1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36
37 #include "smpboot.h"
38
39 /**
40 * cpuhp_cpu_state - Per cpu hotplug state storage
41 * @state: The current cpu state
42 * @target: The target state
43 * @thread: Pointer to the hotplug thread
44 * @should_run: Thread should execute
45 * @rollback: Perform a rollback
46 * @single: Single callback invocation
47 * @bringup: Single callback bringup or teardown selector
48 * @cb_state: The state for a single callback (install/uninstall)
49 * @result: Result of the operation
50 * @done_up: Signal completion to the issuer of the task for cpu-up
51 * @done_down: Signal completion to the issuer of the task for cpu-down
52 */
53 struct cpuhp_cpu_state {
54 enum cpuhp_state state;
55 enum cpuhp_state target;
56 enum cpuhp_state fail;
57 #ifdef CONFIG_SMP
58 struct task_struct *thread;
59 bool should_run;
60 bool rollback;
61 bool single;
62 bool bringup;
63 bool booted_once;
64 struct hlist_node *node;
65 struct hlist_node *last;
66 enum cpuhp_state cb_state;
67 int result;
68 struct completion done_up;
69 struct completion done_down;
70 #endif
71 };
72
73 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
74 .fail = CPUHP_INVALID,
75 };
76
77 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
78 static struct lockdep_map cpuhp_state_up_map =
79 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
80 static struct lockdep_map cpuhp_state_down_map =
81 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
82
83
cpuhp_lock_acquire(bool bringup)84 static inline void cpuhp_lock_acquire(bool bringup)
85 {
86 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
87 }
88
cpuhp_lock_release(bool bringup)89 static inline void cpuhp_lock_release(bool bringup)
90 {
91 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93 #else
94
cpuhp_lock_acquire(bool bringup)95 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)96 static inline void cpuhp_lock_release(bool bringup) { }
97
98 #endif
99
100 /**
101 * cpuhp_step - Hotplug state machine step
102 * @name: Name of the step
103 * @startup: Startup function of the step
104 * @teardown: Teardown function of the step
105 * @cant_stop: Bringup/teardown can't be stopped at this step
106 */
107 struct cpuhp_step {
108 const char *name;
109 union {
110 int (*single)(unsigned int cpu);
111 int (*multi)(unsigned int cpu,
112 struct hlist_node *node);
113 } startup;
114 union {
115 int (*single)(unsigned int cpu);
116 int (*multi)(unsigned int cpu,
117 struct hlist_node *node);
118 } teardown;
119 struct hlist_head list;
120 bool cant_stop;
121 bool multi_instance;
122 };
123
124 static DEFINE_MUTEX(cpuhp_state_mutex);
125 static struct cpuhp_step cpuhp_hp_states[];
126
cpuhp_get_step(enum cpuhp_state state)127 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
128 {
129 return cpuhp_hp_states + state;
130 }
131
132 /**
133 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
134 * @cpu: The cpu for which the callback should be invoked
135 * @state: The state to do callbacks for
136 * @bringup: True if the bringup callback should be invoked
137 * @node: For multi-instance, do a single entry callback for install/remove
138 * @lastp: For multi-instance rollback, remember how far we got
139 *
140 * Called from cpu hotplug and from the state register machinery.
141 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)142 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
143 bool bringup, struct hlist_node *node,
144 struct hlist_node **lastp)
145 {
146 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
147 struct cpuhp_step *step = cpuhp_get_step(state);
148 int (*cbm)(unsigned int cpu, struct hlist_node *node);
149 int (*cb)(unsigned int cpu);
150 int ret, cnt;
151
152 if (st->fail == state) {
153 st->fail = CPUHP_INVALID;
154
155 if (!(bringup ? step->startup.single : step->teardown.single))
156 return 0;
157
158 return -EAGAIN;
159 }
160
161 if (!step->multi_instance) {
162 WARN_ON_ONCE(lastp && *lastp);
163 cb = bringup ? step->startup.single : step->teardown.single;
164 if (!cb)
165 return 0;
166 trace_cpuhp_enter(cpu, st->target, state, cb);
167 ret = cb(cpu);
168 trace_cpuhp_exit(cpu, st->state, state, ret);
169 return ret;
170 }
171 cbm = bringup ? step->startup.multi : step->teardown.multi;
172 if (!cbm)
173 return 0;
174
175 /* Single invocation for instance add/remove */
176 if (node) {
177 WARN_ON_ONCE(lastp && *lastp);
178 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
179 ret = cbm(cpu, node);
180 trace_cpuhp_exit(cpu, st->state, state, ret);
181 return ret;
182 }
183
184 /* State transition. Invoke on all instances */
185 cnt = 0;
186 hlist_for_each(node, &step->list) {
187 if (lastp && node == *lastp)
188 break;
189
190 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
191 ret = cbm(cpu, node);
192 trace_cpuhp_exit(cpu, st->state, state, ret);
193 if (ret) {
194 if (!lastp)
195 goto err;
196
197 *lastp = node;
198 return ret;
199 }
200 cnt++;
201 }
202 if (lastp)
203 *lastp = NULL;
204 return 0;
205 err:
206 /* Rollback the instances if one failed */
207 cbm = !bringup ? step->startup.multi : step->teardown.multi;
208 if (!cbm)
209 return ret;
210
211 hlist_for_each(node, &step->list) {
212 if (!cnt--)
213 break;
214
215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 ret = cbm(cpu, node);
217 trace_cpuhp_exit(cpu, st->state, state, ret);
218 /*
219 * Rollback must not fail,
220 */
221 WARN_ON_ONCE(ret);
222 }
223 return ret;
224 }
225
226 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)227 static bool cpuhp_is_ap_state(enum cpuhp_state state)
228 {
229 /*
230 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
231 * purposes as that state is handled explicitly in cpu_down.
232 */
233 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
234 }
235
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)236 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
237 {
238 struct completion *done = bringup ? &st->done_up : &st->done_down;
239 wait_for_completion(done);
240 }
241
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)242 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244 struct completion *done = bringup ? &st->done_up : &st->done_down;
245 complete(done);
246 }
247
248 /*
249 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
250 */
cpuhp_is_atomic_state(enum cpuhp_state state)251 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
252 {
253 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
254 }
255
256 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
257 static DEFINE_MUTEX(cpu_add_remove_lock);
258 bool cpuhp_tasks_frozen;
259 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
260
261 /*
262 * The following two APIs (cpu_maps_update_begin/done) must be used when
263 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
264 */
cpu_maps_update_begin(void)265 void cpu_maps_update_begin(void)
266 {
267 mutex_lock(&cpu_add_remove_lock);
268 }
269
cpu_maps_update_done(void)270 void cpu_maps_update_done(void)
271 {
272 mutex_unlock(&cpu_add_remove_lock);
273 }
274
275 /*
276 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
277 * Should always be manipulated under cpu_add_remove_lock
278 */
279 static int cpu_hotplug_disabled;
280
281 #ifdef CONFIG_HOTPLUG_CPU
282
283 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
284
cpus_read_lock(void)285 void cpus_read_lock(void)
286 {
287 percpu_down_read(&cpu_hotplug_lock);
288 }
289 EXPORT_SYMBOL_GPL(cpus_read_lock);
290
cpus_read_trylock(void)291 int cpus_read_trylock(void)
292 {
293 return percpu_down_read_trylock(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_trylock);
296
cpus_read_unlock(void)297 void cpus_read_unlock(void)
298 {
299 percpu_up_read(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_unlock);
302
cpus_write_lock(void)303 void cpus_write_lock(void)
304 {
305 percpu_down_write(&cpu_hotplug_lock);
306 }
307
cpus_write_unlock(void)308 void cpus_write_unlock(void)
309 {
310 percpu_up_write(&cpu_hotplug_lock);
311 }
312
lockdep_assert_cpus_held(void)313 void lockdep_assert_cpus_held(void)
314 {
315 percpu_rwsem_assert_held(&cpu_hotplug_lock);
316 }
317
318 /*
319 * Wait for currently running CPU hotplug operations to complete (if any) and
320 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
321 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
322 * hotplug path before performing hotplug operations. So acquiring that lock
323 * guarantees mutual exclusion from any currently running hotplug operations.
324 */
cpu_hotplug_disable(void)325 void cpu_hotplug_disable(void)
326 {
327 cpu_maps_update_begin();
328 cpu_hotplug_disabled++;
329 cpu_maps_update_done();
330 }
331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
332
__cpu_hotplug_enable(void)333 static void __cpu_hotplug_enable(void)
334 {
335 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
336 return;
337 cpu_hotplug_disabled--;
338 }
339
cpu_hotplug_enable(void)340 void cpu_hotplug_enable(void)
341 {
342 cpu_maps_update_begin();
343 __cpu_hotplug_enable();
344 cpu_maps_update_done();
345 }
346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
347 #endif /* CONFIG_HOTPLUG_CPU */
348
349 #ifdef CONFIG_HOTPLUG_SMT
350 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
351 EXPORT_SYMBOL_GPL(cpu_smt_control);
352
353 static bool cpu_smt_available __read_mostly;
354
cpu_smt_disable(bool force)355 void __init cpu_smt_disable(bool force)
356 {
357 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
358 cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
359 return;
360
361 if (force) {
362 pr_info("SMT: Force disabled\n");
363 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
364 } else {
365 cpu_smt_control = CPU_SMT_DISABLED;
366 }
367 }
368
369 /*
370 * The decision whether SMT is supported can only be done after the full
371 * CPU identification. Called from architecture code before non boot CPUs
372 * are brought up.
373 */
cpu_smt_check_topology_early(void)374 void __init cpu_smt_check_topology_early(void)
375 {
376 if (!topology_smt_supported())
377 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
378 }
379
380 /*
381 * If SMT was disabled by BIOS, detect it here, after the CPUs have been
382 * brought online. This ensures the smt/l1tf sysfs entries are consistent
383 * with reality. cpu_smt_available is set to true during the bringup of non
384 * boot CPUs when a SMT sibling is detected. Note, this may overwrite
385 * cpu_smt_control's previous setting.
386 */
cpu_smt_check_topology(void)387 void __init cpu_smt_check_topology(void)
388 {
389 if (!cpu_smt_available)
390 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
391 }
392
smt_cmdline_disable(char * str)393 static int __init smt_cmdline_disable(char *str)
394 {
395 cpu_smt_disable(str && !strcmp(str, "force"));
396 return 0;
397 }
398 early_param("nosmt", smt_cmdline_disable);
399
cpu_smt_allowed(unsigned int cpu)400 static inline bool cpu_smt_allowed(unsigned int cpu)
401 {
402 if (topology_is_primary_thread(cpu))
403 return true;
404
405 /*
406 * If the CPU is not a 'primary' thread and the booted_once bit is
407 * set then the processor has SMT support. Store this information
408 * for the late check of SMT support in cpu_smt_check_topology().
409 */
410 if (per_cpu(cpuhp_state, cpu).booted_once)
411 cpu_smt_available = true;
412
413 if (cpu_smt_control == CPU_SMT_ENABLED)
414 return true;
415
416 /*
417 * On x86 it's required to boot all logical CPUs at least once so
418 * that the init code can get a chance to set CR4.MCE on each
419 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
420 * core will shutdown the machine.
421 */
422 return !per_cpu(cpuhp_state, cpu).booted_once;
423 }
424 #else
cpu_smt_allowed(unsigned int cpu)425 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
426 #endif
427
428 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)429 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
430 {
431 enum cpuhp_state prev_state = st->state;
432
433 st->rollback = false;
434 st->last = NULL;
435
436 st->target = target;
437 st->single = false;
438 st->bringup = st->state < target;
439
440 return prev_state;
441 }
442
443 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)444 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
445 {
446 st->rollback = true;
447
448 /*
449 * If we have st->last we need to undo partial multi_instance of this
450 * state first. Otherwise start undo at the previous state.
451 */
452 if (!st->last) {
453 if (st->bringup)
454 st->state--;
455 else
456 st->state++;
457 }
458
459 st->target = prev_state;
460 st->bringup = !st->bringup;
461 }
462
463 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)464 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
465 {
466 if (!st->single && st->state == st->target)
467 return;
468
469 st->result = 0;
470 /*
471 * Make sure the above stores are visible before should_run becomes
472 * true. Paired with the mb() above in cpuhp_thread_fun()
473 */
474 smp_mb();
475 st->should_run = true;
476 wake_up_process(st->thread);
477 wait_for_ap_thread(st, st->bringup);
478 }
479
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)480 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
481 {
482 enum cpuhp_state prev_state;
483 int ret;
484
485 prev_state = cpuhp_set_state(st, target);
486 __cpuhp_kick_ap(st);
487 if ((ret = st->result)) {
488 cpuhp_reset_state(st, prev_state);
489 __cpuhp_kick_ap(st);
490 }
491
492 return ret;
493 }
494
bringup_wait_for_ap(unsigned int cpu)495 static int bringup_wait_for_ap(unsigned int cpu)
496 {
497 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
498
499 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
500 wait_for_ap_thread(st, true);
501 if (WARN_ON_ONCE((!cpu_online(cpu))))
502 return -ECANCELED;
503
504 /* Unpark the stopper thread and the hotplug thread of the target cpu */
505 stop_machine_unpark(cpu);
506 kthread_unpark(st->thread);
507
508 /*
509 * SMT soft disabling on X86 requires to bring the CPU out of the
510 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
511 * CPU marked itself as booted_once in cpu_notify_starting() so the
512 * cpu_smt_allowed() check will now return false if this is not the
513 * primary sibling.
514 */
515 if (!cpu_smt_allowed(cpu))
516 return -ECANCELED;
517
518 if (st->target <= CPUHP_AP_ONLINE_IDLE)
519 return 0;
520
521 return cpuhp_kick_ap(st, st->target);
522 }
523
bringup_cpu(unsigned int cpu)524 static int bringup_cpu(unsigned int cpu)
525 {
526 struct task_struct *idle = idle_thread_get(cpu);
527 int ret;
528
529 /*
530 * Some architectures have to walk the irq descriptors to
531 * setup the vector space for the cpu which comes online.
532 * Prevent irq alloc/free across the bringup.
533 */
534 irq_lock_sparse();
535
536 /* Arch-specific enabling code. */
537 ret = __cpu_up(cpu, idle);
538 irq_unlock_sparse();
539 if (ret)
540 return ret;
541 return bringup_wait_for_ap(cpu);
542 }
543
544 /*
545 * Hotplug state machine related functions
546 */
547
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)548 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
549 {
550 for (st->state--; st->state > st->target; st->state--)
551 cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
552 }
553
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)554 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
555 enum cpuhp_state target)
556 {
557 enum cpuhp_state prev_state = st->state;
558 int ret = 0;
559
560 while (st->state < target) {
561 st->state++;
562 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
563 if (ret) {
564 st->target = prev_state;
565 undo_cpu_up(cpu, st);
566 break;
567 }
568 }
569 return ret;
570 }
571
572 /*
573 * The cpu hotplug threads manage the bringup and teardown of the cpus
574 */
cpuhp_create(unsigned int cpu)575 static void cpuhp_create(unsigned int cpu)
576 {
577 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
578
579 init_completion(&st->done_up);
580 init_completion(&st->done_down);
581 }
582
cpuhp_should_run(unsigned int cpu)583 static int cpuhp_should_run(unsigned int cpu)
584 {
585 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
586
587 return st->should_run;
588 }
589
590 /*
591 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
592 * callbacks when a state gets [un]installed at runtime.
593 *
594 * Each invocation of this function by the smpboot thread does a single AP
595 * state callback.
596 *
597 * It has 3 modes of operation:
598 * - single: runs st->cb_state
599 * - up: runs ++st->state, while st->state < st->target
600 * - down: runs st->state--, while st->state > st->target
601 *
602 * When complete or on error, should_run is cleared and the completion is fired.
603 */
cpuhp_thread_fun(unsigned int cpu)604 static void cpuhp_thread_fun(unsigned int cpu)
605 {
606 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
607 bool bringup = st->bringup;
608 enum cpuhp_state state;
609
610 if (WARN_ON_ONCE(!st->should_run))
611 return;
612
613 /*
614 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
615 * that if we see ->should_run we also see the rest of the state.
616 */
617 smp_mb();
618
619 cpuhp_lock_acquire(bringup);
620
621 if (st->single) {
622 state = st->cb_state;
623 st->should_run = false;
624 } else {
625 if (bringup) {
626 st->state++;
627 state = st->state;
628 st->should_run = (st->state < st->target);
629 WARN_ON_ONCE(st->state > st->target);
630 } else {
631 state = st->state;
632 st->state--;
633 st->should_run = (st->state > st->target);
634 WARN_ON_ONCE(st->state < st->target);
635 }
636 }
637
638 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
639
640 if (cpuhp_is_atomic_state(state)) {
641 local_irq_disable();
642 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
643 local_irq_enable();
644
645 /*
646 * STARTING/DYING must not fail!
647 */
648 WARN_ON_ONCE(st->result);
649 } else {
650 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
651 }
652
653 if (st->result) {
654 /*
655 * If we fail on a rollback, we're up a creek without no
656 * paddle, no way forward, no way back. We loose, thanks for
657 * playing.
658 */
659 WARN_ON_ONCE(st->rollback);
660 st->should_run = false;
661 }
662
663 cpuhp_lock_release(bringup);
664
665 if (!st->should_run)
666 complete_ap_thread(st, bringup);
667 }
668
669 /* Invoke a single callback on a remote cpu */
670 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)671 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
672 struct hlist_node *node)
673 {
674 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
675 int ret;
676
677 if (!cpu_online(cpu))
678 return 0;
679
680 cpuhp_lock_acquire(false);
681 cpuhp_lock_release(false);
682
683 cpuhp_lock_acquire(true);
684 cpuhp_lock_release(true);
685
686 /*
687 * If we are up and running, use the hotplug thread. For early calls
688 * we invoke the thread function directly.
689 */
690 if (!st->thread)
691 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
692
693 st->rollback = false;
694 st->last = NULL;
695
696 st->node = node;
697 st->bringup = bringup;
698 st->cb_state = state;
699 st->single = true;
700
701 __cpuhp_kick_ap(st);
702
703 /*
704 * If we failed and did a partial, do a rollback.
705 */
706 if ((ret = st->result) && st->last) {
707 st->rollback = true;
708 st->bringup = !bringup;
709
710 __cpuhp_kick_ap(st);
711 }
712
713 /*
714 * Clean up the leftovers so the next hotplug operation wont use stale
715 * data.
716 */
717 st->node = st->last = NULL;
718 return ret;
719 }
720
cpuhp_kick_ap_work(unsigned int cpu)721 static int cpuhp_kick_ap_work(unsigned int cpu)
722 {
723 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
724 enum cpuhp_state prev_state = st->state;
725 int ret;
726
727 cpuhp_lock_acquire(false);
728 cpuhp_lock_release(false);
729
730 cpuhp_lock_acquire(true);
731 cpuhp_lock_release(true);
732
733 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
734 ret = cpuhp_kick_ap(st, st->target);
735 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
736
737 return ret;
738 }
739
740 static struct smp_hotplug_thread cpuhp_threads = {
741 .store = &cpuhp_state.thread,
742 .create = &cpuhp_create,
743 .thread_should_run = cpuhp_should_run,
744 .thread_fn = cpuhp_thread_fun,
745 .thread_comm = "cpuhp/%u",
746 .selfparking = true,
747 };
748
cpuhp_threads_init(void)749 void __init cpuhp_threads_init(void)
750 {
751 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
752 kthread_unpark(this_cpu_read(cpuhp_state.thread));
753 }
754
755 #ifdef CONFIG_HOTPLUG_CPU
756 /**
757 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
758 * @cpu: a CPU id
759 *
760 * This function walks all processes, finds a valid mm struct for each one and
761 * then clears a corresponding bit in mm's cpumask. While this all sounds
762 * trivial, there are various non-obvious corner cases, which this function
763 * tries to solve in a safe manner.
764 *
765 * Also note that the function uses a somewhat relaxed locking scheme, so it may
766 * be called only for an already offlined CPU.
767 */
clear_tasks_mm_cpumask(int cpu)768 void clear_tasks_mm_cpumask(int cpu)
769 {
770 struct task_struct *p;
771
772 /*
773 * This function is called after the cpu is taken down and marked
774 * offline, so its not like new tasks will ever get this cpu set in
775 * their mm mask. -- Peter Zijlstra
776 * Thus, we may use rcu_read_lock() here, instead of grabbing
777 * full-fledged tasklist_lock.
778 */
779 WARN_ON(cpu_online(cpu));
780 rcu_read_lock();
781 for_each_process(p) {
782 struct task_struct *t;
783
784 /*
785 * Main thread might exit, but other threads may still have
786 * a valid mm. Find one.
787 */
788 t = find_lock_task_mm(p);
789 if (!t)
790 continue;
791 cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
792 task_unlock(t);
793 }
794 rcu_read_unlock();
795 }
796
797 /* Take this CPU down. */
take_cpu_down(void * _param)798 static int take_cpu_down(void *_param)
799 {
800 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
801 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
802 int err, cpu = smp_processor_id();
803 int ret;
804
805 /* Ensure this CPU doesn't handle any more interrupts. */
806 err = __cpu_disable();
807 if (err < 0)
808 return err;
809
810 /*
811 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
812 * do this step again.
813 */
814 WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
815 st->state--;
816 /* Invoke the former CPU_DYING callbacks */
817 for (; st->state > target; st->state--) {
818 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
819 /*
820 * DYING must not fail!
821 */
822 WARN_ON_ONCE(ret);
823 }
824
825 /* Give up timekeeping duties */
826 tick_handover_do_timer();
827 /* Park the stopper thread */
828 stop_machine_park(cpu);
829 return 0;
830 }
831
takedown_cpu(unsigned int cpu)832 static int takedown_cpu(unsigned int cpu)
833 {
834 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
835 int err;
836
837 /* Park the smpboot threads */
838 kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
839
840 /*
841 * Prevent irq alloc/free while the dying cpu reorganizes the
842 * interrupt affinities.
843 */
844 irq_lock_sparse();
845
846 /*
847 * So now all preempt/rcu users must observe !cpu_active().
848 */
849 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
850 if (err) {
851 /* CPU refused to die */
852 irq_unlock_sparse();
853 /* Unpark the hotplug thread so we can rollback there */
854 kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
855 return err;
856 }
857 BUG_ON(cpu_online(cpu));
858
859 /*
860 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
861 * all runnable tasks from the CPU, there's only the idle task left now
862 * that the migration thread is done doing the stop_machine thing.
863 *
864 * Wait for the stop thread to go away.
865 */
866 wait_for_ap_thread(st, false);
867 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
868
869 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
870 irq_unlock_sparse();
871
872 hotplug_cpu__broadcast_tick_pull(cpu);
873 /* This actually kills the CPU. */
874 __cpu_die(cpu);
875
876 tick_cleanup_dead_cpu(cpu);
877 rcutree_migrate_callbacks(cpu);
878 return 0;
879 }
880
cpuhp_complete_idle_dead(void * arg)881 static void cpuhp_complete_idle_dead(void *arg)
882 {
883 struct cpuhp_cpu_state *st = arg;
884
885 complete_ap_thread(st, false);
886 }
887
cpuhp_report_idle_dead(void)888 void cpuhp_report_idle_dead(void)
889 {
890 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
891
892 BUG_ON(st->state != CPUHP_AP_OFFLINE);
893 rcu_report_dead(smp_processor_id());
894 st->state = CPUHP_AP_IDLE_DEAD;
895 /*
896 * We cannot call complete after rcu_report_dead() so we delegate it
897 * to an online cpu.
898 */
899 smp_call_function_single(cpumask_first(cpu_online_mask),
900 cpuhp_complete_idle_dead, st, 0);
901 }
902
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)903 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
904 {
905 for (st->state++; st->state < st->target; st->state++)
906 cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
907 }
908
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)909 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
910 enum cpuhp_state target)
911 {
912 enum cpuhp_state prev_state = st->state;
913 int ret = 0;
914
915 for (; st->state > target; st->state--) {
916 ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
917 if (ret) {
918 st->target = prev_state;
919 if (st->state < prev_state)
920 undo_cpu_down(cpu, st);
921 break;
922 }
923 }
924 return ret;
925 }
926
927 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)928 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
929 enum cpuhp_state target)
930 {
931 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
932 int prev_state, ret = 0;
933
934 if (num_online_cpus() == 1)
935 return -EBUSY;
936
937 if (!cpu_present(cpu))
938 return -EINVAL;
939
940 cpus_write_lock();
941
942 cpuhp_tasks_frozen = tasks_frozen;
943
944 prev_state = cpuhp_set_state(st, target);
945 /*
946 * If the current CPU state is in the range of the AP hotplug thread,
947 * then we need to kick the thread.
948 */
949 if (st->state > CPUHP_TEARDOWN_CPU) {
950 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
951 ret = cpuhp_kick_ap_work(cpu);
952 /*
953 * The AP side has done the error rollback already. Just
954 * return the error code..
955 */
956 if (ret)
957 goto out;
958
959 /*
960 * We might have stopped still in the range of the AP hotplug
961 * thread. Nothing to do anymore.
962 */
963 if (st->state > CPUHP_TEARDOWN_CPU)
964 goto out;
965
966 st->target = target;
967 }
968 /*
969 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
970 * to do the further cleanups.
971 */
972 ret = cpuhp_down_callbacks(cpu, st, target);
973 if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
974 cpuhp_reset_state(st, prev_state);
975 __cpuhp_kick_ap(st);
976 }
977
978 out:
979 cpus_write_unlock();
980 /*
981 * Do post unplug cleanup. This is still protected against
982 * concurrent CPU hotplug via cpu_add_remove_lock.
983 */
984 lockup_detector_cleanup();
985 return ret;
986 }
987
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)988 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
989 {
990 if (cpu_hotplug_disabled)
991 return -EBUSY;
992 return _cpu_down(cpu, 0, target);
993 }
994
do_cpu_down(unsigned int cpu,enum cpuhp_state target)995 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
996 {
997 int err;
998
999 cpu_maps_update_begin();
1000 err = cpu_down_maps_locked(cpu, target);
1001 cpu_maps_update_done();
1002 return err;
1003 }
1004
cpu_down(unsigned int cpu)1005 int cpu_down(unsigned int cpu)
1006 {
1007 return do_cpu_down(cpu, CPUHP_OFFLINE);
1008 }
1009 EXPORT_SYMBOL(cpu_down);
1010
1011 #else
1012 #define takedown_cpu NULL
1013 #endif /*CONFIG_HOTPLUG_CPU*/
1014
1015 /**
1016 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1017 * @cpu: cpu that just started
1018 *
1019 * It must be called by the arch code on the new cpu, before the new cpu
1020 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1021 */
notify_cpu_starting(unsigned int cpu)1022 void notify_cpu_starting(unsigned int cpu)
1023 {
1024 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1025 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1026 int ret;
1027
1028 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1029 st->booted_once = true;
1030 while (st->state < target) {
1031 st->state++;
1032 ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1033 /*
1034 * STARTING must not fail!
1035 */
1036 WARN_ON_ONCE(ret);
1037 }
1038 }
1039
1040 /*
1041 * Called from the idle task. Wake up the controlling task which brings the
1042 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1043 * the rest of the online bringup to the hotplug thread.
1044 */
cpuhp_online_idle(enum cpuhp_state state)1045 void cpuhp_online_idle(enum cpuhp_state state)
1046 {
1047 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1048
1049 /* Happens for the boot cpu */
1050 if (state != CPUHP_AP_ONLINE_IDLE)
1051 return;
1052
1053 st->state = CPUHP_AP_ONLINE_IDLE;
1054 complete_ap_thread(st, true);
1055 }
1056
1057 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1058 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1059 {
1060 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1061 struct task_struct *idle;
1062 int ret = 0;
1063
1064 cpus_write_lock();
1065
1066 if (!cpu_present(cpu)) {
1067 ret = -EINVAL;
1068 goto out;
1069 }
1070
1071 /*
1072 * The caller of do_cpu_up might have raced with another
1073 * caller. Ignore it for now.
1074 */
1075 if (st->state >= target)
1076 goto out;
1077
1078 if (st->state == CPUHP_OFFLINE) {
1079 /* Let it fail before we try to bring the cpu up */
1080 idle = idle_thread_get(cpu);
1081 if (IS_ERR(idle)) {
1082 ret = PTR_ERR(idle);
1083 goto out;
1084 }
1085 }
1086
1087 cpuhp_tasks_frozen = tasks_frozen;
1088
1089 cpuhp_set_state(st, target);
1090 /*
1091 * If the current CPU state is in the range of the AP hotplug thread,
1092 * then we need to kick the thread once more.
1093 */
1094 if (st->state > CPUHP_BRINGUP_CPU) {
1095 ret = cpuhp_kick_ap_work(cpu);
1096 /*
1097 * The AP side has done the error rollback already. Just
1098 * return the error code..
1099 */
1100 if (ret)
1101 goto out;
1102 }
1103
1104 /*
1105 * Try to reach the target state. We max out on the BP at
1106 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1107 * responsible for bringing it up to the target state.
1108 */
1109 target = min((int)target, CPUHP_BRINGUP_CPU);
1110 ret = cpuhp_up_callbacks(cpu, st, target);
1111 out:
1112 cpus_write_unlock();
1113 return ret;
1114 }
1115
do_cpu_up(unsigned int cpu,enum cpuhp_state target)1116 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1117 {
1118 int err = 0;
1119
1120 if (!cpu_possible(cpu)) {
1121 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1122 cpu);
1123 #if defined(CONFIG_IA64)
1124 pr_err("please check additional_cpus= boot parameter\n");
1125 #endif
1126 return -EINVAL;
1127 }
1128
1129 err = try_online_node(cpu_to_node(cpu));
1130 if (err)
1131 return err;
1132
1133 cpu_maps_update_begin();
1134
1135 if (cpu_hotplug_disabled) {
1136 err = -EBUSY;
1137 goto out;
1138 }
1139 if (!cpu_smt_allowed(cpu)) {
1140 err = -EPERM;
1141 goto out;
1142 }
1143
1144 err = _cpu_up(cpu, 0, target);
1145 out:
1146 cpu_maps_update_done();
1147 return err;
1148 }
1149
cpu_up(unsigned int cpu)1150 int cpu_up(unsigned int cpu)
1151 {
1152 return do_cpu_up(cpu, CPUHP_ONLINE);
1153 }
1154 EXPORT_SYMBOL_GPL(cpu_up);
1155
1156 #ifdef CONFIG_PM_SLEEP_SMP
1157 static cpumask_var_t frozen_cpus;
1158
freeze_secondary_cpus(int primary)1159 int freeze_secondary_cpus(int primary)
1160 {
1161 int cpu, error = 0;
1162
1163 cpu_maps_update_begin();
1164 if (!cpu_online(primary))
1165 primary = cpumask_first(cpu_online_mask);
1166 /*
1167 * We take down all of the non-boot CPUs in one shot to avoid races
1168 * with the userspace trying to use the CPU hotplug at the same time
1169 */
1170 cpumask_clear(frozen_cpus);
1171
1172 pr_info("Disabling non-boot CPUs ...\n");
1173 for_each_online_cpu(cpu) {
1174 if (cpu == primary)
1175 continue;
1176 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1177 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1178 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1179 if (!error)
1180 cpumask_set_cpu(cpu, frozen_cpus);
1181 else {
1182 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1183 break;
1184 }
1185 }
1186
1187 if (!error)
1188 BUG_ON(num_online_cpus() > 1);
1189 else
1190 pr_err("Non-boot CPUs are not disabled\n");
1191
1192 /*
1193 * Make sure the CPUs won't be enabled by someone else. We need to do
1194 * this even in case of failure as all disable_nonboot_cpus() users are
1195 * supposed to do enable_nonboot_cpus() on the failure path.
1196 */
1197 cpu_hotplug_disabled++;
1198
1199 cpu_maps_update_done();
1200 return error;
1201 }
1202
arch_enable_nonboot_cpus_begin(void)1203 void __weak arch_enable_nonboot_cpus_begin(void)
1204 {
1205 }
1206
arch_enable_nonboot_cpus_end(void)1207 void __weak arch_enable_nonboot_cpus_end(void)
1208 {
1209 }
1210
enable_nonboot_cpus(void)1211 void enable_nonboot_cpus(void)
1212 {
1213 int cpu, error;
1214
1215 /* Allow everyone to use the CPU hotplug again */
1216 cpu_maps_update_begin();
1217 __cpu_hotplug_enable();
1218 if (cpumask_empty(frozen_cpus))
1219 goto out;
1220
1221 pr_info("Enabling non-boot CPUs ...\n");
1222
1223 arch_enable_nonboot_cpus_begin();
1224
1225 for_each_cpu(cpu, frozen_cpus) {
1226 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1227 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1228 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1229 if (!error) {
1230 pr_info("CPU%d is up\n", cpu);
1231 continue;
1232 }
1233 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1234 }
1235
1236 arch_enable_nonboot_cpus_end();
1237
1238 cpumask_clear(frozen_cpus);
1239 out:
1240 cpu_maps_update_done();
1241 }
1242
alloc_frozen_cpus(void)1243 static int __init alloc_frozen_cpus(void)
1244 {
1245 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1246 return -ENOMEM;
1247 return 0;
1248 }
1249 core_initcall(alloc_frozen_cpus);
1250
1251 /*
1252 * When callbacks for CPU hotplug notifications are being executed, we must
1253 * ensure that the state of the system with respect to the tasks being frozen
1254 * or not, as reported by the notification, remains unchanged *throughout the
1255 * duration* of the execution of the callbacks.
1256 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1257 *
1258 * This synchronization is implemented by mutually excluding regular CPU
1259 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1260 * Hibernate notifications.
1261 */
1262 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1263 cpu_hotplug_pm_callback(struct notifier_block *nb,
1264 unsigned long action, void *ptr)
1265 {
1266 switch (action) {
1267
1268 case PM_SUSPEND_PREPARE:
1269 case PM_HIBERNATION_PREPARE:
1270 cpu_hotplug_disable();
1271 break;
1272
1273 case PM_POST_SUSPEND:
1274 case PM_POST_HIBERNATION:
1275 cpu_hotplug_enable();
1276 break;
1277
1278 default:
1279 return NOTIFY_DONE;
1280 }
1281
1282 return NOTIFY_OK;
1283 }
1284
1285
cpu_hotplug_pm_sync_init(void)1286 static int __init cpu_hotplug_pm_sync_init(void)
1287 {
1288 /*
1289 * cpu_hotplug_pm_callback has higher priority than x86
1290 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1291 * to disable cpu hotplug to avoid cpu hotplug race.
1292 */
1293 pm_notifier(cpu_hotplug_pm_callback, 0);
1294 return 0;
1295 }
1296 core_initcall(cpu_hotplug_pm_sync_init);
1297
1298 #endif /* CONFIG_PM_SLEEP_SMP */
1299
1300 int __boot_cpu_id;
1301
1302 #endif /* CONFIG_SMP */
1303
1304 /* Boot processor state steps */
1305 static struct cpuhp_step cpuhp_hp_states[] = {
1306 [CPUHP_OFFLINE] = {
1307 .name = "offline",
1308 .startup.single = NULL,
1309 .teardown.single = NULL,
1310 },
1311 #ifdef CONFIG_SMP
1312 [CPUHP_CREATE_THREADS]= {
1313 .name = "threads:prepare",
1314 .startup.single = smpboot_create_threads,
1315 .teardown.single = NULL,
1316 .cant_stop = true,
1317 },
1318 [CPUHP_PERF_PREPARE] = {
1319 .name = "perf:prepare",
1320 .startup.single = perf_event_init_cpu,
1321 .teardown.single = perf_event_exit_cpu,
1322 },
1323 [CPUHP_WORKQUEUE_PREP] = {
1324 .name = "workqueue:prepare",
1325 .startup.single = workqueue_prepare_cpu,
1326 .teardown.single = NULL,
1327 },
1328 [CPUHP_HRTIMERS_PREPARE] = {
1329 .name = "hrtimers:prepare",
1330 .startup.single = hrtimers_prepare_cpu,
1331 .teardown.single = hrtimers_dead_cpu,
1332 },
1333 [CPUHP_SMPCFD_PREPARE] = {
1334 .name = "smpcfd:prepare",
1335 .startup.single = smpcfd_prepare_cpu,
1336 .teardown.single = smpcfd_dead_cpu,
1337 },
1338 [CPUHP_RELAY_PREPARE] = {
1339 .name = "relay:prepare",
1340 .startup.single = relay_prepare_cpu,
1341 .teardown.single = NULL,
1342 },
1343 [CPUHP_SLAB_PREPARE] = {
1344 .name = "slab:prepare",
1345 .startup.single = slab_prepare_cpu,
1346 .teardown.single = slab_dead_cpu,
1347 },
1348 [CPUHP_RCUTREE_PREP] = {
1349 .name = "RCU/tree:prepare",
1350 .startup.single = rcutree_prepare_cpu,
1351 .teardown.single = rcutree_dead_cpu,
1352 },
1353 /*
1354 * On the tear-down path, timers_dead_cpu() must be invoked
1355 * before blk_mq_queue_reinit_notify() from notify_dead(),
1356 * otherwise a RCU stall occurs.
1357 */
1358 [CPUHP_TIMERS_PREPARE] = {
1359 .name = "timers:prepare",
1360 .startup.single = timers_prepare_cpu,
1361 .teardown.single = timers_dead_cpu,
1362 },
1363 /* Kicks the plugged cpu into life */
1364 [CPUHP_BRINGUP_CPU] = {
1365 .name = "cpu:bringup",
1366 .startup.single = bringup_cpu,
1367 .teardown.single = NULL,
1368 .cant_stop = true,
1369 },
1370 /* Final state before CPU kills itself */
1371 [CPUHP_AP_IDLE_DEAD] = {
1372 .name = "idle:dead",
1373 },
1374 /*
1375 * Last state before CPU enters the idle loop to die. Transient state
1376 * for synchronization.
1377 */
1378 [CPUHP_AP_OFFLINE] = {
1379 .name = "ap:offline",
1380 .cant_stop = true,
1381 },
1382 /* First state is scheduler control. Interrupts are disabled */
1383 [CPUHP_AP_SCHED_STARTING] = {
1384 .name = "sched:starting",
1385 .startup.single = sched_cpu_starting,
1386 .teardown.single = sched_cpu_dying,
1387 },
1388 [CPUHP_AP_RCUTREE_DYING] = {
1389 .name = "RCU/tree:dying",
1390 .startup.single = NULL,
1391 .teardown.single = rcutree_dying_cpu,
1392 },
1393 [CPUHP_AP_SMPCFD_DYING] = {
1394 .name = "smpcfd:dying",
1395 .startup.single = NULL,
1396 .teardown.single = smpcfd_dying_cpu,
1397 },
1398 /* Entry state on starting. Interrupts enabled from here on. Transient
1399 * state for synchronsization */
1400 [CPUHP_AP_ONLINE] = {
1401 .name = "ap:online",
1402 },
1403 /*
1404 * Handled on controll processor until the plugged processor manages
1405 * this itself.
1406 */
1407 [CPUHP_TEARDOWN_CPU] = {
1408 .name = "cpu:teardown",
1409 .startup.single = NULL,
1410 .teardown.single = takedown_cpu,
1411 .cant_stop = true,
1412 },
1413 /* Handle smpboot threads park/unpark */
1414 [CPUHP_AP_SMPBOOT_THREADS] = {
1415 .name = "smpboot/threads:online",
1416 .startup.single = smpboot_unpark_threads,
1417 .teardown.single = smpboot_park_threads,
1418 },
1419 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1420 .name = "irq/affinity:online",
1421 .startup.single = irq_affinity_online_cpu,
1422 .teardown.single = NULL,
1423 },
1424 [CPUHP_AP_PERF_ONLINE] = {
1425 .name = "perf:online",
1426 .startup.single = perf_event_init_cpu,
1427 .teardown.single = perf_event_exit_cpu,
1428 },
1429 [CPUHP_AP_WATCHDOG_ONLINE] = {
1430 .name = "lockup_detector:online",
1431 .startup.single = lockup_detector_online_cpu,
1432 .teardown.single = lockup_detector_offline_cpu,
1433 },
1434 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1435 .name = "workqueue:online",
1436 .startup.single = workqueue_online_cpu,
1437 .teardown.single = workqueue_offline_cpu,
1438 },
1439 [CPUHP_AP_RCUTREE_ONLINE] = {
1440 .name = "RCU/tree:online",
1441 .startup.single = rcutree_online_cpu,
1442 .teardown.single = rcutree_offline_cpu,
1443 },
1444 #endif
1445 /*
1446 * The dynamically registered state space is here
1447 */
1448
1449 #ifdef CONFIG_SMP
1450 /* Last state is scheduler control setting the cpu active */
1451 [CPUHP_AP_ACTIVE] = {
1452 .name = "sched:active",
1453 .startup.single = sched_cpu_activate,
1454 .teardown.single = sched_cpu_deactivate,
1455 },
1456 #endif
1457
1458 /* CPU is fully up and running. */
1459 [CPUHP_ONLINE] = {
1460 .name = "online",
1461 .startup.single = NULL,
1462 .teardown.single = NULL,
1463 },
1464 };
1465
1466 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1467 static int cpuhp_cb_check(enum cpuhp_state state)
1468 {
1469 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1470 return -EINVAL;
1471 return 0;
1472 }
1473
1474 /*
1475 * Returns a free for dynamic slot assignment of the Online state. The states
1476 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1477 * by having no name assigned.
1478 */
cpuhp_reserve_state(enum cpuhp_state state)1479 static int cpuhp_reserve_state(enum cpuhp_state state)
1480 {
1481 enum cpuhp_state i, end;
1482 struct cpuhp_step *step;
1483
1484 switch (state) {
1485 case CPUHP_AP_ONLINE_DYN:
1486 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1487 end = CPUHP_AP_ONLINE_DYN_END;
1488 break;
1489 case CPUHP_BP_PREPARE_DYN:
1490 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1491 end = CPUHP_BP_PREPARE_DYN_END;
1492 break;
1493 default:
1494 return -EINVAL;
1495 }
1496
1497 for (i = state; i <= end; i++, step++) {
1498 if (!step->name)
1499 return i;
1500 }
1501 WARN(1, "No more dynamic states available for CPU hotplug\n");
1502 return -ENOSPC;
1503 }
1504
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1505 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1506 int (*startup)(unsigned int cpu),
1507 int (*teardown)(unsigned int cpu),
1508 bool multi_instance)
1509 {
1510 /* (Un)Install the callbacks for further cpu hotplug operations */
1511 struct cpuhp_step *sp;
1512 int ret = 0;
1513
1514 /*
1515 * If name is NULL, then the state gets removed.
1516 *
1517 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1518 * the first allocation from these dynamic ranges, so the removal
1519 * would trigger a new allocation and clear the wrong (already
1520 * empty) state, leaving the callbacks of the to be cleared state
1521 * dangling, which causes wreckage on the next hotplug operation.
1522 */
1523 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1524 state == CPUHP_BP_PREPARE_DYN)) {
1525 ret = cpuhp_reserve_state(state);
1526 if (ret < 0)
1527 return ret;
1528 state = ret;
1529 }
1530 sp = cpuhp_get_step(state);
1531 if (name && sp->name)
1532 return -EBUSY;
1533
1534 sp->startup.single = startup;
1535 sp->teardown.single = teardown;
1536 sp->name = name;
1537 sp->multi_instance = multi_instance;
1538 INIT_HLIST_HEAD(&sp->list);
1539 return ret;
1540 }
1541
cpuhp_get_teardown_cb(enum cpuhp_state state)1542 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1543 {
1544 return cpuhp_get_step(state)->teardown.single;
1545 }
1546
1547 /*
1548 * Call the startup/teardown function for a step either on the AP or
1549 * on the current CPU.
1550 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1551 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1552 struct hlist_node *node)
1553 {
1554 struct cpuhp_step *sp = cpuhp_get_step(state);
1555 int ret;
1556
1557 /*
1558 * If there's nothing to do, we done.
1559 * Relies on the union for multi_instance.
1560 */
1561 if ((bringup && !sp->startup.single) ||
1562 (!bringup && !sp->teardown.single))
1563 return 0;
1564 /*
1565 * The non AP bound callbacks can fail on bringup. On teardown
1566 * e.g. module removal we crash for now.
1567 */
1568 #ifdef CONFIG_SMP
1569 if (cpuhp_is_ap_state(state))
1570 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1571 else
1572 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1573 #else
1574 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1575 #endif
1576 BUG_ON(ret && !bringup);
1577 return ret;
1578 }
1579
1580 /*
1581 * Called from __cpuhp_setup_state on a recoverable failure.
1582 *
1583 * Note: The teardown callbacks for rollback are not allowed to fail!
1584 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1585 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1586 struct hlist_node *node)
1587 {
1588 int cpu;
1589
1590 /* Roll back the already executed steps on the other cpus */
1591 for_each_present_cpu(cpu) {
1592 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1593 int cpustate = st->state;
1594
1595 if (cpu >= failedcpu)
1596 break;
1597
1598 /* Did we invoke the startup call on that cpu ? */
1599 if (cpustate >= state)
1600 cpuhp_issue_call(cpu, state, false, node);
1601 }
1602 }
1603
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1604 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1605 struct hlist_node *node,
1606 bool invoke)
1607 {
1608 struct cpuhp_step *sp;
1609 int cpu;
1610 int ret;
1611
1612 lockdep_assert_cpus_held();
1613
1614 sp = cpuhp_get_step(state);
1615 if (sp->multi_instance == false)
1616 return -EINVAL;
1617
1618 mutex_lock(&cpuhp_state_mutex);
1619
1620 if (!invoke || !sp->startup.multi)
1621 goto add_node;
1622
1623 /*
1624 * Try to call the startup callback for each present cpu
1625 * depending on the hotplug state of the cpu.
1626 */
1627 for_each_present_cpu(cpu) {
1628 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1629 int cpustate = st->state;
1630
1631 if (cpustate < state)
1632 continue;
1633
1634 ret = cpuhp_issue_call(cpu, state, true, node);
1635 if (ret) {
1636 if (sp->teardown.multi)
1637 cpuhp_rollback_install(cpu, state, node);
1638 goto unlock;
1639 }
1640 }
1641 add_node:
1642 ret = 0;
1643 hlist_add_head(node, &sp->list);
1644 unlock:
1645 mutex_unlock(&cpuhp_state_mutex);
1646 return ret;
1647 }
1648
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1649 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1650 bool invoke)
1651 {
1652 int ret;
1653
1654 cpus_read_lock();
1655 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1656 cpus_read_unlock();
1657 return ret;
1658 }
1659 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1660
1661 /**
1662 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1663 * @state: The state to setup
1664 * @invoke: If true, the startup function is invoked for cpus where
1665 * cpu state >= @state
1666 * @startup: startup callback function
1667 * @teardown: teardown callback function
1668 * @multi_instance: State is set up for multiple instances which get
1669 * added afterwards.
1670 *
1671 * The caller needs to hold cpus read locked while calling this function.
1672 * Returns:
1673 * On success:
1674 * Positive state number if @state is CPUHP_AP_ONLINE_DYN
1675 * 0 for all other states
1676 * On failure: proper (negative) error code
1677 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1678 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1679 const char *name, bool invoke,
1680 int (*startup)(unsigned int cpu),
1681 int (*teardown)(unsigned int cpu),
1682 bool multi_instance)
1683 {
1684 int cpu, ret = 0;
1685 bool dynstate;
1686
1687 lockdep_assert_cpus_held();
1688
1689 if (cpuhp_cb_check(state) || !name)
1690 return -EINVAL;
1691
1692 mutex_lock(&cpuhp_state_mutex);
1693
1694 ret = cpuhp_store_callbacks(state, name, startup, teardown,
1695 multi_instance);
1696
1697 dynstate = state == CPUHP_AP_ONLINE_DYN;
1698 if (ret > 0 && dynstate) {
1699 state = ret;
1700 ret = 0;
1701 }
1702
1703 if (ret || !invoke || !startup)
1704 goto out;
1705
1706 /*
1707 * Try to call the startup callback for each present cpu
1708 * depending on the hotplug state of the cpu.
1709 */
1710 for_each_present_cpu(cpu) {
1711 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1712 int cpustate = st->state;
1713
1714 if (cpustate < state)
1715 continue;
1716
1717 ret = cpuhp_issue_call(cpu, state, true, NULL);
1718 if (ret) {
1719 if (teardown)
1720 cpuhp_rollback_install(cpu, state, NULL);
1721 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1722 goto out;
1723 }
1724 }
1725 out:
1726 mutex_unlock(&cpuhp_state_mutex);
1727 /*
1728 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1729 * dynamically allocated state in case of success.
1730 */
1731 if (!ret && dynstate)
1732 return state;
1733 return ret;
1734 }
1735 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1736
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1737 int __cpuhp_setup_state(enum cpuhp_state state,
1738 const char *name, bool invoke,
1739 int (*startup)(unsigned int cpu),
1740 int (*teardown)(unsigned int cpu),
1741 bool multi_instance)
1742 {
1743 int ret;
1744
1745 cpus_read_lock();
1746 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1747 teardown, multi_instance);
1748 cpus_read_unlock();
1749 return ret;
1750 }
1751 EXPORT_SYMBOL(__cpuhp_setup_state);
1752
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1753 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1754 struct hlist_node *node, bool invoke)
1755 {
1756 struct cpuhp_step *sp = cpuhp_get_step(state);
1757 int cpu;
1758
1759 BUG_ON(cpuhp_cb_check(state));
1760
1761 if (!sp->multi_instance)
1762 return -EINVAL;
1763
1764 cpus_read_lock();
1765 mutex_lock(&cpuhp_state_mutex);
1766
1767 if (!invoke || !cpuhp_get_teardown_cb(state))
1768 goto remove;
1769 /*
1770 * Call the teardown callback for each present cpu depending
1771 * on the hotplug state of the cpu. This function is not
1772 * allowed to fail currently!
1773 */
1774 for_each_present_cpu(cpu) {
1775 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1776 int cpustate = st->state;
1777
1778 if (cpustate >= state)
1779 cpuhp_issue_call(cpu, state, false, node);
1780 }
1781
1782 remove:
1783 hlist_del(node);
1784 mutex_unlock(&cpuhp_state_mutex);
1785 cpus_read_unlock();
1786
1787 return 0;
1788 }
1789 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1790
1791 /**
1792 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1793 * @state: The state to remove
1794 * @invoke: If true, the teardown function is invoked for cpus where
1795 * cpu state >= @state
1796 *
1797 * The caller needs to hold cpus read locked while calling this function.
1798 * The teardown callback is currently not allowed to fail. Think
1799 * about module removal!
1800 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)1801 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1802 {
1803 struct cpuhp_step *sp = cpuhp_get_step(state);
1804 int cpu;
1805
1806 BUG_ON(cpuhp_cb_check(state));
1807
1808 lockdep_assert_cpus_held();
1809
1810 mutex_lock(&cpuhp_state_mutex);
1811 if (sp->multi_instance) {
1812 WARN(!hlist_empty(&sp->list),
1813 "Error: Removing state %d which has instances left.\n",
1814 state);
1815 goto remove;
1816 }
1817
1818 if (!invoke || !cpuhp_get_teardown_cb(state))
1819 goto remove;
1820
1821 /*
1822 * Call the teardown callback for each present cpu depending
1823 * on the hotplug state of the cpu. This function is not
1824 * allowed to fail currently!
1825 */
1826 for_each_present_cpu(cpu) {
1827 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1828 int cpustate = st->state;
1829
1830 if (cpustate >= state)
1831 cpuhp_issue_call(cpu, state, false, NULL);
1832 }
1833 remove:
1834 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1835 mutex_unlock(&cpuhp_state_mutex);
1836 }
1837 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1838
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)1839 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1840 {
1841 cpus_read_lock();
1842 __cpuhp_remove_state_cpuslocked(state, invoke);
1843 cpus_read_unlock();
1844 }
1845 EXPORT_SYMBOL(__cpuhp_remove_state);
1846
1847 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)1848 static ssize_t show_cpuhp_state(struct device *dev,
1849 struct device_attribute *attr, char *buf)
1850 {
1851 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1852
1853 return sprintf(buf, "%d\n", st->state);
1854 }
1855 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1856
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1857 static ssize_t write_cpuhp_target(struct device *dev,
1858 struct device_attribute *attr,
1859 const char *buf, size_t count)
1860 {
1861 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1862 struct cpuhp_step *sp;
1863 int target, ret;
1864
1865 ret = kstrtoint(buf, 10, &target);
1866 if (ret)
1867 return ret;
1868
1869 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1870 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1871 return -EINVAL;
1872 #else
1873 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1874 return -EINVAL;
1875 #endif
1876
1877 ret = lock_device_hotplug_sysfs();
1878 if (ret)
1879 return ret;
1880
1881 mutex_lock(&cpuhp_state_mutex);
1882 sp = cpuhp_get_step(target);
1883 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1884 mutex_unlock(&cpuhp_state_mutex);
1885 if (ret)
1886 goto out;
1887
1888 if (st->state < target)
1889 ret = do_cpu_up(dev->id, target);
1890 else
1891 ret = do_cpu_down(dev->id, target);
1892 out:
1893 unlock_device_hotplug();
1894 return ret ? ret : count;
1895 }
1896
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)1897 static ssize_t show_cpuhp_target(struct device *dev,
1898 struct device_attribute *attr, char *buf)
1899 {
1900 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1901
1902 return sprintf(buf, "%d\n", st->target);
1903 }
1904 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1905
1906
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1907 static ssize_t write_cpuhp_fail(struct device *dev,
1908 struct device_attribute *attr,
1909 const char *buf, size_t count)
1910 {
1911 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1912 struct cpuhp_step *sp;
1913 int fail, ret;
1914
1915 ret = kstrtoint(buf, 10, &fail);
1916 if (ret)
1917 return ret;
1918
1919 /*
1920 * Cannot fail STARTING/DYING callbacks.
1921 */
1922 if (cpuhp_is_atomic_state(fail))
1923 return -EINVAL;
1924
1925 /*
1926 * Cannot fail anything that doesn't have callbacks.
1927 */
1928 mutex_lock(&cpuhp_state_mutex);
1929 sp = cpuhp_get_step(fail);
1930 if (!sp->startup.single && !sp->teardown.single)
1931 ret = -EINVAL;
1932 mutex_unlock(&cpuhp_state_mutex);
1933 if (ret)
1934 return ret;
1935
1936 st->fail = fail;
1937
1938 return count;
1939 }
1940
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)1941 static ssize_t show_cpuhp_fail(struct device *dev,
1942 struct device_attribute *attr, char *buf)
1943 {
1944 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1945
1946 return sprintf(buf, "%d\n", st->fail);
1947 }
1948
1949 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1950
1951 static struct attribute *cpuhp_cpu_attrs[] = {
1952 &dev_attr_state.attr,
1953 &dev_attr_target.attr,
1954 &dev_attr_fail.attr,
1955 NULL
1956 };
1957
1958 static const struct attribute_group cpuhp_cpu_attr_group = {
1959 .attrs = cpuhp_cpu_attrs,
1960 .name = "hotplug",
1961 NULL
1962 };
1963
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)1964 static ssize_t show_cpuhp_states(struct device *dev,
1965 struct device_attribute *attr, char *buf)
1966 {
1967 ssize_t cur, res = 0;
1968 int i;
1969
1970 mutex_lock(&cpuhp_state_mutex);
1971 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1972 struct cpuhp_step *sp = cpuhp_get_step(i);
1973
1974 if (sp->name) {
1975 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1976 buf += cur;
1977 res += cur;
1978 }
1979 }
1980 mutex_unlock(&cpuhp_state_mutex);
1981 return res;
1982 }
1983 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1984
1985 static struct attribute *cpuhp_cpu_root_attrs[] = {
1986 &dev_attr_states.attr,
1987 NULL
1988 };
1989
1990 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1991 .attrs = cpuhp_cpu_root_attrs,
1992 .name = "hotplug",
1993 NULL
1994 };
1995
1996 #ifdef CONFIG_HOTPLUG_SMT
1997
1998 static const char *smt_states[] = {
1999 [CPU_SMT_ENABLED] = "on",
2000 [CPU_SMT_DISABLED] = "off",
2001 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2002 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2003 };
2004
2005 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2006 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2007 {
2008 return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2009 }
2010
cpuhp_offline_cpu_device(unsigned int cpu)2011 static void cpuhp_offline_cpu_device(unsigned int cpu)
2012 {
2013 struct device *dev = get_cpu_device(cpu);
2014
2015 dev->offline = true;
2016 /* Tell user space about the state change */
2017 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2018 }
2019
cpuhp_online_cpu_device(unsigned int cpu)2020 static void cpuhp_online_cpu_device(unsigned int cpu)
2021 {
2022 struct device *dev = get_cpu_device(cpu);
2023
2024 dev->offline = false;
2025 /* Tell user space about the state change */
2026 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2027 }
2028
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2029 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2030 {
2031 int cpu, ret = 0;
2032
2033 cpu_maps_update_begin();
2034 for_each_online_cpu(cpu) {
2035 if (topology_is_primary_thread(cpu))
2036 continue;
2037 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2038 if (ret)
2039 break;
2040 /*
2041 * As this needs to hold the cpu maps lock it's impossible
2042 * to call device_offline() because that ends up calling
2043 * cpu_down() which takes cpu maps lock. cpu maps lock
2044 * needs to be held as this might race against in kernel
2045 * abusers of the hotplug machinery (thermal management).
2046 *
2047 * So nothing would update device:offline state. That would
2048 * leave the sysfs entry stale and prevent onlining after
2049 * smt control has been changed to 'off' again. This is
2050 * called under the sysfs hotplug lock, so it is properly
2051 * serialized against the regular offline usage.
2052 */
2053 cpuhp_offline_cpu_device(cpu);
2054 }
2055 if (!ret)
2056 cpu_smt_control = ctrlval;
2057 cpu_maps_update_done();
2058 return ret;
2059 }
2060
cpuhp_smt_enable(void)2061 static int cpuhp_smt_enable(void)
2062 {
2063 int cpu, ret = 0;
2064
2065 cpu_maps_update_begin();
2066 cpu_smt_control = CPU_SMT_ENABLED;
2067 for_each_present_cpu(cpu) {
2068 /* Skip online CPUs and CPUs on offline nodes */
2069 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2070 continue;
2071 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2072 if (ret)
2073 break;
2074 /* See comment in cpuhp_smt_disable() */
2075 cpuhp_online_cpu_device(cpu);
2076 }
2077 cpu_maps_update_done();
2078 return ret;
2079 }
2080
2081 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2082 store_smt_control(struct device *dev, struct device_attribute *attr,
2083 const char *buf, size_t count)
2084 {
2085 int ctrlval, ret;
2086
2087 if (sysfs_streq(buf, "on"))
2088 ctrlval = CPU_SMT_ENABLED;
2089 else if (sysfs_streq(buf, "off"))
2090 ctrlval = CPU_SMT_DISABLED;
2091 else if (sysfs_streq(buf, "forceoff"))
2092 ctrlval = CPU_SMT_FORCE_DISABLED;
2093 else
2094 return -EINVAL;
2095
2096 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2097 return -EPERM;
2098
2099 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2100 return -ENODEV;
2101
2102 ret = lock_device_hotplug_sysfs();
2103 if (ret)
2104 return ret;
2105
2106 if (ctrlval != cpu_smt_control) {
2107 switch (ctrlval) {
2108 case CPU_SMT_ENABLED:
2109 ret = cpuhp_smt_enable();
2110 break;
2111 case CPU_SMT_DISABLED:
2112 case CPU_SMT_FORCE_DISABLED:
2113 ret = cpuhp_smt_disable(ctrlval);
2114 break;
2115 }
2116 }
2117
2118 unlock_device_hotplug();
2119 return ret ? ret : count;
2120 }
2121 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2122
2123 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2124 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2125 {
2126 bool active = topology_max_smt_threads() > 1;
2127
2128 return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2129 }
2130 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2131
2132 static struct attribute *cpuhp_smt_attrs[] = {
2133 &dev_attr_control.attr,
2134 &dev_attr_active.attr,
2135 NULL
2136 };
2137
2138 static const struct attribute_group cpuhp_smt_attr_group = {
2139 .attrs = cpuhp_smt_attrs,
2140 .name = "smt",
2141 NULL
2142 };
2143
cpu_smt_state_init(void)2144 static int __init cpu_smt_state_init(void)
2145 {
2146 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2147 &cpuhp_smt_attr_group);
2148 }
2149
2150 #else
cpu_smt_state_init(void)2151 static inline int cpu_smt_state_init(void) { return 0; }
2152 #endif
2153
cpuhp_sysfs_init(void)2154 static int __init cpuhp_sysfs_init(void)
2155 {
2156 int cpu, ret;
2157
2158 ret = cpu_smt_state_init();
2159 if (ret)
2160 return ret;
2161
2162 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2163 &cpuhp_cpu_root_attr_group);
2164 if (ret)
2165 return ret;
2166
2167 for_each_possible_cpu(cpu) {
2168 struct device *dev = get_cpu_device(cpu);
2169
2170 if (!dev)
2171 continue;
2172 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2173 if (ret)
2174 return ret;
2175 }
2176 return 0;
2177 }
2178 device_initcall(cpuhp_sysfs_init);
2179 #endif
2180
2181 /*
2182 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2183 * represents all NR_CPUS bits binary values of 1<<nr.
2184 *
2185 * It is used by cpumask_of() to get a constant address to a CPU
2186 * mask value that has a single bit set only.
2187 */
2188
2189 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2190 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2191 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2192 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2193 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2194
2195 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2196
2197 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2198 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2199 #if BITS_PER_LONG > 32
2200 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2201 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2202 #endif
2203 };
2204 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2205
2206 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2207 EXPORT_SYMBOL(cpu_all_bits);
2208
2209 #ifdef CONFIG_INIT_ALL_POSSIBLE
2210 struct cpumask __cpu_possible_mask __read_mostly
2211 = {CPU_BITS_ALL};
2212 #else
2213 struct cpumask __cpu_possible_mask __read_mostly;
2214 #endif
2215 EXPORT_SYMBOL(__cpu_possible_mask);
2216
2217 struct cpumask __cpu_online_mask __read_mostly;
2218 EXPORT_SYMBOL(__cpu_online_mask);
2219
2220 struct cpumask __cpu_present_mask __read_mostly;
2221 EXPORT_SYMBOL(__cpu_present_mask);
2222
2223 struct cpumask __cpu_active_mask __read_mostly;
2224 EXPORT_SYMBOL(__cpu_active_mask);
2225
init_cpu_present(const struct cpumask * src)2226 void init_cpu_present(const struct cpumask *src)
2227 {
2228 cpumask_copy(&__cpu_present_mask, src);
2229 }
2230
init_cpu_possible(const struct cpumask * src)2231 void init_cpu_possible(const struct cpumask *src)
2232 {
2233 cpumask_copy(&__cpu_possible_mask, src);
2234 }
2235
init_cpu_online(const struct cpumask * src)2236 void init_cpu_online(const struct cpumask *src)
2237 {
2238 cpumask_copy(&__cpu_online_mask, src);
2239 }
2240
2241 /*
2242 * Activate the first processor.
2243 */
boot_cpu_init(void)2244 void __init boot_cpu_init(void)
2245 {
2246 int cpu = smp_processor_id();
2247
2248 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2249 set_cpu_online(cpu, true);
2250 set_cpu_active(cpu, true);
2251 set_cpu_present(cpu, true);
2252 set_cpu_possible(cpu, true);
2253
2254 #ifdef CONFIG_SMP
2255 __boot_cpu_id = cpu;
2256 #endif
2257 }
2258
2259 /*
2260 * Must be called _AFTER_ setting up the per_cpu areas
2261 */
boot_cpu_hotplug_init(void)2262 void __init boot_cpu_hotplug_init(void)
2263 {
2264 #ifdef CONFIG_SMP
2265 this_cpu_write(cpuhp_state.booted_once, true);
2266 #endif
2267 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2268 }
2269