1 /* CPU control.
2  * (C) 2001, 2002, 2003, 2004 Rusty Russell
3  *
4  * This code is licenced under the GPL.
5  */
6 #include <linux/proc_fs.h>
7 #include <linux/smp.h>
8 #include <linux/init.h>
9 #include <linux/notifier.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/hotplug.h>
12 #include <linux/sched/task.h>
13 #include <linux/unistd.h>
14 #include <linux/cpu.h>
15 #include <linux/oom.h>
16 #include <linux/rcupdate.h>
17 #include <linux/export.h>
18 #include <linux/bug.h>
19 #include <linux/kthread.h>
20 #include <linux/stop_machine.h>
21 #include <linux/mutex.h>
22 #include <linux/gfp.h>
23 #include <linux/suspend.h>
24 #include <linux/lockdep.h>
25 #include <linux/tick.h>
26 #include <linux/irq.h>
27 #include <linux/nmi.h>
28 #include <linux/smpboot.h>
29 #include <linux/relay.h>
30 #include <linux/slab.h>
31 #include <linux/percpu-rwsem.h>
32 
33 #include <trace/events/power.h>
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/cpuhp.h>
36 
37 #include "smpboot.h"
38 
39 /**
40  * cpuhp_cpu_state - Per cpu hotplug state storage
41  * @state:	The current cpu state
42  * @target:	The target state
43  * @thread:	Pointer to the hotplug thread
44  * @should_run:	Thread should execute
45  * @rollback:	Perform a rollback
46  * @single:	Single callback invocation
47  * @bringup:	Single callback bringup or teardown selector
48  * @cb_state:	The state for a single callback (install/uninstall)
49  * @result:	Result of the operation
50  * @done_up:	Signal completion to the issuer of the task for cpu-up
51  * @done_down:	Signal completion to the issuer of the task for cpu-down
52  */
53 struct cpuhp_cpu_state {
54 	enum cpuhp_state	state;
55 	enum cpuhp_state	target;
56 	enum cpuhp_state	fail;
57 #ifdef CONFIG_SMP
58 	struct task_struct	*thread;
59 	bool			should_run;
60 	bool			rollback;
61 	bool			single;
62 	bool			bringup;
63 	bool			booted_once;
64 	struct hlist_node	*node;
65 	struct hlist_node	*last;
66 	enum cpuhp_state	cb_state;
67 	int			result;
68 	struct completion	done_up;
69 	struct completion	done_down;
70 #endif
71 };
72 
73 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
74 	.fail = CPUHP_INVALID,
75 };
76 
77 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
78 static struct lockdep_map cpuhp_state_up_map =
79 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
80 static struct lockdep_map cpuhp_state_down_map =
81 	STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
82 
83 
cpuhp_lock_acquire(bool bringup)84 static inline void cpuhp_lock_acquire(bool bringup)
85 {
86 	lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
87 }
88 
cpuhp_lock_release(bool bringup)89 static inline void cpuhp_lock_release(bool bringup)
90 {
91 	lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
92 }
93 #else
94 
cpuhp_lock_acquire(bool bringup)95 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)96 static inline void cpuhp_lock_release(bool bringup) { }
97 
98 #endif
99 
100 /**
101  * cpuhp_step - Hotplug state machine step
102  * @name:	Name of the step
103  * @startup:	Startup function of the step
104  * @teardown:	Teardown function of the step
105  * @cant_stop:	Bringup/teardown can't be stopped at this step
106  */
107 struct cpuhp_step {
108 	const char		*name;
109 	union {
110 		int		(*single)(unsigned int cpu);
111 		int		(*multi)(unsigned int cpu,
112 					 struct hlist_node *node);
113 	} startup;
114 	union {
115 		int		(*single)(unsigned int cpu);
116 		int		(*multi)(unsigned int cpu,
117 					 struct hlist_node *node);
118 	} teardown;
119 	struct hlist_head	list;
120 	bool			cant_stop;
121 	bool			multi_instance;
122 };
123 
124 static DEFINE_MUTEX(cpuhp_state_mutex);
125 static struct cpuhp_step cpuhp_hp_states[];
126 
cpuhp_get_step(enum cpuhp_state state)127 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
128 {
129 	return cpuhp_hp_states + state;
130 }
131 
132 /**
133  * cpuhp_invoke_callback _ Invoke the callbacks for a given state
134  * @cpu:	The cpu for which the callback should be invoked
135  * @state:	The state to do callbacks for
136  * @bringup:	True if the bringup callback should be invoked
137  * @node:	For multi-instance, do a single entry callback for install/remove
138  * @lastp:	For multi-instance rollback, remember how far we got
139  *
140  * Called from cpu hotplug and from the state register machinery.
141  */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)142 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
143 				 bool bringup, struct hlist_node *node,
144 				 struct hlist_node **lastp)
145 {
146 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
147 	struct cpuhp_step *step = cpuhp_get_step(state);
148 	int (*cbm)(unsigned int cpu, struct hlist_node *node);
149 	int (*cb)(unsigned int cpu);
150 	int ret, cnt;
151 
152 	if (st->fail == state) {
153 		st->fail = CPUHP_INVALID;
154 
155 		if (!(bringup ? step->startup.single : step->teardown.single))
156 			return 0;
157 
158 		return -EAGAIN;
159 	}
160 
161 	if (!step->multi_instance) {
162 		WARN_ON_ONCE(lastp && *lastp);
163 		cb = bringup ? step->startup.single : step->teardown.single;
164 		if (!cb)
165 			return 0;
166 		trace_cpuhp_enter(cpu, st->target, state, cb);
167 		ret = cb(cpu);
168 		trace_cpuhp_exit(cpu, st->state, state, ret);
169 		return ret;
170 	}
171 	cbm = bringup ? step->startup.multi : step->teardown.multi;
172 	if (!cbm)
173 		return 0;
174 
175 	/* Single invocation for instance add/remove */
176 	if (node) {
177 		WARN_ON_ONCE(lastp && *lastp);
178 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
179 		ret = cbm(cpu, node);
180 		trace_cpuhp_exit(cpu, st->state, state, ret);
181 		return ret;
182 	}
183 
184 	/* State transition. Invoke on all instances */
185 	cnt = 0;
186 	hlist_for_each(node, &step->list) {
187 		if (lastp && node == *lastp)
188 			break;
189 
190 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
191 		ret = cbm(cpu, node);
192 		trace_cpuhp_exit(cpu, st->state, state, ret);
193 		if (ret) {
194 			if (!lastp)
195 				goto err;
196 
197 			*lastp = node;
198 			return ret;
199 		}
200 		cnt++;
201 	}
202 	if (lastp)
203 		*lastp = NULL;
204 	return 0;
205 err:
206 	/* Rollback the instances if one failed */
207 	cbm = !bringup ? step->startup.multi : step->teardown.multi;
208 	if (!cbm)
209 		return ret;
210 
211 	hlist_for_each(node, &step->list) {
212 		if (!cnt--)
213 			break;
214 
215 		trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 		ret = cbm(cpu, node);
217 		trace_cpuhp_exit(cpu, st->state, state, ret);
218 		/*
219 		 * Rollback must not fail,
220 		 */
221 		WARN_ON_ONCE(ret);
222 	}
223 	return ret;
224 }
225 
226 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)227 static bool cpuhp_is_ap_state(enum cpuhp_state state)
228 {
229 	/*
230 	 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
231 	 * purposes as that state is handled explicitly in cpu_down.
232 	 */
233 	return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
234 }
235 
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)236 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
237 {
238 	struct completion *done = bringup ? &st->done_up : &st->done_down;
239 	wait_for_completion(done);
240 }
241 
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)242 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
243 {
244 	struct completion *done = bringup ? &st->done_up : &st->done_down;
245 	complete(done);
246 }
247 
248 /*
249  * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
250  */
cpuhp_is_atomic_state(enum cpuhp_state state)251 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
252 {
253 	return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
254 }
255 
256 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
257 static DEFINE_MUTEX(cpu_add_remove_lock);
258 bool cpuhp_tasks_frozen;
259 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
260 
261 /*
262  * The following two APIs (cpu_maps_update_begin/done) must be used when
263  * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
264  */
cpu_maps_update_begin(void)265 void cpu_maps_update_begin(void)
266 {
267 	mutex_lock(&cpu_add_remove_lock);
268 }
269 
cpu_maps_update_done(void)270 void cpu_maps_update_done(void)
271 {
272 	mutex_unlock(&cpu_add_remove_lock);
273 }
274 
275 /*
276  * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
277  * Should always be manipulated under cpu_add_remove_lock
278  */
279 static int cpu_hotplug_disabled;
280 
281 #ifdef CONFIG_HOTPLUG_CPU
282 
283 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
284 
cpus_read_lock(void)285 void cpus_read_lock(void)
286 {
287 	percpu_down_read(&cpu_hotplug_lock);
288 }
289 EXPORT_SYMBOL_GPL(cpus_read_lock);
290 
cpus_read_trylock(void)291 int cpus_read_trylock(void)
292 {
293 	return percpu_down_read_trylock(&cpu_hotplug_lock);
294 }
295 EXPORT_SYMBOL_GPL(cpus_read_trylock);
296 
cpus_read_unlock(void)297 void cpus_read_unlock(void)
298 {
299 	percpu_up_read(&cpu_hotplug_lock);
300 }
301 EXPORT_SYMBOL_GPL(cpus_read_unlock);
302 
cpus_write_lock(void)303 void cpus_write_lock(void)
304 {
305 	percpu_down_write(&cpu_hotplug_lock);
306 }
307 
cpus_write_unlock(void)308 void cpus_write_unlock(void)
309 {
310 	percpu_up_write(&cpu_hotplug_lock);
311 }
312 
lockdep_assert_cpus_held(void)313 void lockdep_assert_cpus_held(void)
314 {
315 	percpu_rwsem_assert_held(&cpu_hotplug_lock);
316 }
317 
318 /*
319  * Wait for currently running CPU hotplug operations to complete (if any) and
320  * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
321  * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
322  * hotplug path before performing hotplug operations. So acquiring that lock
323  * guarantees mutual exclusion from any currently running hotplug operations.
324  */
cpu_hotplug_disable(void)325 void cpu_hotplug_disable(void)
326 {
327 	cpu_maps_update_begin();
328 	cpu_hotplug_disabled++;
329 	cpu_maps_update_done();
330 }
331 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
332 
__cpu_hotplug_enable(void)333 static void __cpu_hotplug_enable(void)
334 {
335 	if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
336 		return;
337 	cpu_hotplug_disabled--;
338 }
339 
cpu_hotplug_enable(void)340 void cpu_hotplug_enable(void)
341 {
342 	cpu_maps_update_begin();
343 	__cpu_hotplug_enable();
344 	cpu_maps_update_done();
345 }
346 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
347 #endif	/* CONFIG_HOTPLUG_CPU */
348 
349 #ifdef CONFIG_HOTPLUG_SMT
350 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
351 EXPORT_SYMBOL_GPL(cpu_smt_control);
352 
353 static bool cpu_smt_available __read_mostly;
354 
cpu_smt_disable(bool force)355 void __init cpu_smt_disable(bool force)
356 {
357 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
358 		cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
359 		return;
360 
361 	if (force) {
362 		pr_info("SMT: Force disabled\n");
363 		cpu_smt_control = CPU_SMT_FORCE_DISABLED;
364 	} else {
365 		cpu_smt_control = CPU_SMT_DISABLED;
366 	}
367 }
368 
369 /*
370  * The decision whether SMT is supported can only be done after the full
371  * CPU identification. Called from architecture code before non boot CPUs
372  * are brought up.
373  */
cpu_smt_check_topology_early(void)374 void __init cpu_smt_check_topology_early(void)
375 {
376 	if (!topology_smt_supported())
377 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
378 }
379 
380 /*
381  * If SMT was disabled by BIOS, detect it here, after the CPUs have been
382  * brought online. This ensures the smt/l1tf sysfs entries are consistent
383  * with reality. cpu_smt_available is set to true during the bringup of non
384  * boot CPUs when a SMT sibling is detected. Note, this may overwrite
385  * cpu_smt_control's previous setting.
386  */
cpu_smt_check_topology(void)387 void __init cpu_smt_check_topology(void)
388 {
389 	if (!cpu_smt_available)
390 		cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
391 }
392 
smt_cmdline_disable(char * str)393 static int __init smt_cmdline_disable(char *str)
394 {
395 	cpu_smt_disable(str && !strcmp(str, "force"));
396 	return 0;
397 }
398 early_param("nosmt", smt_cmdline_disable);
399 
cpu_smt_allowed(unsigned int cpu)400 static inline bool cpu_smt_allowed(unsigned int cpu)
401 {
402 	if (topology_is_primary_thread(cpu))
403 		return true;
404 
405 	/*
406 	 * If the CPU is not a 'primary' thread and the booted_once bit is
407 	 * set then the processor has SMT support. Store this information
408 	 * for the late check of SMT support in cpu_smt_check_topology().
409 	 */
410 	if (per_cpu(cpuhp_state, cpu).booted_once)
411 		cpu_smt_available = true;
412 
413 	if (cpu_smt_control == CPU_SMT_ENABLED)
414 		return true;
415 
416 	/*
417 	 * On x86 it's required to boot all logical CPUs at least once so
418 	 * that the init code can get a chance to set CR4.MCE on each
419 	 * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
420 	 * core will shutdown the machine.
421 	 */
422 	return !per_cpu(cpuhp_state, cpu).booted_once;
423 }
424 #else
cpu_smt_allowed(unsigned int cpu)425 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
426 #endif
427 
428 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)429 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
430 {
431 	enum cpuhp_state prev_state = st->state;
432 
433 	st->rollback = false;
434 	st->last = NULL;
435 
436 	st->target = target;
437 	st->single = false;
438 	st->bringup = st->state < target;
439 
440 	return prev_state;
441 }
442 
443 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)444 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
445 {
446 	st->rollback = true;
447 
448 	/*
449 	 * If we have st->last we need to undo partial multi_instance of this
450 	 * state first. Otherwise start undo at the previous state.
451 	 */
452 	if (!st->last) {
453 		if (st->bringup)
454 			st->state--;
455 		else
456 			st->state++;
457 	}
458 
459 	st->target = prev_state;
460 	st->bringup = !st->bringup;
461 }
462 
463 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)464 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
465 {
466 	if (!st->single && st->state == st->target)
467 		return;
468 
469 	st->result = 0;
470 	/*
471 	 * Make sure the above stores are visible before should_run becomes
472 	 * true. Paired with the mb() above in cpuhp_thread_fun()
473 	 */
474 	smp_mb();
475 	st->should_run = true;
476 	wake_up_process(st->thread);
477 	wait_for_ap_thread(st, st->bringup);
478 }
479 
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)480 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
481 {
482 	enum cpuhp_state prev_state;
483 	int ret;
484 
485 	prev_state = cpuhp_set_state(st, target);
486 	__cpuhp_kick_ap(st);
487 	if ((ret = st->result)) {
488 		cpuhp_reset_state(st, prev_state);
489 		__cpuhp_kick_ap(st);
490 	}
491 
492 	return ret;
493 }
494 
bringup_wait_for_ap(unsigned int cpu)495 static int bringup_wait_for_ap(unsigned int cpu)
496 {
497 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
498 
499 	/* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
500 	wait_for_ap_thread(st, true);
501 	if (WARN_ON_ONCE((!cpu_online(cpu))))
502 		return -ECANCELED;
503 
504 	/* Unpark the stopper thread and the hotplug thread of the target cpu */
505 	stop_machine_unpark(cpu);
506 	kthread_unpark(st->thread);
507 
508 	/*
509 	 * SMT soft disabling on X86 requires to bring the CPU out of the
510 	 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
511 	 * CPU marked itself as booted_once in cpu_notify_starting() so the
512 	 * cpu_smt_allowed() check will now return false if this is not the
513 	 * primary sibling.
514 	 */
515 	if (!cpu_smt_allowed(cpu))
516 		return -ECANCELED;
517 
518 	if (st->target <= CPUHP_AP_ONLINE_IDLE)
519 		return 0;
520 
521 	return cpuhp_kick_ap(st, st->target);
522 }
523 
bringup_cpu(unsigned int cpu)524 static int bringup_cpu(unsigned int cpu)
525 {
526 	struct task_struct *idle = idle_thread_get(cpu);
527 	int ret;
528 
529 	/*
530 	 * Some architectures have to walk the irq descriptors to
531 	 * setup the vector space for the cpu which comes online.
532 	 * Prevent irq alloc/free across the bringup.
533 	 */
534 	irq_lock_sparse();
535 
536 	/* Arch-specific enabling code. */
537 	ret = __cpu_up(cpu, idle);
538 	irq_unlock_sparse();
539 	if (ret)
540 		return ret;
541 	return bringup_wait_for_ap(cpu);
542 }
543 
544 /*
545  * Hotplug state machine related functions
546  */
547 
undo_cpu_up(unsigned int cpu,struct cpuhp_cpu_state * st)548 static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
549 {
550 	for (st->state--; st->state > st->target; st->state--)
551 		cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
552 }
553 
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)554 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
555 			      enum cpuhp_state target)
556 {
557 	enum cpuhp_state prev_state = st->state;
558 	int ret = 0;
559 
560 	while (st->state < target) {
561 		st->state++;
562 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
563 		if (ret) {
564 			st->target = prev_state;
565 			undo_cpu_up(cpu, st);
566 			break;
567 		}
568 	}
569 	return ret;
570 }
571 
572 /*
573  * The cpu hotplug threads manage the bringup and teardown of the cpus
574  */
cpuhp_create(unsigned int cpu)575 static void cpuhp_create(unsigned int cpu)
576 {
577 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
578 
579 	init_completion(&st->done_up);
580 	init_completion(&st->done_down);
581 }
582 
cpuhp_should_run(unsigned int cpu)583 static int cpuhp_should_run(unsigned int cpu)
584 {
585 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
586 
587 	return st->should_run;
588 }
589 
590 /*
591  * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
592  * callbacks when a state gets [un]installed at runtime.
593  *
594  * Each invocation of this function by the smpboot thread does a single AP
595  * state callback.
596  *
597  * It has 3 modes of operation:
598  *  - single: runs st->cb_state
599  *  - up:     runs ++st->state, while st->state < st->target
600  *  - down:   runs st->state--, while st->state > st->target
601  *
602  * When complete or on error, should_run is cleared and the completion is fired.
603  */
cpuhp_thread_fun(unsigned int cpu)604 static void cpuhp_thread_fun(unsigned int cpu)
605 {
606 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
607 	bool bringup = st->bringup;
608 	enum cpuhp_state state;
609 
610 	if (WARN_ON_ONCE(!st->should_run))
611 		return;
612 
613 	/*
614 	 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
615 	 * that if we see ->should_run we also see the rest of the state.
616 	 */
617 	smp_mb();
618 
619 	cpuhp_lock_acquire(bringup);
620 
621 	if (st->single) {
622 		state = st->cb_state;
623 		st->should_run = false;
624 	} else {
625 		if (bringup) {
626 			st->state++;
627 			state = st->state;
628 			st->should_run = (st->state < st->target);
629 			WARN_ON_ONCE(st->state > st->target);
630 		} else {
631 			state = st->state;
632 			st->state--;
633 			st->should_run = (st->state > st->target);
634 			WARN_ON_ONCE(st->state < st->target);
635 		}
636 	}
637 
638 	WARN_ON_ONCE(!cpuhp_is_ap_state(state));
639 
640 	if (cpuhp_is_atomic_state(state)) {
641 		local_irq_disable();
642 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
643 		local_irq_enable();
644 
645 		/*
646 		 * STARTING/DYING must not fail!
647 		 */
648 		WARN_ON_ONCE(st->result);
649 	} else {
650 		st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
651 	}
652 
653 	if (st->result) {
654 		/*
655 		 * If we fail on a rollback, we're up a creek without no
656 		 * paddle, no way forward, no way back. We loose, thanks for
657 		 * playing.
658 		 */
659 		WARN_ON_ONCE(st->rollback);
660 		st->should_run = false;
661 	}
662 
663 	cpuhp_lock_release(bringup);
664 
665 	if (!st->should_run)
666 		complete_ap_thread(st, bringup);
667 }
668 
669 /* Invoke a single callback on a remote cpu */
670 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)671 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
672 			 struct hlist_node *node)
673 {
674 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
675 	int ret;
676 
677 	if (!cpu_online(cpu))
678 		return 0;
679 
680 	cpuhp_lock_acquire(false);
681 	cpuhp_lock_release(false);
682 
683 	cpuhp_lock_acquire(true);
684 	cpuhp_lock_release(true);
685 
686 	/*
687 	 * If we are up and running, use the hotplug thread. For early calls
688 	 * we invoke the thread function directly.
689 	 */
690 	if (!st->thread)
691 		return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
692 
693 	st->rollback = false;
694 	st->last = NULL;
695 
696 	st->node = node;
697 	st->bringup = bringup;
698 	st->cb_state = state;
699 	st->single = true;
700 
701 	__cpuhp_kick_ap(st);
702 
703 	/*
704 	 * If we failed and did a partial, do a rollback.
705 	 */
706 	if ((ret = st->result) && st->last) {
707 		st->rollback = true;
708 		st->bringup = !bringup;
709 
710 		__cpuhp_kick_ap(st);
711 	}
712 
713 	/*
714 	 * Clean up the leftovers so the next hotplug operation wont use stale
715 	 * data.
716 	 */
717 	st->node = st->last = NULL;
718 	return ret;
719 }
720 
cpuhp_kick_ap_work(unsigned int cpu)721 static int cpuhp_kick_ap_work(unsigned int cpu)
722 {
723 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
724 	enum cpuhp_state prev_state = st->state;
725 	int ret;
726 
727 	cpuhp_lock_acquire(false);
728 	cpuhp_lock_release(false);
729 
730 	cpuhp_lock_acquire(true);
731 	cpuhp_lock_release(true);
732 
733 	trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
734 	ret = cpuhp_kick_ap(st, st->target);
735 	trace_cpuhp_exit(cpu, st->state, prev_state, ret);
736 
737 	return ret;
738 }
739 
740 static struct smp_hotplug_thread cpuhp_threads = {
741 	.store			= &cpuhp_state.thread,
742 	.create			= &cpuhp_create,
743 	.thread_should_run	= cpuhp_should_run,
744 	.thread_fn		= cpuhp_thread_fun,
745 	.thread_comm		= "cpuhp/%u",
746 	.selfparking		= true,
747 };
748 
cpuhp_threads_init(void)749 void __init cpuhp_threads_init(void)
750 {
751 	BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
752 	kthread_unpark(this_cpu_read(cpuhp_state.thread));
753 }
754 
755 #ifdef CONFIG_HOTPLUG_CPU
756 /**
757  * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
758  * @cpu: a CPU id
759  *
760  * This function walks all processes, finds a valid mm struct for each one and
761  * then clears a corresponding bit in mm's cpumask.  While this all sounds
762  * trivial, there are various non-obvious corner cases, which this function
763  * tries to solve in a safe manner.
764  *
765  * Also note that the function uses a somewhat relaxed locking scheme, so it may
766  * be called only for an already offlined CPU.
767  */
clear_tasks_mm_cpumask(int cpu)768 void clear_tasks_mm_cpumask(int cpu)
769 {
770 	struct task_struct *p;
771 
772 	/*
773 	 * This function is called after the cpu is taken down and marked
774 	 * offline, so its not like new tasks will ever get this cpu set in
775 	 * their mm mask. -- Peter Zijlstra
776 	 * Thus, we may use rcu_read_lock() here, instead of grabbing
777 	 * full-fledged tasklist_lock.
778 	 */
779 	WARN_ON(cpu_online(cpu));
780 	rcu_read_lock();
781 	for_each_process(p) {
782 		struct task_struct *t;
783 
784 		/*
785 		 * Main thread might exit, but other threads may still have
786 		 * a valid mm. Find one.
787 		 */
788 		t = find_lock_task_mm(p);
789 		if (!t)
790 			continue;
791 		cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
792 		task_unlock(t);
793 	}
794 	rcu_read_unlock();
795 }
796 
797 /* Take this CPU down. */
take_cpu_down(void * _param)798 static int take_cpu_down(void *_param)
799 {
800 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
801 	enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
802 	int err, cpu = smp_processor_id();
803 	int ret;
804 
805 	/* Ensure this CPU doesn't handle any more interrupts. */
806 	err = __cpu_disable();
807 	if (err < 0)
808 		return err;
809 
810 	/*
811 	 * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
812 	 * do this step again.
813 	 */
814 	WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
815 	st->state--;
816 	/* Invoke the former CPU_DYING callbacks */
817 	for (; st->state > target; st->state--) {
818 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
819 		/*
820 		 * DYING must not fail!
821 		 */
822 		WARN_ON_ONCE(ret);
823 	}
824 
825 	/* Give up timekeeping duties */
826 	tick_handover_do_timer();
827 	/* Park the stopper thread */
828 	stop_machine_park(cpu);
829 	return 0;
830 }
831 
takedown_cpu(unsigned int cpu)832 static int takedown_cpu(unsigned int cpu)
833 {
834 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
835 	int err;
836 
837 	/* Park the smpboot threads */
838 	kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
839 
840 	/*
841 	 * Prevent irq alloc/free while the dying cpu reorganizes the
842 	 * interrupt affinities.
843 	 */
844 	irq_lock_sparse();
845 
846 	/*
847 	 * So now all preempt/rcu users must observe !cpu_active().
848 	 */
849 	err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
850 	if (err) {
851 		/* CPU refused to die */
852 		irq_unlock_sparse();
853 		/* Unpark the hotplug thread so we can rollback there */
854 		kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
855 		return err;
856 	}
857 	BUG_ON(cpu_online(cpu));
858 
859 	/*
860 	 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
861 	 * all runnable tasks from the CPU, there's only the idle task left now
862 	 * that the migration thread is done doing the stop_machine thing.
863 	 *
864 	 * Wait for the stop thread to go away.
865 	 */
866 	wait_for_ap_thread(st, false);
867 	BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
868 
869 	/* Interrupts are moved away from the dying cpu, reenable alloc/free */
870 	irq_unlock_sparse();
871 
872 	hotplug_cpu__broadcast_tick_pull(cpu);
873 	/* This actually kills the CPU. */
874 	__cpu_die(cpu);
875 
876 	tick_cleanup_dead_cpu(cpu);
877 	rcutree_migrate_callbacks(cpu);
878 	return 0;
879 }
880 
cpuhp_complete_idle_dead(void * arg)881 static void cpuhp_complete_idle_dead(void *arg)
882 {
883 	struct cpuhp_cpu_state *st = arg;
884 
885 	complete_ap_thread(st, false);
886 }
887 
cpuhp_report_idle_dead(void)888 void cpuhp_report_idle_dead(void)
889 {
890 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
891 
892 	BUG_ON(st->state != CPUHP_AP_OFFLINE);
893 	rcu_report_dead(smp_processor_id());
894 	st->state = CPUHP_AP_IDLE_DEAD;
895 	/*
896 	 * We cannot call complete after rcu_report_dead() so we delegate it
897 	 * to an online cpu.
898 	 */
899 	smp_call_function_single(cpumask_first(cpu_online_mask),
900 				 cpuhp_complete_idle_dead, st, 0);
901 }
902 
undo_cpu_down(unsigned int cpu,struct cpuhp_cpu_state * st)903 static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
904 {
905 	for (st->state++; st->state < st->target; st->state++)
906 		cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
907 }
908 
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)909 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
910 				enum cpuhp_state target)
911 {
912 	enum cpuhp_state prev_state = st->state;
913 	int ret = 0;
914 
915 	for (; st->state > target; st->state--) {
916 		ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
917 		if (ret) {
918 			st->target = prev_state;
919 			if (st->state < prev_state)
920 				undo_cpu_down(cpu, st);
921 			break;
922 		}
923 	}
924 	return ret;
925 }
926 
927 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)928 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
929 			   enum cpuhp_state target)
930 {
931 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
932 	int prev_state, ret = 0;
933 
934 	if (num_online_cpus() == 1)
935 		return -EBUSY;
936 
937 	if (!cpu_present(cpu))
938 		return -EINVAL;
939 
940 	cpus_write_lock();
941 
942 	cpuhp_tasks_frozen = tasks_frozen;
943 
944 	prev_state = cpuhp_set_state(st, target);
945 	/*
946 	 * If the current CPU state is in the range of the AP hotplug thread,
947 	 * then we need to kick the thread.
948 	 */
949 	if (st->state > CPUHP_TEARDOWN_CPU) {
950 		st->target = max((int)target, CPUHP_TEARDOWN_CPU);
951 		ret = cpuhp_kick_ap_work(cpu);
952 		/*
953 		 * The AP side has done the error rollback already. Just
954 		 * return the error code..
955 		 */
956 		if (ret)
957 			goto out;
958 
959 		/*
960 		 * We might have stopped still in the range of the AP hotplug
961 		 * thread. Nothing to do anymore.
962 		 */
963 		if (st->state > CPUHP_TEARDOWN_CPU)
964 			goto out;
965 
966 		st->target = target;
967 	}
968 	/*
969 	 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
970 	 * to do the further cleanups.
971 	 */
972 	ret = cpuhp_down_callbacks(cpu, st, target);
973 	if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
974 		cpuhp_reset_state(st, prev_state);
975 		__cpuhp_kick_ap(st);
976 	}
977 
978 out:
979 	cpus_write_unlock();
980 	/*
981 	 * Do post unplug cleanup. This is still protected against
982 	 * concurrent CPU hotplug via cpu_add_remove_lock.
983 	 */
984 	lockup_detector_cleanup();
985 	return ret;
986 }
987 
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)988 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
989 {
990 	if (cpu_hotplug_disabled)
991 		return -EBUSY;
992 	return _cpu_down(cpu, 0, target);
993 }
994 
do_cpu_down(unsigned int cpu,enum cpuhp_state target)995 static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
996 {
997 	int err;
998 
999 	cpu_maps_update_begin();
1000 	err = cpu_down_maps_locked(cpu, target);
1001 	cpu_maps_update_done();
1002 	return err;
1003 }
1004 
cpu_down(unsigned int cpu)1005 int cpu_down(unsigned int cpu)
1006 {
1007 	return do_cpu_down(cpu, CPUHP_OFFLINE);
1008 }
1009 EXPORT_SYMBOL(cpu_down);
1010 
1011 #else
1012 #define takedown_cpu		NULL
1013 #endif /*CONFIG_HOTPLUG_CPU*/
1014 
1015 /**
1016  * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1017  * @cpu: cpu that just started
1018  *
1019  * It must be called by the arch code on the new cpu, before the new cpu
1020  * enables interrupts and before the "boot" cpu returns from __cpu_up().
1021  */
notify_cpu_starting(unsigned int cpu)1022 void notify_cpu_starting(unsigned int cpu)
1023 {
1024 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1025 	enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1026 	int ret;
1027 
1028 	rcu_cpu_starting(cpu);	/* Enables RCU usage on this CPU. */
1029 	st->booted_once = true;
1030 	while (st->state < target) {
1031 		st->state++;
1032 		ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1033 		/*
1034 		 * STARTING must not fail!
1035 		 */
1036 		WARN_ON_ONCE(ret);
1037 	}
1038 }
1039 
1040 /*
1041  * Called from the idle task. Wake up the controlling task which brings the
1042  * stopper and the hotplug thread of the upcoming CPU up and then delegates
1043  * the rest of the online bringup to the hotplug thread.
1044  */
cpuhp_online_idle(enum cpuhp_state state)1045 void cpuhp_online_idle(enum cpuhp_state state)
1046 {
1047 	struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1048 
1049 	/* Happens for the boot cpu */
1050 	if (state != CPUHP_AP_ONLINE_IDLE)
1051 		return;
1052 
1053 	st->state = CPUHP_AP_ONLINE_IDLE;
1054 	complete_ap_thread(st, true);
1055 }
1056 
1057 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1058 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1059 {
1060 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1061 	struct task_struct *idle;
1062 	int ret = 0;
1063 
1064 	cpus_write_lock();
1065 
1066 	if (!cpu_present(cpu)) {
1067 		ret = -EINVAL;
1068 		goto out;
1069 	}
1070 
1071 	/*
1072 	 * The caller of do_cpu_up might have raced with another
1073 	 * caller. Ignore it for now.
1074 	 */
1075 	if (st->state >= target)
1076 		goto out;
1077 
1078 	if (st->state == CPUHP_OFFLINE) {
1079 		/* Let it fail before we try to bring the cpu up */
1080 		idle = idle_thread_get(cpu);
1081 		if (IS_ERR(idle)) {
1082 			ret = PTR_ERR(idle);
1083 			goto out;
1084 		}
1085 	}
1086 
1087 	cpuhp_tasks_frozen = tasks_frozen;
1088 
1089 	cpuhp_set_state(st, target);
1090 	/*
1091 	 * If the current CPU state is in the range of the AP hotplug thread,
1092 	 * then we need to kick the thread once more.
1093 	 */
1094 	if (st->state > CPUHP_BRINGUP_CPU) {
1095 		ret = cpuhp_kick_ap_work(cpu);
1096 		/*
1097 		 * The AP side has done the error rollback already. Just
1098 		 * return the error code..
1099 		 */
1100 		if (ret)
1101 			goto out;
1102 	}
1103 
1104 	/*
1105 	 * Try to reach the target state. We max out on the BP at
1106 	 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1107 	 * responsible for bringing it up to the target state.
1108 	 */
1109 	target = min((int)target, CPUHP_BRINGUP_CPU);
1110 	ret = cpuhp_up_callbacks(cpu, st, target);
1111 out:
1112 	cpus_write_unlock();
1113 	return ret;
1114 }
1115 
do_cpu_up(unsigned int cpu,enum cpuhp_state target)1116 static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1117 {
1118 	int err = 0;
1119 
1120 	if (!cpu_possible(cpu)) {
1121 		pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1122 		       cpu);
1123 #if defined(CONFIG_IA64)
1124 		pr_err("please check additional_cpus= boot parameter\n");
1125 #endif
1126 		return -EINVAL;
1127 	}
1128 
1129 	err = try_online_node(cpu_to_node(cpu));
1130 	if (err)
1131 		return err;
1132 
1133 	cpu_maps_update_begin();
1134 
1135 	if (cpu_hotplug_disabled) {
1136 		err = -EBUSY;
1137 		goto out;
1138 	}
1139 	if (!cpu_smt_allowed(cpu)) {
1140 		err = -EPERM;
1141 		goto out;
1142 	}
1143 
1144 	err = _cpu_up(cpu, 0, target);
1145 out:
1146 	cpu_maps_update_done();
1147 	return err;
1148 }
1149 
cpu_up(unsigned int cpu)1150 int cpu_up(unsigned int cpu)
1151 {
1152 	return do_cpu_up(cpu, CPUHP_ONLINE);
1153 }
1154 EXPORT_SYMBOL_GPL(cpu_up);
1155 
1156 #ifdef CONFIG_PM_SLEEP_SMP
1157 static cpumask_var_t frozen_cpus;
1158 
freeze_secondary_cpus(int primary)1159 int freeze_secondary_cpus(int primary)
1160 {
1161 	int cpu, error = 0;
1162 
1163 	cpu_maps_update_begin();
1164 	if (!cpu_online(primary))
1165 		primary = cpumask_first(cpu_online_mask);
1166 	/*
1167 	 * We take down all of the non-boot CPUs in one shot to avoid races
1168 	 * with the userspace trying to use the CPU hotplug at the same time
1169 	 */
1170 	cpumask_clear(frozen_cpus);
1171 
1172 	pr_info("Disabling non-boot CPUs ...\n");
1173 	for_each_online_cpu(cpu) {
1174 		if (cpu == primary)
1175 			continue;
1176 		trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1177 		error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1178 		trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1179 		if (!error)
1180 			cpumask_set_cpu(cpu, frozen_cpus);
1181 		else {
1182 			pr_err("Error taking CPU%d down: %d\n", cpu, error);
1183 			break;
1184 		}
1185 	}
1186 
1187 	if (!error)
1188 		BUG_ON(num_online_cpus() > 1);
1189 	else
1190 		pr_err("Non-boot CPUs are not disabled\n");
1191 
1192 	/*
1193 	 * Make sure the CPUs won't be enabled by someone else. We need to do
1194 	 * this even in case of failure as all disable_nonboot_cpus() users are
1195 	 * supposed to do enable_nonboot_cpus() on the failure path.
1196 	 */
1197 	cpu_hotplug_disabled++;
1198 
1199 	cpu_maps_update_done();
1200 	return error;
1201 }
1202 
arch_enable_nonboot_cpus_begin(void)1203 void __weak arch_enable_nonboot_cpus_begin(void)
1204 {
1205 }
1206 
arch_enable_nonboot_cpus_end(void)1207 void __weak arch_enable_nonboot_cpus_end(void)
1208 {
1209 }
1210 
enable_nonboot_cpus(void)1211 void enable_nonboot_cpus(void)
1212 {
1213 	int cpu, error;
1214 
1215 	/* Allow everyone to use the CPU hotplug again */
1216 	cpu_maps_update_begin();
1217 	__cpu_hotplug_enable();
1218 	if (cpumask_empty(frozen_cpus))
1219 		goto out;
1220 
1221 	pr_info("Enabling non-boot CPUs ...\n");
1222 
1223 	arch_enable_nonboot_cpus_begin();
1224 
1225 	for_each_cpu(cpu, frozen_cpus) {
1226 		trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1227 		error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1228 		trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1229 		if (!error) {
1230 			pr_info("CPU%d is up\n", cpu);
1231 			continue;
1232 		}
1233 		pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1234 	}
1235 
1236 	arch_enable_nonboot_cpus_end();
1237 
1238 	cpumask_clear(frozen_cpus);
1239 out:
1240 	cpu_maps_update_done();
1241 }
1242 
alloc_frozen_cpus(void)1243 static int __init alloc_frozen_cpus(void)
1244 {
1245 	if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1246 		return -ENOMEM;
1247 	return 0;
1248 }
1249 core_initcall(alloc_frozen_cpus);
1250 
1251 /*
1252  * When callbacks for CPU hotplug notifications are being executed, we must
1253  * ensure that the state of the system with respect to the tasks being frozen
1254  * or not, as reported by the notification, remains unchanged *throughout the
1255  * duration* of the execution of the callbacks.
1256  * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1257  *
1258  * This synchronization is implemented by mutually excluding regular CPU
1259  * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1260  * Hibernate notifications.
1261  */
1262 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1263 cpu_hotplug_pm_callback(struct notifier_block *nb,
1264 			unsigned long action, void *ptr)
1265 {
1266 	switch (action) {
1267 
1268 	case PM_SUSPEND_PREPARE:
1269 	case PM_HIBERNATION_PREPARE:
1270 		cpu_hotplug_disable();
1271 		break;
1272 
1273 	case PM_POST_SUSPEND:
1274 	case PM_POST_HIBERNATION:
1275 		cpu_hotplug_enable();
1276 		break;
1277 
1278 	default:
1279 		return NOTIFY_DONE;
1280 	}
1281 
1282 	return NOTIFY_OK;
1283 }
1284 
1285 
cpu_hotplug_pm_sync_init(void)1286 static int __init cpu_hotplug_pm_sync_init(void)
1287 {
1288 	/*
1289 	 * cpu_hotplug_pm_callback has higher priority than x86
1290 	 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1291 	 * to disable cpu hotplug to avoid cpu hotplug race.
1292 	 */
1293 	pm_notifier(cpu_hotplug_pm_callback, 0);
1294 	return 0;
1295 }
1296 core_initcall(cpu_hotplug_pm_sync_init);
1297 
1298 #endif /* CONFIG_PM_SLEEP_SMP */
1299 
1300 int __boot_cpu_id;
1301 
1302 #endif /* CONFIG_SMP */
1303 
1304 /* Boot processor state steps */
1305 static struct cpuhp_step cpuhp_hp_states[] = {
1306 	[CPUHP_OFFLINE] = {
1307 		.name			= "offline",
1308 		.startup.single		= NULL,
1309 		.teardown.single	= NULL,
1310 	},
1311 #ifdef CONFIG_SMP
1312 	[CPUHP_CREATE_THREADS]= {
1313 		.name			= "threads:prepare",
1314 		.startup.single		= smpboot_create_threads,
1315 		.teardown.single	= NULL,
1316 		.cant_stop		= true,
1317 	},
1318 	[CPUHP_PERF_PREPARE] = {
1319 		.name			= "perf:prepare",
1320 		.startup.single		= perf_event_init_cpu,
1321 		.teardown.single	= perf_event_exit_cpu,
1322 	},
1323 	[CPUHP_WORKQUEUE_PREP] = {
1324 		.name			= "workqueue:prepare",
1325 		.startup.single		= workqueue_prepare_cpu,
1326 		.teardown.single	= NULL,
1327 	},
1328 	[CPUHP_HRTIMERS_PREPARE] = {
1329 		.name			= "hrtimers:prepare",
1330 		.startup.single		= hrtimers_prepare_cpu,
1331 		.teardown.single	= hrtimers_dead_cpu,
1332 	},
1333 	[CPUHP_SMPCFD_PREPARE] = {
1334 		.name			= "smpcfd:prepare",
1335 		.startup.single		= smpcfd_prepare_cpu,
1336 		.teardown.single	= smpcfd_dead_cpu,
1337 	},
1338 	[CPUHP_RELAY_PREPARE] = {
1339 		.name			= "relay:prepare",
1340 		.startup.single		= relay_prepare_cpu,
1341 		.teardown.single	= NULL,
1342 	},
1343 	[CPUHP_SLAB_PREPARE] = {
1344 		.name			= "slab:prepare",
1345 		.startup.single		= slab_prepare_cpu,
1346 		.teardown.single	= slab_dead_cpu,
1347 	},
1348 	[CPUHP_RCUTREE_PREP] = {
1349 		.name			= "RCU/tree:prepare",
1350 		.startup.single		= rcutree_prepare_cpu,
1351 		.teardown.single	= rcutree_dead_cpu,
1352 	},
1353 	/*
1354 	 * On the tear-down path, timers_dead_cpu() must be invoked
1355 	 * before blk_mq_queue_reinit_notify() from notify_dead(),
1356 	 * otherwise a RCU stall occurs.
1357 	 */
1358 	[CPUHP_TIMERS_PREPARE] = {
1359 		.name			= "timers:prepare",
1360 		.startup.single		= timers_prepare_cpu,
1361 		.teardown.single	= timers_dead_cpu,
1362 	},
1363 	/* Kicks the plugged cpu into life */
1364 	[CPUHP_BRINGUP_CPU] = {
1365 		.name			= "cpu:bringup",
1366 		.startup.single		= bringup_cpu,
1367 		.teardown.single	= NULL,
1368 		.cant_stop		= true,
1369 	},
1370 	/* Final state before CPU kills itself */
1371 	[CPUHP_AP_IDLE_DEAD] = {
1372 		.name			= "idle:dead",
1373 	},
1374 	/*
1375 	 * Last state before CPU enters the idle loop to die. Transient state
1376 	 * for synchronization.
1377 	 */
1378 	[CPUHP_AP_OFFLINE] = {
1379 		.name			= "ap:offline",
1380 		.cant_stop		= true,
1381 	},
1382 	/* First state is scheduler control. Interrupts are disabled */
1383 	[CPUHP_AP_SCHED_STARTING] = {
1384 		.name			= "sched:starting",
1385 		.startup.single		= sched_cpu_starting,
1386 		.teardown.single	= sched_cpu_dying,
1387 	},
1388 	[CPUHP_AP_RCUTREE_DYING] = {
1389 		.name			= "RCU/tree:dying",
1390 		.startup.single		= NULL,
1391 		.teardown.single	= rcutree_dying_cpu,
1392 	},
1393 	[CPUHP_AP_SMPCFD_DYING] = {
1394 		.name			= "smpcfd:dying",
1395 		.startup.single		= NULL,
1396 		.teardown.single	= smpcfd_dying_cpu,
1397 	},
1398 	/* Entry state on starting. Interrupts enabled from here on. Transient
1399 	 * state for synchronsization */
1400 	[CPUHP_AP_ONLINE] = {
1401 		.name			= "ap:online",
1402 	},
1403 	/*
1404 	 * Handled on controll processor until the plugged processor manages
1405 	 * this itself.
1406 	 */
1407 	[CPUHP_TEARDOWN_CPU] = {
1408 		.name			= "cpu:teardown",
1409 		.startup.single		= NULL,
1410 		.teardown.single	= takedown_cpu,
1411 		.cant_stop		= true,
1412 	},
1413 	/* Handle smpboot threads park/unpark */
1414 	[CPUHP_AP_SMPBOOT_THREADS] = {
1415 		.name			= "smpboot/threads:online",
1416 		.startup.single		= smpboot_unpark_threads,
1417 		.teardown.single	= smpboot_park_threads,
1418 	},
1419 	[CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1420 		.name			= "irq/affinity:online",
1421 		.startup.single		= irq_affinity_online_cpu,
1422 		.teardown.single	= NULL,
1423 	},
1424 	[CPUHP_AP_PERF_ONLINE] = {
1425 		.name			= "perf:online",
1426 		.startup.single		= perf_event_init_cpu,
1427 		.teardown.single	= perf_event_exit_cpu,
1428 	},
1429 	[CPUHP_AP_WATCHDOG_ONLINE] = {
1430 		.name			= "lockup_detector:online",
1431 		.startup.single		= lockup_detector_online_cpu,
1432 		.teardown.single	= lockup_detector_offline_cpu,
1433 	},
1434 	[CPUHP_AP_WORKQUEUE_ONLINE] = {
1435 		.name			= "workqueue:online",
1436 		.startup.single		= workqueue_online_cpu,
1437 		.teardown.single	= workqueue_offline_cpu,
1438 	},
1439 	[CPUHP_AP_RCUTREE_ONLINE] = {
1440 		.name			= "RCU/tree:online",
1441 		.startup.single		= rcutree_online_cpu,
1442 		.teardown.single	= rcutree_offline_cpu,
1443 	},
1444 #endif
1445 	/*
1446 	 * The dynamically registered state space is here
1447 	 */
1448 
1449 #ifdef CONFIG_SMP
1450 	/* Last state is scheduler control setting the cpu active */
1451 	[CPUHP_AP_ACTIVE] = {
1452 		.name			= "sched:active",
1453 		.startup.single		= sched_cpu_activate,
1454 		.teardown.single	= sched_cpu_deactivate,
1455 	},
1456 #endif
1457 
1458 	/* CPU is fully up and running. */
1459 	[CPUHP_ONLINE] = {
1460 		.name			= "online",
1461 		.startup.single		= NULL,
1462 		.teardown.single	= NULL,
1463 	},
1464 };
1465 
1466 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1467 static int cpuhp_cb_check(enum cpuhp_state state)
1468 {
1469 	if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1470 		return -EINVAL;
1471 	return 0;
1472 }
1473 
1474 /*
1475  * Returns a free for dynamic slot assignment of the Online state. The states
1476  * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1477  * by having no name assigned.
1478  */
cpuhp_reserve_state(enum cpuhp_state state)1479 static int cpuhp_reserve_state(enum cpuhp_state state)
1480 {
1481 	enum cpuhp_state i, end;
1482 	struct cpuhp_step *step;
1483 
1484 	switch (state) {
1485 	case CPUHP_AP_ONLINE_DYN:
1486 		step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1487 		end = CPUHP_AP_ONLINE_DYN_END;
1488 		break;
1489 	case CPUHP_BP_PREPARE_DYN:
1490 		step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1491 		end = CPUHP_BP_PREPARE_DYN_END;
1492 		break;
1493 	default:
1494 		return -EINVAL;
1495 	}
1496 
1497 	for (i = state; i <= end; i++, step++) {
1498 		if (!step->name)
1499 			return i;
1500 	}
1501 	WARN(1, "No more dynamic states available for CPU hotplug\n");
1502 	return -ENOSPC;
1503 }
1504 
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1505 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1506 				 int (*startup)(unsigned int cpu),
1507 				 int (*teardown)(unsigned int cpu),
1508 				 bool multi_instance)
1509 {
1510 	/* (Un)Install the callbacks for further cpu hotplug operations */
1511 	struct cpuhp_step *sp;
1512 	int ret = 0;
1513 
1514 	/*
1515 	 * If name is NULL, then the state gets removed.
1516 	 *
1517 	 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1518 	 * the first allocation from these dynamic ranges, so the removal
1519 	 * would trigger a new allocation and clear the wrong (already
1520 	 * empty) state, leaving the callbacks of the to be cleared state
1521 	 * dangling, which causes wreckage on the next hotplug operation.
1522 	 */
1523 	if (name && (state == CPUHP_AP_ONLINE_DYN ||
1524 		     state == CPUHP_BP_PREPARE_DYN)) {
1525 		ret = cpuhp_reserve_state(state);
1526 		if (ret < 0)
1527 			return ret;
1528 		state = ret;
1529 	}
1530 	sp = cpuhp_get_step(state);
1531 	if (name && sp->name)
1532 		return -EBUSY;
1533 
1534 	sp->startup.single = startup;
1535 	sp->teardown.single = teardown;
1536 	sp->name = name;
1537 	sp->multi_instance = multi_instance;
1538 	INIT_HLIST_HEAD(&sp->list);
1539 	return ret;
1540 }
1541 
cpuhp_get_teardown_cb(enum cpuhp_state state)1542 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1543 {
1544 	return cpuhp_get_step(state)->teardown.single;
1545 }
1546 
1547 /*
1548  * Call the startup/teardown function for a step either on the AP or
1549  * on the current CPU.
1550  */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1551 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1552 			    struct hlist_node *node)
1553 {
1554 	struct cpuhp_step *sp = cpuhp_get_step(state);
1555 	int ret;
1556 
1557 	/*
1558 	 * If there's nothing to do, we done.
1559 	 * Relies on the union for multi_instance.
1560 	 */
1561 	if ((bringup && !sp->startup.single) ||
1562 	    (!bringup && !sp->teardown.single))
1563 		return 0;
1564 	/*
1565 	 * The non AP bound callbacks can fail on bringup. On teardown
1566 	 * e.g. module removal we crash for now.
1567 	 */
1568 #ifdef CONFIG_SMP
1569 	if (cpuhp_is_ap_state(state))
1570 		ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1571 	else
1572 		ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1573 #else
1574 	ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1575 #endif
1576 	BUG_ON(ret && !bringup);
1577 	return ret;
1578 }
1579 
1580 /*
1581  * Called from __cpuhp_setup_state on a recoverable failure.
1582  *
1583  * Note: The teardown callbacks for rollback are not allowed to fail!
1584  */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1585 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1586 				   struct hlist_node *node)
1587 {
1588 	int cpu;
1589 
1590 	/* Roll back the already executed steps on the other cpus */
1591 	for_each_present_cpu(cpu) {
1592 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1593 		int cpustate = st->state;
1594 
1595 		if (cpu >= failedcpu)
1596 			break;
1597 
1598 		/* Did we invoke the startup call on that cpu ? */
1599 		if (cpustate >= state)
1600 			cpuhp_issue_call(cpu, state, false, node);
1601 	}
1602 }
1603 
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1604 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1605 					  struct hlist_node *node,
1606 					  bool invoke)
1607 {
1608 	struct cpuhp_step *sp;
1609 	int cpu;
1610 	int ret;
1611 
1612 	lockdep_assert_cpus_held();
1613 
1614 	sp = cpuhp_get_step(state);
1615 	if (sp->multi_instance == false)
1616 		return -EINVAL;
1617 
1618 	mutex_lock(&cpuhp_state_mutex);
1619 
1620 	if (!invoke || !sp->startup.multi)
1621 		goto add_node;
1622 
1623 	/*
1624 	 * Try to call the startup callback for each present cpu
1625 	 * depending on the hotplug state of the cpu.
1626 	 */
1627 	for_each_present_cpu(cpu) {
1628 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1629 		int cpustate = st->state;
1630 
1631 		if (cpustate < state)
1632 			continue;
1633 
1634 		ret = cpuhp_issue_call(cpu, state, true, node);
1635 		if (ret) {
1636 			if (sp->teardown.multi)
1637 				cpuhp_rollback_install(cpu, state, node);
1638 			goto unlock;
1639 		}
1640 	}
1641 add_node:
1642 	ret = 0;
1643 	hlist_add_head(node, &sp->list);
1644 unlock:
1645 	mutex_unlock(&cpuhp_state_mutex);
1646 	return ret;
1647 }
1648 
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1649 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1650 			       bool invoke)
1651 {
1652 	int ret;
1653 
1654 	cpus_read_lock();
1655 	ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1656 	cpus_read_unlock();
1657 	return ret;
1658 }
1659 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1660 
1661 /**
1662  * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1663  * @state:		The state to setup
1664  * @invoke:		If true, the startup function is invoked for cpus where
1665  *			cpu state >= @state
1666  * @startup:		startup callback function
1667  * @teardown:		teardown callback function
1668  * @multi_instance:	State is set up for multiple instances which get
1669  *			added afterwards.
1670  *
1671  * The caller needs to hold cpus read locked while calling this function.
1672  * Returns:
1673  *   On success:
1674  *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1675  *      0 for all other states
1676  *   On failure: proper (negative) error code
1677  */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1678 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1679 				   const char *name, bool invoke,
1680 				   int (*startup)(unsigned int cpu),
1681 				   int (*teardown)(unsigned int cpu),
1682 				   bool multi_instance)
1683 {
1684 	int cpu, ret = 0;
1685 	bool dynstate;
1686 
1687 	lockdep_assert_cpus_held();
1688 
1689 	if (cpuhp_cb_check(state) || !name)
1690 		return -EINVAL;
1691 
1692 	mutex_lock(&cpuhp_state_mutex);
1693 
1694 	ret = cpuhp_store_callbacks(state, name, startup, teardown,
1695 				    multi_instance);
1696 
1697 	dynstate = state == CPUHP_AP_ONLINE_DYN;
1698 	if (ret > 0 && dynstate) {
1699 		state = ret;
1700 		ret = 0;
1701 	}
1702 
1703 	if (ret || !invoke || !startup)
1704 		goto out;
1705 
1706 	/*
1707 	 * Try to call the startup callback for each present cpu
1708 	 * depending on the hotplug state of the cpu.
1709 	 */
1710 	for_each_present_cpu(cpu) {
1711 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1712 		int cpustate = st->state;
1713 
1714 		if (cpustate < state)
1715 			continue;
1716 
1717 		ret = cpuhp_issue_call(cpu, state, true, NULL);
1718 		if (ret) {
1719 			if (teardown)
1720 				cpuhp_rollback_install(cpu, state, NULL);
1721 			cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1722 			goto out;
1723 		}
1724 	}
1725 out:
1726 	mutex_unlock(&cpuhp_state_mutex);
1727 	/*
1728 	 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1729 	 * dynamically allocated state in case of success.
1730 	 */
1731 	if (!ret && dynstate)
1732 		return state;
1733 	return ret;
1734 }
1735 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1736 
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1737 int __cpuhp_setup_state(enum cpuhp_state state,
1738 			const char *name, bool invoke,
1739 			int (*startup)(unsigned int cpu),
1740 			int (*teardown)(unsigned int cpu),
1741 			bool multi_instance)
1742 {
1743 	int ret;
1744 
1745 	cpus_read_lock();
1746 	ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1747 					     teardown, multi_instance);
1748 	cpus_read_unlock();
1749 	return ret;
1750 }
1751 EXPORT_SYMBOL(__cpuhp_setup_state);
1752 
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1753 int __cpuhp_state_remove_instance(enum cpuhp_state state,
1754 				  struct hlist_node *node, bool invoke)
1755 {
1756 	struct cpuhp_step *sp = cpuhp_get_step(state);
1757 	int cpu;
1758 
1759 	BUG_ON(cpuhp_cb_check(state));
1760 
1761 	if (!sp->multi_instance)
1762 		return -EINVAL;
1763 
1764 	cpus_read_lock();
1765 	mutex_lock(&cpuhp_state_mutex);
1766 
1767 	if (!invoke || !cpuhp_get_teardown_cb(state))
1768 		goto remove;
1769 	/*
1770 	 * Call the teardown callback for each present cpu depending
1771 	 * on the hotplug state of the cpu. This function is not
1772 	 * allowed to fail currently!
1773 	 */
1774 	for_each_present_cpu(cpu) {
1775 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1776 		int cpustate = st->state;
1777 
1778 		if (cpustate >= state)
1779 			cpuhp_issue_call(cpu, state, false, node);
1780 	}
1781 
1782 remove:
1783 	hlist_del(node);
1784 	mutex_unlock(&cpuhp_state_mutex);
1785 	cpus_read_unlock();
1786 
1787 	return 0;
1788 }
1789 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1790 
1791 /**
1792  * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1793  * @state:	The state to remove
1794  * @invoke:	If true, the teardown function is invoked for cpus where
1795  *		cpu state >= @state
1796  *
1797  * The caller needs to hold cpus read locked while calling this function.
1798  * The teardown callback is currently not allowed to fail. Think
1799  * about module removal!
1800  */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)1801 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1802 {
1803 	struct cpuhp_step *sp = cpuhp_get_step(state);
1804 	int cpu;
1805 
1806 	BUG_ON(cpuhp_cb_check(state));
1807 
1808 	lockdep_assert_cpus_held();
1809 
1810 	mutex_lock(&cpuhp_state_mutex);
1811 	if (sp->multi_instance) {
1812 		WARN(!hlist_empty(&sp->list),
1813 		     "Error: Removing state %d which has instances left.\n",
1814 		     state);
1815 		goto remove;
1816 	}
1817 
1818 	if (!invoke || !cpuhp_get_teardown_cb(state))
1819 		goto remove;
1820 
1821 	/*
1822 	 * Call the teardown callback for each present cpu depending
1823 	 * on the hotplug state of the cpu. This function is not
1824 	 * allowed to fail currently!
1825 	 */
1826 	for_each_present_cpu(cpu) {
1827 		struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1828 		int cpustate = st->state;
1829 
1830 		if (cpustate >= state)
1831 			cpuhp_issue_call(cpu, state, false, NULL);
1832 	}
1833 remove:
1834 	cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1835 	mutex_unlock(&cpuhp_state_mutex);
1836 }
1837 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1838 
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)1839 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1840 {
1841 	cpus_read_lock();
1842 	__cpuhp_remove_state_cpuslocked(state, invoke);
1843 	cpus_read_unlock();
1844 }
1845 EXPORT_SYMBOL(__cpuhp_remove_state);
1846 
1847 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
show_cpuhp_state(struct device * dev,struct device_attribute * attr,char * buf)1848 static ssize_t show_cpuhp_state(struct device *dev,
1849 				struct device_attribute *attr, char *buf)
1850 {
1851 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1852 
1853 	return sprintf(buf, "%d\n", st->state);
1854 }
1855 static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1856 
write_cpuhp_target(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1857 static ssize_t write_cpuhp_target(struct device *dev,
1858 				  struct device_attribute *attr,
1859 				  const char *buf, size_t count)
1860 {
1861 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1862 	struct cpuhp_step *sp;
1863 	int target, ret;
1864 
1865 	ret = kstrtoint(buf, 10, &target);
1866 	if (ret)
1867 		return ret;
1868 
1869 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1870 	if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1871 		return -EINVAL;
1872 #else
1873 	if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1874 		return -EINVAL;
1875 #endif
1876 
1877 	ret = lock_device_hotplug_sysfs();
1878 	if (ret)
1879 		return ret;
1880 
1881 	mutex_lock(&cpuhp_state_mutex);
1882 	sp = cpuhp_get_step(target);
1883 	ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1884 	mutex_unlock(&cpuhp_state_mutex);
1885 	if (ret)
1886 		goto out;
1887 
1888 	if (st->state < target)
1889 		ret = do_cpu_up(dev->id, target);
1890 	else
1891 		ret = do_cpu_down(dev->id, target);
1892 out:
1893 	unlock_device_hotplug();
1894 	return ret ? ret : count;
1895 }
1896 
show_cpuhp_target(struct device * dev,struct device_attribute * attr,char * buf)1897 static ssize_t show_cpuhp_target(struct device *dev,
1898 				 struct device_attribute *attr, char *buf)
1899 {
1900 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1901 
1902 	return sprintf(buf, "%d\n", st->target);
1903 }
1904 static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1905 
1906 
write_cpuhp_fail(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1907 static ssize_t write_cpuhp_fail(struct device *dev,
1908 				struct device_attribute *attr,
1909 				const char *buf, size_t count)
1910 {
1911 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1912 	struct cpuhp_step *sp;
1913 	int fail, ret;
1914 
1915 	ret = kstrtoint(buf, 10, &fail);
1916 	if (ret)
1917 		return ret;
1918 
1919 	/*
1920 	 * Cannot fail STARTING/DYING callbacks.
1921 	 */
1922 	if (cpuhp_is_atomic_state(fail))
1923 		return -EINVAL;
1924 
1925 	/*
1926 	 * Cannot fail anything that doesn't have callbacks.
1927 	 */
1928 	mutex_lock(&cpuhp_state_mutex);
1929 	sp = cpuhp_get_step(fail);
1930 	if (!sp->startup.single && !sp->teardown.single)
1931 		ret = -EINVAL;
1932 	mutex_unlock(&cpuhp_state_mutex);
1933 	if (ret)
1934 		return ret;
1935 
1936 	st->fail = fail;
1937 
1938 	return count;
1939 }
1940 
show_cpuhp_fail(struct device * dev,struct device_attribute * attr,char * buf)1941 static ssize_t show_cpuhp_fail(struct device *dev,
1942 			       struct device_attribute *attr, char *buf)
1943 {
1944 	struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1945 
1946 	return sprintf(buf, "%d\n", st->fail);
1947 }
1948 
1949 static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1950 
1951 static struct attribute *cpuhp_cpu_attrs[] = {
1952 	&dev_attr_state.attr,
1953 	&dev_attr_target.attr,
1954 	&dev_attr_fail.attr,
1955 	NULL
1956 };
1957 
1958 static const struct attribute_group cpuhp_cpu_attr_group = {
1959 	.attrs = cpuhp_cpu_attrs,
1960 	.name = "hotplug",
1961 	NULL
1962 };
1963 
show_cpuhp_states(struct device * dev,struct device_attribute * attr,char * buf)1964 static ssize_t show_cpuhp_states(struct device *dev,
1965 				 struct device_attribute *attr, char *buf)
1966 {
1967 	ssize_t cur, res = 0;
1968 	int i;
1969 
1970 	mutex_lock(&cpuhp_state_mutex);
1971 	for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1972 		struct cpuhp_step *sp = cpuhp_get_step(i);
1973 
1974 		if (sp->name) {
1975 			cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1976 			buf += cur;
1977 			res += cur;
1978 		}
1979 	}
1980 	mutex_unlock(&cpuhp_state_mutex);
1981 	return res;
1982 }
1983 static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1984 
1985 static struct attribute *cpuhp_cpu_root_attrs[] = {
1986 	&dev_attr_states.attr,
1987 	NULL
1988 };
1989 
1990 static const struct attribute_group cpuhp_cpu_root_attr_group = {
1991 	.attrs = cpuhp_cpu_root_attrs,
1992 	.name = "hotplug",
1993 	NULL
1994 };
1995 
1996 #ifdef CONFIG_HOTPLUG_SMT
1997 
1998 static const char *smt_states[] = {
1999 	[CPU_SMT_ENABLED]		= "on",
2000 	[CPU_SMT_DISABLED]		= "off",
2001 	[CPU_SMT_FORCE_DISABLED]	= "forceoff",
2002 	[CPU_SMT_NOT_SUPPORTED]		= "notsupported",
2003 };
2004 
2005 static ssize_t
show_smt_control(struct device * dev,struct device_attribute * attr,char * buf)2006 show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2007 {
2008 	return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2009 }
2010 
cpuhp_offline_cpu_device(unsigned int cpu)2011 static void cpuhp_offline_cpu_device(unsigned int cpu)
2012 {
2013 	struct device *dev = get_cpu_device(cpu);
2014 
2015 	dev->offline = true;
2016 	/* Tell user space about the state change */
2017 	kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2018 }
2019 
cpuhp_online_cpu_device(unsigned int cpu)2020 static void cpuhp_online_cpu_device(unsigned int cpu)
2021 {
2022 	struct device *dev = get_cpu_device(cpu);
2023 
2024 	dev->offline = false;
2025 	/* Tell user space about the state change */
2026 	kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2027 }
2028 
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2029 static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2030 {
2031 	int cpu, ret = 0;
2032 
2033 	cpu_maps_update_begin();
2034 	for_each_online_cpu(cpu) {
2035 		if (topology_is_primary_thread(cpu))
2036 			continue;
2037 		ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2038 		if (ret)
2039 			break;
2040 		/*
2041 		 * As this needs to hold the cpu maps lock it's impossible
2042 		 * to call device_offline() because that ends up calling
2043 		 * cpu_down() which takes cpu maps lock. cpu maps lock
2044 		 * needs to be held as this might race against in kernel
2045 		 * abusers of the hotplug machinery (thermal management).
2046 		 *
2047 		 * So nothing would update device:offline state. That would
2048 		 * leave the sysfs entry stale and prevent onlining after
2049 		 * smt control has been changed to 'off' again. This is
2050 		 * called under the sysfs hotplug lock, so it is properly
2051 		 * serialized against the regular offline usage.
2052 		 */
2053 		cpuhp_offline_cpu_device(cpu);
2054 	}
2055 	if (!ret)
2056 		cpu_smt_control = ctrlval;
2057 	cpu_maps_update_done();
2058 	return ret;
2059 }
2060 
cpuhp_smt_enable(void)2061 static int cpuhp_smt_enable(void)
2062 {
2063 	int cpu, ret = 0;
2064 
2065 	cpu_maps_update_begin();
2066 	cpu_smt_control = CPU_SMT_ENABLED;
2067 	for_each_present_cpu(cpu) {
2068 		/* Skip online CPUs and CPUs on offline nodes */
2069 		if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2070 			continue;
2071 		ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2072 		if (ret)
2073 			break;
2074 		/* See comment in cpuhp_smt_disable() */
2075 		cpuhp_online_cpu_device(cpu);
2076 	}
2077 	cpu_maps_update_done();
2078 	return ret;
2079 }
2080 
2081 static ssize_t
store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2082 store_smt_control(struct device *dev, struct device_attribute *attr,
2083 		  const char *buf, size_t count)
2084 {
2085 	int ctrlval, ret;
2086 
2087 	if (sysfs_streq(buf, "on"))
2088 		ctrlval = CPU_SMT_ENABLED;
2089 	else if (sysfs_streq(buf, "off"))
2090 		ctrlval = CPU_SMT_DISABLED;
2091 	else if (sysfs_streq(buf, "forceoff"))
2092 		ctrlval = CPU_SMT_FORCE_DISABLED;
2093 	else
2094 		return -EINVAL;
2095 
2096 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2097 		return -EPERM;
2098 
2099 	if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2100 		return -ENODEV;
2101 
2102 	ret = lock_device_hotplug_sysfs();
2103 	if (ret)
2104 		return ret;
2105 
2106 	if (ctrlval != cpu_smt_control) {
2107 		switch (ctrlval) {
2108 		case CPU_SMT_ENABLED:
2109 			ret = cpuhp_smt_enable();
2110 			break;
2111 		case CPU_SMT_DISABLED:
2112 		case CPU_SMT_FORCE_DISABLED:
2113 			ret = cpuhp_smt_disable(ctrlval);
2114 			break;
2115 		}
2116 	}
2117 
2118 	unlock_device_hotplug();
2119 	return ret ? ret : count;
2120 }
2121 static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2122 
2123 static ssize_t
show_smt_active(struct device * dev,struct device_attribute * attr,char * buf)2124 show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2125 {
2126 	bool active = topology_max_smt_threads() > 1;
2127 
2128 	return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2129 }
2130 static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2131 
2132 static struct attribute *cpuhp_smt_attrs[] = {
2133 	&dev_attr_control.attr,
2134 	&dev_attr_active.attr,
2135 	NULL
2136 };
2137 
2138 static const struct attribute_group cpuhp_smt_attr_group = {
2139 	.attrs = cpuhp_smt_attrs,
2140 	.name = "smt",
2141 	NULL
2142 };
2143 
cpu_smt_state_init(void)2144 static int __init cpu_smt_state_init(void)
2145 {
2146 	return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2147 				  &cpuhp_smt_attr_group);
2148 }
2149 
2150 #else
cpu_smt_state_init(void)2151 static inline int cpu_smt_state_init(void) { return 0; }
2152 #endif
2153 
cpuhp_sysfs_init(void)2154 static int __init cpuhp_sysfs_init(void)
2155 {
2156 	int cpu, ret;
2157 
2158 	ret = cpu_smt_state_init();
2159 	if (ret)
2160 		return ret;
2161 
2162 	ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2163 				 &cpuhp_cpu_root_attr_group);
2164 	if (ret)
2165 		return ret;
2166 
2167 	for_each_possible_cpu(cpu) {
2168 		struct device *dev = get_cpu_device(cpu);
2169 
2170 		if (!dev)
2171 			continue;
2172 		ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2173 		if (ret)
2174 			return ret;
2175 	}
2176 	return 0;
2177 }
2178 device_initcall(cpuhp_sysfs_init);
2179 #endif
2180 
2181 /*
2182  * cpu_bit_bitmap[] is a special, "compressed" data structure that
2183  * represents all NR_CPUS bits binary values of 1<<nr.
2184  *
2185  * It is used by cpumask_of() to get a constant address to a CPU
2186  * mask value that has a single bit set only.
2187  */
2188 
2189 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2190 #define MASK_DECLARE_1(x)	[x+1][0] = (1UL << (x))
2191 #define MASK_DECLARE_2(x)	MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2192 #define MASK_DECLARE_4(x)	MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2193 #define MASK_DECLARE_8(x)	MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2194 
2195 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2196 
2197 	MASK_DECLARE_8(0),	MASK_DECLARE_8(8),
2198 	MASK_DECLARE_8(16),	MASK_DECLARE_8(24),
2199 #if BITS_PER_LONG > 32
2200 	MASK_DECLARE_8(32),	MASK_DECLARE_8(40),
2201 	MASK_DECLARE_8(48),	MASK_DECLARE_8(56),
2202 #endif
2203 };
2204 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2205 
2206 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2207 EXPORT_SYMBOL(cpu_all_bits);
2208 
2209 #ifdef CONFIG_INIT_ALL_POSSIBLE
2210 struct cpumask __cpu_possible_mask __read_mostly
2211 	= {CPU_BITS_ALL};
2212 #else
2213 struct cpumask __cpu_possible_mask __read_mostly;
2214 #endif
2215 EXPORT_SYMBOL(__cpu_possible_mask);
2216 
2217 struct cpumask __cpu_online_mask __read_mostly;
2218 EXPORT_SYMBOL(__cpu_online_mask);
2219 
2220 struct cpumask __cpu_present_mask __read_mostly;
2221 EXPORT_SYMBOL(__cpu_present_mask);
2222 
2223 struct cpumask __cpu_active_mask __read_mostly;
2224 EXPORT_SYMBOL(__cpu_active_mask);
2225 
init_cpu_present(const struct cpumask * src)2226 void init_cpu_present(const struct cpumask *src)
2227 {
2228 	cpumask_copy(&__cpu_present_mask, src);
2229 }
2230 
init_cpu_possible(const struct cpumask * src)2231 void init_cpu_possible(const struct cpumask *src)
2232 {
2233 	cpumask_copy(&__cpu_possible_mask, src);
2234 }
2235 
init_cpu_online(const struct cpumask * src)2236 void init_cpu_online(const struct cpumask *src)
2237 {
2238 	cpumask_copy(&__cpu_online_mask, src);
2239 }
2240 
2241 /*
2242  * Activate the first processor.
2243  */
boot_cpu_init(void)2244 void __init boot_cpu_init(void)
2245 {
2246 	int cpu = smp_processor_id();
2247 
2248 	/* Mark the boot cpu "present", "online" etc for SMP and UP case */
2249 	set_cpu_online(cpu, true);
2250 	set_cpu_active(cpu, true);
2251 	set_cpu_present(cpu, true);
2252 	set_cpu_possible(cpu, true);
2253 
2254 #ifdef CONFIG_SMP
2255 	__boot_cpu_id = cpu;
2256 #endif
2257 }
2258 
2259 /*
2260  * Must be called _AFTER_ setting up the per_cpu areas
2261  */
boot_cpu_hotplug_init(void)2262 void __init boot_cpu_hotplug_init(void)
2263 {
2264 #ifdef CONFIG_SMP
2265 	this_cpu_write(cpuhp_state.booted_once, true);
2266 #endif
2267 	this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2268 }
2269