_task_stack_end_magic(tsk);
844 
845 #ifdef CONFIG_STACKPROTECTOR
846 	tsk->stack_canary = get_random_canary();
847 #endif
848 
849 	/*
850 	 * One for us, one for whoever does the "release_task()" (usually
851 	 * parent)
852 	 */
853 	atomic_set(&tsk->usage, 2);
854 #ifdef CONFIG_BLK_DEV_IO_TRACE
855 	tsk->btrace_seq = 0;
856 #endif
857 	tsk->splice_pipe = NULL;
858 	tsk->task_frag.page = NULL;
859 	tsk->wake_q.next = NULL;
860 
861 	account_kernel_stack(tsk, 1);
862 
863 	kcov_task_init(tsk);
864 
865 #ifdef CONFIG_FAULT_INJECTION
866 	tsk->fail_nth = 0;
867 #endif
868 
869 #ifdef CONFIG_BLK_CGROUP
870 	tsk->throttle_queue = NULL;
871 	tsk->use_memdelay = 0;
872 #endif
873 
874 #ifdef CONFIG_MEMCG
875 	tsk->active_memcg = NULL;
876 #endif
877 	return tsk;
878 
879 free_stack:
880 	free_thread_stack(tsk);
881 free_tsk:
882 	free_task_struct(tsk);
883 	return NULL;
884 }
885 
886 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
887 
888 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
889 
coredump_filter_setup(char * s)890 static int __init coredump_filter_setup(char *s)
891 {
892 	default_dump_filter =
893 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
894 		MMF_DUMP_FILTER_MASK;
895 	return 1;
896 }
897 
898 __setup("coredump_filter=", coredump_filter_setup);
899 
900 #include <linux/init_task.h>
901 
mm_init_aio(struct mm_struct * mm)902 static void mm_init_aio(struct mm_struct *mm)
903 {
904 #ifdef CONFIG_AIO
905 	spin_lock_init(&mm->ioctx_lock);
906 	mm->ioctx_table = NULL;
907 #endif
908 }
909 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)910 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
911 {
912 #ifdef CONFIG_MEMCG
913 	mm->owner = p;
914 #endif
915 }
916 
mm_init_uprobes_state(struct mm_struct * mm)917 static void mm_init_uprobes_state(struct mm_struct *mm)
918 {
919 #ifdef CONFIG_UPROBES
920 	mm->uprobes_state.xol_area = NULL;
921 #endif
922 }
923 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)924 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
925 	struct user_namespace *user_ns)
926 {
927 	mm->mmap = NULL;
928 	mm->mm_rb = RB_ROOT;
929 	mm->vmacache_seqnum = 0;
930 	atomic_set(&mm->mm_users, 1);
931 	atomic_set(&mm->mm_count, 1);
932 	init_rwsem(&mm->mmap_sem);
933 	INIT_LIST_HEAD(&mm->mmlist);
934 	mm->core_state = NULL;
935 	mm_pgtables_bytes_init(mm);
936 	mm->map_count = 0;
937 	mm->locked_vm = 0;
938 	mm->pinned_vm = 0;
939 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
940 	spin_lock_init(&mm->page_table_lock);
941 	spin_lock_init(&mm->arg_lock);
942 	mm_init_cpumask(mm);
943 	mm_init_aio(mm);
944 	mm_init_owner(mm, p);
945 	RCU_INIT_POINTER(mm->exe_file, NULL);
946 	mmu_notifier_mm_init(mm);
947 	hmm_mm_init(mm);
948 	init_tlb_flush_pending(mm);
949 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
950 	mm->pmd_huge_pte = NULL;
951 #endif
952 	mm_init_uprobes_state(mm);
953 
954 	if (current->mm) {
955 		mm->flags = current->mm->flags & MMF_INIT_MASK;
956 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
957 	} else {
958 		mm->flags = default_dump_filter;
959 		mm->def_flags = 0;
960 	}
961 
962 	if (mm_alloc_pgd(mm))
963 		goto fail_nopgd;
964 
965 	if (init_new_context(p, mm))
966 		goto fail_nocontext;
967 
968 	mm->user_ns = get_user_ns(user_ns);
969 	return mm;
970 
971 fail_nocontext:
972 	mm_free_pgd(mm);
973 fail_nopgd:
974 	free_mm(mm);
975 	return NULL;
976 }
977 
978 /*
979  * Allocate and initialize an mm_struct.
980  */
mm_alloc(void)981 struct mm_struct *mm_alloc(void)
982 {
983 	struct mm_struct *mm;
984 
985 	mm = allocate_mm();
986 	if (!mm)
987 		return NULL;
988 
989 	memset(mm, 0, sizeof(*mm));
990 	return mm_init(mm, current, current_user_ns());
991 }
992 
__mmput(struct mm_struct * mm)993 static inline void __mmput(struct mm_struct *mm)
994 {
995 	VM_BUG_ON(atomic_read(&mm->mm_users));
996 
997 	uprobe_clear_state(mm);
998 	exit_aio(mm);
999 	ksm_exit(mm);
1000 	khugepaged_exit(mm); /* must run before exit_mmap */
1001 	exit_mmap(mm);
1002 	mm_put_huge_zero_page(mm);
1003 	set_mm_exe_file(mm, NULL);
1004 	if (!list_empty(&mm->mmlist)) {
1005 		spin_lock(&mmlist_lock);
1006 		list_del(&mm->mmlist);
1007 		spin_unlock(&mmlist_lock);
1008 	}
1009 	if (mm->binfmt)
1010 		module_put(mm->binfmt->module);
1011 	mmdrop(mm);
1012 }
1013 
1014 /*
1015  * Decrement the use count and release all resources for an mm.
1016  */
mmput(struct mm_struct * mm)1017 void mmput(struct mm_struct *mm)
1018 {
1019 	might_sleep();
1020 
1021 	if (atomic_dec_and_test(&mm->mm_users))
1022 		__mmput(mm);
1023 }
1024 EXPORT_SYMBOL_GPL(mmput);
1025 
1026 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1027 static void mmput_async_fn(struct work_struct *work)
1028 {
1029 	struct mm_struct *mm = container_of(work, struct mm_struct,
1030 					    async_put_work);
1031 
1032 	__mmput(mm);
1033 }
1034 
mmput_async(struct mm_struct * mm)1035 void mmput_async(struct mm_struct *mm)
1036 {
1037 	if (atomic_dec_and_test(&mm->mm_users)) {
1038 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1039 		schedule_work(&mm->async_put_work);
1040 	}
1041 }
1042 #endif
1043 
1044 /**
1045  * set_mm_exe_file - change a reference to the mm's executable file
1046  *
1047  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1048  *
1049  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1050  * invocations: in mmput() nobody alive left, in execve task is single
1051  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1052  * mm->exe_file, but does so without using set_mm_exe_file() in order
1053  * to do avoid the need for any locks.
1054  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1055 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1056 {
1057 	struct file *old_exe_file;
1058 
1059 	/*
1060 	 * It is safe to dereference the exe_file without RCU as
1061 	 * this function is only called if nobody else can access
1062 	 * this mm -- see comment above for justification.
1063 	 */
1064 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1065 
1066 	if (new_exe_file)
1067 		get_file(new_exe_file);
1068 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1069 	if (old_exe_file)
1070 		fput(old_exe_file);
1071 }
1072 
1073 /**
1074  * get_mm_exe_file - acquire a reference to the mm's executable file
1075  *
1076  * Returns %NULL if mm has no associated executable file.
1077  * User must release file via fput().
1078  */
get_mm_exe_file(struct mm_struct * mm)1079 struct file *get_mm_exe_file(struct mm_struct *mm)
1080 {
1081 	struct file *exe_file;
1082 
1083 	rcu_read_lock();
1084 	exe_file = rcu_dereference(mm->exe_file);
1085 	if (exe_file && !get_file_rcu(exe_file))
1086 		exe_file = NULL;
1087 	rcu_read_unlock();
1088 	return exe_file;
1089 }
1090 EXPORT_SYMBOL(get_mm_exe_file);
1091 
1092 /**
1093  * get_task_exe_file - acquire a reference to the task's executable file
1094  *
1095  * Returns %NULL if task's mm (if any) has no associated executable file or
1096  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1097  * User must release file via fput().
1098  */
get_task_exe_file(struct task_struct * task)1099 struct file *get_task_exe_file(struct task_struct *task)
1100 {
1101 	struct file *exe_file = NULL;
1102 	struct mm_struct *mm;
1103 
1104 	task_lock(task);
1105 	mm = task->mm;
1106 	if (mm) {
1107 		if (!(task->flags & PF_KTHREAD))
1108 			exe_file = get_mm_exe_file(mm);
1109 	}
1110 	task_unlock(task);
1111 	return exe_file;
1112 }
1113 EXPORT_SYMBOL(get_task_exe_file);
1114 
1115 /**
1116  * get_task_mm - acquire a reference to the task's mm
1117  *
1118  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1119  * this kernel workthread has transiently adopted a user mm with use_mm,
1120  * to do its AIO) is not set and if so returns a reference to it, after
1121  * bumping up the use count.  User must release the mm via mmput()
1122  * after use.  Typically used by /proc and ptrace.
1123  */
get_task_mm(struct task_struct * task)1124 struct mm_struct *get_task_mm(struct task_struct *task)
1125 {
1126 	struct mm_struct *mm;
1127 
1128 	task_lock(task);
1129 	mm = task->mm;
1130 	if (mm) {
1131 		if (task->flags & PF_KTHREAD)
1132 			mm = NULL;
1133 		else
1134 			mmget(mm);
1135 	}
1136 	task_unlock(task);
1137 	return mm;
1138 }
1139 EXPORT_SYMBOL_GPL(get_task_mm);
1140 
mm_access(struct task_struct * task,unsigned int mode)1141 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1142 {
1143 	struct mm_struct *mm;
1144 	int err;
1145 
1146 	err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1147 	if (err)
1148 		return ERR_PTR(err);
1149 
1150 	mm = get_task_mm(task);
1151 	if (mm && mm != current->mm &&
1152 			!ptrace_may_access(task, mode)) {
1153 		mmput(mm);
1154 		mm = ERR_PTR(-EACCES);
1155 	}
1156 	mutex_unlock(&task->signal->cred_guard_mutex);
1157 
1158 	return mm;
1159 }
1160 
complete_vfork_done(struct task_struct * tsk)1161 static void complete_vfork_done(struct task_struct *tsk)
1162 {
1163 	struct completion *vfork;
1164 
1165 	task_lock(tsk);
1166 	vfork = tsk->vfork_done;
1167 	if (likely(vfork)) {
1168 		tsk->vfork_done = NULL;
1169 		complete(vfork);
1170 	}
1171 	task_unlock(tsk);
1172 }
1173 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1174 static int wait_for_vfork_done(struct task_struct *child,
1175 				struct completion *vfork)
1176 {
1177 	int killed;
1178 
1179 	freezer_do_not_count();
1180 	killed = wait_for_completion_killable(vfork);
1181 	freezer_count();
1182 
1183 	if (killed) {
1184 		task_lock(child);
1185 		child->vfork_done = NULL;
1186 		task_unlock(child);
1187 	}
1188 
1189 	put_task_struct(child);
1190 	return killed;
1191 }
1192 
1193 /* Please note the differences between mmput and mm_release.
1194  * mmput is called whenever we stop holding onto a mm_struct,
1195  * error success whatever.
1196  *
1197  * mm_release is called after a mm_struct has been removed
1198  * from the current process.
1199  *
1200  * This difference is important for error handling, when we
1201  * only half set up a mm_struct for a new process and need to restore
1202  * the old one.  Because we mmput the new mm_struct before
1203  * restoring the old one. . .
1204  * Eric Biederman 10 January 1998
1205  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1206 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1207 {
1208 	/* Get rid of any futexes when releasing the mm */
1209 #ifdef CONFIG_FUTEX
1210 	if (unlikely(tsk->robust_list)) {
1211 		exit_robust_list(tsk);
1212 		tsk->robust_list = NULL;
1213 	}
1214 #ifdef CONFIG_COMPAT
1215 	if (unlikely(tsk->compat_robust_list)) {
1216 		compat_exit_robust_list(tsk);
1217 		tsk->compat_robust_list = NULL;
1218 	}
1219 #endif
1220 	if (unlikely(!list_empty(&tsk->pi_state_list)))
1221 		exit_pi_state_list(tsk);
1222 #endif
1223 
1224 	uprobe_free_utask(tsk);
1225 
1226 	/* Get rid of any cached register state */
1227 	deactivate_mm(tsk, mm);
1228 
1229 	/*
1230 	 * Signal userspace if we're not exiting with a core dump
1231 	 * because we want to leave the value intact for debugging
1232 	 * purposes.
1233 	 */
1234 	if (tsk->clear_child_tid) {
1235 		if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1236 		    atomic_read(&mm->mm_users) > 1) {
1237 			/*
1238 			 * We don't check the error code - if userspace has
1239 			 * not set up a proper pointer then tough luck.
1240 			 */
1241 			put_user(0, tsk->clear_child_tid);
1242 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1243 					1, NULL, NULL, 0, 0);
1244 		}
1245 		tsk->clear_child_tid = NULL;
1246 	}
1247 
1248 	/*
1249 	 * All done, finally we can wake up parent and return this mm to him.
1250 	 * Also kthread_stop() uses this completion for synchronization.
1251 	 */
1252 	if (tsk->vfork_done)
1253 		complete_vfork_done(tsk);
1254 }
1255 
1256 /*
1257  * Allocate a new mm structure and copy contents from the
1258  * mm structure of the passed in task structure.
1259  */
dup_mm(struct task_struct * tsk)1260 static struct mm_struct *dup_mm(struct task_struct *tsk)
1261 {
1262 	struct mm_struct *mm, *oldmm = current->mm;
1263 	int err;
1264 
1265 	mm = allocate_mm();
1266 	if (!mm)
1267 		goto fail_nomem;
1268 
1269 	memcpy(mm, oldmm, sizeof(*mm));
1270 
1271 	if (!mm_init(mm, tsk, mm->user_ns))
1272 		goto fail_nomem;
1273 
1274 	err = dup_mmap(mm, oldmm);
1275 	if (err)
1276 		goto free_pt;
1277 
1278 	mm->hiwater_rss = get_mm_rss(mm);
1279 	mm->hiwater_vm = mm->total_vm;
1280 
1281 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1282 		goto free_pt;
1283 
1284 	return mm;
1285 
1286 free_pt:
1287 	/* don't put binfmt in mmput, we haven't got module yet */
1288 	mm->binfmt = NULL;
1289 	mmput(mm);
1290 
1291 fail_nomem:
1292 	return NULL;
1293 }
1294 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1295 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1296 {
1297 	struct mm_struct *mm, *oldmm;
1298 	int retval;
1299 
1300 	tsk->min_flt = tsk->maj_flt = 0;
1301 	tsk->nvcsw = tsk->nivcsw = 0;
1302 #ifdef CONFIG_DETECT_HUNG_TASK
1303 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1304 	tsk->last_switch_time = 0;
1305 #endif
1306 
1307 	tsk->mm = NULL;
1308 	tsk->active_mm = NULL;
1309 
1310 	/*
1311 	 * Are we cloning a kernel thread?
1312 	 *
1313 	 * We need to steal a active VM for that..
1314 	 */
1315 	oldmm = current->mm;
1316 	if (!oldmm)
1317 		return 0;
1318 
1319 	/* initialize the new vmacache entries */
1320 	vmacache_flush(tsk);
1321 
1322 	if (clone_flags & CLONE_VM) {
1323 		mmget(oldmm);
1324 		mm = oldmm;
1325 		goto good_mm;
1326 	}
1327 
1328 	retval = -ENOMEM;
1329 	mm = dup_mm(tsk);
1330 	if (!mm)
1331 		goto fail_nomem;
1332 
1333 good_mm:
1334 	tsk->mm = mm;
1335 	tsk->active_mm = mm;
1336 	return 0;
1337 
1338 fail_nomem:
1339 	return retval;
1340 }
1341 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1342 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1343 {
1344 	struct fs_struct *fs = current->fs;
1345 	if (clone_flags & CLONE_FS) {
1346 		/* tsk->fs is already what we want */
1347 		spin_lock(&fs->lock);
1348 		if (fs->in_exec) {
1349 			spin_unlock(&fs->lock);
1350 			return -EAGAIN;
1351 		}
1352 		fs->users++;
1353 		spin_unlock(&fs->lock);
1354 		return 0;
1355 	}
1356 	tsk->fs = copy_fs_struct(fs);
1357 	if (!tsk->fs)
1358 		return -ENOMEM;
1359 	return 0;
1360 }
1361 
copy_files(unsigned long clone_flags,struct task_struct * tsk)1362 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1363 {
1364 	struct files_struct *oldf, *newf;
1365 	int error = 0;
1366 
1367 	/*
1368 	 * A background process may not have any files ...
1369 	 */
1370 	oldf = current->files;
1371 	if (!oldf)
1372 		goto out;
1373 
1374 	if (clone_flags & CLONE_FILES) {
1375 		atomic_inc(&oldf->count);
1376 		goto out;
1377 	}
1378 
1379 	newf = dup_fd(oldf, &error);
1380 	if (!newf)
1381 		goto out;
1382 
1383 	tsk->files = newf;
1384 	error = 0;
1385 out:
1386 	return error;
1387 }
1388 
copy_io(unsigned long clone_flags,struct task_struct * tsk)1389 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1390 {
1391 #ifdef CONFIG_BLOCK
1392 	struct io_context *ioc = current->io_context;
1393 	struct io_context *new_ioc;
1394 
1395 	if (!ioc)
1396 		return 0;
1397 	/*
1398 	 * Share io context with parent, if CLONE_IO is set
1399 	 */
1400 	if (clone_flags & CLONE_IO) {
1401 		ioc_task_link(ioc);
1402 		tsk->io_context = ioc;
1403 	} else if (ioprio_valid(ioc->ioprio)) {
1404 		new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1405 		if (unlikely(!new_ioc))
1406 			return -ENOMEM;
1407 
1408 		new_ioc->ioprio = ioc->ioprio;
1409 		put_io_context(new_ioc);
1410 	}
1411 #endif
1412 	return 0;
1413 }
1414 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1415 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1416 {
1417 	struct sighand_struct *sig;
1418 
1419 	if (clone_flags & CLONE_SIGHAND) {
1420 		atomic_inc(&current->sighand->count);
1421 		return 0;
1422 	}
1423 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1424 	rcu_assign_pointer(tsk->sighand, sig);
1425 	if (!sig)
1426 		return -ENOMEM;
1427 
1428 	atomic_set(&sig->count, 1);
1429 	spin_lock_irq(&current->sighand->siglock);
1430 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1431 	spin_unlock_irq(&current->sighand->siglock);
1432 	return 0;
1433 }
1434 
__cleanup_sighand(struct sighand_struct * sighand)1435 void __cleanup_sighand(struct sighand_struct *sighand)
1436 {
1437 	if (atomic_dec_and_test(&sighand->count)) {
1438 		signalfd_cleanup(sighand);
1439 		/*
1440 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1441 		 * without an RCU grace period, see __lock_task_sighand().
1442 		 */
1443 		kmem_cache_free(sighand_cachep, sighand);
1444 	}
1445 }
1446 
1447 #ifdef CONFIG_POSIX_TIMERS
1448 /*
1449  * Initialize POSIX timer handling for a thread group.
1450  */
posix_cpu_timers_init_group(struct signal_struct * sig)1451 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1452 {
1453 	unsigned long cpu_limit;
1454 
1455 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1456 	if (cpu_limit != RLIM_INFINITY) {
1457 		sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1458 		sig->cputimer.running = true;
1459 	}
1460 
1461 	/* The timer lists. */
1462 	INIT_LIST_HEAD(&sig->cpu_timers[0]);
1463 	INIT_LIST_HEAD(&sig->cpu_timers[1]);
1464 	INIT_LIST_HEAD(&sig->cpu_timers[2]);
1465 }
1466 #else
posix_cpu_timers_init_group(struct signal_struct * sig)1467 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1468 #endif
1469 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1470 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1471 {
1472 	struct signal_struct *sig;
1473 
1474 	if (clone_flags & CLONE_THREAD)
1475 		return 0;
1476 
1477 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1478 	tsk->signal = sig;
1479 	if (!sig)
1480 		return -ENOMEM;
1481 
1482 	sig->nr_threads = 1;
1483 	atomic_set(&sig->live, 1);
1484 	atomic_set(&sig->sigcnt, 1);
1485 
1486 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1487 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1488 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1489 
1490 	init_waitqueue_head(&sig->wait_chldexit);
1491 	sig->curr_target = tsk;
1492 	init_sigpending(&sig->shared_pending);
1493 	INIT_HLIST_HEAD(&sig->multiprocess);
1494 	seqlock_init(&sig->stats_lock);
1495 	prev_cputime_init(&sig->prev_cputime);
1496 
1497 #ifdef CONFIG_POSIX_TIMERS
1498 	INIT_LIST_HEAD(&sig->posix_timers);
1499 	hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1500 	sig->real_timer.function = it_real_fn;
1501 #endif
1502 
1503 	task_lock(current->group_leader);
1504 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1505 	task_unlock(current->group_leader);
1506 
1507 	posix_cpu_timers_init_group(sig);
1508 
1509 	tty_audit_fork(sig);
1510 	sched_autogroup_fork(sig);
1511 
1512 	sig->oom_score_adj = current->signal->oom_score_adj;
1513 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1514 
1515 	mutex_init(&sig->cred_guard_mutex);
1516 
1517 	return 0;
1518 }
1519 
copy_seccomp(struct task_struct * p)1520 static void copy_seccomp(struct task_struct *p)
1521 {
1522 #ifdef CONFIG_SECCOMP
1523 	/*
1524 	 * Must be called with sighand->lock held, which is common to
1525 	 * all threads in the group. Holding cred_guard_mutex is not
1526 	 * needed because this new task is not yet running and cannot
1527 	 * be racing exec.
1528 	 */
1529 	assert_spin_locked(&current->sighand->siglock);
1530 
1531 	/* Ref-count the new filter user, and assign it. */
1532 	get_seccomp_filter(current);
1533 	p->seccomp = current->seccomp;
1534 
1535 	/*
1536 	 * Explicitly enable no_new_privs here in case it got set
1537 	 * between the task_struct being duplicated and holding the
1538 	 * sighand lock. The seccomp state and nnp must be in sync.
1539 	 */
1540 	if (task_no_new_privs(current))
1541 		task_set_no_new_privs(p);
1542 
1543 	/*
1544 	 * If the parent gained a seccomp mode after copying thread
1545 	 * flags and between before we held the sighand lock, we have
1546 	 * to manually enable the seccomp thread flag here.
1547 	 */
1548 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1549 		set_tsk_thread_flag(p, TIF_SECCOMP);
1550 #endif
1551 }
1552 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1553 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1554 {
1555 	current->clear_child_tid = tidptr;
1556 
1557 	return task_pid_vnr(current);
1558 }
1559 
rt_mutex_init_task(struct task_struct * p)1560 static void rt_mutex_init_task(struct task_struct *p)
1561 {
1562 	raw_spin_lock_init(&p->pi_lock);
1563 #ifdef CONFIG_RT_MUTEXES
1564 	p->pi_waiters = RB_ROOT_CACHED;
1565 	p->pi_top_task = NULL;
1566 	p->pi_blocked_on = NULL;
1567 #endif
1568 }
1569 
1570 #ifdef CONFIG_POSIX_TIMERS
1571 /*
1572  * Initialize POSIX timer handling for a single task.
1573  */
posix_cpu_timers_init(struct task_struct * tsk)1574 static void posix_cpu_timers_init(struct task_struct *tsk)
1575 {
1576 	tsk->cputime_expires.prof_exp = 0;
1577 	tsk->cputime_expires.virt_exp = 0;
1578 	tsk->cputime_expires.sched_exp = 0;
1579 	INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1580 	INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1581 	INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1582 }
1583 #else
posix_cpu_timers_init(struct task_struct * tsk)1584 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1585 #endif
1586 
init_task_pid_links(struct task_struct * task)1587 static inline void init_task_pid_links(struct task_struct *task)
1588 {
1589 	enum pid_type type;
1590 
1591 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1592 		INIT_HLIST_NODE(&task->pid_links[type]);
1593 	}
1594 }
1595 
1596 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1597 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1598 {
1599 	if (type == PIDTYPE_PID)
1600 		task->thread_pid = pid;
1601 	else
1602 		task->signal->pids[type] = pid;
1603 }
1604 
rcu_copy_process(struct task_struct * p)1605 static inline void rcu_copy_process(struct task_struct *p)
1606 {
1607 #ifdef CONFIG_PREEMPT_RCU
1608 	p->rcu_read_lock_nesting = 0;
1609 	p->rcu_read_unlock_special.s = 0;
1610 	p->rcu_blocked_node = NULL;
1611 	INIT_LIST_HEAD(&p->rcu_node_entry);
1612 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1613 #ifdef CONFIG_TASKS_RCU
1614 	p->rcu_tasks_holdout = false;
1615 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1616 	p->rcu_tasks_idle_cpu = -1;
1617 #endif /* #ifdef CONFIG_TASKS_RCU */
1618 }
1619 
1620 /*
1621  * This creates a new process as a copy of the old one,
1622  * but does not actually start it yet.
1623  *
1624  * It copies the registers, and all the appropriate
1625  * parts of the process environment (as per the clone
1626  * flags). The actual kick-off is left to the caller.
1627  */
copy_process(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * child_tidptr,struct pid * pid,int trace,unsigned long tls,int node)1628 static __latent_entropy struct task_struct *copy_process(
1629 					unsigned long clone_flags,
1630 					unsigned long stack_start,
1631 					unsigned long stack_size,
1632 					int __user *child_tidptr,
1633 					struct pid *pid,
1634 					int trace,
1635 					unsigned long tls,
1636 					int node)
1637 {
1638 	int retval;
1639 	struct task_struct *p;
1640 	struct multiprocess_signals delayed;
1641 
1642 	/*
1643 	 * Don't allow sharing the root directory with processes in a different
1644 	 * namespace
1645 	 */
1646 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1647 		return ERR_PTR(-EINVAL);
1648 
1649 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1650 		return ERR_PTR(-EINVAL);
1651 
1652 	/*
1653 	 * Thread groups must share signals as well, and detached threads
1654 	 * can only be started up within the thread group.
1655 	 */
1656 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1657 		return ERR_PTR(-EINVAL);
1658 
1659 	/*
1660 	 * Shared signal handlers imply shared VM. By way of the above,
1661 	 * thread groups also imply shared VM. Blocking this case allows
1662 	 * for various simplifications in other code.
1663 	 */
1664 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1665 		return ERR_PTR(-EINVAL);
1666 
1667 	/*
1668 	 * Siblings of global init remain as zombies on exit since they are
1669 	 * not reaped by their parent (swapper). To solve this and to avoid
1670 	 * multi-rooted process trees, prevent global and container-inits
1671 	 * from creating siblings.
1672 	 */
1673 	if ((clone_flags & CLONE_PARENT) &&
1674 				current->signal->flags & SIGNAL_UNKILLABLE)
1675 		return ERR_PTR(-EINVAL);
1676 
1677 	/*
1678 	 * If the new process will be in a different pid or user namespace
1679 	 * do not allow it to share a thread group with the forking task.
1680 	 */
1681 	if (clone_flags & CLONE_THREAD) {
1682 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1683 		    (task_active_pid_ns(current) !=
1684 				current->nsproxy->pid_ns_for_children))
1685 			return ERR_PTR(-EINVAL);
1686 	}
1687 
1688 	/*
1689 	 * Force any signals received before this point to be delivered
1690 	 * before the fork happens.  Collect up signals sent to multiple
1691 	 * processes that happen during the fork and delay them so that
1692 	 * they appear to happen after the fork.
1693 	 */
1694 	sigemptyset(&delayed.signal);
1695 	INIT_HLIST_NODE(&delayed.node);
1696 
1697 	spin_lock_irq(&current->sighand->siglock);
1698 	if (!(clone_flags & CLONE_THREAD))
1699 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
1700 	recalc_sigpending();
1701 	spin_unlock_irq(&current->sighand->siglock);
1702 	retval = -ERESTARTNOINTR;
1703 	if (signal_pending(current))
1704 		goto fork_out;
1705 
1706 	retval = -ENOMEM;
1707 	p = dup_task_struct(current, node);
1708 	if (!p)
1709 		goto fork_out;
1710 
1711 	/*
1712 	 * This _must_ happen before we call free_task(), i.e. before we jump
1713 	 * to any of the bad_fork_* labels. This is to avoid freeing
1714 	 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1715 	 * kernel threads (PF_KTHREAD).
1716 	 */
1717 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1718 	/*
1719 	 * Clear TID on mm_release()?
1720 	 */
1721 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1722 
1723 	ftrace_graph_init_task(p);
1724 
1725 	rt_mutex_init_task(p);
1726 
1727 #ifdef CONFIG_PROVE_LOCKING
1728 	DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1729 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1730 #endif
1731 	retval = -EAGAIN;
1732 	if (atomic_read(&p->real_cred->user->processes) >=
1733 			task_rlimit(p, RLIMIT_NPROC)) {
1734 		if (p->real_cred->user != INIT_USER &&
1735 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1736 			goto bad_fork_free;
1737 	}
1738 	current->flags &= ~PF_NPROC_EXCEEDED;
1739 
1740 	retval = copy_creds(p, clone_flags);
1741 	if (retval < 0)
1742 		goto bad_fork_free;
1743 
1744 	/*
1745 	 * If multiple threads are within copy_process(), then this check
1746 	 * triggers too late. This doesn't hurt, the check is only there
1747 	 * to stop root fork bombs.
1748 	 */
1749 	retval = -EAGAIN;
1750 	if (nr_threads >= max_threads)
1751 		goto bad_fork_cleanup_count;
1752 
1753 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
1754 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1755 	p->flags |= PF_FORKNOEXEC;
1756 	INIT_LIST_HEAD(&p->children);
1757 	INIT_LIST_HEAD(&p->sibling);
1758 	rcu_copy_process(p);
1759 	p->vfork_done = NULL;
1760 	spin_lock_init(&p->alloc_lock);
1761 
1762 	init_sigpending(&p->pending);
1763 
1764 	p->utime = p->stime = p->gtime = 0;
1765 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1766 	p->utimescaled = p->stimescaled = 0;
1767 #endif
1768 	prev_cputime_init(&p->prev_cputime);
1769 
1770 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1771 	seqcount_init(&p->vtime.seqcount);
1772 	p->vtime.starttime = 0;
1773 	p->vtime.state = VTIME_INACTIVE;
1774 #endif
1775 
1776 #if defined(SPLIT_RSS_COUNTING)
1777 	memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1778 #endif
1779 
1780 	p->default_timer_slack_ns = current->timer_slack_ns;
1781 
1782 	task_io_accounting_init(&p->ioac);
1783 	acct_clear_integrals(p);
1784 
1785 	posix_cpu_timers_init(p);
1786 
1787 	p->start_time = ktime_get_ns();
1788 	p->real_start_time = ktime_get_boot_ns();
1789 	p->io_context = NULL;
1790 	audit_set_context(p, NULL);
1791 	cgroup_fork(p);
1792 #ifdef CONFIG_NUMA
1793 	p->mempolicy = mpol_dup(p->mempolicy);
1794 	if (IS_ERR(p->mempolicy)) {
1795 		retval = PTR_ERR(p->mempolicy);
1796 		p->mempolicy = NULL;
1797 		goto bad_fork_cleanup_threadgroup_lock;
1798 	}
1799 #endif
1800 #ifdef CONFIG_CPUSETS
1801 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1802 	p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1803 	seqcount_init(&p->mems_allowed_seq);
1804 #endif
1805 #ifdef CONFIG_TRACE_IRQFLAGS
1806 	p->irq_events = 0;
1807 	p->hardirqs_enabled = 0;
1808 	p->hardirq_enable_ip = 0;
1809 	p->hardirq_enable_event = 0;
1810 	p->hardirq_disable_ip = _THIS_IP_;
1811 	p->hardirq_disable_event = 0;
1812 	p->softirqs_enabled = 1;
1813 	p->softirq_enable_ip = _THIS_IP_;
1814 	p->softirq_enable_event = 0;
1815 	p->softirq_disable_ip = 0;
1816 	p->softirq_disable_event = 0;
1817 	p->hardirq_context = 0;
1818 	p->softirq_context = 0;
1819 #endif
1820 
1821 	p->pagefault_disabled = 0;
1822 
1823 #ifdef CONFIG_LOCKDEP
1824 	p->lockdep_depth = 0; /* no locks held yet */
1825 	p->curr_chain_key = 0;
1826 	p->lockdep_recursion = 0;
1827 	lockdep_init_task(p);
1828 #endif
1829 
1830 #ifdef CONFIG_DEBUG_MUTEXES
1831 	p->blocked_on = NULL; /* not blocked yet */
1832 #endif
1833 #ifdef CONFIG_BCACHE
1834 	p->sequential_io	= 0;
1835 	p->sequential_io_avg	= 0;
1836 #endif
1837 
1838 	/* Perform scheduler related setup. Assign this task to a CPU. */
1839 	retval = sched_fork(clone_flags, p);
1840 	if (retval)
1841 		goto bad_fork_cleanup_policy;
1842 
1843 	retval = perf_event_init_task(p);
1844 	if (retval)
1845 		goto bad_fork_cleanup_policy;
1846 	retval = audit_alloc(p);
1847 	if (retval)
1848 		goto bad_fork_cleanup_perf;
1849 	/* copy all the process information */
1850 	shm_init_task(p);
1851 	retval = security_task_alloc(p, clone_flags);
1852 	if (retval)
1853 		goto bad_fork_cleanup_audit;
1854 	retval = copy_semundo(clone_flags, p);
1855 	if (retval)
1856 		goto bad_fork_cleanup_security;
1857 	retval = copy_files(clone_flags, p);
1858 	if (retval)
1859 		goto bad_fork_cleanup_semundo;
1860 	retval = copy_fs(clone_flags, p);
1861 	if (retval)
1862 		goto bad_fork_cleanup_files;
1863 	retval = copy_sighand(clone_flags, p);
1864 	if (retval)
1865 		goto bad_fork_cleanup_fs;
1866 	retval = copy_signal(clone_flags, p);
1867 	if (retval)
1868 		goto bad_fork_cleanup_sighand;
1869 	retval = copy_mm(clone_flags, p);
1870 	if (retval)
1871 		goto bad_fork_cleanup_signal;
1872 	retval = copy_namespaces(clone_flags, p);
1873 	if (retval)
1874 		goto bad_fork_cleanup_mm;
1875 	retval = copy_io(clone_flags, p);
1876 	if (retval)
1877 		goto bad_fork_cleanup_namespaces;
1878 	retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1879 	if (retval)
1880 		goto bad_fork_cleanup_io;
1881 
1882 	if (pid != &init_struct_pid) {
1883 		pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1884 		if (IS_ERR(pid)) {
1885 			retval = PTR_ERR(pid);
1886 			goto bad_fork_cleanup_thread;
1887 		}
1888 	}
1889 
1890 #ifdef CONFIG_BLOCK
1891 	p->plug = NULL;
1892 #endif
1893 #ifdef CONFIG_FUTEX
1894 	p->robust_list = NULL;
1895 #ifdef CONFIG_COMPAT
1896 	p->compat_robust_list = NULL;
1897 #endif
1898 	INIT_LIST_HEAD(&p->pi_state_list);
1899 	p->pi_state_cache = NULL;
1900 #endif
1901 	/*
1902 	 * sigaltstack should be cleared when sharing the same VM
1903 	 */
1904 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1905 		sas_ss_reset(p);
1906 
1907 	/*
1908 	 * Syscall tracing and stepping should be turned off in the
1909 	 * child regardless of CLONE_PTRACE.
1910 	 */
1911 	user_disable_single_step(p);
1912 	clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1913 #ifdef TIF_SYSCALL_EMU
1914 	clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1915 #endif
1916 	clear_all_latency_tracing(p);
1917 
1918 	/* ok, now we should be set up.. */
1919 	p->pid = pid_nr(pid);
1920 	if (clone_flags & CLONE_THREAD) {
1921 		p->exit_signal = -1;
1922 		p->group_leader = current->group_leader;
1923 		p->tgid = current->tgid;
1924 	} else {
1925 		if (clone_flags & CLONE_PARENT)
1926 			p->exit_signal = current->group_leader->exit_signal;
1927 		else
1928 			p->exit_signal = (clone_flags & CSIGNAL);
1929 		p->group_leader = p;
1930 		p->tgid = p->pid;
1931 	}
1932 
1933 	p->nr_dirtied = 0;
1934 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1935 	p->dirty_paused_when = 0;
1936 
1937 	p->pdeath_signal = 0;
1938 	INIT_LIST_HEAD(&p->thread_group);
1939 	p->task_works = NULL;
1940 
1941 	cgroup_threadgroup_change_begin(current);
1942 	/*
1943 	 * Ensure that the cgroup subsystem policies allow the new process to be
1944 	 * forked. It should be noted the the new process's css_set can be changed
1945 	 * between here and cgroup_post_fork() if an organisation operation is in
1946 	 * progress.
1947 	 */
1948 	retval = cgroup_can_fork(p);
1949 	if (retval)
1950 		goto bad_fork_free_pid;
1951 
1952 	/*
1953 	 * Make it visible to the rest of the system, but dont wake it up yet.
1954 	 * Need tasklist lock for parent etc handling!
1955 	 */
1956 	write_lock_irq(&tasklist_lock);
1957 
1958 	/* CLONE_PARENT re-uses the old parent */
1959 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1960 		p->real_parent = current->real_parent;
1961 		p->parent_exec_id = current->parent_exec_id;
1962 	} else {
1963 		p->real_parent = current;
1964 		p->parent_exec_id = current->self_exec_id;
1965 	}
1966 
1967 	klp_copy_process(p);
1968 
1969 	spin_lock(&current->sighand->siglock);
1970 
1971 	/*
1972 	 * Copy seccomp details explicitly here, in case they were changed
1973 	 * before holding sighand lock.
1974 	 */
1975 	copy_seccomp(p);
1976 
1977 	rseq_fork(p, clone_flags);
1978 
1979 	/* Don't start children in a dying pid namespace */
1980 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1981 		retval = -ENOMEM;
1982 		goto bad_fork_cancel_cgroup;
1983 	}
1984 
1985 	/* Let kill terminate clone/fork in the middle */
1986 	if (fatal_signal_pending(current)) {
1987 		retval = -EINTR;
1988 		goto bad_fork_cancel_cgroup;
1989 	}
1990 
1991 
1992 	init_task_pid_links(p);
1993 	if (likely(p->pid)) {
1994 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1995 
1996 		init_task_pid(p, PIDTYPE_PID, pid);
1997 		if (thread_group_leader(p)) {
1998 			init_task_pid(p, PIDTYPE_TGID, pid);
1999 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2000 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2001 
2002 			if (is_child_reaper(pid)) {
2003 				ns_of_pid(pid)->child_reaper = p;
2004 				p->signal->flags |= SIGNAL_UNKILLABLE;
2005 			}
2006 			p->signal->shared_pending.signal = delayed.signal;
2007 			p->signal->tty = tty_kref_get(current->signal->tty);
2008 			/*
2009 			 * Inherit has_child_subreaper flag under the same
2010 			 * tasklist_lock with adding child to the process tree
2011 			 * for propagate_has_child_subreaper optimization.
2012 			 */
2013 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2014 							 p->real_parent->signal->is_child_subreaper;
2015 			list_add_tail(&p->sibling, &p->real_parent->children);
2016 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2017 			attach_pid(p, PIDTYPE_TGID);
2018 			attach_pid(p, PIDTYPE_PGID);
2019 			attach_pid(p, PIDTYPE_SID);
2020 			__this_cpu_inc(process_counts);
2021 		} else {
2022 			current->signal->nr_threads++;
2023 			atomic_inc(&current->signal->live);
2024 			atomic_inc(&current->signal->sigcnt);
2025 			task_join_group_stop(p);
2026 			list_add_tail_rcu(&p->thread_group,
2027 					  &p->group_leader->thread_group);
2028 			list_add_tail_rcu(&p->thread_node,
2029 					  &p->signal->thread_head);
2030 		}
2031 		attach_pid(p, PIDTYPE_PID);
2032 		nr_threads++;
2033 	}
2034 	total_forks++;
2035 	hlist_del_init(&delayed.node);
2036 	spin_unlock(&current->sighand->siglock);
2037 	syscall_tracepoint_update(p);
2038 	write_unlock_irq(&tasklist_lock);
2039 
2040 	proc_fork_connector(p);
2041 	cgroup_post_fork(p);
2042 	cgroup_threadgroup_change_end(current);
2043 	perf_event_fork(p);
2044 
2045 	trace_task_newtask(p, clone_flags);
2046 	uprobe_copy_process(p, clone_flags);
2047 
2048 	return p;
2049 
2050 bad_fork_cancel_cgroup:
2051 	spin_unlock(&current->sighand->siglock);
2052 	write_unlock_irq(&tasklist_lock);
2053 	cgroup_cancel_fork(p);
2054 bad_fork_free_pid:
2055 	cgroup_threadgroup_change_end(current);
2056 	if (pid != &init_struct_pid)
2057 		free_pid(pid);
2058 bad_fork_cleanup_thread:
2059 	exit_thread(p);
2060 bad_fork_cleanup_io:
2061 	if (p->io_context)
2062 		exit_io_context(p);
2063 bad_fork_cleanup_namespaces:
2064 	exit_task_namespaces(p);
2065 bad_fork_cleanup_mm:
2066 	if (p->mm)
2067 		mmput(p->mm);
2068 bad_fork_cleanup_signal:
2069 	if (!(clone_flags & CLONE_THREAD))
2070 		free_signal_struct(p->signal);
2071 bad_fork_cleanup_sighand:
2072 	__cleanup_sighand(p->sighand);
2073 bad_fork_cleanup_fs:
2074 	exit_fs(p); /* blocking */
2075 bad_fork_cleanup_files:
2076 	exit_files(p); /* blocking */
2077 bad_fork_cleanup_semundo:
2078 	exit_sem(p);
2079 bad_fork_cleanup_security:
2080 	security_task_free(p);
2081 bad_fork_cleanup_audit:
2082 	audit_free(p);
2083 bad_fork_cleanup_perf:
2084 	perf_event_free_task(p);
2085 bad_fork_cleanup_policy:
2086 	lockdep_free_task(p);
2087 #ifdef CONFIG_NUMA
2088 	mpol_put(p->mempolicy);
2089 bad_fork_cleanup_threadgroup_lock:
2090 #endif
2091 	delayacct_tsk_free(p);
2092 bad_fork_cleanup_count:
2093 	atomic_dec(&p->cred->user->processes);
2094 	exit_creds(p);
2095 bad_fork_free:
2096 	p->state = TASK_DEAD;
2097 	put_task_stack(p);
2098 	free_task(p);
2099 fork_out:
2100 	spin_lock_irq(&current->sighand->siglock);
2101 	hlist_del_init(&delayed.node);
2102 	spin_unlock_irq(&current->sighand->siglock);
2103 	return ERR_PTR(retval);
2104 }
2105 
init_idle_pids(struct task_struct * idle)2106 static inline void init_idle_pids(struct task_struct *idle)
2107 {
2108 	enum pid_type type;
2109 
2110 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2111 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2112 		init_task_pid(idle, type, &init_struct_pid);
2113 	}
2114 }
2115 
fork_idle(int cpu)2116 struct task_struct *fork_idle(int cpu)
2117 {
2118 	struct task_struct *task;
2119 	task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2120 			    cpu_to_node(cpu));
2121 	if (!IS_ERR(task)) {
2122 		init_idle_pids(task);
2123 		init_idle(task, cpu);
2124 	}
2125 
2126 	return task;
2127 }
2128 
2129 /*
2130  *  Ok, this is the main fork-routine.
2131  *
2132  * It copies the process, and if successful kick-starts
2133  * it and waits for it to finish using the VM if required.
2134  */
_do_fork(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr,unsigned long tls)2135 long _do_fork(unsigned long clone_flags,
2136 	      unsigned long stack_start,
2137 	      unsigned long stack_size,
2138 	      int __user *parent_tidptr,
2139 	      int __user *child_tidptr,
2140 	      unsigned long tls)
2141 {
2142 	struct completion vfork;
2143 	struct pid *pid;
2144 	struct task_struct *p;
2145 	int trace = 0;
2146 	long nr;
2147 
2148 	/*
2149 	 * Determine whether and which event to report to ptracer.  When
2150 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2151 	 * requested, no event is reported; otherwise, report if the event
2152 	 * for the type of forking is enabled.
2153 	 */
2154 	if (!(clone_flags & CLONE_UNTRACED)) {
2155 		if (clone_flags & CLONE_VFORK)
2156 			trace = PTRACE_EVENT_VFORK;
2157 		else if ((clone_flags & CSIGNAL) != SIGCHLD)
2158 			trace = PTRACE_EVENT_CLONE;
2159 		else
2160 			trace = PTRACE_EVENT_FORK;
2161 
2162 		if (likely(!ptrace_event_enabled(current, trace)))
2163 			trace = 0;
2164 	}
2165 
2166 	p = copy_process(clone_flags, stack_start, stack_size,
2167 			 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2168 	add_latent_entropy();
2169 
2170 	if (IS_ERR(p))
2171 		return PTR_ERR(p);
2172 
2173 	/*
2174 	 * Do this prior waking up the new thread - the thread pointer
2175 	 * might get invalid after that point, if the thread exits quickly.
2176 	 */
2177 	trace_sched_process_fork(current, p);
2178 
2179 	pid = get_task_pid(p, PIDTYPE_PID);
2180 	nr = pid_vnr(pid);
2181 
2182 	if (clone_flags & CLONE_PARENT_SETTID)
2183 		put_user(nr, parent_tidptr);
2184 
2185 	if (clone_flags & CLONE_VFORK) {
2186 		p->vfork_done = &vfork;
2187 		init_completion(&vfork);
2188 		get_task_struct(p);
2189 	}
2190 
2191 	wake_up_new_task(p);
2192 
2193 	/* forking complete and child started to run, tell ptracer */
2194 	if (unlikely(trace))
2195 		ptrace_event_pid(trace, pid);
2196 
2197 	if (clone_flags & CLONE_VFORK) {
2198 		if (!wait_for_vfork_done(p, &vfork))
2199 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2200 	}
2201 
2202 	put_pid(pid);
2203 	return nr;
2204 }
2205 
2206 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2207 /* For compatibility with architectures that call do_fork directly rather than
2208  * using the syscall entry points below. */
do_fork(unsigned long clone_flags,unsigned long stack_start,unsigned long stack_size,int __user * parent_tidptr,int __user * child_tidptr)2209 long do_fork(unsigned long clone_flags,
2210 	      unsigned long stack_start,
2211 	      unsigned long stack_size,
2212 	      int __user *parent_tidptr,
2213 	      int __user *child_tidptr)
2214 {
2215 	return _do_fork(clone_flags, stack_start, stack_size,
2216 			parent_tidptr, child_tidptr, 0);
2217 }
2218 #endif
2219 
2220 /*
2221  * Create a kernel thread.
2222  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2223 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2224 {
2225 	return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2226 		(unsigned long)arg, NULL, NULL, 0);
2227 }
2228 
2229 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2230 SYSCALL_DEFINE0(fork)
2231 {
2232 #ifdef CONFIG_MMU
2233 	return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2234 #else
2235 	/* can not support in nommu mode */
2236 	return -EINVAL;
2237 #endif
2238 }
2239 #endif
2240 
2241 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2242 SYSCALL_DEFINE0(vfork)
2243 {
2244 	return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2245 			0, NULL, NULL, 0);
2246 }
2247 #endif
2248 
2249 #ifdef __ARCH_WANT_SYS_CLONE
2250 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2251 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2252 		 int __user *, parent_tidptr,
2253 		 unsigned long, tls,
2254 		 int __user *, child_tidptr)
2255 #elif defined(CONFIG_CLONE_BACKWARDS2)
2256 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2257 		 int __user *, parent_tidptr,
2258 		 int __user *, child_tidptr,
2259 		 unsigned long, tls)
2260 #elif defined(CONFIG_CLONE_BACKWARDS3)
2261 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2262 		int, stack_size,
2263 		int __user *, parent_tidptr,
2264 		int __user *, child_tidptr,
2265 		unsigned long, tls)
2266 #else
2267 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2268 		 int __user *, parent_tidptr,
2269 		 int __user *, child_tidptr,
2270 		 unsigned long, tls)
2271 #endif
2272 {
2273 	return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2274 }
2275 #endif
2276 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2277 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2278 {
2279 	struct task_struct *leader, *parent, *child;
2280 	int res;
2281 
2282 	read_lock(&tasklist_lock);
2283 	leader = top = top->group_leader;
2284 down:
2285 	for_each_thread(leader, parent) {
2286 		list_for_each_entry(child, &parent->children, sibling) {
2287 			res = visitor(child, data);
2288 			if (res) {
2289 				if (res < 0)
2290 					goto out;
2291 				leader = child;
2292 				goto down;
2293 			}
2294 up:
2295 			;
2296 		}
2297 	}
2298 
2299 	if (leader != top) {
2300 		child = leader;
2301 		parent = child->real_parent;
2302 		leader = parent->group_leader;
2303 		goto up;
2304 	}
2305 out:
2306 	read_unlock(&tasklist_lock);
2307 }
2308 
2309 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2310 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2311 #endif
2312 
sighand_ctor(void * data)2313 static void sighand_ctor(void *data)
2314 {
2315 	struct sighand_struct *sighand = data;
2316 
2317 	spin_lock_init(&sighand->siglock);
2318 	init_waitqueue_head(&sighand->signalfd_wqh);
2319 }
2320 
proc_caches_init(void)2321 void __init proc_caches_init(void)
2322 {
2323 	unsigned int mm_size;
2324 
2325 	sighand_cachep = kmem_cache_create("sighand_cache",
2326 			sizeof(struct sighand_struct), 0,
2327 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2328 			SLAB_ACCOUNT, sighand_ctor);
2329 	signal_cachep = kmem_cache_create("signal_cache",
2330 			sizeof(struct signal_struct), 0,
2331 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2332 			NULL);
2333 	files_cachep = kmem_cache_create("files_cache",
2334 			sizeof(struct files_struct), 0,
2335 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2336 			NULL);
2337 	fs_cachep = kmem_cache_create("fs_cache",
2338 			sizeof(struct fs_struct), 0,
2339 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2340 			NULL);
2341 
2342 	/*
2343 	 * The mm_cpumask is located at the end of mm_struct, and is
2344 	 * dynamically sized based on the maximum CPU number this system
2345 	 * can have, taking hotplug into account (nr_cpu_ids).
2346 	 */
2347 	mm_size = sizeof(struct mm_struct) + cpumask_size();
2348 
2349 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2350 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2351 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2352 			offsetof(struct mm_struct, saved_auxv),
2353 			sizeof_field(struct mm_struct, saved_auxv),
2354 			NULL);
2355 	vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2356 	mmap_init();
2357 	nsproxy_cache_init();
2358 }
2359 
2360 /*
2361  * Check constraints on flags passed to the unshare system call.
2362  */
check_unshare_flags(unsigned long unshare_flags)2363 static int check_unshare_flags(unsigned long unshare_flags)
2364 {
2365 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2366 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2367 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2368 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2369 		return -EINVAL;
2370 	/*
2371 	 * Not implemented, but pretend it works if there is nothing
2372 	 * to unshare.  Note that unsharing the address space or the
2373 	 * signal handlers also need to unshare the signal queues (aka
2374 	 * CLONE_THREAD).
2375 	 */
2376 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2377 		if (!thread_group_empty(current))
2378 			return -EINVAL;
2379 	}
2380 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2381 		if (atomic_read(&current->sighand->count) > 1)
2382 			return -EINVAL;
2383 	}
2384 	if (unshare_flags & CLONE_VM) {
2385 		if (!current_is_single_threaded())
2386 			return -EINVAL;
2387 	}
2388 
2389 	return 0;
2390 }
2391 
2392 /*
2393  * Unshare the filesystem structure if it is being shared
2394  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2395 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2396 {
2397 	struct fs_struct *fs = current->fs;
2398 
2399 	if (!(unshare_flags & CLONE_FS) || !fs)
2400 		return 0;
2401 
2402 	/* don't need lock here; in the worst case we'll do useless copy */
2403 	if (fs->users == 1)
2404 		return 0;
2405 
2406 	*new_fsp = copy_fs_struct(fs);
2407 	if (!*new_fsp)
2408 		return -ENOMEM;
2409 
2410 	return 0;
2411 }
2412 
2413 /*
2414  * Unshare file descriptor table if it is being shared
2415  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)2416 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2417 {
2418 	struct files_struct *fd = current->files;
2419 	int error = 0;
2420 
2421 	if ((unshare_flags & CLONE_FILES) &&
2422 	    (fd && atomic_read(&fd->count) > 1)) {
2423 		*new_fdp = dup_fd(fd, &error);
2424 		if (!*new_fdp)
2425 			return error;
2426 	}
2427 
2428 	return 0;
2429 }
2430 
2431 /*
2432  * unshare allows a process to 'unshare' part of the process
2433  * context which was originally shared using clone.  copy_*
2434  * functions used by do_fork() cannot be used here directly
2435  * because they modify an inactive task_struct that is being
2436  * constructed. Here we are modifying the current, active,
2437  * task_struct.
2438  */
ksys_unshare(unsigned long unshare_flags)2439 int ksys_unshare(unsigned long unshare_flags)
2440 {
2441 	struct fs_struct *fs, *new_fs = NULL;
2442 	struct files_struct *fd, *new_fd = NULL;
2443 	struct cred *new_cred = NULL;
2444 	struct nsproxy *new_nsproxy = NULL;
2445 	int do_sysvsem = 0;
2446 	int err;
2447 
2448 	/*
2449 	 * If unsharing a user namespace must also unshare the thread group
2450 	 * and unshare the filesystem root and working directories.
2451 	 */
2452 	if (unshare_flags & CLONE_NEWUSER)
2453 		unshare_flags |= CLONE_THREAD | CLONE_FS;
2454 	/*
2455 	 * If unsharing vm, must also unshare signal handlers.
2456 	 */
2457 	if (unshare_flags & CLONE_VM)
2458 		unshare_flags |= CLONE_SIGHAND;
2459 	/*
2460 	 * If unsharing a signal handlers, must also unshare the signal queues.
2461 	 */
2462 	if (unshare_flags & CLONE_SIGHAND)
2463 		unshare_flags |= CLONE_THREAD;
2464 	/*
2465 	 * If unsharing namespace, must also unshare filesystem information.
2466 	 */
2467 	if (unshare_flags & CLONE_NEWNS)
2468 		unshare_flags |= CLONE_FS;
2469 
2470 	err = check_unshare_flags(unshare_flags);
2471 	if (err)
2472 		goto bad_unshare_out;
2473 	/*
2474 	 * CLONE_NEWIPC must also detach from the undolist: after switching
2475 	 * to a new ipc namespace, the semaphore arrays from the old
2476 	 * namespace are unreachable.
2477 	 */
2478 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2479 		do_sysvsem = 1;
2480 	err = unshare_fs(unshare_flags, &new_fs);
2481 	if (err)
2482 		goto bad_unshare_out;
2483 	err = unshare_fd(unshare_flags, &new_fd);
2484 	if (err)
2485 		goto bad_unshare_cleanup_fs;
2486 	err = unshare_userns(unshare_flags, &new_cred);
2487 	if (err)
2488 		goto bad_unshare_cleanup_fd;
2489 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2490 					 new_cred, new_fs);
2491 	if (err)
2492 		goto bad_unshare_cleanup_cred;
2493 
2494 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2495 		if (do_sysvsem) {
2496 			/*
2497 			 * CLONE_SYSVSEM is equivalent to sys_exit().
2498 			 */
2499 			exit_sem(current);
2500 		}
2501 		if (unshare_flags & CLONE_NEWIPC) {
2502 			/* Orphan segments in old ns (see sem above). */
2503 			exit_shm(current);
2504 			shm_init_task(current);
2505 		}
2506 
2507 		if (new_nsproxy)
2508 			switch_task_namespaces(current, new_nsproxy);
2509 
2510 		task_lock(current);
2511 
2512 		if (new_fs) {
2513 			fs = current->fs;
2514 			spin_lock(&fs->lock);
2515 			current->fs = new_fs;
2516 			if (--fs->users)
2517 				new_fs = NULL;
2518 			else
2519 				new_fs = fs;
2520 			spin_unlock(&fs->lock);
2521 		}
2522 
2523 		if (new_fd) {
2524 			fd = current->files;
2525 			current->files = new_fd;
2526 			new_fd = fd;
2527 		}
2528 
2529 		task_unlock(current);
2530 
2531 		if (new_cred) {
2532 			/* Install the new user namespace */
2533 			commit_creds(new_cred);
2534 			new_cred = NULL;
2535 		}
2536 	}
2537 
2538 	perf_event_namespaces(current);
2539 
2540 bad_unshare_cleanup_cred:
2541 	if (new_cred)
2542 		put_cred(new_cred);
2543 bad_unshare_cleanup_fd:
2544 	if (new_fd)
2545 		put_files_struct(new_fd);
2546 
2547 bad_unshare_cleanup_fs:
2548 	if (new_fs)
2549 		free_fs_struct(new_fs);
2550 
2551 bad_unshare_out:
2552 	return err;
2553 }
2554 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)2555 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2556 {
2557 	return ksys_unshare(unshare_flags);
2558 }
2559 
2560 /*
2561  *	Helper to unshare the files of the current task.
2562  *	We don't want to expose copy_files internals to
2563  *	the exec layer of the kernel.
2564  */
2565 
unshare_files(struct files_struct ** displaced)2566 int unshare_files(struct files_struct **displaced)
2567 {
2568 	struct task_struct *task = current;
2569 	struct files_struct *copy = NULL;
2570 	int error;
2571 
2572 	error = unshare_fd(CLONE_FILES, &copy);
2573 	if (error || !copy) {
2574 		*displaced = NULL;
2575 		return error;
2576 	}
2577 	*displaced = task->files;
2578 	task_lock(task);
2579 	task->files = copy;
2580 	task_unlock(task);
2581 	return 0;
2582 }
2583 
sysctl_max_threads(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2584 int sysctl_max_threads(struct ctl_table *table, int write,
2585 		       void __user *buffer, size_t *lenp, loff_t *ppos)
2586 {
2587 	struct ctl_table t;
2588 	int ret;
2589 	int threads = max_threads;
2590 	int min = MIN_THREADS;
2591 	int max = MAX_THREADS;
2592 
2593 	t = *table;
2594 	t.data = &threads;
2595 	t.extra1 = &min;
2596 	t.extra2 = &max;
2597 
2598 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2599 	if (ret || !write)
2600 		return ret;
2601 
2602 	set_max_threads(threads);
2603 
2604 	return 0;
2605 }
2606