1 /* auditsc.c -- System-call auditing support
2  * Handles all system-call specific auditing features.
3  *
4  * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5  * Copyright 2005 Hewlett-Packard Development Company, L.P.
6  * Copyright (C) 2005, 2006 IBM Corporation
7  * All Rights Reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24  *
25  * Many of the ideas implemented here are from Stephen C. Tweedie,
26  * especially the idea of avoiding a copy by using getname.
27  *
28  * The method for actual interception of syscall entry and exit (not in
29  * this file -- see entry.S) is based on a GPL'd patch written by
30  * okir@suse.de and Copyright 2003 SuSE Linux AG.
31  *
32  * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33  * 2006.
34  *
35  * The support of additional filter rules compares (>, <, >=, <=) was
36  * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37  *
38  * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39  * filesystem information.
40  *
41  * Subject and object context labeling support added by <danjones@us.ibm.com>
42  * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43  */
44 
45 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
46 
47 #include <linux/init.h>
48 #include <asm/types.h>
49 #include <linux/atomic.h>
50 #include <linux/fs.h>
51 #include <linux/namei.h>
52 #include <linux/mm.h>
53 #include <linux/export.h>
54 #include <linux/slab.h>
55 #include <linux/mount.h>
56 #include <linux/socket.h>
57 #include <linux/mqueue.h>
58 #include <linux/audit.h>
59 #include <linux/personality.h>
60 #include <linux/time.h>
61 #include <linux/netlink.h>
62 #include <linux/compiler.h>
63 #include <asm/unistd.h>
64 #include <linux/security.h>
65 #include <linux/list.h>
66 #include <linux/binfmts.h>
67 #include <linux/highmem.h>
68 #include <linux/syscalls.h>
69 #include <asm/syscall.h>
70 #include <linux/capability.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compat.h>
73 #include <linux/ctype.h>
74 #include <linux/string.h>
75 #include <linux/uaccess.h>
76 #include <linux/fsnotify_backend.h>
77 #include <uapi/linux/limits.h>
78 
79 #include "audit.h"
80 
81 /* flags stating the success for a syscall */
82 #define AUDITSC_INVALID 0
83 #define AUDITSC_SUCCESS 1
84 #define AUDITSC_FAILURE 2
85 
86 /* no execve audit message should be longer than this (userspace limits),
87  * see the note near the top of audit_log_execve_info() about this value */
88 #define MAX_EXECVE_AUDIT_LEN 7500
89 
90 /* max length to print of cmdline/proctitle value during audit */
91 #define MAX_PROCTITLE_AUDIT_LEN 128
92 
93 /* number of audit rules */
94 int audit_n_rules;
95 
96 /* determines whether we collect data for signals sent */
97 int audit_signals;
98 
99 struct audit_aux_data {
100 	struct audit_aux_data	*next;
101 	int			type;
102 };
103 
104 #define AUDIT_AUX_IPCPERM	0
105 
106 /* Number of target pids per aux struct. */
107 #define AUDIT_AUX_PIDS	16
108 
109 struct audit_aux_data_pids {
110 	struct audit_aux_data	d;
111 	pid_t			target_pid[AUDIT_AUX_PIDS];
112 	kuid_t			target_auid[AUDIT_AUX_PIDS];
113 	kuid_t			target_uid[AUDIT_AUX_PIDS];
114 	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
115 	u32			target_sid[AUDIT_AUX_PIDS];
116 	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
117 	int			pid_count;
118 };
119 
120 struct audit_aux_data_bprm_fcaps {
121 	struct audit_aux_data	d;
122 	struct audit_cap_data	fcap;
123 	unsigned int		fcap_ver;
124 	struct audit_cap_data	old_pcap;
125 	struct audit_cap_data	new_pcap;
126 };
127 
128 struct audit_tree_refs {
129 	struct audit_tree_refs *next;
130 	struct audit_chunk *c[31];
131 };
132 
audit_match_perm(struct audit_context * ctx,int mask)133 static int audit_match_perm(struct audit_context *ctx, int mask)
134 {
135 	unsigned n;
136 	if (unlikely(!ctx))
137 		return 0;
138 	n = ctx->major;
139 
140 	switch (audit_classify_syscall(ctx->arch, n)) {
141 	case 0:	/* native */
142 		if ((mask & AUDIT_PERM_WRITE) &&
143 		     audit_match_class(AUDIT_CLASS_WRITE, n))
144 			return 1;
145 		if ((mask & AUDIT_PERM_READ) &&
146 		     audit_match_class(AUDIT_CLASS_READ, n))
147 			return 1;
148 		if ((mask & AUDIT_PERM_ATTR) &&
149 		     audit_match_class(AUDIT_CLASS_CHATTR, n))
150 			return 1;
151 		return 0;
152 	case 1: /* 32bit on biarch */
153 		if ((mask & AUDIT_PERM_WRITE) &&
154 		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
155 			return 1;
156 		if ((mask & AUDIT_PERM_READ) &&
157 		     audit_match_class(AUDIT_CLASS_READ_32, n))
158 			return 1;
159 		if ((mask & AUDIT_PERM_ATTR) &&
160 		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
161 			return 1;
162 		return 0;
163 	case 2: /* open */
164 		return mask & ACC_MODE(ctx->argv[1]);
165 	case 3: /* openat */
166 		return mask & ACC_MODE(ctx->argv[2]);
167 	case 4: /* socketcall */
168 		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
169 	case 5: /* execve */
170 		return mask & AUDIT_PERM_EXEC;
171 	default:
172 		return 0;
173 	}
174 }
175 
audit_match_filetype(struct audit_context * ctx,int val)176 static int audit_match_filetype(struct audit_context *ctx, int val)
177 {
178 	struct audit_names *n;
179 	umode_t mode = (umode_t)val;
180 
181 	if (unlikely(!ctx))
182 		return 0;
183 
184 	list_for_each_entry(n, &ctx->names_list, list) {
185 		if ((n->ino != AUDIT_INO_UNSET) &&
186 		    ((n->mode & S_IFMT) == mode))
187 			return 1;
188 	}
189 
190 	return 0;
191 }
192 
193 /*
194  * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
195  * ->first_trees points to its beginning, ->trees - to the current end of data.
196  * ->tree_count is the number of free entries in array pointed to by ->trees.
197  * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
198  * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
199  * it's going to remain 1-element for almost any setup) until we free context itself.
200  * References in it _are_ dropped - at the same time we free/drop aux stuff.
201  */
202 
203 #ifdef CONFIG_AUDIT_TREE
audit_set_auditable(struct audit_context * ctx)204 static void audit_set_auditable(struct audit_context *ctx)
205 {
206 	if (!ctx->prio) {
207 		ctx->prio = 1;
208 		ctx->current_state = AUDIT_RECORD_CONTEXT;
209 	}
210 }
211 
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)212 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
213 {
214 	struct audit_tree_refs *p = ctx->trees;
215 	int left = ctx->tree_count;
216 	if (likely(left)) {
217 		p->c[--left] = chunk;
218 		ctx->tree_count = left;
219 		return 1;
220 	}
221 	if (!p)
222 		return 0;
223 	p = p->next;
224 	if (p) {
225 		p->c[30] = chunk;
226 		ctx->trees = p;
227 		ctx->tree_count = 30;
228 		return 1;
229 	}
230 	return 0;
231 }
232 
grow_tree_refs(struct audit_context * ctx)233 static int grow_tree_refs(struct audit_context *ctx)
234 {
235 	struct audit_tree_refs *p = ctx->trees;
236 	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
237 	if (!ctx->trees) {
238 		ctx->trees = p;
239 		return 0;
240 	}
241 	if (p)
242 		p->next = ctx->trees;
243 	else
244 		ctx->first_trees = ctx->trees;
245 	ctx->tree_count = 31;
246 	return 1;
247 }
248 #endif
249 
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)250 static void unroll_tree_refs(struct audit_context *ctx,
251 		      struct audit_tree_refs *p, int count)
252 {
253 #ifdef CONFIG_AUDIT_TREE
254 	struct audit_tree_refs *q;
255 	int n;
256 	if (!p) {
257 		/* we started with empty chain */
258 		p = ctx->first_trees;
259 		count = 31;
260 		/* if the very first allocation has failed, nothing to do */
261 		if (!p)
262 			return;
263 	}
264 	n = count;
265 	for (q = p; q != ctx->trees; q = q->next, n = 31) {
266 		while (n--) {
267 			audit_put_chunk(q->c[n]);
268 			q->c[n] = NULL;
269 		}
270 	}
271 	while (n-- > ctx->tree_count) {
272 		audit_put_chunk(q->c[n]);
273 		q->c[n] = NULL;
274 	}
275 	ctx->trees = p;
276 	ctx->tree_count = count;
277 #endif
278 }
279 
free_tree_refs(struct audit_context * ctx)280 static void free_tree_refs(struct audit_context *ctx)
281 {
282 	struct audit_tree_refs *p, *q;
283 	for (p = ctx->first_trees; p; p = q) {
284 		q = p->next;
285 		kfree(p);
286 	}
287 }
288 
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)289 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
290 {
291 #ifdef CONFIG_AUDIT_TREE
292 	struct audit_tree_refs *p;
293 	int n;
294 	if (!tree)
295 		return 0;
296 	/* full ones */
297 	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
298 		for (n = 0; n < 31; n++)
299 			if (audit_tree_match(p->c[n], tree))
300 				return 1;
301 	}
302 	/* partial */
303 	if (p) {
304 		for (n = ctx->tree_count; n < 31; n++)
305 			if (audit_tree_match(p->c[n], tree))
306 				return 1;
307 	}
308 #endif
309 	return 0;
310 }
311 
audit_compare_uid(kuid_t uid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)312 static int audit_compare_uid(kuid_t uid,
313 			     struct audit_names *name,
314 			     struct audit_field *f,
315 			     struct audit_context *ctx)
316 {
317 	struct audit_names *n;
318 	int rc;
319 
320 	if (name) {
321 		rc = audit_uid_comparator(uid, f->op, name->uid);
322 		if (rc)
323 			return rc;
324 	}
325 
326 	if (ctx) {
327 		list_for_each_entry(n, &ctx->names_list, list) {
328 			rc = audit_uid_comparator(uid, f->op, n->uid);
329 			if (rc)
330 				return rc;
331 		}
332 	}
333 	return 0;
334 }
335 
audit_compare_gid(kgid_t gid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)336 static int audit_compare_gid(kgid_t gid,
337 			     struct audit_names *name,
338 			     struct audit_field *f,
339 			     struct audit_context *ctx)
340 {
341 	struct audit_names *n;
342 	int rc;
343 
344 	if (name) {
345 		rc = audit_gid_comparator(gid, f->op, name->gid);
346 		if (rc)
347 			return rc;
348 	}
349 
350 	if (ctx) {
351 		list_for_each_entry(n, &ctx->names_list, list) {
352 			rc = audit_gid_comparator(gid, f->op, n->gid);
353 			if (rc)
354 				return rc;
355 		}
356 	}
357 	return 0;
358 }
359 
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)360 static int audit_field_compare(struct task_struct *tsk,
361 			       const struct cred *cred,
362 			       struct audit_field *f,
363 			       struct audit_context *ctx,
364 			       struct audit_names *name)
365 {
366 	switch (f->val) {
367 	/* process to file object comparisons */
368 	case AUDIT_COMPARE_UID_TO_OBJ_UID:
369 		return audit_compare_uid(cred->uid, name, f, ctx);
370 	case AUDIT_COMPARE_GID_TO_OBJ_GID:
371 		return audit_compare_gid(cred->gid, name, f, ctx);
372 	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
373 		return audit_compare_uid(cred->euid, name, f, ctx);
374 	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
375 		return audit_compare_gid(cred->egid, name, f, ctx);
376 	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
377 		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
378 	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
379 		return audit_compare_uid(cred->suid, name, f, ctx);
380 	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
381 		return audit_compare_gid(cred->sgid, name, f, ctx);
382 	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
383 		return audit_compare_uid(cred->fsuid, name, f, ctx);
384 	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
385 		return audit_compare_gid(cred->fsgid, name, f, ctx);
386 	/* uid comparisons */
387 	case AUDIT_COMPARE_UID_TO_AUID:
388 		return audit_uid_comparator(cred->uid, f->op,
389 					    audit_get_loginuid(tsk));
390 	case AUDIT_COMPARE_UID_TO_EUID:
391 		return audit_uid_comparator(cred->uid, f->op, cred->euid);
392 	case AUDIT_COMPARE_UID_TO_SUID:
393 		return audit_uid_comparator(cred->uid, f->op, cred->suid);
394 	case AUDIT_COMPARE_UID_TO_FSUID:
395 		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
396 	/* auid comparisons */
397 	case AUDIT_COMPARE_AUID_TO_EUID:
398 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
399 					    cred->euid);
400 	case AUDIT_COMPARE_AUID_TO_SUID:
401 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
402 					    cred->suid);
403 	case AUDIT_COMPARE_AUID_TO_FSUID:
404 		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
405 					    cred->fsuid);
406 	/* euid comparisons */
407 	case AUDIT_COMPARE_EUID_TO_SUID:
408 		return audit_uid_comparator(cred->euid, f->op, cred->suid);
409 	case AUDIT_COMPARE_EUID_TO_FSUID:
410 		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
411 	/* suid comparisons */
412 	case AUDIT_COMPARE_SUID_TO_FSUID:
413 		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
414 	/* gid comparisons */
415 	case AUDIT_COMPARE_GID_TO_EGID:
416 		return audit_gid_comparator(cred->gid, f->op, cred->egid);
417 	case AUDIT_COMPARE_GID_TO_SGID:
418 		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
419 	case AUDIT_COMPARE_GID_TO_FSGID:
420 		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
421 	/* egid comparisons */
422 	case AUDIT_COMPARE_EGID_TO_SGID:
423 		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
424 	case AUDIT_COMPARE_EGID_TO_FSGID:
425 		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
426 	/* sgid comparison */
427 	case AUDIT_COMPARE_SGID_TO_FSGID:
428 		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
429 	default:
430 		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
431 		return 0;
432 	}
433 	return 0;
434 }
435 
436 /* Determine if any context name data matches a rule's watch data */
437 /* Compare a task_struct with an audit_rule.  Return 1 on match, 0
438  * otherwise.
439  *
440  * If task_creation is true, this is an explicit indication that we are
441  * filtering a task rule at task creation time.  This and tsk == current are
442  * the only situations where tsk->cred may be accessed without an rcu read lock.
443  */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)444 static int audit_filter_rules(struct task_struct *tsk,
445 			      struct audit_krule *rule,
446 			      struct audit_context *ctx,
447 			      struct audit_names *name,
448 			      enum audit_state *state,
449 			      bool task_creation)
450 {
451 	const struct cred *cred;
452 	int i, need_sid = 1;
453 	u32 sid;
454 	unsigned int sessionid;
455 
456 	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
457 
458 	for (i = 0; i < rule->field_count; i++) {
459 		struct audit_field *f = &rule->fields[i];
460 		struct audit_names *n;
461 		int result = 0;
462 		pid_t pid;
463 
464 		switch (f->type) {
465 		case AUDIT_PID:
466 			pid = task_tgid_nr(tsk);
467 			result = audit_comparator(pid, f->op, f->val);
468 			break;
469 		case AUDIT_PPID:
470 			if (ctx) {
471 				if (!ctx->ppid)
472 					ctx->ppid = task_ppid_nr(tsk);
473 				result = audit_comparator(ctx->ppid, f->op, f->val);
474 			}
475 			break;
476 		case AUDIT_EXE:
477 			result = audit_exe_compare(tsk, rule->exe);
478 			if (f->op == Audit_not_equal)
479 				result = !result;
480 			break;
481 		case AUDIT_UID:
482 			result = audit_uid_comparator(cred->uid, f->op, f->uid);
483 			break;
484 		case AUDIT_EUID:
485 			result = audit_uid_comparator(cred->euid, f->op, f->uid);
486 			break;
487 		case AUDIT_SUID:
488 			result = audit_uid_comparator(cred->suid, f->op, f->uid);
489 			break;
490 		case AUDIT_FSUID:
491 			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
492 			break;
493 		case AUDIT_GID:
494 			result = audit_gid_comparator(cred->gid, f->op, f->gid);
495 			if (f->op == Audit_equal) {
496 				if (!result)
497 					result = groups_search(cred->group_info, f->gid);
498 			} else if (f->op == Audit_not_equal) {
499 				if (result)
500 					result = !groups_search(cred->group_info, f->gid);
501 			}
502 			break;
503 		case AUDIT_EGID:
504 			result = audit_gid_comparator(cred->egid, f->op, f->gid);
505 			if (f->op == Audit_equal) {
506 				if (!result)
507 					result = groups_search(cred->group_info, f->gid);
508 			} else if (f->op == Audit_not_equal) {
509 				if (result)
510 					result = !groups_search(cred->group_info, f->gid);
511 			}
512 			break;
513 		case AUDIT_SGID:
514 			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
515 			break;
516 		case AUDIT_FSGID:
517 			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
518 			break;
519 		case AUDIT_SESSIONID:
520 			sessionid = audit_get_sessionid(tsk);
521 			result = audit_comparator(sessionid, f->op, f->val);
522 			break;
523 		case AUDIT_PERS:
524 			result = audit_comparator(tsk->personality, f->op, f->val);
525 			break;
526 		case AUDIT_ARCH:
527 			if (ctx)
528 				result = audit_comparator(ctx->arch, f->op, f->val);
529 			break;
530 
531 		case AUDIT_EXIT:
532 			if (ctx && ctx->return_valid)
533 				result = audit_comparator(ctx->return_code, f->op, f->val);
534 			break;
535 		case AUDIT_SUCCESS:
536 			if (ctx && ctx->return_valid) {
537 				if (f->val)
538 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
539 				else
540 					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
541 			}
542 			break;
543 		case AUDIT_DEVMAJOR:
544 			if (name) {
545 				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
546 				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
547 					++result;
548 			} else if (ctx) {
549 				list_for_each_entry(n, &ctx->names_list, list) {
550 					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
551 					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
552 						++result;
553 						break;
554 					}
555 				}
556 			}
557 			break;
558 		case AUDIT_DEVMINOR:
559 			if (name) {
560 				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
561 				    audit_comparator(MINOR(name->rdev), f->op, f->val))
562 					++result;
563 			} else if (ctx) {
564 				list_for_each_entry(n, &ctx->names_list, list) {
565 					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
566 					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
567 						++result;
568 						break;
569 					}
570 				}
571 			}
572 			break;
573 		case AUDIT_INODE:
574 			if (name)
575 				result = audit_comparator(name->ino, f->op, f->val);
576 			else if (ctx) {
577 				list_for_each_entry(n, &ctx->names_list, list) {
578 					if (audit_comparator(n->ino, f->op, f->val)) {
579 						++result;
580 						break;
581 					}
582 				}
583 			}
584 			break;
585 		case AUDIT_OBJ_UID:
586 			if (name) {
587 				result = audit_uid_comparator(name->uid, f->op, f->uid);
588 			} else if (ctx) {
589 				list_for_each_entry(n, &ctx->names_list, list) {
590 					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
591 						++result;
592 						break;
593 					}
594 				}
595 			}
596 			break;
597 		case AUDIT_OBJ_GID:
598 			if (name) {
599 				result = audit_gid_comparator(name->gid, f->op, f->gid);
600 			} else if (ctx) {
601 				list_for_each_entry(n, &ctx->names_list, list) {
602 					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
603 						++result;
604 						break;
605 					}
606 				}
607 			}
608 			break;
609 		case AUDIT_WATCH:
610 			if (name)
611 				result = audit_watch_compare(rule->watch, name->ino, name->dev);
612 			break;
613 		case AUDIT_DIR:
614 			if (ctx)
615 				result = match_tree_refs(ctx, rule->tree);
616 			break;
617 		case AUDIT_LOGINUID:
618 			result = audit_uid_comparator(audit_get_loginuid(tsk),
619 						      f->op, f->uid);
620 			break;
621 		case AUDIT_LOGINUID_SET:
622 			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
623 			break;
624 		case AUDIT_SUBJ_USER:
625 		case AUDIT_SUBJ_ROLE:
626 		case AUDIT_SUBJ_TYPE:
627 		case AUDIT_SUBJ_SEN:
628 		case AUDIT_SUBJ_CLR:
629 			/* NOTE: this may return negative values indicating
630 			   a temporary error.  We simply treat this as a
631 			   match for now to avoid losing information that
632 			   may be wanted.   An error message will also be
633 			   logged upon error */
634 			if (f->lsm_rule) {
635 				if (need_sid) {
636 					security_task_getsecid(tsk, &sid);
637 					need_sid = 0;
638 				}
639 				result = security_audit_rule_match(sid, f->type,
640 				                                  f->op,
641 				                                  f->lsm_rule,
642 				                                  ctx);
643 			}
644 			break;
645 		case AUDIT_OBJ_USER:
646 		case AUDIT_OBJ_ROLE:
647 		case AUDIT_OBJ_TYPE:
648 		case AUDIT_OBJ_LEV_LOW:
649 		case AUDIT_OBJ_LEV_HIGH:
650 			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
651 			   also applies here */
652 			if (f->lsm_rule) {
653 				/* Find files that match */
654 				if (name) {
655 					result = security_audit_rule_match(
656 					           name->osid, f->type, f->op,
657 					           f->lsm_rule, ctx);
658 				} else if (ctx) {
659 					list_for_each_entry(n, &ctx->names_list, list) {
660 						if (security_audit_rule_match(n->osid, f->type,
661 									      f->op, f->lsm_rule,
662 									      ctx)) {
663 							++result;
664 							break;
665 						}
666 					}
667 				}
668 				/* Find ipc objects that match */
669 				if (!ctx || ctx->type != AUDIT_IPC)
670 					break;
671 				if (security_audit_rule_match(ctx->ipc.osid,
672 							      f->type, f->op,
673 							      f->lsm_rule, ctx))
674 					++result;
675 			}
676 			break;
677 		case AUDIT_ARG0:
678 		case AUDIT_ARG1:
679 		case AUDIT_ARG2:
680 		case AUDIT_ARG3:
681 			if (ctx)
682 				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
683 			break;
684 		case AUDIT_FILTERKEY:
685 			/* ignore this field for filtering */
686 			result = 1;
687 			break;
688 		case AUDIT_PERM:
689 			result = audit_match_perm(ctx, f->val);
690 			break;
691 		case AUDIT_FILETYPE:
692 			result = audit_match_filetype(ctx, f->val);
693 			break;
694 		case AUDIT_FIELD_COMPARE:
695 			result = audit_field_compare(tsk, cred, f, ctx, name);
696 			break;
697 		}
698 		if (!result)
699 			return 0;
700 	}
701 
702 	if (ctx) {
703 		if (rule->prio <= ctx->prio)
704 			return 0;
705 		if (rule->filterkey) {
706 			kfree(ctx->filterkey);
707 			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
708 		}
709 		ctx->prio = rule->prio;
710 	}
711 	switch (rule->action) {
712 	case AUDIT_NEVER:
713 		*state = AUDIT_DISABLED;
714 		break;
715 	case AUDIT_ALWAYS:
716 		*state = AUDIT_RECORD_CONTEXT;
717 		break;
718 	}
719 	return 1;
720 }
721 
722 /* At process creation time, we can determine if system-call auditing is
723  * completely disabled for this task.  Since we only have the task
724  * structure at this point, we can only check uid and gid.
725  */
audit_filter_task(struct task_struct * tsk,char ** key)726 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
727 {
728 	struct audit_entry *e;
729 	enum audit_state   state;
730 
731 	rcu_read_lock();
732 	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
733 		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
734 				       &state, true)) {
735 			if (state == AUDIT_RECORD_CONTEXT)
736 				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
737 			rcu_read_unlock();
738 			return state;
739 		}
740 	}
741 	rcu_read_unlock();
742 	return AUDIT_BUILD_CONTEXT;
743 }
744 
audit_in_mask(const struct audit_krule * rule,unsigned long val)745 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
746 {
747 	int word, bit;
748 
749 	if (val > 0xffffffff)
750 		return false;
751 
752 	word = AUDIT_WORD(val);
753 	if (word >= AUDIT_BITMASK_SIZE)
754 		return false;
755 
756 	bit = AUDIT_BIT(val);
757 
758 	return rule->mask[word] & bit;
759 }
760 
761 /* At syscall entry and exit time, this filter is called if the
762  * audit_state is not low enough that auditing cannot take place, but is
763  * also not high enough that we already know we have to write an audit
764  * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
765  */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx,struct list_head * list)766 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
767 					     struct audit_context *ctx,
768 					     struct list_head *list)
769 {
770 	struct audit_entry *e;
771 	enum audit_state state;
772 
773 	if (auditd_test_task(tsk))
774 		return AUDIT_DISABLED;
775 
776 	rcu_read_lock();
777 	if (!list_empty(list)) {
778 		list_for_each_entry_rcu(e, list, list) {
779 			if (audit_in_mask(&e->rule, ctx->major) &&
780 			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
781 					       &state, false)) {
782 				rcu_read_unlock();
783 				ctx->current_state = state;
784 				return state;
785 			}
786 		}
787 	}
788 	rcu_read_unlock();
789 	return AUDIT_BUILD_CONTEXT;
790 }
791 
792 /*
793  * Given an audit_name check the inode hash table to see if they match.
794  * Called holding the rcu read lock to protect the use of audit_inode_hash
795  */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)796 static int audit_filter_inode_name(struct task_struct *tsk,
797 				   struct audit_names *n,
798 				   struct audit_context *ctx) {
799 	int h = audit_hash_ino((u32)n->ino);
800 	struct list_head *list = &audit_inode_hash[h];
801 	struct audit_entry *e;
802 	enum audit_state state;
803 
804 	if (list_empty(list))
805 		return 0;
806 
807 	list_for_each_entry_rcu(e, list, list) {
808 		if (audit_in_mask(&e->rule, ctx->major) &&
809 		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
810 			ctx->current_state = state;
811 			return 1;
812 		}
813 	}
814 
815 	return 0;
816 }
817 
818 /* At syscall exit time, this filter is called if any audit_names have been
819  * collected during syscall processing.  We only check rules in sublists at hash
820  * buckets applicable to the inode numbers in audit_names.
821  * Regarding audit_state, same rules apply as for audit_filter_syscall().
822  */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)823 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
824 {
825 	struct audit_names *n;
826 
827 	if (auditd_test_task(tsk))
828 		return;
829 
830 	rcu_read_lock();
831 
832 	list_for_each_entry(n, &ctx->names_list, list) {
833 		if (audit_filter_inode_name(tsk, n, ctx))
834 			break;
835 	}
836 	rcu_read_unlock();
837 }
838 
839 /* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
audit_take_context(struct task_struct * tsk,int return_valid,long return_code)840 static inline struct audit_context *audit_take_context(struct task_struct *tsk,
841 						      int return_valid,
842 						      long return_code)
843 {
844 	struct audit_context *context = tsk->audit_context;
845 
846 	if (!context)
847 		return NULL;
848 	context->return_valid = return_valid;
849 
850 	/*
851 	 * we need to fix up the return code in the audit logs if the actual
852 	 * return codes are later going to be fixed up by the arch specific
853 	 * signal handlers
854 	 *
855 	 * This is actually a test for:
856 	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
857 	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
858 	 *
859 	 * but is faster than a bunch of ||
860 	 */
861 	if (unlikely(return_code <= -ERESTARTSYS) &&
862 	    (return_code >= -ERESTART_RESTARTBLOCK) &&
863 	    (return_code != -ENOIOCTLCMD))
864 		context->return_code = -EINTR;
865 	else
866 		context->return_code  = return_code;
867 
868 	if (context->in_syscall && !context->dummy) {
869 		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
870 		audit_filter_inodes(tsk, context);
871 	}
872 
873 	audit_set_context(tsk, NULL);
874 	return context;
875 }
876 
audit_proctitle_free(struct audit_context * context)877 static inline void audit_proctitle_free(struct audit_context *context)
878 {
879 	kfree(context->proctitle.value);
880 	context->proctitle.value = NULL;
881 	context->proctitle.len = 0;
882 }
883 
audit_free_names(struct audit_context * context)884 static inline void audit_free_names(struct audit_context *context)
885 {
886 	struct audit_names *n, *next;
887 
888 	list_for_each_entry_safe(n, next, &context->names_list, list) {
889 		list_del(&n->list);
890 		if (n->name)
891 			putname(n->name);
892 		if (n->should_free)
893 			kfree(n);
894 	}
895 	context->name_count = 0;
896 	path_put(&context->pwd);
897 	context->pwd.dentry = NULL;
898 	context->pwd.mnt = NULL;
899 }
900 
audit_free_aux(struct audit_context * context)901 static inline void audit_free_aux(struct audit_context *context)
902 {
903 	struct audit_aux_data *aux;
904 
905 	while ((aux = context->aux)) {
906 		context->aux = aux->next;
907 		kfree(aux);
908 	}
909 	while ((aux = context->aux_pids)) {
910 		context->aux_pids = aux->next;
911 		kfree(aux);
912 	}
913 }
914 
audit_alloc_context(enum audit_state state)915 static inline struct audit_context *audit_alloc_context(enum audit_state state)
916 {
917 	struct audit_context *context;
918 
919 	context = kzalloc(sizeof(*context), GFP_KERNEL);
920 	if (!context)
921 		return NULL;
922 	context->state = state;
923 	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
924 	INIT_LIST_HEAD(&context->killed_trees);
925 	INIT_LIST_HEAD(&context->names_list);
926 	return context;
927 }
928 
929 /**
930  * audit_alloc - allocate an audit context block for a task
931  * @tsk: task
932  *
933  * Filter on the task information and allocate a per-task audit context
934  * if necessary.  Doing so turns on system call auditing for the
935  * specified task.  This is called from copy_process, so no lock is
936  * needed.
937  */
audit_alloc(struct task_struct * tsk)938 int audit_alloc(struct task_struct *tsk)
939 {
940 	struct audit_context *context;
941 	enum audit_state     state;
942 	char *key = NULL;
943 
944 	if (likely(!audit_ever_enabled))
945 		return 0; /* Return if not auditing. */
946 
947 	state = audit_filter_task(tsk, &key);
948 	if (state == AUDIT_DISABLED) {
949 		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
950 		return 0;
951 	}
952 
953 	if (!(context = audit_alloc_context(state))) {
954 		kfree(key);
955 		audit_log_lost("out of memory in audit_alloc");
956 		return -ENOMEM;
957 	}
958 	context->filterkey = key;
959 
960 	audit_set_context(tsk, context);
961 	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
962 	return 0;
963 }
964 
audit_free_context(struct audit_context * context)965 static inline void audit_free_context(struct audit_context *context)
966 {
967 	audit_free_names(context);
968 	unroll_tree_refs(context, NULL, 0);
969 	free_tree_refs(context);
970 	audit_free_aux(context);
971 	kfree(context->filterkey);
972 	kfree(context->sockaddr);
973 	audit_proctitle_free(context);
974 	kfree(context);
975 }
976 
audit_log_pid_context(struct audit_context * context,pid_t pid,kuid_t auid,kuid_t uid,unsigned int sessionid,u32 sid,char * comm)977 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
978 				 kuid_t auid, kuid_t uid, unsigned int sessionid,
979 				 u32 sid, char *comm)
980 {
981 	struct audit_buffer *ab;
982 	char *ctx = NULL;
983 	u32 len;
984 	int rc = 0;
985 
986 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
987 	if (!ab)
988 		return rc;
989 
990 	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
991 			 from_kuid(&init_user_ns, auid),
992 			 from_kuid(&init_user_ns, uid), sessionid);
993 	if (sid) {
994 		if (security_secid_to_secctx(sid, &ctx, &len)) {
995 			audit_log_format(ab, " obj=(none)");
996 			rc = 1;
997 		} else {
998 			audit_log_format(ab, " obj=%s", ctx);
999 			security_release_secctx(ctx, len);
1000 		}
1001 	}
1002 	audit_log_format(ab, " ocomm=");
1003 	audit_log_untrustedstring(ab, comm);
1004 	audit_log_end(ab);
1005 
1006 	return rc;
1007 }
1008 
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab)1009 static void audit_log_execve_info(struct audit_context *context,
1010 				  struct audit_buffer **ab)
1011 {
1012 	long len_max;
1013 	long len_rem;
1014 	long len_full;
1015 	long len_buf;
1016 	long len_abuf = 0;
1017 	long len_tmp;
1018 	bool require_data;
1019 	bool encode;
1020 	unsigned int iter;
1021 	unsigned int arg;
1022 	char *buf_head;
1023 	char *buf;
1024 	const char __user *p = (const char __user *)current->mm->arg_start;
1025 
1026 	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1027 	 *       data we put in the audit record for this argument (see the
1028 	 *       code below) ... at this point in time 96 is plenty */
1029 	char abuf[96];
1030 
1031 	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1032 	 *       current value of 7500 is not as important as the fact that it
1033 	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1034 	 *       room if we go over a little bit in the logging below */
1035 	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1036 	len_max = MAX_EXECVE_AUDIT_LEN;
1037 
1038 	/* scratch buffer to hold the userspace args */
1039 	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1040 	if (!buf_head) {
1041 		audit_panic("out of memory for argv string");
1042 		return;
1043 	}
1044 	buf = buf_head;
1045 
1046 	audit_log_format(*ab, "argc=%d", context->execve.argc);
1047 
1048 	len_rem = len_max;
1049 	len_buf = 0;
1050 	len_full = 0;
1051 	require_data = true;
1052 	encode = false;
1053 	iter = 0;
1054 	arg = 0;
1055 	do {
1056 		/* NOTE: we don't ever want to trust this value for anything
1057 		 *       serious, but the audit record format insists we
1058 		 *       provide an argument length for really long arguments,
1059 		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1060 		 *       to use strncpy_from_user() to obtain this value for
1061 		 *       recording in the log, although we don't use it
1062 		 *       anywhere here to avoid a double-fetch problem */
1063 		if (len_full == 0)
1064 			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1065 
1066 		/* read more data from userspace */
1067 		if (require_data) {
1068 			/* can we make more room in the buffer? */
1069 			if (buf != buf_head) {
1070 				memmove(buf_head, buf, len_buf);
1071 				buf = buf_head;
1072 			}
1073 
1074 			/* fetch as much as we can of the argument */
1075 			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1076 						    len_max - len_buf);
1077 			if (len_tmp == -EFAULT) {
1078 				/* unable to copy from userspace */
1079 				send_sig(SIGKILL, current, 0);
1080 				goto out;
1081 			} else if (len_tmp == (len_max - len_buf)) {
1082 				/* buffer is not large enough */
1083 				require_data = true;
1084 				/* NOTE: if we are going to span multiple
1085 				 *       buffers force the encoding so we stand
1086 				 *       a chance at a sane len_full value and
1087 				 *       consistent record encoding */
1088 				encode = true;
1089 				len_full = len_full * 2;
1090 				p += len_tmp;
1091 			} else {
1092 				require_data = false;
1093 				if (!encode)
1094 					encode = audit_string_contains_control(
1095 								buf, len_tmp);
1096 				/* try to use a trusted value for len_full */
1097 				if (len_full < len_max)
1098 					len_full = (encode ?
1099 						    len_tmp * 2 : len_tmp);
1100 				p += len_tmp + 1;
1101 			}
1102 			len_buf += len_tmp;
1103 			buf_head[len_buf] = '\0';
1104 
1105 			/* length of the buffer in the audit record? */
1106 			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1107 		}
1108 
1109 		/* write as much as we can to the audit log */
1110 		if (len_buf > 0) {
1111 			/* NOTE: some magic numbers here - basically if we
1112 			 *       can't fit a reasonable amount of data into the
1113 			 *       existing audit buffer, flush it and start with
1114 			 *       a new buffer */
1115 			if ((sizeof(abuf) + 8) > len_rem) {
1116 				len_rem = len_max;
1117 				audit_log_end(*ab);
1118 				*ab = audit_log_start(context,
1119 						      GFP_KERNEL, AUDIT_EXECVE);
1120 				if (!*ab)
1121 					goto out;
1122 			}
1123 
1124 			/* create the non-arg portion of the arg record */
1125 			len_tmp = 0;
1126 			if (require_data || (iter > 0) ||
1127 			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1128 				if (iter == 0) {
1129 					len_tmp += snprintf(&abuf[len_tmp],
1130 							sizeof(abuf) - len_tmp,
1131 							" a%d_len=%lu",
1132 							arg, len_full);
1133 				}
1134 				len_tmp += snprintf(&abuf[len_tmp],
1135 						    sizeof(abuf) - len_tmp,
1136 						    " a%d[%d]=", arg, iter++);
1137 			} else
1138 				len_tmp += snprintf(&abuf[len_tmp],
1139 						    sizeof(abuf) - len_tmp,
1140 						    " a%d=", arg);
1141 			WARN_ON(len_tmp >= sizeof(abuf));
1142 			abuf[sizeof(abuf) - 1] = '\0';
1143 
1144 			/* log the arg in the audit record */
1145 			audit_log_format(*ab, "%s", abuf);
1146 			len_rem -= len_tmp;
1147 			len_tmp = len_buf;
1148 			if (encode) {
1149 				if (len_abuf > len_rem)
1150 					len_tmp = len_rem / 2; /* encoding */
1151 				audit_log_n_hex(*ab, buf, len_tmp);
1152 				len_rem -= len_tmp * 2;
1153 				len_abuf -= len_tmp * 2;
1154 			} else {
1155 				if (len_abuf > len_rem)
1156 					len_tmp = len_rem - 2; /* quotes */
1157 				audit_log_n_string(*ab, buf, len_tmp);
1158 				len_rem -= len_tmp + 2;
1159 				/* don't subtract the "2" because we still need
1160 				 * to add quotes to the remaining string */
1161 				len_abuf -= len_tmp;
1162 			}
1163 			len_buf -= len_tmp;
1164 			buf += len_tmp;
1165 		}
1166 
1167 		/* ready to move to the next argument? */
1168 		if ((len_buf == 0) && !require_data) {
1169 			arg++;
1170 			iter = 0;
1171 			len_full = 0;
1172 			require_data = true;
1173 			encode = false;
1174 		}
1175 	} while (arg < context->execve.argc);
1176 
1177 	/* NOTE: the caller handles the final audit_log_end() call */
1178 
1179 out:
1180 	kfree(buf_head);
1181 }
1182 
show_special(struct audit_context * context,int * call_panic)1183 static void show_special(struct audit_context *context, int *call_panic)
1184 {
1185 	struct audit_buffer *ab;
1186 	int i;
1187 
1188 	ab = audit_log_start(context, GFP_KERNEL, context->type);
1189 	if (!ab)
1190 		return;
1191 
1192 	switch (context->type) {
1193 	case AUDIT_SOCKETCALL: {
1194 		int nargs = context->socketcall.nargs;
1195 		audit_log_format(ab, "nargs=%d", nargs);
1196 		for (i = 0; i < nargs; i++)
1197 			audit_log_format(ab, " a%d=%lx", i,
1198 				context->socketcall.args[i]);
1199 		break; }
1200 	case AUDIT_IPC: {
1201 		u32 osid = context->ipc.osid;
1202 
1203 		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1204 				 from_kuid(&init_user_ns, context->ipc.uid),
1205 				 from_kgid(&init_user_ns, context->ipc.gid),
1206 				 context->ipc.mode);
1207 		if (osid) {
1208 			char *ctx = NULL;
1209 			u32 len;
1210 			if (security_secid_to_secctx(osid, &ctx, &len)) {
1211 				audit_log_format(ab, " osid=%u", osid);
1212 				*call_panic = 1;
1213 			} else {
1214 				audit_log_format(ab, " obj=%s", ctx);
1215 				security_release_secctx(ctx, len);
1216 			}
1217 		}
1218 		if (context->ipc.has_perm) {
1219 			audit_log_end(ab);
1220 			ab = audit_log_start(context, GFP_KERNEL,
1221 					     AUDIT_IPC_SET_PERM);
1222 			if (unlikely(!ab))
1223 				return;
1224 			audit_log_format(ab,
1225 				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1226 				context->ipc.qbytes,
1227 				context->ipc.perm_uid,
1228 				context->ipc.perm_gid,
1229 				context->ipc.perm_mode);
1230 		}
1231 		break; }
1232 	case AUDIT_MQ_OPEN:
1233 		audit_log_format(ab,
1234 			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1235 			"mq_msgsize=%ld mq_curmsgs=%ld",
1236 			context->mq_open.oflag, context->mq_open.mode,
1237 			context->mq_open.attr.mq_flags,
1238 			context->mq_open.attr.mq_maxmsg,
1239 			context->mq_open.attr.mq_msgsize,
1240 			context->mq_open.attr.mq_curmsgs);
1241 		break;
1242 	case AUDIT_MQ_SENDRECV:
1243 		audit_log_format(ab,
1244 			"mqdes=%d msg_len=%zd msg_prio=%u "
1245 			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1246 			context->mq_sendrecv.mqdes,
1247 			context->mq_sendrecv.msg_len,
1248 			context->mq_sendrecv.msg_prio,
1249 			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1250 			context->mq_sendrecv.abs_timeout.tv_nsec);
1251 		break;
1252 	case AUDIT_MQ_NOTIFY:
1253 		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1254 				context->mq_notify.mqdes,
1255 				context->mq_notify.sigev_signo);
1256 		break;
1257 	case AUDIT_MQ_GETSETATTR: {
1258 		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1259 		audit_log_format(ab,
1260 			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1261 			"mq_curmsgs=%ld ",
1262 			context->mq_getsetattr.mqdes,
1263 			attr->mq_flags, attr->mq_maxmsg,
1264 			attr->mq_msgsize, attr->mq_curmsgs);
1265 		break; }
1266 	case AUDIT_CAPSET:
1267 		audit_log_format(ab, "pid=%d", context->capset.pid);
1268 		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1269 		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1270 		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1271 		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1272 		break;
1273 	case AUDIT_MMAP:
1274 		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1275 				 context->mmap.flags);
1276 		break;
1277 	case AUDIT_EXECVE:
1278 		audit_log_execve_info(context, &ab);
1279 		break;
1280 	case AUDIT_KERN_MODULE:
1281 		audit_log_format(ab, "name=");
1282 		if (context->module.name) {
1283 			audit_log_untrustedstring(ab, context->module.name);
1284 			kfree(context->module.name);
1285 		} else
1286 			audit_log_format(ab, "(null)");
1287 
1288 		break;
1289 	}
1290 	audit_log_end(ab);
1291 }
1292 
audit_proctitle_rtrim(char * proctitle,int len)1293 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1294 {
1295 	char *end = proctitle + len - 1;
1296 	while (end > proctitle && !isprint(*end))
1297 		end--;
1298 
1299 	/* catch the case where proctitle is only 1 non-print character */
1300 	len = end - proctitle + 1;
1301 	len -= isprint(proctitle[len-1]) == 0;
1302 	return len;
1303 }
1304 
audit_log_proctitle(struct task_struct * tsk,struct audit_context * context)1305 static void audit_log_proctitle(struct task_struct *tsk,
1306 			 struct audit_context *context)
1307 {
1308 	int res;
1309 	char *buf;
1310 	char *msg = "(null)";
1311 	int len = strlen(msg);
1312 	struct audit_buffer *ab;
1313 
1314 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1315 	if (!ab)
1316 		return;	/* audit_panic or being filtered */
1317 
1318 	audit_log_format(ab, "proctitle=");
1319 
1320 	/* Not  cached */
1321 	if (!context->proctitle.value) {
1322 		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1323 		if (!buf)
1324 			goto out;
1325 		/* Historically called this from procfs naming */
1326 		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1327 		if (res == 0) {
1328 			kfree(buf);
1329 			goto out;
1330 		}
1331 		res = audit_proctitle_rtrim(buf, res);
1332 		if (res == 0) {
1333 			kfree(buf);
1334 			goto out;
1335 		}
1336 		context->proctitle.value = buf;
1337 		context->proctitle.len = res;
1338 	}
1339 	msg = context->proctitle.value;
1340 	len = context->proctitle.len;
1341 out:
1342 	audit_log_n_untrustedstring(ab, msg, len);
1343 	audit_log_end(ab);
1344 }
1345 
audit_log_exit(struct audit_context * context,struct task_struct * tsk)1346 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1347 {
1348 	int i, call_panic = 0;
1349 	struct audit_buffer *ab;
1350 	struct audit_aux_data *aux;
1351 	struct audit_names *n;
1352 
1353 	/* tsk == current */
1354 	context->personality = tsk->personality;
1355 
1356 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1357 	if (!ab)
1358 		return;		/* audit_panic has been called */
1359 	audit_log_format(ab, "arch=%x syscall=%d",
1360 			 context->arch, context->major);
1361 	if (context->personality != PER_LINUX)
1362 		audit_log_format(ab, " per=%lx", context->personality);
1363 	if (context->return_valid)
1364 		audit_log_format(ab, " success=%s exit=%ld",
1365 				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1366 				 context->return_code);
1367 
1368 	audit_log_format(ab,
1369 			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1370 			 context->argv[0],
1371 			 context->argv[1],
1372 			 context->argv[2],
1373 			 context->argv[3],
1374 			 context->name_count);
1375 
1376 	audit_log_task_info(ab, tsk);
1377 	audit_log_key(ab, context->filterkey);
1378 	audit_log_end(ab);
1379 
1380 	for (aux = context->aux; aux; aux = aux->next) {
1381 
1382 		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1383 		if (!ab)
1384 			continue; /* audit_panic has been called */
1385 
1386 		switch (aux->type) {
1387 
1388 		case AUDIT_BPRM_FCAPS: {
1389 			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1390 			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1391 			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1392 			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1393 			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1394 			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1395 			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1396 			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1397 			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1398 			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1399 			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1400 			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1401 			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1402 			break; }
1403 
1404 		}
1405 		audit_log_end(ab);
1406 	}
1407 
1408 	if (context->type)
1409 		show_special(context, &call_panic);
1410 
1411 	if (context->fds[0] >= 0) {
1412 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1413 		if (ab) {
1414 			audit_log_format(ab, "fd0=%d fd1=%d",
1415 					context->fds[0], context->fds[1]);
1416 			audit_log_end(ab);
1417 		}
1418 	}
1419 
1420 	if (context->sockaddr_len) {
1421 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1422 		if (ab) {
1423 			audit_log_format(ab, "saddr=");
1424 			audit_log_n_hex(ab, (void *)context->sockaddr,
1425 					context->sockaddr_len);
1426 			audit_log_end(ab);
1427 		}
1428 	}
1429 
1430 	for (aux = context->aux_pids; aux; aux = aux->next) {
1431 		struct audit_aux_data_pids *axs = (void *)aux;
1432 
1433 		for (i = 0; i < axs->pid_count; i++)
1434 			if (audit_log_pid_context(context, axs->target_pid[i],
1435 						  axs->target_auid[i],
1436 						  axs->target_uid[i],
1437 						  axs->target_sessionid[i],
1438 						  axs->target_sid[i],
1439 						  axs->target_comm[i]))
1440 				call_panic = 1;
1441 	}
1442 
1443 	if (context->target_pid &&
1444 	    audit_log_pid_context(context, context->target_pid,
1445 				  context->target_auid, context->target_uid,
1446 				  context->target_sessionid,
1447 				  context->target_sid, context->target_comm))
1448 			call_panic = 1;
1449 
1450 	if (context->pwd.dentry && context->pwd.mnt) {
1451 		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1452 		if (ab) {
1453 			audit_log_d_path(ab, "cwd=", &context->pwd);
1454 			audit_log_end(ab);
1455 		}
1456 	}
1457 
1458 	i = 0;
1459 	list_for_each_entry(n, &context->names_list, list) {
1460 		if (n->hidden)
1461 			continue;
1462 		audit_log_name(context, n, NULL, i++, &call_panic);
1463 	}
1464 
1465 	audit_log_proctitle(tsk, context);
1466 
1467 	/* Send end of event record to help user space know we are finished */
1468 	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1469 	if (ab)
1470 		audit_log_end(ab);
1471 	if (call_panic)
1472 		audit_panic("error converting sid to string");
1473 }
1474 
1475 /**
1476  * __audit_free - free a per-task audit context
1477  * @tsk: task whose audit context block to free
1478  *
1479  * Called from copy_process and do_exit
1480  */
__audit_free(struct task_struct * tsk)1481 void __audit_free(struct task_struct *tsk)
1482 {
1483 	struct audit_context *context;
1484 
1485 	context = audit_take_context(tsk, 0, 0);
1486 	if (!context)
1487 		return;
1488 
1489 	/* Check for system calls that do not go through the exit
1490 	 * function (e.g., exit_group), then free context block.
1491 	 * We use GFP_ATOMIC here because we might be doing this
1492 	 * in the context of the idle thread */
1493 	/* that can happen only if we are called from do_exit() */
1494 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1495 		audit_log_exit(context, tsk);
1496 	if (!list_empty(&context->killed_trees))
1497 		audit_kill_trees(&context->killed_trees);
1498 
1499 	audit_free_context(context);
1500 }
1501 
1502 /**
1503  * __audit_syscall_entry - fill in an audit record at syscall entry
1504  * @major: major syscall type (function)
1505  * @a1: additional syscall register 1
1506  * @a2: additional syscall register 2
1507  * @a3: additional syscall register 3
1508  * @a4: additional syscall register 4
1509  *
1510  * Fill in audit context at syscall entry.  This only happens if the
1511  * audit context was created when the task was created and the state or
1512  * filters demand the audit context be built.  If the state from the
1513  * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1514  * then the record will be written at syscall exit time (otherwise, it
1515  * will only be written if another part of the kernel requests that it
1516  * be written).
1517  */
__audit_syscall_entry(int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)1518 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1519 			   unsigned long a3, unsigned long a4)
1520 {
1521 	struct audit_context *context = audit_context();
1522 	enum audit_state     state;
1523 
1524 	if (!audit_enabled || !context)
1525 		return;
1526 
1527 	BUG_ON(context->in_syscall || context->name_count);
1528 
1529 	state = context->state;
1530 	if (state == AUDIT_DISABLED)
1531 		return;
1532 
1533 	context->dummy = !audit_n_rules;
1534 	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1535 		context->prio = 0;
1536 		if (auditd_test_task(current))
1537 			return;
1538 	}
1539 
1540 	context->arch	    = syscall_get_arch();
1541 	context->major      = major;
1542 	context->argv[0]    = a1;
1543 	context->argv[1]    = a2;
1544 	context->argv[2]    = a3;
1545 	context->argv[3]    = a4;
1546 	context->serial     = 0;
1547 	context->in_syscall = 1;
1548 	context->current_state  = state;
1549 	context->ppid       = 0;
1550 	ktime_get_coarse_real_ts64(&context->ctime);
1551 }
1552 
1553 /**
1554  * __audit_syscall_exit - deallocate audit context after a system call
1555  * @success: success value of the syscall
1556  * @return_code: return value of the syscall
1557  *
1558  * Tear down after system call.  If the audit context has been marked as
1559  * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1560  * filtering, or because some other part of the kernel wrote an audit
1561  * message), then write out the syscall information.  In call cases,
1562  * free the names stored from getname().
1563  */
__audit_syscall_exit(int success,long return_code)1564 void __audit_syscall_exit(int success, long return_code)
1565 {
1566 	struct audit_context *context;
1567 
1568 	if (success)
1569 		success = AUDITSC_SUCCESS;
1570 	else
1571 		success = AUDITSC_FAILURE;
1572 
1573 	context = audit_take_context(current, success, return_code);
1574 	if (!context)
1575 		return;
1576 
1577 	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1578 		audit_log_exit(context, current);
1579 
1580 	context->in_syscall = 0;
1581 	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1582 
1583 	if (!list_empty(&context->killed_trees))
1584 		audit_kill_trees(&context->killed_trees);
1585 
1586 	audit_free_names(context);
1587 	unroll_tree_refs(context, NULL, 0);
1588 	audit_free_aux(context);
1589 	context->aux = NULL;
1590 	context->aux_pids = NULL;
1591 	context->target_pid = 0;
1592 	context->target_sid = 0;
1593 	context->sockaddr_len = 0;
1594 	context->type = 0;
1595 	context->fds[0] = -1;
1596 	if (context->state != AUDIT_RECORD_CONTEXT) {
1597 		kfree(context->filterkey);
1598 		context->filterkey = NULL;
1599 	}
1600 	audit_set_context(current, context);
1601 }
1602 
handle_one(const struct inode * inode)1603 static inline void handle_one(const struct inode *inode)
1604 {
1605 #ifdef CONFIG_AUDIT_TREE
1606 	struct audit_context *context;
1607 	struct audit_tree_refs *p;
1608 	struct audit_chunk *chunk;
1609 	int count;
1610 	if (likely(!inode->i_fsnotify_marks))
1611 		return;
1612 	context = audit_context();
1613 	p = context->trees;
1614 	count = context->tree_count;
1615 	rcu_read_lock();
1616 	chunk = audit_tree_lookup(inode);
1617 	rcu_read_unlock();
1618 	if (!chunk)
1619 		return;
1620 	if (likely(put_tree_ref(context, chunk)))
1621 		return;
1622 	if (unlikely(!grow_tree_refs(context))) {
1623 		pr_warn("out of memory, audit has lost a tree reference\n");
1624 		audit_set_auditable(context);
1625 		audit_put_chunk(chunk);
1626 		unroll_tree_refs(context, p, count);
1627 		return;
1628 	}
1629 	put_tree_ref(context, chunk);
1630 #endif
1631 }
1632 
handle_path(const struct dentry * dentry)1633 static void handle_path(const struct dentry *dentry)
1634 {
1635 #ifdef CONFIG_AUDIT_TREE
1636 	struct audit_context *context;
1637 	struct audit_tree_refs *p;
1638 	const struct dentry *d, *parent;
1639 	struct audit_chunk *drop;
1640 	unsigned long seq;
1641 	int count;
1642 
1643 	context = audit_context();
1644 	p = context->trees;
1645 	count = context->tree_count;
1646 retry:
1647 	drop = NULL;
1648 	d = dentry;
1649 	rcu_read_lock();
1650 	seq = read_seqbegin(&rename_lock);
1651 	for(;;) {
1652 		struct inode *inode = d_backing_inode(d);
1653 		if (inode && unlikely(inode->i_fsnotify_marks)) {
1654 			struct audit_chunk *chunk;
1655 			chunk = audit_tree_lookup(inode);
1656 			if (chunk) {
1657 				if (unlikely(!put_tree_ref(context, chunk))) {
1658 					drop = chunk;
1659 					break;
1660 				}
1661 			}
1662 		}
1663 		parent = d->d_parent;
1664 		if (parent == d)
1665 			break;
1666 		d = parent;
1667 	}
1668 	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1669 		rcu_read_unlock();
1670 		if (!drop) {
1671 			/* just a race with rename */
1672 			unroll_tree_refs(context, p, count);
1673 			goto retry;
1674 		}
1675 		audit_put_chunk(drop);
1676 		if (grow_tree_refs(context)) {
1677 			/* OK, got more space */
1678 			unroll_tree_refs(context, p, count);
1679 			goto retry;
1680 		}
1681 		/* too bad */
1682 		pr_warn("out of memory, audit has lost a tree reference\n");
1683 		unroll_tree_refs(context, p, count);
1684 		audit_set_auditable(context);
1685 		return;
1686 	}
1687 	rcu_read_unlock();
1688 #endif
1689 }
1690 
audit_alloc_name(struct audit_context * context,unsigned char type)1691 static struct audit_names *audit_alloc_name(struct audit_context *context,
1692 						unsigned char type)
1693 {
1694 	struct audit_names *aname;
1695 
1696 	if (context->name_count < AUDIT_NAMES) {
1697 		aname = &context->preallocated_names[context->name_count];
1698 		memset(aname, 0, sizeof(*aname));
1699 	} else {
1700 		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1701 		if (!aname)
1702 			return NULL;
1703 		aname->should_free = true;
1704 	}
1705 
1706 	aname->ino = AUDIT_INO_UNSET;
1707 	aname->type = type;
1708 	list_add_tail(&aname->list, &context->names_list);
1709 
1710 	context->name_count++;
1711 	return aname;
1712 }
1713 
1714 /**
1715  * __audit_reusename - fill out filename with info from existing entry
1716  * @uptr: userland ptr to pathname
1717  *
1718  * Search the audit_names list for the current audit context. If there is an
1719  * existing entry with a matching "uptr" then return the filename
1720  * associated with that audit_name. If not, return NULL.
1721  */
1722 struct filename *
__audit_reusename(const __user char * uptr)1723 __audit_reusename(const __user char *uptr)
1724 {
1725 	struct audit_context *context = audit_context();
1726 	struct audit_names *n;
1727 
1728 	list_for_each_entry(n, &context->names_list, list) {
1729 		if (!n->name)
1730 			continue;
1731 		if (n->name->uptr == uptr) {
1732 			n->name->refcnt++;
1733 			return n->name;
1734 		}
1735 	}
1736 	return NULL;
1737 }
1738 
1739 /**
1740  * __audit_getname - add a name to the list
1741  * @name: name to add
1742  *
1743  * Add a name to the list of audit names for this context.
1744  * Called from fs/namei.c:getname().
1745  */
__audit_getname(struct filename * name)1746 void __audit_getname(struct filename *name)
1747 {
1748 	struct audit_context *context = audit_context();
1749 	struct audit_names *n;
1750 
1751 	if (!context->in_syscall)
1752 		return;
1753 
1754 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1755 	if (!n)
1756 		return;
1757 
1758 	n->name = name;
1759 	n->name_len = AUDIT_NAME_FULL;
1760 	name->aname = n;
1761 	name->refcnt++;
1762 
1763 	if (!context->pwd.dentry)
1764 		get_fs_pwd(current->fs, &context->pwd);
1765 }
1766 
1767 /**
1768  * __audit_inode - store the inode and device from a lookup
1769  * @name: name being audited
1770  * @dentry: dentry being audited
1771  * @flags: attributes for this particular entry
1772  */
__audit_inode(struct filename * name,const struct dentry * dentry,unsigned int flags)1773 void __audit_inode(struct filename *name, const struct dentry *dentry,
1774 		   unsigned int flags)
1775 {
1776 	struct audit_context *context = audit_context();
1777 	struct inode *inode = d_backing_inode(dentry);
1778 	struct audit_names *n;
1779 	bool parent = flags & AUDIT_INODE_PARENT;
1780 
1781 	if (!context->in_syscall)
1782 		return;
1783 
1784 	if (!name)
1785 		goto out_alloc;
1786 
1787 	/*
1788 	 * If we have a pointer to an audit_names entry already, then we can
1789 	 * just use it directly if the type is correct.
1790 	 */
1791 	n = name->aname;
1792 	if (n) {
1793 		if (parent) {
1794 			if (n->type == AUDIT_TYPE_PARENT ||
1795 			    n->type == AUDIT_TYPE_UNKNOWN)
1796 				goto out;
1797 		} else {
1798 			if (n->type != AUDIT_TYPE_PARENT)
1799 				goto out;
1800 		}
1801 	}
1802 
1803 	list_for_each_entry_reverse(n, &context->names_list, list) {
1804 		if (n->ino) {
1805 			/* valid inode number, use that for the comparison */
1806 			if (n->ino != inode->i_ino ||
1807 			    n->dev != inode->i_sb->s_dev)
1808 				continue;
1809 		} else if (n->name) {
1810 			/* inode number has not been set, check the name */
1811 			if (strcmp(n->name->name, name->name))
1812 				continue;
1813 		} else
1814 			/* no inode and no name (?!) ... this is odd ... */
1815 			continue;
1816 
1817 		/* match the correct record type */
1818 		if (parent) {
1819 			if (n->type == AUDIT_TYPE_PARENT ||
1820 			    n->type == AUDIT_TYPE_UNKNOWN)
1821 				goto out;
1822 		} else {
1823 			if (n->type != AUDIT_TYPE_PARENT)
1824 				goto out;
1825 		}
1826 	}
1827 
1828 out_alloc:
1829 	/* unable to find an entry with both a matching name and type */
1830 	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1831 	if (!n)
1832 		return;
1833 	if (name) {
1834 		n->name = name;
1835 		name->refcnt++;
1836 	}
1837 
1838 out:
1839 	if (parent) {
1840 		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1841 		n->type = AUDIT_TYPE_PARENT;
1842 		if (flags & AUDIT_INODE_HIDDEN)
1843 			n->hidden = true;
1844 	} else {
1845 		n->name_len = AUDIT_NAME_FULL;
1846 		n->type = AUDIT_TYPE_NORMAL;
1847 	}
1848 	handle_path(dentry);
1849 	audit_copy_inode(n, dentry, inode);
1850 }
1851 
__audit_file(const struct file * file)1852 void __audit_file(const struct file *file)
1853 {
1854 	__audit_inode(NULL, file->f_path.dentry, 0);
1855 }
1856 
1857 /**
1858  * __audit_inode_child - collect inode info for created/removed objects
1859  * @parent: inode of dentry parent
1860  * @dentry: dentry being audited
1861  * @type:   AUDIT_TYPE_* value that we're looking for
1862  *
1863  * For syscalls that create or remove filesystem objects, audit_inode
1864  * can only collect information for the filesystem object's parent.
1865  * This call updates the audit context with the child's information.
1866  * Syscalls that create a new filesystem object must be hooked after
1867  * the object is created.  Syscalls that remove a filesystem object
1868  * must be hooked prior, in order to capture the target inode during
1869  * unsuccessful attempts.
1870  */
__audit_inode_child(struct inode * parent,const struct dentry * dentry,const unsigned char type)1871 void __audit_inode_child(struct inode *parent,
1872 			 const struct dentry *dentry,
1873 			 const unsigned char type)
1874 {
1875 	struct audit_context *context = audit_context();
1876 	struct inode *inode = d_backing_inode(dentry);
1877 	const char *dname = dentry->d_name.name;
1878 	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1879 	struct audit_entry *e;
1880 	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
1881 	int i;
1882 
1883 	if (!context->in_syscall)
1884 		return;
1885 
1886 	rcu_read_lock();
1887 	if (!list_empty(list)) {
1888 		list_for_each_entry_rcu(e, list, list) {
1889 			for (i = 0; i < e->rule.field_count; i++) {
1890 				struct audit_field *f = &e->rule.fields[i];
1891 
1892 				if (f->type == AUDIT_FSTYPE) {
1893 					if (audit_comparator(parent->i_sb->s_magic,
1894 					    f->op, f->val)) {
1895 						if (e->rule.action == AUDIT_NEVER) {
1896 							rcu_read_unlock();
1897 							return;
1898 						}
1899 					}
1900 				}
1901 			}
1902 		}
1903 	}
1904 	rcu_read_unlock();
1905 
1906 	if (inode)
1907 		handle_one(inode);
1908 
1909 	/* look for a parent entry first */
1910 	list_for_each_entry(n, &context->names_list, list) {
1911 		if (!n->name ||
1912 		    (n->type != AUDIT_TYPE_PARENT &&
1913 		     n->type != AUDIT_TYPE_UNKNOWN))
1914 			continue;
1915 
1916 		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1917 		    !audit_compare_dname_path(dname,
1918 					      n->name->name, n->name_len)) {
1919 			if (n->type == AUDIT_TYPE_UNKNOWN)
1920 				n->type = AUDIT_TYPE_PARENT;
1921 			found_parent = n;
1922 			break;
1923 		}
1924 	}
1925 
1926 	/* is there a matching child entry? */
1927 	list_for_each_entry(n, &context->names_list, list) {
1928 		/* can only match entries that have a name */
1929 		if (!n->name ||
1930 		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1931 			continue;
1932 
1933 		if (!strcmp(dname, n->name->name) ||
1934 		    !audit_compare_dname_path(dname, n->name->name,
1935 						found_parent ?
1936 						found_parent->name_len :
1937 						AUDIT_NAME_FULL)) {
1938 			if (n->type == AUDIT_TYPE_UNKNOWN)
1939 				n->type = type;
1940 			found_child = n;
1941 			break;
1942 		}
1943 	}
1944 
1945 	if (!found_parent) {
1946 		/* create a new, "anonymous" parent record */
1947 		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1948 		if (!n)
1949 			return;
1950 		audit_copy_inode(n, NULL, parent);
1951 	}
1952 
1953 	if (!found_child) {
1954 		found_child = audit_alloc_name(context, type);
1955 		if (!found_child)
1956 			return;
1957 
1958 		/* Re-use the name belonging to the slot for a matching parent
1959 		 * directory. All names for this context are relinquished in
1960 		 * audit_free_names() */
1961 		if (found_parent) {
1962 			found_child->name = found_parent->name;
1963 			found_child->name_len = AUDIT_NAME_FULL;
1964 			found_child->name->refcnt++;
1965 		}
1966 	}
1967 
1968 	if (inode)
1969 		audit_copy_inode(found_child, dentry, inode);
1970 	else
1971 		found_child->ino = AUDIT_INO_UNSET;
1972 }
1973 EXPORT_SYMBOL_GPL(__audit_inode_child);
1974 
1975 /**
1976  * auditsc_get_stamp - get local copies of audit_context values
1977  * @ctx: audit_context for the task
1978  * @t: timespec64 to store time recorded in the audit_context
1979  * @serial: serial value that is recorded in the audit_context
1980  *
1981  * Also sets the context as auditable.
1982  */
auditsc_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)1983 int auditsc_get_stamp(struct audit_context *ctx,
1984 		       struct timespec64 *t, unsigned int *serial)
1985 {
1986 	if (!ctx->in_syscall)
1987 		return 0;
1988 	if (!ctx->serial)
1989 		ctx->serial = audit_serial();
1990 	t->tv_sec  = ctx->ctime.tv_sec;
1991 	t->tv_nsec = ctx->ctime.tv_nsec;
1992 	*serial    = ctx->serial;
1993 	if (!ctx->prio) {
1994 		ctx->prio = 1;
1995 		ctx->current_state = AUDIT_RECORD_CONTEXT;
1996 	}
1997 	return 1;
1998 }
1999 
2000 /* global counter which is incremented every time something logs in */
2001 static atomic_t session_id = ATOMIC_INIT(0);
2002 
audit_set_loginuid_perm(kuid_t loginuid)2003 static int audit_set_loginuid_perm(kuid_t loginuid)
2004 {
2005 	/* if we are unset, we don't need privs */
2006 	if (!audit_loginuid_set(current))
2007 		return 0;
2008 	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2009 	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2010 		return -EPERM;
2011 	/* it is set, you need permission */
2012 	if (!capable(CAP_AUDIT_CONTROL))
2013 		return -EPERM;
2014 	/* reject if this is not an unset and we don't allow that */
2015 	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
2016 		return -EPERM;
2017 	return 0;
2018 }
2019 
audit_log_set_loginuid(kuid_t koldloginuid,kuid_t kloginuid,unsigned int oldsessionid,unsigned int sessionid,int rc)2020 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2021 				   unsigned int oldsessionid, unsigned int sessionid,
2022 				   int rc)
2023 {
2024 	struct audit_buffer *ab;
2025 	uid_t uid, oldloginuid, loginuid;
2026 	struct tty_struct *tty;
2027 
2028 	if (!audit_enabled)
2029 		return;
2030 
2031 	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2032 	if (!ab)
2033 		return;
2034 
2035 	uid = from_kuid(&init_user_ns, task_uid(current));
2036 	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2037 	loginuid = from_kuid(&init_user_ns, kloginuid),
2038 	tty = audit_get_tty(current);
2039 
2040 	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2041 	audit_log_task_context(ab);
2042 	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2043 			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2044 			 oldsessionid, sessionid, !rc);
2045 	audit_put_tty(tty);
2046 	audit_log_end(ab);
2047 }
2048 
2049 /**
2050  * audit_set_loginuid - set current task's audit_context loginuid
2051  * @loginuid: loginuid value
2052  *
2053  * Returns 0.
2054  *
2055  * Called (set) from fs/proc/base.c::proc_loginuid_write().
2056  */
audit_set_loginuid(kuid_t loginuid)2057 int audit_set_loginuid(kuid_t loginuid)
2058 {
2059 	struct task_struct *task = current;
2060 	unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2061 	kuid_t oldloginuid;
2062 	int rc;
2063 
2064 	oldloginuid = audit_get_loginuid(current);
2065 	oldsessionid = audit_get_sessionid(current);
2066 
2067 	rc = audit_set_loginuid_perm(loginuid);
2068 	if (rc)
2069 		goto out;
2070 
2071 	/* are we setting or clearing? */
2072 	if (uid_valid(loginuid)) {
2073 		sessionid = (unsigned int)atomic_inc_return(&session_id);
2074 		if (unlikely(sessionid == AUDIT_SID_UNSET))
2075 			sessionid = (unsigned int)atomic_inc_return(&session_id);
2076 	}
2077 
2078 	task->sessionid = sessionid;
2079 	task->loginuid = loginuid;
2080 out:
2081 	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2082 	return rc;
2083 }
2084 
2085 /**
2086  * __audit_mq_open - record audit data for a POSIX MQ open
2087  * @oflag: open flag
2088  * @mode: mode bits
2089  * @attr: queue attributes
2090  *
2091  */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2092 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2093 {
2094 	struct audit_context *context = audit_context();
2095 
2096 	if (attr)
2097 		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2098 	else
2099 		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2100 
2101 	context->mq_open.oflag = oflag;
2102 	context->mq_open.mode = mode;
2103 
2104 	context->type = AUDIT_MQ_OPEN;
2105 }
2106 
2107 /**
2108  * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2109  * @mqdes: MQ descriptor
2110  * @msg_len: Message length
2111  * @msg_prio: Message priority
2112  * @abs_timeout: Message timeout in absolute time
2113  *
2114  */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec64 * abs_timeout)2115 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2116 			const struct timespec64 *abs_timeout)
2117 {
2118 	struct audit_context *context = audit_context();
2119 	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2120 
2121 	if (abs_timeout)
2122 		memcpy(p, abs_timeout, sizeof(*p));
2123 	else
2124 		memset(p, 0, sizeof(*p));
2125 
2126 	context->mq_sendrecv.mqdes = mqdes;
2127 	context->mq_sendrecv.msg_len = msg_len;
2128 	context->mq_sendrecv.msg_prio = msg_prio;
2129 
2130 	context->type = AUDIT_MQ_SENDRECV;
2131 }
2132 
2133 /**
2134  * __audit_mq_notify - record audit data for a POSIX MQ notify
2135  * @mqdes: MQ descriptor
2136  * @notification: Notification event
2137  *
2138  */
2139 
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2140 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2141 {
2142 	struct audit_context *context = audit_context();
2143 
2144 	if (notification)
2145 		context->mq_notify.sigev_signo = notification->sigev_signo;
2146 	else
2147 		context->mq_notify.sigev_signo = 0;
2148 
2149 	context->mq_notify.mqdes = mqdes;
2150 	context->type = AUDIT_MQ_NOTIFY;
2151 }
2152 
2153 /**
2154  * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2155  * @mqdes: MQ descriptor
2156  * @mqstat: MQ flags
2157  *
2158  */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2159 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2160 {
2161 	struct audit_context *context = audit_context();
2162 	context->mq_getsetattr.mqdes = mqdes;
2163 	context->mq_getsetattr.mqstat = *mqstat;
2164 	context->type = AUDIT_MQ_GETSETATTR;
2165 }
2166 
2167 /**
2168  * __audit_ipc_obj - record audit data for ipc object
2169  * @ipcp: ipc permissions
2170  *
2171  */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2172 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2173 {
2174 	struct audit_context *context = audit_context();
2175 	context->ipc.uid = ipcp->uid;
2176 	context->ipc.gid = ipcp->gid;
2177 	context->ipc.mode = ipcp->mode;
2178 	context->ipc.has_perm = 0;
2179 	security_ipc_getsecid(ipcp, &context->ipc.osid);
2180 	context->type = AUDIT_IPC;
2181 }
2182 
2183 /**
2184  * __audit_ipc_set_perm - record audit data for new ipc permissions
2185  * @qbytes: msgq bytes
2186  * @uid: msgq user id
2187  * @gid: msgq group id
2188  * @mode: msgq mode (permissions)
2189  *
2190  * Called only after audit_ipc_obj().
2191  */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2192 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2193 {
2194 	struct audit_context *context = audit_context();
2195 
2196 	context->ipc.qbytes = qbytes;
2197 	context->ipc.perm_uid = uid;
2198 	context->ipc.perm_gid = gid;
2199 	context->ipc.perm_mode = mode;
2200 	context->ipc.has_perm = 1;
2201 }
2202 
__audit_bprm(struct linux_binprm * bprm)2203 void __audit_bprm(struct linux_binprm *bprm)
2204 {
2205 	struct audit_context *context = audit_context();
2206 
2207 	context->type = AUDIT_EXECVE;
2208 	context->execve.argc = bprm->argc;
2209 }
2210 
2211 
2212 /**
2213  * __audit_socketcall - record audit data for sys_socketcall
2214  * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2215  * @args: args array
2216  *
2217  */
__audit_socketcall(int nargs,unsigned long * args)2218 int __audit_socketcall(int nargs, unsigned long *args)
2219 {
2220 	struct audit_context *context = audit_context();
2221 
2222 	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2223 		return -EINVAL;
2224 	context->type = AUDIT_SOCKETCALL;
2225 	context->socketcall.nargs = nargs;
2226 	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2227 	return 0;
2228 }
2229 
2230 /**
2231  * __audit_fd_pair - record audit data for pipe and socketpair
2232  * @fd1: the first file descriptor
2233  * @fd2: the second file descriptor
2234  *
2235  */
__audit_fd_pair(int fd1,int fd2)2236 void __audit_fd_pair(int fd1, int fd2)
2237 {
2238 	struct audit_context *context = audit_context();
2239 	context->fds[0] = fd1;
2240 	context->fds[1] = fd2;
2241 }
2242 
2243 /**
2244  * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2245  * @len: data length in user space
2246  * @a: data address in kernel space
2247  *
2248  * Returns 0 for success or NULL context or < 0 on error.
2249  */
__audit_sockaddr(int len,void * a)2250 int __audit_sockaddr(int len, void *a)
2251 {
2252 	struct audit_context *context = audit_context();
2253 
2254 	if (!context->sockaddr) {
2255 		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2256 		if (!p)
2257 			return -ENOMEM;
2258 		context->sockaddr = p;
2259 	}
2260 
2261 	context->sockaddr_len = len;
2262 	memcpy(context->sockaddr, a, len);
2263 	return 0;
2264 }
2265 
__audit_ptrace(struct task_struct * t)2266 void __audit_ptrace(struct task_struct *t)
2267 {
2268 	struct audit_context *context = audit_context();
2269 
2270 	context->target_pid = task_tgid_nr(t);
2271 	context->target_auid = audit_get_loginuid(t);
2272 	context->target_uid = task_uid(t);
2273 	context->target_sessionid = audit_get_sessionid(t);
2274 	security_task_getsecid(t, &context->target_sid);
2275 	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2276 }
2277 
2278 /**
2279  * audit_signal_info - record signal info for shutting down audit subsystem
2280  * @sig: signal value
2281  * @t: task being signaled
2282  *
2283  * If the audit subsystem is being terminated, record the task (pid)
2284  * and uid that is doing that.
2285  */
audit_signal_info(int sig,struct task_struct * t)2286 int audit_signal_info(int sig, struct task_struct *t)
2287 {
2288 	struct audit_aux_data_pids *axp;
2289 	struct audit_context *ctx = audit_context();
2290 	kuid_t uid = current_uid(), auid, t_uid = task_uid(t);
2291 
2292 	if (auditd_test_task(t) &&
2293 	    (sig == SIGTERM || sig == SIGHUP ||
2294 	     sig == SIGUSR1 || sig == SIGUSR2)) {
2295 		audit_sig_pid = task_tgid_nr(current);
2296 		auid = audit_get_loginuid(current);
2297 		if (uid_valid(auid))
2298 			audit_sig_uid = auid;
2299 		else
2300 			audit_sig_uid = uid;
2301 		security_task_getsecid(current, &audit_sig_sid);
2302 	}
2303 
2304 	if (!audit_signals || audit_dummy_context())
2305 		return 0;
2306 
2307 	/* optimize the common case by putting first signal recipient directly
2308 	 * in audit_context */
2309 	if (!ctx->target_pid) {
2310 		ctx->target_pid = task_tgid_nr(t);
2311 		ctx->target_auid = audit_get_loginuid(t);
2312 		ctx->target_uid = t_uid;
2313 		ctx->target_sessionid = audit_get_sessionid(t);
2314 		security_task_getsecid(t, &ctx->target_sid);
2315 		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2316 		return 0;
2317 	}
2318 
2319 	axp = (void *)ctx->aux_pids;
2320 	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2321 		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2322 		if (!axp)
2323 			return -ENOMEM;
2324 
2325 		axp->d.type = AUDIT_OBJ_PID;
2326 		axp->d.next = ctx->aux_pids;
2327 		ctx->aux_pids = (void *)axp;
2328 	}
2329 	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2330 
2331 	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2332 	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2333 	axp->target_uid[axp->pid_count] = t_uid;
2334 	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2335 	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2336 	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2337 	axp->pid_count++;
2338 
2339 	return 0;
2340 }
2341 
2342 /**
2343  * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2344  * @bprm: pointer to the bprm being processed
2345  * @new: the proposed new credentials
2346  * @old: the old credentials
2347  *
2348  * Simply check if the proc already has the caps given by the file and if not
2349  * store the priv escalation info for later auditing at the end of the syscall
2350  *
2351  * -Eric
2352  */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2353 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2354 			   const struct cred *new, const struct cred *old)
2355 {
2356 	struct audit_aux_data_bprm_fcaps *ax;
2357 	struct audit_context *context = audit_context();
2358 	struct cpu_vfs_cap_data vcaps;
2359 
2360 	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2361 	if (!ax)
2362 		return -ENOMEM;
2363 
2364 	ax->d.type = AUDIT_BPRM_FCAPS;
2365 	ax->d.next = context->aux;
2366 	context->aux = (void *)ax;
2367 
2368 	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
2369 
2370 	ax->fcap.permitted = vcaps.permitted;
2371 	ax->fcap.inheritable = vcaps.inheritable;
2372 	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2373 	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2374 
2375 	ax->old_pcap.permitted   = old->cap_permitted;
2376 	ax->old_pcap.inheritable = old->cap_inheritable;
2377 	ax->old_pcap.effective   = old->cap_effective;
2378 	ax->old_pcap.ambient     = old->cap_ambient;
2379 
2380 	ax->new_pcap.permitted   = new->cap_permitted;
2381 	ax->new_pcap.inheritable = new->cap_inheritable;
2382 	ax->new_pcap.effective   = new->cap_effective;
2383 	ax->new_pcap.ambient     = new->cap_ambient;
2384 	return 0;
2385 }
2386 
2387 /**
2388  * __audit_log_capset - store information about the arguments to the capset syscall
2389  * @new: the new credentials
2390  * @old: the old (current) credentials
2391  *
2392  * Record the arguments userspace sent to sys_capset for later printing by the
2393  * audit system if applicable
2394  */
__audit_log_capset(const struct cred * new,const struct cred * old)2395 void __audit_log_capset(const struct cred *new, const struct cred *old)
2396 {
2397 	struct audit_context *context = audit_context();
2398 	context->capset.pid = task_tgid_nr(current);
2399 	context->capset.cap.effective   = new->cap_effective;
2400 	context->capset.cap.inheritable = new->cap_effective;
2401 	context->capset.cap.permitted   = new->cap_permitted;
2402 	context->capset.cap.ambient     = new->cap_ambient;
2403 	context->type = AUDIT_CAPSET;
2404 }
2405 
__audit_mmap_fd(int fd,int flags)2406 void __audit_mmap_fd(int fd, int flags)
2407 {
2408 	struct audit_context *context = audit_context();
2409 	context->mmap.fd = fd;
2410 	context->mmap.flags = flags;
2411 	context->type = AUDIT_MMAP;
2412 }
2413 
__audit_log_kern_module(char * name)2414 void __audit_log_kern_module(char *name)
2415 {
2416 	struct audit_context *context = audit_context();
2417 
2418 	context->module.name = kstrdup(name, GFP_KERNEL);
2419 	if (!context->module.name)
2420 		audit_log_lost("out of memory in __audit_log_kern_module");
2421 	context->type = AUDIT_KERN_MODULE;
2422 }
2423 
__audit_fanotify(unsigned int response)2424 void __audit_fanotify(unsigned int response)
2425 {
2426 	audit_log(audit_context(), GFP_KERNEL,
2427 		AUDIT_FANOTIFY,	"resp=%u", response);
2428 }
2429 
audit_log_task(struct audit_buffer * ab)2430 static void audit_log_task(struct audit_buffer *ab)
2431 {
2432 	kuid_t auid, uid;
2433 	kgid_t gid;
2434 	unsigned int sessionid;
2435 	char comm[sizeof(current->comm)];
2436 
2437 	auid = audit_get_loginuid(current);
2438 	sessionid = audit_get_sessionid(current);
2439 	current_uid_gid(&uid, &gid);
2440 
2441 	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2442 			 from_kuid(&init_user_ns, auid),
2443 			 from_kuid(&init_user_ns, uid),
2444 			 from_kgid(&init_user_ns, gid),
2445 			 sessionid);
2446 	audit_log_task_context(ab);
2447 	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2448 	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2449 	audit_log_d_path_exe(ab, current->mm);
2450 }
2451 
2452 /**
2453  * audit_core_dumps - record information about processes that end abnormally
2454  * @signr: signal value
2455  *
2456  * If a process ends with a core dump, something fishy is going on and we
2457  * should record the event for investigation.
2458  */
audit_core_dumps(long signr)2459 void audit_core_dumps(long signr)
2460 {
2461 	struct audit_buffer *ab;
2462 
2463 	if (!audit_enabled)
2464 		return;
2465 
2466 	if (signr == SIGQUIT)	/* don't care for those */
2467 		return;
2468 
2469 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2470 	if (unlikely(!ab))
2471 		return;
2472 	audit_log_task(ab);
2473 	audit_log_format(ab, " sig=%ld res=1", signr);
2474 	audit_log_end(ab);
2475 }
2476 
2477 /**
2478  * audit_seccomp - record information about a seccomp action
2479  * @syscall: syscall number
2480  * @signr: signal value
2481  * @code: the seccomp action
2482  *
2483  * Record the information associated with a seccomp action. Event filtering for
2484  * seccomp actions that are not to be logged is done in seccomp_log().
2485  * Therefore, this function forces auditing independent of the audit_enabled
2486  * and dummy context state because seccomp actions should be logged even when
2487  * audit is not in use.
2488  */
audit_seccomp(unsigned long syscall,long signr,int code)2489 void audit_seccomp(unsigned long syscall, long signr, int code)
2490 {
2491 	struct audit_buffer *ab;
2492 
2493 	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2494 	if (unlikely(!ab))
2495 		return;
2496 	audit_log_task(ab);
2497 	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2498 			 signr, syscall_get_arch(), syscall,
2499 			 in_compat_syscall(), KSTK_EIP(current), code);
2500 	audit_log_end(ab);
2501 }
2502 
audit_seccomp_actions_logged(const char * names,const char * old_names,int res)2503 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2504 				  int res)
2505 {
2506 	struct audit_buffer *ab;
2507 
2508 	if (!audit_enabled)
2509 		return;
2510 
2511 	ab = audit_log_start(audit_context(), GFP_KERNEL,
2512 			     AUDIT_CONFIG_CHANGE);
2513 	if (unlikely(!ab))
2514 		return;
2515 
2516 	audit_log_format(ab, "op=seccomp-logging");
2517 	audit_log_format(ab, " actions=%s", names);
2518 	audit_log_format(ab, " old-actions=%s", old_names);
2519 	audit_log_format(ab, " res=%d", res);
2520 	audit_log_end(ab);
2521 }
2522 
audit_killed_trees(void)2523 struct list_head *audit_killed_trees(void)
2524 {
2525 	struct audit_context *ctx = audit_context();
2526 	if (likely(!ctx || !ctx->in_syscall))
2527 		return NULL;
2528 	return &ctx->killed_trees;
2529 }
2530