1 /*
2  *  linux/kernel/exit.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/sched/autogroup.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/stat.h>
12 #include <linux/sched/task.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/sched/cputime.h>
15 #include <linux/interrupt.h>
16 #include <linux/module.h>
17 #include <linux/capability.h>
18 #include <linux/completion.h>
19 #include <linux/personality.h>
20 #include <linux/tty.h>
21 #include <linux/iocontext.h>
22 #include <linux/key.h>
23 #include <linux/cpu.h>
24 #include <linux/acct.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/blkdev.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/unistd.h>
68 #include <asm/pgtable.h>
69 #include <asm/mmu_context.h>
70 
__unhash_process(struct task_struct * p,bool group_dead)71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73 	nr_threads--;
74 	detach_pid(p, PIDTYPE_PID);
75 	if (group_dead) {
76 		detach_pid(p, PIDTYPE_TGID);
77 		detach_pid(p, PIDTYPE_PGID);
78 		detach_pid(p, PIDTYPE_SID);
79 
80 		list_del_rcu(&p->tasks);
81 		list_del_init(&p->sibling);
82 		__this_cpu_dec(process_counts);
83 	}
84 	list_del_rcu(&p->thread_group);
85 	list_del_rcu(&p->thread_node);
86 }
87 
88 /*
89  * This function expects the tasklist_lock write-locked.
90  */
__exit_signal(struct task_struct * tsk)91 static void __exit_signal(struct task_struct *tsk)
92 {
93 	struct signal_struct *sig = tsk->signal;
94 	bool group_dead = thread_group_leader(tsk);
95 	struct sighand_struct *sighand;
96 	struct tty_struct *uninitialized_var(tty);
97 	u64 utime, stime;
98 
99 	sighand = rcu_dereference_check(tsk->sighand,
100 					lockdep_tasklist_lock_is_held());
101 	spin_lock(&sighand->siglock);
102 
103 #ifdef CONFIG_POSIX_TIMERS
104 	posix_cpu_timers_exit(tsk);
105 	if (group_dead) {
106 		posix_cpu_timers_exit_group(tsk);
107 	} else {
108 		/*
109 		 * This can only happen if the caller is de_thread().
110 		 * FIXME: this is the temporary hack, we should teach
111 		 * posix-cpu-timers to handle this case correctly.
112 		 */
113 		if (unlikely(has_group_leader_pid(tsk)))
114 			posix_cpu_timers_exit_group(tsk);
115 	}
116 #endif
117 
118 	if (group_dead) {
119 		tty = sig->tty;
120 		sig->tty = NULL;
121 	} else {
122 		/*
123 		 * If there is any task waiting for the group exit
124 		 * then notify it:
125 		 */
126 		if (sig->notify_count > 0 && !--sig->notify_count)
127 			wake_up_process(sig->group_exit_task);
128 
129 		if (tsk == sig->curr_target)
130 			sig->curr_target = next_thread(tsk);
131 	}
132 
133 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
134 			      sizeof(unsigned long long));
135 
136 	/*
137 	 * Accumulate here the counters for all threads as they die. We could
138 	 * skip the group leader because it is the last user of signal_struct,
139 	 * but we want to avoid the race with thread_group_cputime() which can
140 	 * see the empty ->thread_head list.
141 	 */
142 	task_cputime(tsk, &utime, &stime);
143 	write_seqlock(&sig->stats_lock);
144 	sig->utime += utime;
145 	sig->stime += stime;
146 	sig->gtime += task_gtime(tsk);
147 	sig->min_flt += tsk->min_flt;
148 	sig->maj_flt += tsk->maj_flt;
149 	sig->nvcsw += tsk->nvcsw;
150 	sig->nivcsw += tsk->nivcsw;
151 	sig->inblock += task_io_get_inblock(tsk);
152 	sig->oublock += task_io_get_oublock(tsk);
153 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
154 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
155 	sig->nr_threads--;
156 	__unhash_process(tsk, group_dead);
157 	write_sequnlock(&sig->stats_lock);
158 
159 	/*
160 	 * Do this under ->siglock, we can race with another thread
161 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
162 	 */
163 	flush_sigqueue(&tsk->pending);
164 	tsk->sighand = NULL;
165 	spin_unlock(&sighand->siglock);
166 
167 	__cleanup_sighand(sighand);
168 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
169 	if (group_dead) {
170 		flush_sigqueue(&sig->shared_pending);
171 		tty_kref_put(tty);
172 	}
173 }
174 
delayed_put_task_struct(struct rcu_head * rhp)175 static void delayed_put_task_struct(struct rcu_head *rhp)
176 {
177 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
178 
179 	perf_event_delayed_put(tsk);
180 	trace_sched_process_free(tsk);
181 	put_task_struct(tsk);
182 }
183 
184 
release_task(struct task_struct * p)185 void release_task(struct task_struct *p)
186 {
187 	struct task_struct *leader;
188 	int zap_leader;
189 repeat:
190 	/* don't need to get the RCU readlock here - the process is dead and
191 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
192 	rcu_read_lock();
193 	atomic_dec(&__task_cred(p)->user->processes);
194 	rcu_read_unlock();
195 
196 	proc_flush_task(p);
197 
198 	write_lock_irq(&tasklist_lock);
199 	ptrace_release_task(p);
200 	__exit_signal(p);
201 
202 	/*
203 	 * If we are the last non-leader member of the thread
204 	 * group, and the leader is zombie, then notify the
205 	 * group leader's parent process. (if it wants notification.)
206 	 */
207 	zap_leader = 0;
208 	leader = p->group_leader;
209 	if (leader != p && thread_group_empty(leader)
210 			&& leader->exit_state == EXIT_ZOMBIE) {
211 		/*
212 		 * If we were the last child thread and the leader has
213 		 * exited already, and the leader's parent ignores SIGCHLD,
214 		 * then we are the one who should release the leader.
215 		 */
216 		zap_leader = do_notify_parent(leader, leader->exit_signal);
217 		if (zap_leader)
218 			leader->exit_state = EXIT_DEAD;
219 	}
220 
221 	write_unlock_irq(&tasklist_lock);
222 	release_thread(p);
223 	call_rcu(&p->rcu, delayed_put_task_struct);
224 
225 	p = leader;
226 	if (unlikely(zap_leader))
227 		goto repeat;
228 }
229 
230 /*
231  * Note that if this function returns a valid task_struct pointer (!NULL)
232  * task->usage must remain >0 for the duration of the RCU critical section.
233  */
task_rcu_dereference(struct task_struct ** ptask)234 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
235 {
236 	struct sighand_struct *sighand;
237 	struct task_struct *task;
238 
239 	/*
240 	 * We need to verify that release_task() was not called and thus
241 	 * delayed_put_task_struct() can't run and drop the last reference
242 	 * before rcu_read_unlock(). We check task->sighand != NULL,
243 	 * but we can read the already freed and reused memory.
244 	 */
245 retry:
246 	task = rcu_dereference(*ptask);
247 	if (!task)
248 		return NULL;
249 
250 	probe_kernel_address(&task->sighand, sighand);
251 
252 	/*
253 	 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
254 	 * was already freed we can not miss the preceding update of this
255 	 * pointer.
256 	 */
257 	smp_rmb();
258 	if (unlikely(task != READ_ONCE(*ptask)))
259 		goto retry;
260 
261 	/*
262 	 * We've re-checked that "task == *ptask", now we have two different
263 	 * cases:
264 	 *
265 	 * 1. This is actually the same task/task_struct. In this case
266 	 *    sighand != NULL tells us it is still alive.
267 	 *
268 	 * 2. This is another task which got the same memory for task_struct.
269 	 *    We can't know this of course, and we can not trust
270 	 *    sighand != NULL.
271 	 *
272 	 *    In this case we actually return a random value, but this is
273 	 *    correct.
274 	 *
275 	 *    If we return NULL - we can pretend that we actually noticed that
276 	 *    *ptask was updated when the previous task has exited. Or pretend
277 	 *    that probe_slab_address(&sighand) reads NULL.
278 	 *
279 	 *    If we return the new task (because sighand is not NULL for any
280 	 *    reason) - this is fine too. This (new) task can't go away before
281 	 *    another gp pass.
282 	 *
283 	 *    And note: We could even eliminate the false positive if re-read
284 	 *    task->sighand once again to avoid the falsely NULL. But this case
285 	 *    is very unlikely so we don't care.
286 	 */
287 	if (!sighand)
288 		return NULL;
289 
290 	return task;
291 }
292 
rcuwait_wake_up(struct rcuwait * w)293 void rcuwait_wake_up(struct rcuwait *w)
294 {
295 	struct task_struct *task;
296 
297 	rcu_read_lock();
298 
299 	/*
300 	 * Order condition vs @task, such that everything prior to the load
301 	 * of @task is visible. This is the condition as to why the user called
302 	 * rcuwait_trywake() in the first place. Pairs with set_current_state()
303 	 * barrier (A) in rcuwait_wait_event().
304 	 *
305 	 *    WAIT                WAKE
306 	 *    [S] tsk = current	  [S] cond = true
307 	 *        MB (A)	      MB (B)
308 	 *    [L] cond		  [L] tsk
309 	 */
310 	smp_rmb(); /* (B) */
311 
312 	/*
313 	 * Avoid using task_rcu_dereference() magic as long as we are careful,
314 	 * see comment in rcuwait_wait_event() regarding ->exit_state.
315 	 */
316 	task = rcu_dereference(w->task);
317 	if (task)
318 		wake_up_process(task);
319 	rcu_read_unlock();
320 }
321 
322 /*
323  * Determine if a process group is "orphaned", according to the POSIX
324  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
325  * by terminal-generated stop signals.  Newly orphaned process groups are
326  * to receive a SIGHUP and a SIGCONT.
327  *
328  * "I ask you, have you ever known what it is to be an orphan?"
329  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)330 static int will_become_orphaned_pgrp(struct pid *pgrp,
331 					struct task_struct *ignored_task)
332 {
333 	struct task_struct *p;
334 
335 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
336 		if ((p == ignored_task) ||
337 		    (p->exit_state && thread_group_empty(p)) ||
338 		    is_global_init(p->real_parent))
339 			continue;
340 
341 		if (task_pgrp(p->real_parent) != pgrp &&
342 		    task_session(p->real_parent) == task_session(p))
343 			return 0;
344 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
345 
346 	return 1;
347 }
348 
is_current_pgrp_orphaned(void)349 int is_current_pgrp_orphaned(void)
350 {
351 	int retval;
352 
353 	read_lock(&tasklist_lock);
354 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
355 	read_unlock(&tasklist_lock);
356 
357 	return retval;
358 }
359 
has_stopped_jobs(struct pid * pgrp)360 static bool has_stopped_jobs(struct pid *pgrp)
361 {
362 	struct task_struct *p;
363 
364 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
365 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
366 			return true;
367 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
368 
369 	return false;
370 }
371 
372 /*
373  * Check to see if any process groups have become orphaned as
374  * a result of our exiting, and if they have any stopped jobs,
375  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
376  */
377 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)378 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
379 {
380 	struct pid *pgrp = task_pgrp(tsk);
381 	struct task_struct *ignored_task = tsk;
382 
383 	if (!parent)
384 		/* exit: our father is in a different pgrp than
385 		 * we are and we were the only connection outside.
386 		 */
387 		parent = tsk->real_parent;
388 	else
389 		/* reparent: our child is in a different pgrp than
390 		 * we are, and it was the only connection outside.
391 		 */
392 		ignored_task = NULL;
393 
394 	if (task_pgrp(parent) != pgrp &&
395 	    task_session(parent) == task_session(tsk) &&
396 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
397 	    has_stopped_jobs(pgrp)) {
398 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
399 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
400 	}
401 }
402 
403 #ifdef CONFIG_MEMCG
404 /*
405  * A task is exiting.   If it owned this mm, find a new owner for the mm.
406  */
mm_update_next_owner(struct mm_struct * mm)407 void mm_update_next_owner(struct mm_struct *mm)
408 {
409 	struct task_struct *c, *g, *p = current;
410 
411 retry:
412 	/*
413 	 * If the exiting or execing task is not the owner, it's
414 	 * someone else's problem.
415 	 */
416 	if (mm->owner != p)
417 		return;
418 	/*
419 	 * The current owner is exiting/execing and there are no other
420 	 * candidates.  Do not leave the mm pointing to a possibly
421 	 * freed task structure.
422 	 */
423 	if (atomic_read(&mm->mm_users) <= 1) {
424 		mm->owner = NULL;
425 		return;
426 	}
427 
428 	read_lock(&tasklist_lock);
429 	/*
430 	 * Search in the children
431 	 */
432 	list_for_each_entry(c, &p->children, sibling) {
433 		if (c->mm == mm)
434 			goto assign_new_owner;
435 	}
436 
437 	/*
438 	 * Search in the siblings
439 	 */
440 	list_for_each_entry(c, &p->real_parent->children, sibling) {
441 		if (c->mm == mm)
442 			goto assign_new_owner;
443 	}
444 
445 	/*
446 	 * Search through everything else, we should not get here often.
447 	 */
448 	for_each_process(g) {
449 		if (g->flags & PF_KTHREAD)
450 			continue;
451 		for_each_thread(g, c) {
452 			if (c->mm == mm)
453 				goto assign_new_owner;
454 			if (c->mm)
455 				break;
456 		}
457 	}
458 	read_unlock(&tasklist_lock);
459 	/*
460 	 * We found no owner yet mm_users > 1: this implies that we are
461 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
462 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
463 	 */
464 	mm->owner = NULL;
465 	return;
466 
467 assign_new_owner:
468 	BUG_ON(c == p);
469 	get_task_struct(c);
470 	/*
471 	 * The task_lock protects c->mm from changing.
472 	 * We always want mm->owner->mm == mm
473 	 */
474 	task_lock(c);
475 	/*
476 	 * Delay read_unlock() till we have the task_lock()
477 	 * to ensure that c does not slip away underneath us
478 	 */
479 	read_unlock(&tasklist_lock);
480 	if (c->mm != mm) {
481 		task_unlock(c);
482 		put_task_struct(c);
483 		goto retry;
484 	}
485 	mm->owner = c;
486 	task_unlock(c);
487 	put_task_struct(c);
488 }
489 #endif /* CONFIG_MEMCG */
490 
491 /*
492  * Turn us into a lazy TLB process if we
493  * aren't already..
494  */
exit_mm(void)495 static void exit_mm(void)
496 {
497 	struct mm_struct *mm = current->mm;
498 	struct core_state *core_state;
499 
500 	mm_release(current, mm);
501 	if (!mm)
502 		return;
503 	sync_mm_rss(mm);
504 	/*
505 	 * Serialize with any possible pending coredump.
506 	 * We must hold mmap_sem around checking core_state
507 	 * and clearing tsk->mm.  The core-inducing thread
508 	 * will increment ->nr_threads for each thread in the
509 	 * group with ->mm != NULL.
510 	 */
511 	down_read(&mm->mmap_sem);
512 	core_state = mm->core_state;
513 	if (core_state) {
514 		struct core_thread self;
515 
516 		up_read(&mm->mmap_sem);
517 
518 		self.task = current;
519 		self.next = xchg(&core_state->dumper.next, &self);
520 		/*
521 		 * Implies mb(), the result of xchg() must be visible
522 		 * to core_state->dumper.
523 		 */
524 		if (atomic_dec_and_test(&core_state->nr_threads))
525 			complete(&core_state->startup);
526 
527 		for (;;) {
528 			set_current_state(TASK_UNINTERRUPTIBLE);
529 			if (!self.task) /* see coredump_finish() */
530 				break;
531 			freezable_schedule();
532 		}
533 		__set_current_state(TASK_RUNNING);
534 		down_read(&mm->mmap_sem);
535 	}
536 	mmgrab(mm);
537 	BUG_ON(mm != current->active_mm);
538 	/* more a memory barrier than a real lock */
539 	task_lock(current);
540 	current->mm = NULL;
541 	up_read(&mm->mmap_sem);
542 	enter_lazy_tlb(mm, current);
543 	task_unlock(current);
544 	mm_update_next_owner(mm);
545 	mmput(mm);
546 	if (test_thread_flag(TIF_MEMDIE))
547 		exit_oom_victim();
548 }
549 
find_alive_thread(struct task_struct * p)550 static struct task_struct *find_alive_thread(struct task_struct *p)
551 {
552 	struct task_struct *t;
553 
554 	for_each_thread(p, t) {
555 		if (!(t->flags & PF_EXITING))
556 			return t;
557 	}
558 	return NULL;
559 }
560 
find_child_reaper(struct task_struct * father)561 static struct task_struct *find_child_reaper(struct task_struct *father)
562 	__releases(&tasklist_lock)
563 	__acquires(&tasklist_lock)
564 {
565 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
566 	struct task_struct *reaper = pid_ns->child_reaper;
567 
568 	if (likely(reaper != father))
569 		return reaper;
570 
571 	reaper = find_alive_thread(father);
572 	if (reaper) {
573 		pid_ns->child_reaper = reaper;
574 		return reaper;
575 	}
576 
577 	write_unlock_irq(&tasklist_lock);
578 	if (unlikely(pid_ns == &init_pid_ns)) {
579 		panic("Attempted to kill init! exitcode=0x%08x\n",
580 			father->signal->group_exit_code ?: father->exit_code);
581 	}
582 	zap_pid_ns_processes(pid_ns);
583 	write_lock_irq(&tasklist_lock);
584 
585 	return father;
586 }
587 
588 /*
589  * When we die, we re-parent all our children, and try to:
590  * 1. give them to another thread in our thread group, if such a member exists
591  * 2. give it to the first ancestor process which prctl'd itself as a
592  *    child_subreaper for its children (like a service manager)
593  * 3. give it to the init process (PID 1) in our pid namespace
594  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)595 static struct task_struct *find_new_reaper(struct task_struct *father,
596 					   struct task_struct *child_reaper)
597 {
598 	struct task_struct *thread, *reaper;
599 
600 	thread = find_alive_thread(father);
601 	if (thread)
602 		return thread;
603 
604 	if (father->signal->has_child_subreaper) {
605 		unsigned int ns_level = task_pid(father)->level;
606 		/*
607 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
608 		 * We can't check reaper != child_reaper to ensure we do not
609 		 * cross the namespaces, the exiting parent could be injected
610 		 * by setns() + fork().
611 		 * We check pid->level, this is slightly more efficient than
612 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
613 		 */
614 		for (reaper = father->real_parent;
615 		     task_pid(reaper)->level == ns_level;
616 		     reaper = reaper->real_parent) {
617 			if (reaper == &init_task)
618 				break;
619 			if (!reaper->signal->is_child_subreaper)
620 				continue;
621 			thread = find_alive_thread(reaper);
622 			if (thread)
623 				return thread;
624 		}
625 	}
626 
627 	return child_reaper;
628 }
629 
630 /*
631 * Any that need to be release_task'd are put on the @dead list.
632  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)633 static void reparent_leader(struct task_struct *father, struct task_struct *p,
634 				struct list_head *dead)
635 {
636 	if (unlikely(p->exit_state == EXIT_DEAD))
637 		return;
638 
639 	/* We don't want people slaying init. */
640 	p->exit_signal = SIGCHLD;
641 
642 	/* If it has exited notify the new parent about this child's death. */
643 	if (!p->ptrace &&
644 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
645 		if (do_notify_parent(p, p->exit_signal)) {
646 			p->exit_state = EXIT_DEAD;
647 			list_add(&p->ptrace_entry, dead);
648 		}
649 	}
650 
651 	kill_orphaned_pgrp(p, father);
652 }
653 
654 /*
655  * This does two things:
656  *
657  * A.  Make init inherit all the child processes
658  * B.  Check to see if any process groups have become orphaned
659  *	as a result of our exiting, and if they have any stopped
660  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
661  */
forget_original_parent(struct task_struct * father,struct list_head * dead)662 static void forget_original_parent(struct task_struct *father,
663 					struct list_head *dead)
664 {
665 	struct task_struct *p, *t, *reaper;
666 
667 	if (unlikely(!list_empty(&father->ptraced)))
668 		exit_ptrace(father, dead);
669 
670 	/* Can drop and reacquire tasklist_lock */
671 	reaper = find_child_reaper(father);
672 	if (list_empty(&father->children))
673 		return;
674 
675 	reaper = find_new_reaper(father, reaper);
676 	list_for_each_entry(p, &father->children, sibling) {
677 		for_each_thread(p, t) {
678 			t->real_parent = reaper;
679 			BUG_ON((!t->ptrace) != (t->parent == father));
680 			if (likely(!t->ptrace))
681 				t->parent = t->real_parent;
682 			if (t->pdeath_signal)
683 				group_send_sig_info(t->pdeath_signal,
684 						    SEND_SIG_NOINFO, t,
685 						    PIDTYPE_TGID);
686 		}
687 		/*
688 		 * If this is a threaded reparent there is no need to
689 		 * notify anyone anything has happened.
690 		 */
691 		if (!same_thread_group(reaper, father))
692 			reparent_leader(father, p, dead);
693 	}
694 	list_splice_tail_init(&father->children, &reaper->children);
695 }
696 
697 /*
698  * Send signals to all our closest relatives so that they know
699  * to properly mourn us..
700  */
exit_notify(struct task_struct * tsk,int group_dead)701 static void exit_notify(struct task_struct *tsk, int group_dead)
702 {
703 	bool autoreap;
704 	struct task_struct *p, *n;
705 	LIST_HEAD(dead);
706 
707 	write_lock_irq(&tasklist_lock);
708 	forget_original_parent(tsk, &dead);
709 
710 	if (group_dead)
711 		kill_orphaned_pgrp(tsk->group_leader, NULL);
712 
713 	if (unlikely(tsk->ptrace)) {
714 		int sig = thread_group_leader(tsk) &&
715 				thread_group_empty(tsk) &&
716 				!ptrace_reparented(tsk) ?
717 			tsk->exit_signal : SIGCHLD;
718 		autoreap = do_notify_parent(tsk, sig);
719 	} else if (thread_group_leader(tsk)) {
720 		autoreap = thread_group_empty(tsk) &&
721 			do_notify_parent(tsk, tsk->exit_signal);
722 	} else {
723 		autoreap = true;
724 	}
725 
726 	tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
727 	if (tsk->exit_state == EXIT_DEAD)
728 		list_add(&tsk->ptrace_entry, &dead);
729 
730 	/* mt-exec, de_thread() is waiting for group leader */
731 	if (unlikely(tsk->signal->notify_count < 0))
732 		wake_up_process(tsk->signal->group_exit_task);
733 	write_unlock_irq(&tasklist_lock);
734 
735 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
736 		list_del_init(&p->ptrace_entry);
737 		release_task(p);
738 	}
739 }
740 
741 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)742 static void check_stack_usage(void)
743 {
744 	static DEFINE_SPINLOCK(low_water_lock);
745 	static int lowest_to_date = THREAD_SIZE;
746 	unsigned long free;
747 
748 	free = stack_not_used(current);
749 
750 	if (free >= lowest_to_date)
751 		return;
752 
753 	spin_lock(&low_water_lock);
754 	if (free < lowest_to_date) {
755 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
756 			current->comm, task_pid_nr(current), free);
757 		lowest_to_date = free;
758 	}
759 	spin_unlock(&low_water_lock);
760 }
761 #else
check_stack_usage(void)762 static inline void check_stack_usage(void) {}
763 #endif
764 
do_exit(long code)765 void __noreturn do_exit(long code)
766 {
767 	struct task_struct *tsk = current;
768 	int group_dead;
769 
770 	profile_task_exit(tsk);
771 	kcov_task_exit(tsk);
772 
773 	WARN_ON(blk_needs_flush_plug(tsk));
774 
775 	if (unlikely(in_interrupt()))
776 		panic("Aiee, killing interrupt handler!");
777 	if (unlikely(!tsk->pid))
778 		panic("Attempted to kill the idle task!");
779 
780 	/*
781 	 * If do_exit is called because this processes oopsed, it's possible
782 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
783 	 * continuing. Amongst other possible reasons, this is to prevent
784 	 * mm_release()->clear_child_tid() from writing to a user-controlled
785 	 * kernel address.
786 	 */
787 	set_fs(USER_DS);
788 
789 	ptrace_event(PTRACE_EVENT_EXIT, code);
790 
791 	validate_creds_for_do_exit(tsk);
792 
793 	/*
794 	 * We're taking recursive faults here in do_exit. Safest is to just
795 	 * leave this task alone and wait for reboot.
796 	 */
797 	if (unlikely(tsk->flags & PF_EXITING)) {
798 		pr_alert("Fixing recursive fault but reboot is needed!\n");
799 		/*
800 		 * We can do this unlocked here. The futex code uses
801 		 * this flag just to verify whether the pi state
802 		 * cleanup has been done or not. In the worst case it
803 		 * loops once more. We pretend that the cleanup was
804 		 * done as there is no way to return. Either the
805 		 * OWNER_DIED bit is set by now or we push the blocked
806 		 * task into the wait for ever nirwana as well.
807 		 */
808 		tsk->flags |= PF_EXITPIDONE;
809 		set_current_state(TASK_UNINTERRUPTIBLE);
810 		schedule();
811 	}
812 
813 	exit_signals(tsk);  /* sets PF_EXITING */
814 	/*
815 	 * Ensure that all new tsk->pi_lock acquisitions must observe
816 	 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
817 	 */
818 	smp_mb();
819 	/*
820 	 * Ensure that we must observe the pi_state in exit_mm() ->
821 	 * mm_release() -> exit_pi_state_list().
822 	 */
823 	raw_spin_lock_irq(&tsk->pi_lock);
824 	raw_spin_unlock_irq(&tsk->pi_lock);
825 
826 	if (unlikely(in_atomic())) {
827 		pr_info("note: %s[%d] exited with preempt_count %d\n",
828 			current->comm, task_pid_nr(current),
829 			preempt_count());
830 		preempt_count_set(PREEMPT_ENABLED);
831 	}
832 
833 	/* sync mm's RSS info before statistics gathering */
834 	if (tsk->mm)
835 		sync_mm_rss(tsk->mm);
836 	acct_update_integrals(tsk);
837 	group_dead = atomic_dec_and_test(&tsk->signal->live);
838 	if (group_dead) {
839 #ifdef CONFIG_POSIX_TIMERS
840 		hrtimer_cancel(&tsk->signal->real_timer);
841 		exit_itimers(tsk->signal);
842 #endif
843 		if (tsk->mm)
844 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
845 	}
846 	acct_collect(code, group_dead);
847 	if (group_dead)
848 		tty_audit_exit();
849 	audit_free(tsk);
850 
851 	tsk->exit_code = code;
852 	taskstats_exit(tsk, group_dead);
853 
854 	exit_mm();
855 
856 	if (group_dead)
857 		acct_process();
858 	trace_sched_process_exit(tsk);
859 
860 	exit_sem(tsk);
861 	exit_shm(tsk);
862 	exit_files(tsk);
863 	exit_fs(tsk);
864 	if (group_dead)
865 		disassociate_ctty(1);
866 	exit_task_namespaces(tsk);
867 	exit_task_work(tsk);
868 	exit_thread(tsk);
869 
870 	/*
871 	 * Flush inherited counters to the parent - before the parent
872 	 * gets woken up by child-exit notifications.
873 	 *
874 	 * because of cgroup mode, must be called before cgroup_exit()
875 	 */
876 	perf_event_exit_task(tsk);
877 
878 	sched_autogroup_exit_task(tsk);
879 	cgroup_exit(tsk);
880 
881 	/*
882 	 * FIXME: do that only when needed, using sched_exit tracepoint
883 	 */
884 	flush_ptrace_hw_breakpoint(tsk);
885 
886 	exit_tasks_rcu_start();
887 	exit_notify(tsk, group_dead);
888 	proc_exit_connector(tsk);
889 	mpol_put_task_policy(tsk);
890 #ifdef CONFIG_FUTEX
891 	if (unlikely(current->pi_state_cache))
892 		kfree(current->pi_state_cache);
893 #endif
894 	/*
895 	 * Make sure we are holding no locks:
896 	 */
897 	debug_check_no_locks_held();
898 	/*
899 	 * We can do this unlocked here. The futex code uses this flag
900 	 * just to verify whether the pi state cleanup has been done
901 	 * or not. In the worst case it loops once more.
902 	 */
903 	tsk->flags |= PF_EXITPIDONE;
904 
905 	if (tsk->io_context)
906 		exit_io_context(tsk);
907 
908 	if (tsk->splice_pipe)
909 		free_pipe_info(tsk->splice_pipe);
910 
911 	if (tsk->task_frag.page)
912 		put_page(tsk->task_frag.page);
913 
914 	validate_creds_for_do_exit(tsk);
915 
916 	check_stack_usage();
917 	preempt_disable();
918 	if (tsk->nr_dirtied)
919 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
920 	exit_rcu();
921 	exit_tasks_rcu_finish();
922 
923 	lockdep_free_task(tsk);
924 	do_task_dead();
925 }
926 EXPORT_SYMBOL_GPL(do_exit);
927 
complete_and_exit(struct completion * comp,long code)928 void complete_and_exit(struct completion *comp, long code)
929 {
930 	if (comp)
931 		complete(comp);
932 
933 	do_exit(code);
934 }
935 EXPORT_SYMBOL(complete_and_exit);
936 
SYSCALL_DEFINE1(exit,int,error_code)937 SYSCALL_DEFINE1(exit, int, error_code)
938 {
939 	do_exit((error_code&0xff)<<8);
940 }
941 
942 /*
943  * Take down every thread in the group.  This is called by fatal signals
944  * as well as by sys_exit_group (below).
945  */
946 void
do_group_exit(int exit_code)947 do_group_exit(int exit_code)
948 {
949 	struct signal_struct *sig = current->signal;
950 
951 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
952 
953 	if (signal_group_exit(sig))
954 		exit_code = sig->group_exit_code;
955 	else if (!thread_group_empty(current)) {
956 		struct sighand_struct *const sighand = current->sighand;
957 
958 		spin_lock_irq(&sighand->siglock);
959 		if (signal_group_exit(sig))
960 			/* Another thread got here before we took the lock.  */
961 			exit_code = sig->group_exit_code;
962 		else {
963 			sig->group_exit_code = exit_code;
964 			sig->flags = SIGNAL_GROUP_EXIT;
965 			zap_other_threads(current);
966 		}
967 		spin_unlock_irq(&sighand->siglock);
968 	}
969 
970 	do_exit(exit_code);
971 	/* NOTREACHED */
972 }
973 
974 /*
975  * this kills every thread in the thread group. Note that any externally
976  * wait4()-ing process will get the correct exit code - even if this
977  * thread is not the thread group leader.
978  */
SYSCALL_DEFINE1(exit_group,int,error_code)979 SYSCALL_DEFINE1(exit_group, int, error_code)
980 {
981 	do_group_exit((error_code & 0xff) << 8);
982 	/* NOTREACHED */
983 	return 0;
984 }
985 
986 struct waitid_info {
987 	pid_t pid;
988 	uid_t uid;
989 	int status;
990 	int cause;
991 };
992 
993 struct wait_opts {
994 	enum pid_type		wo_type;
995 	int			wo_flags;
996 	struct pid		*wo_pid;
997 
998 	struct waitid_info	*wo_info;
999 	int			wo_stat;
1000 	struct rusage		*wo_rusage;
1001 
1002 	wait_queue_entry_t		child_wait;
1003 	int			notask_error;
1004 };
1005 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1006 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1007 {
1008 	return	wo->wo_type == PIDTYPE_MAX ||
1009 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1010 }
1011 
1012 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1013 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1014 {
1015 	if (!eligible_pid(wo, p))
1016 		return 0;
1017 
1018 	/*
1019 	 * Wait for all children (clone and not) if __WALL is set or
1020 	 * if it is traced by us.
1021 	 */
1022 	if (ptrace || (wo->wo_flags & __WALL))
1023 		return 1;
1024 
1025 	/*
1026 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1027 	 * otherwise, wait for non-clone children *only*.
1028 	 *
1029 	 * Note: a "clone" child here is one that reports to its parent
1030 	 * using a signal other than SIGCHLD, or a non-leader thread which
1031 	 * we can only see if it is traced by us.
1032 	 */
1033 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1034 		return 0;
1035 
1036 	return 1;
1037 }
1038 
1039 /*
1040  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1041  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1042  * the lock and this task is uninteresting.  If we return nonzero, we have
1043  * released the lock and the system call should return.
1044  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1045 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1046 {
1047 	int state, status;
1048 	pid_t pid = task_pid_vnr(p);
1049 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1050 	struct waitid_info *infop;
1051 
1052 	if (!likely(wo->wo_flags & WEXITED))
1053 		return 0;
1054 
1055 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1056 		status = p->exit_code;
1057 		get_task_struct(p);
1058 		read_unlock(&tasklist_lock);
1059 		sched_annotate_sleep();
1060 		if (wo->wo_rusage)
1061 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1062 		put_task_struct(p);
1063 		goto out_info;
1064 	}
1065 	/*
1066 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1067 	 */
1068 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1069 		EXIT_TRACE : EXIT_DEAD;
1070 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1071 		return 0;
1072 	/*
1073 	 * We own this thread, nobody else can reap it.
1074 	 */
1075 	read_unlock(&tasklist_lock);
1076 	sched_annotate_sleep();
1077 
1078 	/*
1079 	 * Check thread_group_leader() to exclude the traced sub-threads.
1080 	 */
1081 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1082 		struct signal_struct *sig = p->signal;
1083 		struct signal_struct *psig = current->signal;
1084 		unsigned long maxrss;
1085 		u64 tgutime, tgstime;
1086 
1087 		/*
1088 		 * The resource counters for the group leader are in its
1089 		 * own task_struct.  Those for dead threads in the group
1090 		 * are in its signal_struct, as are those for the child
1091 		 * processes it has previously reaped.  All these
1092 		 * accumulate in the parent's signal_struct c* fields.
1093 		 *
1094 		 * We don't bother to take a lock here to protect these
1095 		 * p->signal fields because the whole thread group is dead
1096 		 * and nobody can change them.
1097 		 *
1098 		 * psig->stats_lock also protects us from our sub-theads
1099 		 * which can reap other children at the same time. Until
1100 		 * we change k_getrusage()-like users to rely on this lock
1101 		 * we have to take ->siglock as well.
1102 		 *
1103 		 * We use thread_group_cputime_adjusted() to get times for
1104 		 * the thread group, which consolidates times for all threads
1105 		 * in the group including the group leader.
1106 		 */
1107 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1108 		spin_lock_irq(&current->sighand->siglock);
1109 		write_seqlock(&psig->stats_lock);
1110 		psig->cutime += tgutime + sig->cutime;
1111 		psig->cstime += tgstime + sig->cstime;
1112 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1113 		psig->cmin_flt +=
1114 			p->min_flt + sig->min_flt + sig->cmin_flt;
1115 		psig->cmaj_flt +=
1116 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1117 		psig->cnvcsw +=
1118 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1119 		psig->cnivcsw +=
1120 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1121 		psig->cinblock +=
1122 			task_io_get_inblock(p) +
1123 			sig->inblock + sig->cinblock;
1124 		psig->coublock +=
1125 			task_io_get_oublock(p) +
1126 			sig->oublock + sig->coublock;
1127 		maxrss = max(sig->maxrss, sig->cmaxrss);
1128 		if (psig->cmaxrss < maxrss)
1129 			psig->cmaxrss = maxrss;
1130 		task_io_accounting_add(&psig->ioac, &p->ioac);
1131 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1132 		write_sequnlock(&psig->stats_lock);
1133 		spin_unlock_irq(&current->sighand->siglock);
1134 	}
1135 
1136 	if (wo->wo_rusage)
1137 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1138 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1139 		? p->signal->group_exit_code : p->exit_code;
1140 	wo->wo_stat = status;
1141 
1142 	if (state == EXIT_TRACE) {
1143 		write_lock_irq(&tasklist_lock);
1144 		/* We dropped tasklist, ptracer could die and untrace */
1145 		ptrace_unlink(p);
1146 
1147 		/* If parent wants a zombie, don't release it now */
1148 		state = EXIT_ZOMBIE;
1149 		if (do_notify_parent(p, p->exit_signal))
1150 			state = EXIT_DEAD;
1151 		p->exit_state = state;
1152 		write_unlock_irq(&tasklist_lock);
1153 	}
1154 	if (state == EXIT_DEAD)
1155 		release_task(p);
1156 
1157 out_info:
1158 	infop = wo->wo_info;
1159 	if (infop) {
1160 		if ((status & 0x7f) == 0) {
1161 			infop->cause = CLD_EXITED;
1162 			infop->status = status >> 8;
1163 		} else {
1164 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1165 			infop->status = status & 0x7f;
1166 		}
1167 		infop->pid = pid;
1168 		infop->uid = uid;
1169 	}
1170 
1171 	return pid;
1172 }
1173 
task_stopped_code(struct task_struct * p,bool ptrace)1174 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1175 {
1176 	if (ptrace) {
1177 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1178 			return &p->exit_code;
1179 	} else {
1180 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1181 			return &p->signal->group_exit_code;
1182 	}
1183 	return NULL;
1184 }
1185 
1186 /**
1187  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1188  * @wo: wait options
1189  * @ptrace: is the wait for ptrace
1190  * @p: task to wait for
1191  *
1192  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1193  *
1194  * CONTEXT:
1195  * read_lock(&tasklist_lock), which is released if return value is
1196  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1197  *
1198  * RETURNS:
1199  * 0 if wait condition didn't exist and search for other wait conditions
1200  * should continue.  Non-zero return, -errno on failure and @p's pid on
1201  * success, implies that tasklist_lock is released and wait condition
1202  * search should terminate.
1203  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1204 static int wait_task_stopped(struct wait_opts *wo,
1205 				int ptrace, struct task_struct *p)
1206 {
1207 	struct waitid_info *infop;
1208 	int exit_code, *p_code, why;
1209 	uid_t uid = 0; /* unneeded, required by compiler */
1210 	pid_t pid;
1211 
1212 	/*
1213 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1214 	 */
1215 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1216 		return 0;
1217 
1218 	if (!task_stopped_code(p, ptrace))
1219 		return 0;
1220 
1221 	exit_code = 0;
1222 	spin_lock_irq(&p->sighand->siglock);
1223 
1224 	p_code = task_stopped_code(p, ptrace);
1225 	if (unlikely(!p_code))
1226 		goto unlock_sig;
1227 
1228 	exit_code = *p_code;
1229 	if (!exit_code)
1230 		goto unlock_sig;
1231 
1232 	if (!unlikely(wo->wo_flags & WNOWAIT))
1233 		*p_code = 0;
1234 
1235 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1236 unlock_sig:
1237 	spin_unlock_irq(&p->sighand->siglock);
1238 	if (!exit_code)
1239 		return 0;
1240 
1241 	/*
1242 	 * Now we are pretty sure this task is interesting.
1243 	 * Make sure it doesn't get reaped out from under us while we
1244 	 * give up the lock and then examine it below.  We don't want to
1245 	 * keep holding onto the tasklist_lock while we call getrusage and
1246 	 * possibly take page faults for user memory.
1247 	 */
1248 	get_task_struct(p);
1249 	pid = task_pid_vnr(p);
1250 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1251 	read_unlock(&tasklist_lock);
1252 	sched_annotate_sleep();
1253 	if (wo->wo_rusage)
1254 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1255 	put_task_struct(p);
1256 
1257 	if (likely(!(wo->wo_flags & WNOWAIT)))
1258 		wo->wo_stat = (exit_code << 8) | 0x7f;
1259 
1260 	infop = wo->wo_info;
1261 	if (infop) {
1262 		infop->cause = why;
1263 		infop->status = exit_code;
1264 		infop->pid = pid;
1265 		infop->uid = uid;
1266 	}
1267 	return pid;
1268 }
1269 
1270 /*
1271  * Handle do_wait work for one task in a live, non-stopped state.
1272  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1273  * the lock and this task is uninteresting.  If we return nonzero, we have
1274  * released the lock and the system call should return.
1275  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1276 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1277 {
1278 	struct waitid_info *infop;
1279 	pid_t pid;
1280 	uid_t uid;
1281 
1282 	if (!unlikely(wo->wo_flags & WCONTINUED))
1283 		return 0;
1284 
1285 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1286 		return 0;
1287 
1288 	spin_lock_irq(&p->sighand->siglock);
1289 	/* Re-check with the lock held.  */
1290 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1291 		spin_unlock_irq(&p->sighand->siglock);
1292 		return 0;
1293 	}
1294 	if (!unlikely(wo->wo_flags & WNOWAIT))
1295 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1296 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1297 	spin_unlock_irq(&p->sighand->siglock);
1298 
1299 	pid = task_pid_vnr(p);
1300 	get_task_struct(p);
1301 	read_unlock(&tasklist_lock);
1302 	sched_annotate_sleep();
1303 	if (wo->wo_rusage)
1304 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1305 	put_task_struct(p);
1306 
1307 	infop = wo->wo_info;
1308 	if (!infop) {
1309 		wo->wo_stat = 0xffff;
1310 	} else {
1311 		infop->cause = CLD_CONTINUED;
1312 		infop->pid = pid;
1313 		infop->uid = uid;
1314 		infop->status = SIGCONT;
1315 	}
1316 	return pid;
1317 }
1318 
1319 /*
1320  * Consider @p for a wait by @parent.
1321  *
1322  * -ECHILD should be in ->notask_error before the first call.
1323  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1324  * Returns zero if the search for a child should continue;
1325  * then ->notask_error is 0 if @p is an eligible child,
1326  * or still -ECHILD.
1327  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1328 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1329 				struct task_struct *p)
1330 {
1331 	/*
1332 	 * We can race with wait_task_zombie() from another thread.
1333 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1334 	 * can't confuse the checks below.
1335 	 */
1336 	int exit_state = READ_ONCE(p->exit_state);
1337 	int ret;
1338 
1339 	if (unlikely(exit_state == EXIT_DEAD))
1340 		return 0;
1341 
1342 	ret = eligible_child(wo, ptrace, p);
1343 	if (!ret)
1344 		return ret;
1345 
1346 	if (unlikely(exit_state == EXIT_TRACE)) {
1347 		/*
1348 		 * ptrace == 0 means we are the natural parent. In this case
1349 		 * we should clear notask_error, debugger will notify us.
1350 		 */
1351 		if (likely(!ptrace))
1352 			wo->notask_error = 0;
1353 		return 0;
1354 	}
1355 
1356 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1357 		/*
1358 		 * If it is traced by its real parent's group, just pretend
1359 		 * the caller is ptrace_do_wait() and reap this child if it
1360 		 * is zombie.
1361 		 *
1362 		 * This also hides group stop state from real parent; otherwise
1363 		 * a single stop can be reported twice as group and ptrace stop.
1364 		 * If a ptracer wants to distinguish these two events for its
1365 		 * own children it should create a separate process which takes
1366 		 * the role of real parent.
1367 		 */
1368 		if (!ptrace_reparented(p))
1369 			ptrace = 1;
1370 	}
1371 
1372 	/* slay zombie? */
1373 	if (exit_state == EXIT_ZOMBIE) {
1374 		/* we don't reap group leaders with subthreads */
1375 		if (!delay_group_leader(p)) {
1376 			/*
1377 			 * A zombie ptracee is only visible to its ptracer.
1378 			 * Notification and reaping will be cascaded to the
1379 			 * real parent when the ptracer detaches.
1380 			 */
1381 			if (unlikely(ptrace) || likely(!p->ptrace))
1382 				return wait_task_zombie(wo, p);
1383 		}
1384 
1385 		/*
1386 		 * Allow access to stopped/continued state via zombie by
1387 		 * falling through.  Clearing of notask_error is complex.
1388 		 *
1389 		 * When !@ptrace:
1390 		 *
1391 		 * If WEXITED is set, notask_error should naturally be
1392 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1393 		 * so, if there are live subthreads, there are events to
1394 		 * wait for.  If all subthreads are dead, it's still safe
1395 		 * to clear - this function will be called again in finite
1396 		 * amount time once all the subthreads are released and
1397 		 * will then return without clearing.
1398 		 *
1399 		 * When @ptrace:
1400 		 *
1401 		 * Stopped state is per-task and thus can't change once the
1402 		 * target task dies.  Only continued and exited can happen.
1403 		 * Clear notask_error if WCONTINUED | WEXITED.
1404 		 */
1405 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1406 			wo->notask_error = 0;
1407 	} else {
1408 		/*
1409 		 * @p is alive and it's gonna stop, continue or exit, so
1410 		 * there always is something to wait for.
1411 		 */
1412 		wo->notask_error = 0;
1413 	}
1414 
1415 	/*
1416 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1417 	 * is used and the two don't interact with each other.
1418 	 */
1419 	ret = wait_task_stopped(wo, ptrace, p);
1420 	if (ret)
1421 		return ret;
1422 
1423 	/*
1424 	 * Wait for continued.  There's only one continued state and the
1425 	 * ptracer can consume it which can confuse the real parent.  Don't
1426 	 * use WCONTINUED from ptracer.  You don't need or want it.
1427 	 */
1428 	return wait_task_continued(wo, p);
1429 }
1430 
1431 /*
1432  * Do the work of do_wait() for one thread in the group, @tsk.
1433  *
1434  * -ECHILD should be in ->notask_error before the first call.
1435  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1436  * Returns zero if the search for a child should continue; then
1437  * ->notask_error is 0 if there were any eligible children,
1438  * or still -ECHILD.
1439  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1440 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1441 {
1442 	struct task_struct *p;
1443 
1444 	list_for_each_entry(p, &tsk->children, sibling) {
1445 		int ret = wait_consider_task(wo, 0, p);
1446 
1447 		if (ret)
1448 			return ret;
1449 	}
1450 
1451 	return 0;
1452 }
1453 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1454 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1455 {
1456 	struct task_struct *p;
1457 
1458 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1459 		int ret = wait_consider_task(wo, 1, p);
1460 
1461 		if (ret)
1462 			return ret;
1463 	}
1464 
1465 	return 0;
1466 }
1467 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1468 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1469 				int sync, void *key)
1470 {
1471 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1472 						child_wait);
1473 	struct task_struct *p = key;
1474 
1475 	if (!eligible_pid(wo, p))
1476 		return 0;
1477 
1478 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1479 		return 0;
1480 
1481 	return default_wake_function(wait, mode, sync, key);
1482 }
1483 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1484 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1485 {
1486 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1487 				TASK_INTERRUPTIBLE, 1, p);
1488 }
1489 
do_wait(struct wait_opts * wo)1490 static long do_wait(struct wait_opts *wo)
1491 {
1492 	struct task_struct *tsk;
1493 	int retval;
1494 
1495 	trace_sched_process_wait(wo->wo_pid);
1496 
1497 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1498 	wo->child_wait.private = current;
1499 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1500 repeat:
1501 	/*
1502 	 * If there is nothing that can match our criteria, just get out.
1503 	 * We will clear ->notask_error to zero if we see any child that
1504 	 * might later match our criteria, even if we are not able to reap
1505 	 * it yet.
1506 	 */
1507 	wo->notask_error = -ECHILD;
1508 	if ((wo->wo_type < PIDTYPE_MAX) &&
1509 	   (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1510 		goto notask;
1511 
1512 	set_current_state(TASK_INTERRUPTIBLE);
1513 	read_lock(&tasklist_lock);
1514 	tsk = current;
1515 	do {
1516 		retval = do_wait_thread(wo, tsk);
1517 		if (retval)
1518 			goto end;
1519 
1520 		retval = ptrace_do_wait(wo, tsk);
1521 		if (retval)
1522 			goto end;
1523 
1524 		if (wo->wo_flags & __WNOTHREAD)
1525 			break;
1526 	} while_each_thread(current, tsk);
1527 	read_unlock(&tasklist_lock);
1528 
1529 notask:
1530 	retval = wo->notask_error;
1531 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1532 		retval = -ERESTARTSYS;
1533 		if (!signal_pending(current)) {
1534 			schedule();
1535 			goto repeat;
1536 		}
1537 	}
1538 end:
1539 	__set_current_state(TASK_RUNNING);
1540 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1541 	return retval;
1542 }
1543 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1544 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1545 			  int options, struct rusage *ru)
1546 {
1547 	struct wait_opts wo;
1548 	struct pid *pid = NULL;
1549 	enum pid_type type;
1550 	long ret;
1551 
1552 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1553 			__WNOTHREAD|__WCLONE|__WALL))
1554 		return -EINVAL;
1555 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1556 		return -EINVAL;
1557 
1558 	switch (which) {
1559 	case P_ALL:
1560 		type = PIDTYPE_MAX;
1561 		break;
1562 	case P_PID:
1563 		type = PIDTYPE_PID;
1564 		if (upid <= 0)
1565 			return -EINVAL;
1566 		break;
1567 	case P_PGID:
1568 		type = PIDTYPE_PGID;
1569 		if (upid <= 0)
1570 			return -EINVAL;
1571 		break;
1572 	default:
1573 		return -EINVAL;
1574 	}
1575 
1576 	if (type < PIDTYPE_MAX)
1577 		pid = find_get_pid(upid);
1578 
1579 	wo.wo_type	= type;
1580 	wo.wo_pid	= pid;
1581 	wo.wo_flags	= options;
1582 	wo.wo_info	= infop;
1583 	wo.wo_rusage	= ru;
1584 	ret = do_wait(&wo);
1585 
1586 	put_pid(pid);
1587 	return ret;
1588 }
1589 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1590 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1591 		infop, int, options, struct rusage __user *, ru)
1592 {
1593 	struct rusage r;
1594 	struct waitid_info info = {.status = 0};
1595 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1596 	int signo = 0;
1597 
1598 	if (err > 0) {
1599 		signo = SIGCHLD;
1600 		err = 0;
1601 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1602 			return -EFAULT;
1603 	}
1604 	if (!infop)
1605 		return err;
1606 
1607 	if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1608 		return -EFAULT;
1609 
1610 	user_access_begin();
1611 	unsafe_put_user(signo, &infop->si_signo, Efault);
1612 	unsafe_put_user(0, &infop->si_errno, Efault);
1613 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1614 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1615 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1616 	unsafe_put_user(info.status, &infop->si_status, Efault);
1617 	user_access_end();
1618 	return err;
1619 Efault:
1620 	user_access_end();
1621 	return -EFAULT;
1622 }
1623 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1624 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1625 		  struct rusage *ru)
1626 {
1627 	struct wait_opts wo;
1628 	struct pid *pid = NULL;
1629 	enum pid_type type;
1630 	long ret;
1631 
1632 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1633 			__WNOTHREAD|__WCLONE|__WALL))
1634 		return -EINVAL;
1635 
1636 	/* -INT_MIN is not defined */
1637 	if (upid == INT_MIN)
1638 		return -ESRCH;
1639 
1640 	if (upid == -1)
1641 		type = PIDTYPE_MAX;
1642 	else if (upid < 0) {
1643 		type = PIDTYPE_PGID;
1644 		pid = find_get_pid(-upid);
1645 	} else if (upid == 0) {
1646 		type = PIDTYPE_PGID;
1647 		pid = get_task_pid(current, PIDTYPE_PGID);
1648 	} else /* upid > 0 */ {
1649 		type = PIDTYPE_PID;
1650 		pid = find_get_pid(upid);
1651 	}
1652 
1653 	wo.wo_type	= type;
1654 	wo.wo_pid	= pid;
1655 	wo.wo_flags	= options | WEXITED;
1656 	wo.wo_info	= NULL;
1657 	wo.wo_stat	= 0;
1658 	wo.wo_rusage	= ru;
1659 	ret = do_wait(&wo);
1660 	put_pid(pid);
1661 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1662 		ret = -EFAULT;
1663 
1664 	return ret;
1665 }
1666 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1667 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1668 		int, options, struct rusage __user *, ru)
1669 {
1670 	struct rusage r;
1671 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1672 
1673 	if (err > 0) {
1674 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1675 			return -EFAULT;
1676 	}
1677 	return err;
1678 }
1679 
1680 #ifdef __ARCH_WANT_SYS_WAITPID
1681 
1682 /*
1683  * sys_waitpid() remains for compatibility. waitpid() should be
1684  * implemented by calling sys_wait4() from libc.a.
1685  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1686 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1687 {
1688 	return kernel_wait4(pid, stat_addr, options, NULL);
1689 }
1690 
1691 #endif
1692 
1693 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1694 COMPAT_SYSCALL_DEFINE4(wait4,
1695 	compat_pid_t, pid,
1696 	compat_uint_t __user *, stat_addr,
1697 	int, options,
1698 	struct compat_rusage __user *, ru)
1699 {
1700 	struct rusage r;
1701 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1702 	if (err > 0) {
1703 		if (ru && put_compat_rusage(&r, ru))
1704 			return -EFAULT;
1705 	}
1706 	return err;
1707 }
1708 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1709 COMPAT_SYSCALL_DEFINE5(waitid,
1710 		int, which, compat_pid_t, pid,
1711 		struct compat_siginfo __user *, infop, int, options,
1712 		struct compat_rusage __user *, uru)
1713 {
1714 	struct rusage ru;
1715 	struct waitid_info info = {.status = 0};
1716 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1717 	int signo = 0;
1718 	if (err > 0) {
1719 		signo = SIGCHLD;
1720 		err = 0;
1721 		if (uru) {
1722 			/* kernel_waitid() overwrites everything in ru */
1723 			if (COMPAT_USE_64BIT_TIME)
1724 				err = copy_to_user(uru, &ru, sizeof(ru));
1725 			else
1726 				err = put_compat_rusage(&ru, uru);
1727 			if (err)
1728 				return -EFAULT;
1729 		}
1730 	}
1731 
1732 	if (!infop)
1733 		return err;
1734 
1735 	if (!access_ok(VERIFY_WRITE, infop, sizeof(*infop)))
1736 		return -EFAULT;
1737 
1738 	user_access_begin();
1739 	unsafe_put_user(signo, &infop->si_signo, Efault);
1740 	unsafe_put_user(0, &infop->si_errno, Efault);
1741 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1742 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1743 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1744 	unsafe_put_user(info.status, &infop->si_status, Efault);
1745 	user_access_end();
1746 	return err;
1747 Efault:
1748 	user_access_end();
1749 	return -EFAULT;
1750 }
1751 #endif
1752 
abort(void)1753 __weak void abort(void)
1754 {
1755 	BUG();
1756 
1757 	/* if that doesn't kill us, halt */
1758 	panic("Oops failed to kill thread");
1759 }
1760 EXPORT_SYMBOL(abort);
1761