1 /*
2 * POSIX message queues filesystem for Linux.
3 *
4 * Copyright (C) 2003,2004 Krzysztof Benedyczak (golbi@mat.uni.torun.pl)
5 * Michal Wronski (michal.wronski@gmail.com)
6 *
7 * Spinlocks: Mohamed Abbas (abbas.mohamed@intel.com)
8 * Lockless receive & send, fd based notify:
9 * Manfred Spraul (manfred@colorfullife.com)
10 *
11 * Audit: George Wilson (ltcgcw@us.ibm.com)
12 *
13 * This file is released under the GPL.
14 */
15
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 #include <linux/sched/wake_q.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/user.h>
41
42 #include <net/sock.h>
43 #include "util.h"
44
45 #define MQUEUE_MAGIC 0x19800202
46 #define DIRENT_SIZE 20
47 #define FILENT_SIZE 80
48
49 #define SEND 0
50 #define RECV 1
51
52 #define STATE_NONE 0
53 #define STATE_READY 1
54
55 struct posix_msg_tree_node {
56 struct rb_node rb_node;
57 struct list_head msg_list;
58 int priority;
59 };
60
61 struct ext_wait_queue { /* queue of sleeping tasks */
62 struct task_struct *task;
63 struct list_head list;
64 struct msg_msg *msg; /* ptr of loaded message */
65 int state; /* one of STATE_* values */
66 };
67
68 struct mqueue_inode_info {
69 spinlock_t lock;
70 struct inode vfs_inode;
71 wait_queue_head_t wait_q;
72
73 struct rb_root msg_tree;
74 struct posix_msg_tree_node *node_cache;
75 struct mq_attr attr;
76
77 struct sigevent notify;
78 struct pid *notify_owner;
79 struct user_namespace *notify_user_ns;
80 struct user_struct *user; /* user who created, for accounting */
81 struct sock *notify_sock;
82 struct sk_buff *notify_cookie;
83
84 /* for tasks waiting for free space and messages, respectively */
85 struct ext_wait_queue e_wait_q[2];
86
87 unsigned long qsize; /* size of queue in memory (sum of all msgs) */
88 };
89
90 static const struct inode_operations mqueue_dir_inode_operations;
91 static const struct file_operations mqueue_file_operations;
92 static const struct super_operations mqueue_super_ops;
93 static void remove_notification(struct mqueue_inode_info *info);
94
95 static struct kmem_cache *mqueue_inode_cachep;
96
97 static struct ctl_table_header *mq_sysctl_table;
98
MQUEUE_I(struct inode * inode)99 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
100 {
101 return container_of(inode, struct mqueue_inode_info, vfs_inode);
102 }
103
104 /*
105 * This routine should be called with the mq_lock held.
106 */
__get_ns_from_inode(struct inode * inode)107 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
108 {
109 return get_ipc_ns(inode->i_sb->s_fs_info);
110 }
111
get_ns_from_inode(struct inode * inode)112 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
113 {
114 struct ipc_namespace *ns;
115
116 spin_lock(&mq_lock);
117 ns = __get_ns_from_inode(inode);
118 spin_unlock(&mq_lock);
119 return ns;
120 }
121
122 /* Auxiliary functions to manipulate messages' list */
msg_insert(struct msg_msg * msg,struct mqueue_inode_info * info)123 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
124 {
125 struct rb_node **p, *parent = NULL;
126 struct posix_msg_tree_node *leaf;
127
128 p = &info->msg_tree.rb_node;
129 while (*p) {
130 parent = *p;
131 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
132
133 if (likely(leaf->priority == msg->m_type))
134 goto insert_msg;
135 else if (msg->m_type < leaf->priority)
136 p = &(*p)->rb_left;
137 else
138 p = &(*p)->rb_right;
139 }
140 if (info->node_cache) {
141 leaf = info->node_cache;
142 info->node_cache = NULL;
143 } else {
144 leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
145 if (!leaf)
146 return -ENOMEM;
147 INIT_LIST_HEAD(&leaf->msg_list);
148 }
149 leaf->priority = msg->m_type;
150 rb_link_node(&leaf->rb_node, parent, p);
151 rb_insert_color(&leaf->rb_node, &info->msg_tree);
152 insert_msg:
153 info->attr.mq_curmsgs++;
154 info->qsize += msg->m_ts;
155 list_add_tail(&msg->m_list, &leaf->msg_list);
156 return 0;
157 }
158
msg_get(struct mqueue_inode_info * info)159 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
160 {
161 struct rb_node **p, *parent = NULL;
162 struct posix_msg_tree_node *leaf;
163 struct msg_msg *msg;
164
165 try_again:
166 p = &info->msg_tree.rb_node;
167 while (*p) {
168 parent = *p;
169 /*
170 * During insert, low priorities go to the left and high to the
171 * right. On receive, we want the highest priorities first, so
172 * walk all the way to the right.
173 */
174 p = &(*p)->rb_right;
175 }
176 if (!parent) {
177 if (info->attr.mq_curmsgs) {
178 pr_warn_once("Inconsistency in POSIX message queue, "
179 "no tree element, but supposedly messages "
180 "should exist!\n");
181 info->attr.mq_curmsgs = 0;
182 }
183 return NULL;
184 }
185 leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
186 if (unlikely(list_empty(&leaf->msg_list))) {
187 pr_warn_once("Inconsistency in POSIX message queue, "
188 "empty leaf node but we haven't implemented "
189 "lazy leaf delete!\n");
190 rb_erase(&leaf->rb_node, &info->msg_tree);
191 if (info->node_cache) {
192 kfree(leaf);
193 } else {
194 info->node_cache = leaf;
195 }
196 goto try_again;
197 } else {
198 msg = list_first_entry(&leaf->msg_list,
199 struct msg_msg, m_list);
200 list_del(&msg->m_list);
201 if (list_empty(&leaf->msg_list)) {
202 rb_erase(&leaf->rb_node, &info->msg_tree);
203 if (info->node_cache) {
204 kfree(leaf);
205 } else {
206 info->node_cache = leaf;
207 }
208 }
209 }
210 info->attr.mq_curmsgs--;
211 info->qsize -= msg->m_ts;
212 return msg;
213 }
214
mqueue_get_inode(struct super_block * sb,struct ipc_namespace * ipc_ns,umode_t mode,struct mq_attr * attr)215 static struct inode *mqueue_get_inode(struct super_block *sb,
216 struct ipc_namespace *ipc_ns, umode_t mode,
217 struct mq_attr *attr)
218 {
219 struct user_struct *u = current_user();
220 struct inode *inode;
221 int ret = -ENOMEM;
222
223 inode = new_inode(sb);
224 if (!inode)
225 goto err;
226
227 inode->i_ino = get_next_ino();
228 inode->i_mode = mode;
229 inode->i_uid = current_fsuid();
230 inode->i_gid = current_fsgid();
231 inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
232
233 if (S_ISREG(mode)) {
234 struct mqueue_inode_info *info;
235 unsigned long mq_bytes, mq_treesize;
236
237 inode->i_fop = &mqueue_file_operations;
238 inode->i_size = FILENT_SIZE;
239 /* mqueue specific info */
240 info = MQUEUE_I(inode);
241 spin_lock_init(&info->lock);
242 init_waitqueue_head(&info->wait_q);
243 INIT_LIST_HEAD(&info->e_wait_q[0].list);
244 INIT_LIST_HEAD(&info->e_wait_q[1].list);
245 info->notify_owner = NULL;
246 info->notify_user_ns = NULL;
247 info->qsize = 0;
248 info->user = NULL; /* set when all is ok */
249 info->msg_tree = RB_ROOT;
250 info->node_cache = NULL;
251 memset(&info->attr, 0, sizeof(info->attr));
252 info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
253 ipc_ns->mq_msg_default);
254 info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
255 ipc_ns->mq_msgsize_default);
256 if (attr) {
257 info->attr.mq_maxmsg = attr->mq_maxmsg;
258 info->attr.mq_msgsize = attr->mq_msgsize;
259 }
260 /*
261 * We used to allocate a static array of pointers and account
262 * the size of that array as well as one msg_msg struct per
263 * possible message into the queue size. That's no longer
264 * accurate as the queue is now an rbtree and will grow and
265 * shrink depending on usage patterns. We can, however, still
266 * account one msg_msg struct per message, but the nodes are
267 * allocated depending on priority usage, and most programs
268 * only use one, or a handful, of priorities. However, since
269 * this is pinned memory, we need to assume worst case, so
270 * that means the min(mq_maxmsg, max_priorities) * struct
271 * posix_msg_tree_node.
272 */
273
274 ret = -EINVAL;
275 if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
276 goto out_inode;
277 if (capable(CAP_SYS_RESOURCE)) {
278 if (info->attr.mq_maxmsg > HARD_MSGMAX ||
279 info->attr.mq_msgsize > HARD_MSGSIZEMAX)
280 goto out_inode;
281 } else {
282 if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
283 info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
284 goto out_inode;
285 }
286 ret = -EOVERFLOW;
287 /* check for overflow */
288 if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
289 goto out_inode;
290 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
291 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
292 sizeof(struct posix_msg_tree_node);
293 mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
294 if (mq_bytes + mq_treesize < mq_bytes)
295 goto out_inode;
296 mq_bytes += mq_treesize;
297 spin_lock(&mq_lock);
298 if (u->mq_bytes + mq_bytes < u->mq_bytes ||
299 u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
300 spin_unlock(&mq_lock);
301 /* mqueue_evict_inode() releases info->messages */
302 ret = -EMFILE;
303 goto out_inode;
304 }
305 u->mq_bytes += mq_bytes;
306 spin_unlock(&mq_lock);
307
308 /* all is ok */
309 info->user = get_uid(u);
310 } else if (S_ISDIR(mode)) {
311 inc_nlink(inode);
312 /* Some things misbehave if size == 0 on a directory */
313 inode->i_size = 2 * DIRENT_SIZE;
314 inode->i_op = &mqueue_dir_inode_operations;
315 inode->i_fop = &simple_dir_operations;
316 }
317
318 return inode;
319 out_inode:
320 iput(inode);
321 err:
322 return ERR_PTR(ret);
323 }
324
mqueue_fill_super(struct super_block * sb,void * data,int silent)325 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
326 {
327 struct inode *inode;
328 struct ipc_namespace *ns = sb->s_fs_info;
329
330 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
331 sb->s_blocksize = PAGE_SIZE;
332 sb->s_blocksize_bits = PAGE_SHIFT;
333 sb->s_magic = MQUEUE_MAGIC;
334 sb->s_op = &mqueue_super_ops;
335
336 inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
337 if (IS_ERR(inode))
338 return PTR_ERR(inode);
339
340 sb->s_root = d_make_root(inode);
341 if (!sb->s_root)
342 return -ENOMEM;
343 return 0;
344 }
345
mqueue_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)346 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
347 int flags, const char *dev_name,
348 void *data)
349 {
350 struct ipc_namespace *ns;
351 if (flags & SB_KERNMOUNT) {
352 ns = data;
353 data = NULL;
354 } else {
355 ns = current->nsproxy->ipc_ns;
356 }
357 return mount_ns(fs_type, flags, data, ns, ns->user_ns, mqueue_fill_super);
358 }
359
init_once(void * foo)360 static void init_once(void *foo)
361 {
362 struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
363
364 inode_init_once(&p->vfs_inode);
365 }
366
mqueue_alloc_inode(struct super_block * sb)367 static struct inode *mqueue_alloc_inode(struct super_block *sb)
368 {
369 struct mqueue_inode_info *ei;
370
371 ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
372 if (!ei)
373 return NULL;
374 return &ei->vfs_inode;
375 }
376
mqueue_i_callback(struct rcu_head * head)377 static void mqueue_i_callback(struct rcu_head *head)
378 {
379 struct inode *inode = container_of(head, struct inode, i_rcu);
380 kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
381 }
382
mqueue_destroy_inode(struct inode * inode)383 static void mqueue_destroy_inode(struct inode *inode)
384 {
385 call_rcu(&inode->i_rcu, mqueue_i_callback);
386 }
387
mqueue_evict_inode(struct inode * inode)388 static void mqueue_evict_inode(struct inode *inode)
389 {
390 struct mqueue_inode_info *info;
391 struct user_struct *user;
392 unsigned long mq_bytes, mq_treesize;
393 struct ipc_namespace *ipc_ns;
394 struct msg_msg *msg;
395
396 clear_inode(inode);
397
398 if (S_ISDIR(inode->i_mode))
399 return;
400
401 ipc_ns = get_ns_from_inode(inode);
402 info = MQUEUE_I(inode);
403 spin_lock(&info->lock);
404 while ((msg = msg_get(info)) != NULL)
405 free_msg(msg);
406 kfree(info->node_cache);
407 spin_unlock(&info->lock);
408
409 /* Total amount of bytes accounted for the mqueue */
410 mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
411 min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
412 sizeof(struct posix_msg_tree_node);
413
414 mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
415 info->attr.mq_msgsize);
416
417 user = info->user;
418 if (user) {
419 spin_lock(&mq_lock);
420 user->mq_bytes -= mq_bytes;
421 /*
422 * get_ns_from_inode() ensures that the
423 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
424 * to which we now hold a reference, or it is NULL.
425 * We can't put it here under mq_lock, though.
426 */
427 if (ipc_ns)
428 ipc_ns->mq_queues_count--;
429 spin_unlock(&mq_lock);
430 free_uid(user);
431 }
432 if (ipc_ns)
433 put_ipc_ns(ipc_ns);
434 }
435
mqueue_create_attr(struct dentry * dentry,umode_t mode,void * arg)436 static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
437 {
438 struct inode *dir = dentry->d_parent->d_inode;
439 struct inode *inode;
440 struct mq_attr *attr = arg;
441 int error;
442 struct ipc_namespace *ipc_ns;
443
444 spin_lock(&mq_lock);
445 ipc_ns = __get_ns_from_inode(dir);
446 if (!ipc_ns) {
447 error = -EACCES;
448 goto out_unlock;
449 }
450
451 if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
452 !capable(CAP_SYS_RESOURCE)) {
453 error = -ENOSPC;
454 goto out_unlock;
455 }
456 ipc_ns->mq_queues_count++;
457 spin_unlock(&mq_lock);
458
459 inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
460 if (IS_ERR(inode)) {
461 error = PTR_ERR(inode);
462 spin_lock(&mq_lock);
463 ipc_ns->mq_queues_count--;
464 goto out_unlock;
465 }
466
467 put_ipc_ns(ipc_ns);
468 dir->i_size += DIRENT_SIZE;
469 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
470
471 d_instantiate(dentry, inode);
472 dget(dentry);
473 return 0;
474 out_unlock:
475 spin_unlock(&mq_lock);
476 if (ipc_ns)
477 put_ipc_ns(ipc_ns);
478 return error;
479 }
480
mqueue_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)481 static int mqueue_create(struct inode *dir, struct dentry *dentry,
482 umode_t mode, bool excl)
483 {
484 return mqueue_create_attr(dentry, mode, NULL);
485 }
486
mqueue_unlink(struct inode * dir,struct dentry * dentry)487 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
488 {
489 struct inode *inode = d_inode(dentry);
490
491 dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
492 dir->i_size -= DIRENT_SIZE;
493 drop_nlink(inode);
494 dput(dentry);
495 return 0;
496 }
497
498 /*
499 * This is routine for system read from queue file.
500 * To avoid mess with doing here some sort of mq_receive we allow
501 * to read only queue size & notification info (the only values
502 * that are interesting from user point of view and aren't accessible
503 * through std routines)
504 */
mqueue_read_file(struct file * filp,char __user * u_data,size_t count,loff_t * off)505 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
506 size_t count, loff_t *off)
507 {
508 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
509 char buffer[FILENT_SIZE];
510 ssize_t ret;
511
512 spin_lock(&info->lock);
513 snprintf(buffer, sizeof(buffer),
514 "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
515 info->qsize,
516 info->notify_owner ? info->notify.sigev_notify : 0,
517 (info->notify_owner &&
518 info->notify.sigev_notify == SIGEV_SIGNAL) ?
519 info->notify.sigev_signo : 0,
520 pid_vnr(info->notify_owner));
521 spin_unlock(&info->lock);
522 buffer[sizeof(buffer)-1] = '\0';
523
524 ret = simple_read_from_buffer(u_data, count, off, buffer,
525 strlen(buffer));
526 if (ret <= 0)
527 return ret;
528
529 file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
530 return ret;
531 }
532
mqueue_flush_file(struct file * filp,fl_owner_t id)533 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
534 {
535 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
536
537 spin_lock(&info->lock);
538 if (task_tgid(current) == info->notify_owner)
539 remove_notification(info);
540
541 spin_unlock(&info->lock);
542 return 0;
543 }
544
mqueue_poll_file(struct file * filp,struct poll_table_struct * poll_tab)545 static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
546 {
547 struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
548 __poll_t retval = 0;
549
550 poll_wait(filp, &info->wait_q, poll_tab);
551
552 spin_lock(&info->lock);
553 if (info->attr.mq_curmsgs)
554 retval = EPOLLIN | EPOLLRDNORM;
555
556 if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
557 retval |= EPOLLOUT | EPOLLWRNORM;
558 spin_unlock(&info->lock);
559
560 return retval;
561 }
562
563 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
wq_add(struct mqueue_inode_info * info,int sr,struct ext_wait_queue * ewp)564 static void wq_add(struct mqueue_inode_info *info, int sr,
565 struct ext_wait_queue *ewp)
566 {
567 struct ext_wait_queue *walk;
568
569 ewp->task = current;
570
571 list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
572 if (walk->task->prio <= current->prio) {
573 list_add_tail(&ewp->list, &walk->list);
574 return;
575 }
576 }
577 list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
578 }
579
580 /*
581 * Puts current task to sleep. Caller must hold queue lock. After return
582 * lock isn't held.
583 * sr: SEND or RECV
584 */
wq_sleep(struct mqueue_inode_info * info,int sr,ktime_t * timeout,struct ext_wait_queue * ewp)585 static int wq_sleep(struct mqueue_inode_info *info, int sr,
586 ktime_t *timeout, struct ext_wait_queue *ewp)
587 __releases(&info->lock)
588 {
589 int retval;
590 signed long time;
591
592 wq_add(info, sr, ewp);
593
594 for (;;) {
595 __set_current_state(TASK_INTERRUPTIBLE);
596
597 spin_unlock(&info->lock);
598 time = schedule_hrtimeout_range_clock(timeout, 0,
599 HRTIMER_MODE_ABS, CLOCK_REALTIME);
600
601 if (ewp->state == STATE_READY) {
602 retval = 0;
603 goto out;
604 }
605 spin_lock(&info->lock);
606 if (ewp->state == STATE_READY) {
607 retval = 0;
608 goto out_unlock;
609 }
610 if (signal_pending(current)) {
611 retval = -ERESTARTSYS;
612 break;
613 }
614 if (time == 0) {
615 retval = -ETIMEDOUT;
616 break;
617 }
618 }
619 list_del(&ewp->list);
620 out_unlock:
621 spin_unlock(&info->lock);
622 out:
623 return retval;
624 }
625
626 /*
627 * Returns waiting task that should be serviced first or NULL if none exists
628 */
wq_get_first_waiter(struct mqueue_inode_info * info,int sr)629 static struct ext_wait_queue *wq_get_first_waiter(
630 struct mqueue_inode_info *info, int sr)
631 {
632 struct list_head *ptr;
633
634 ptr = info->e_wait_q[sr].list.prev;
635 if (ptr == &info->e_wait_q[sr].list)
636 return NULL;
637 return list_entry(ptr, struct ext_wait_queue, list);
638 }
639
640
set_cookie(struct sk_buff * skb,char code)641 static inline void set_cookie(struct sk_buff *skb, char code)
642 {
643 ((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
644 }
645
646 /*
647 * The next function is only to split too long sys_mq_timedsend
648 */
__do_notify(struct mqueue_inode_info * info)649 static void __do_notify(struct mqueue_inode_info *info)
650 {
651 /* notification
652 * invoked when there is registered process and there isn't process
653 * waiting synchronously for message AND state of queue changed from
654 * empty to not empty. Here we are sure that no one is waiting
655 * synchronously. */
656 if (info->notify_owner &&
657 info->attr.mq_curmsgs == 1) {
658 struct siginfo sig_i;
659 switch (info->notify.sigev_notify) {
660 case SIGEV_NONE:
661 break;
662 case SIGEV_SIGNAL:
663 /* sends signal */
664
665 clear_siginfo(&sig_i);
666 sig_i.si_signo = info->notify.sigev_signo;
667 sig_i.si_errno = 0;
668 sig_i.si_code = SI_MESGQ;
669 sig_i.si_value = info->notify.sigev_value;
670 /* map current pid/uid into info->owner's namespaces */
671 rcu_read_lock();
672 sig_i.si_pid = task_tgid_nr_ns(current,
673 ns_of_pid(info->notify_owner));
674 sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
675 rcu_read_unlock();
676
677 kill_pid_info(info->notify.sigev_signo,
678 &sig_i, info->notify_owner);
679 break;
680 case SIGEV_THREAD:
681 set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
682 netlink_sendskb(info->notify_sock, info->notify_cookie);
683 break;
684 }
685 /* after notification unregisters process */
686 put_pid(info->notify_owner);
687 put_user_ns(info->notify_user_ns);
688 info->notify_owner = NULL;
689 info->notify_user_ns = NULL;
690 }
691 wake_up(&info->wait_q);
692 }
693
prepare_timeout(const struct __kernel_timespec __user * u_abs_timeout,struct timespec64 * ts)694 static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
695 struct timespec64 *ts)
696 {
697 if (get_timespec64(ts, u_abs_timeout))
698 return -EFAULT;
699 if (!timespec64_valid(ts))
700 return -EINVAL;
701 return 0;
702 }
703
remove_notification(struct mqueue_inode_info * info)704 static void remove_notification(struct mqueue_inode_info *info)
705 {
706 if (info->notify_owner != NULL &&
707 info->notify.sigev_notify == SIGEV_THREAD) {
708 set_cookie(info->notify_cookie, NOTIFY_REMOVED);
709 netlink_sendskb(info->notify_sock, info->notify_cookie);
710 }
711 put_pid(info->notify_owner);
712 put_user_ns(info->notify_user_ns);
713 info->notify_owner = NULL;
714 info->notify_user_ns = NULL;
715 }
716
prepare_open(struct dentry * dentry,int oflag,int ro,umode_t mode,struct filename * name,struct mq_attr * attr)717 static int prepare_open(struct dentry *dentry, int oflag, int ro,
718 umode_t mode, struct filename *name,
719 struct mq_attr *attr)
720 {
721 static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
722 MAY_READ | MAY_WRITE };
723 int acc;
724
725 if (d_really_is_negative(dentry)) {
726 if (!(oflag & O_CREAT))
727 return -ENOENT;
728 if (ro)
729 return ro;
730 audit_inode_parent_hidden(name, dentry->d_parent);
731 return vfs_mkobj(dentry, mode & ~current_umask(),
732 mqueue_create_attr, attr);
733 }
734 /* it already existed */
735 audit_inode(name, dentry, 0);
736 if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
737 return -EEXIST;
738 if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
739 return -EINVAL;
740 acc = oflag2acc[oflag & O_ACCMODE];
741 return inode_permission(d_inode(dentry), acc);
742 }
743
do_mq_open(const char __user * u_name,int oflag,umode_t mode,struct mq_attr * attr)744 static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
745 struct mq_attr *attr)
746 {
747 struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
748 struct dentry *root = mnt->mnt_root;
749 struct filename *name;
750 struct path path;
751 int fd, error;
752 int ro;
753
754 audit_mq_open(oflag, mode, attr);
755
756 if (IS_ERR(name = getname(u_name)))
757 return PTR_ERR(name);
758
759 fd = get_unused_fd_flags(O_CLOEXEC);
760 if (fd < 0)
761 goto out_putname;
762
763 ro = mnt_want_write(mnt); /* we'll drop it in any case */
764 inode_lock(d_inode(root));
765 path.dentry = lookup_one_len(name->name, root, strlen(name->name));
766 if (IS_ERR(path.dentry)) {
767 error = PTR_ERR(path.dentry);
768 goto out_putfd;
769 }
770 path.mnt = mntget(mnt);
771 error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
772 if (!error) {
773 struct file *file = dentry_open(&path, oflag, current_cred());
774 if (!IS_ERR(file))
775 fd_install(fd, file);
776 else
777 error = PTR_ERR(file);
778 }
779 path_put(&path);
780 out_putfd:
781 if (error) {
782 put_unused_fd(fd);
783 fd = error;
784 }
785 inode_unlock(d_inode(root));
786 if (!ro)
787 mnt_drop_write(mnt);
788 out_putname:
789 putname(name);
790 return fd;
791 }
792
SYSCALL_DEFINE4(mq_open,const char __user *,u_name,int,oflag,umode_t,mode,struct mq_attr __user *,u_attr)793 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
794 struct mq_attr __user *, u_attr)
795 {
796 struct mq_attr attr;
797 if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
798 return -EFAULT;
799
800 return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
801 }
802
SYSCALL_DEFINE1(mq_unlink,const char __user *,u_name)803 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
804 {
805 int err;
806 struct filename *name;
807 struct dentry *dentry;
808 struct inode *inode = NULL;
809 struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
810 struct vfsmount *mnt = ipc_ns->mq_mnt;
811
812 name = getname(u_name);
813 if (IS_ERR(name))
814 return PTR_ERR(name);
815
816 audit_inode_parent_hidden(name, mnt->mnt_root);
817 err = mnt_want_write(mnt);
818 if (err)
819 goto out_name;
820 inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
821 dentry = lookup_one_len(name->name, mnt->mnt_root,
822 strlen(name->name));
823 if (IS_ERR(dentry)) {
824 err = PTR_ERR(dentry);
825 goto out_unlock;
826 }
827
828 inode = d_inode(dentry);
829 if (!inode) {
830 err = -ENOENT;
831 } else {
832 ihold(inode);
833 err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
834 }
835 dput(dentry);
836
837 out_unlock:
838 inode_unlock(d_inode(mnt->mnt_root));
839 if (inode)
840 iput(inode);
841 mnt_drop_write(mnt);
842 out_name:
843 putname(name);
844
845 return err;
846 }
847
848 /* Pipelined send and receive functions.
849 *
850 * If a receiver finds no waiting message, then it registers itself in the
851 * list of waiting receivers. A sender checks that list before adding the new
852 * message into the message array. If there is a waiting receiver, then it
853 * bypasses the message array and directly hands the message over to the
854 * receiver. The receiver accepts the message and returns without grabbing the
855 * queue spinlock:
856 *
857 * - Set pointer to message.
858 * - Queue the receiver task for later wakeup (without the info->lock).
859 * - Update its state to STATE_READY. Now the receiver can continue.
860 * - Wake up the process after the lock is dropped. Should the process wake up
861 * before this wakeup (due to a timeout or a signal) it will either see
862 * STATE_READY and continue or acquire the lock to check the state again.
863 *
864 * The same algorithm is used for senders.
865 */
866
867 /* pipelined_send() - send a message directly to the task waiting in
868 * sys_mq_timedreceive() (without inserting message into a queue).
869 */
pipelined_send(struct wake_q_head * wake_q,struct mqueue_inode_info * info,struct msg_msg * message,struct ext_wait_queue * receiver)870 static inline void pipelined_send(struct wake_q_head *wake_q,
871 struct mqueue_inode_info *info,
872 struct msg_msg *message,
873 struct ext_wait_queue *receiver)
874 {
875 receiver->msg = message;
876 list_del(&receiver->list);
877 wake_q_add(wake_q, receiver->task);
878 /*
879 * Rely on the implicit cmpxchg barrier from wake_q_add such
880 * that we can ensure that updating receiver->state is the last
881 * write operation: As once set, the receiver can continue,
882 * and if we don't have the reference count from the wake_q,
883 * yet, at that point we can later have a use-after-free
884 * condition and bogus wakeup.
885 */
886 receiver->state = STATE_READY;
887 }
888
889 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
890 * gets its message and put to the queue (we have one free place for sure). */
pipelined_receive(struct wake_q_head * wake_q,struct mqueue_inode_info * info)891 static inline void pipelined_receive(struct wake_q_head *wake_q,
892 struct mqueue_inode_info *info)
893 {
894 struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
895
896 if (!sender) {
897 /* for poll */
898 wake_up_interruptible(&info->wait_q);
899 return;
900 }
901 if (msg_insert(sender->msg, info))
902 return;
903
904 list_del(&sender->list);
905 wake_q_add(wake_q, sender->task);
906 sender->state = STATE_READY;
907 }
908
do_mq_timedsend(mqd_t mqdes,const char __user * u_msg_ptr,size_t msg_len,unsigned int msg_prio,struct timespec64 * ts)909 static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
910 size_t msg_len, unsigned int msg_prio,
911 struct timespec64 *ts)
912 {
913 struct fd f;
914 struct inode *inode;
915 struct ext_wait_queue wait;
916 struct ext_wait_queue *receiver;
917 struct msg_msg *msg_ptr;
918 struct mqueue_inode_info *info;
919 ktime_t expires, *timeout = NULL;
920 struct posix_msg_tree_node *new_leaf = NULL;
921 int ret = 0;
922 DEFINE_WAKE_Q(wake_q);
923
924 if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
925 return -EINVAL;
926
927 if (ts) {
928 expires = timespec64_to_ktime(*ts);
929 timeout = &expires;
930 }
931
932 audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
933
934 f = fdget(mqdes);
935 if (unlikely(!f.file)) {
936 ret = -EBADF;
937 goto out;
938 }
939
940 inode = file_inode(f.file);
941 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
942 ret = -EBADF;
943 goto out_fput;
944 }
945 info = MQUEUE_I(inode);
946 audit_file(f.file);
947
948 if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
949 ret = -EBADF;
950 goto out_fput;
951 }
952
953 if (unlikely(msg_len > info->attr.mq_msgsize)) {
954 ret = -EMSGSIZE;
955 goto out_fput;
956 }
957
958 /* First try to allocate memory, before doing anything with
959 * existing queues. */
960 msg_ptr = load_msg(u_msg_ptr, msg_len);
961 if (IS_ERR(msg_ptr)) {
962 ret = PTR_ERR(msg_ptr);
963 goto out_fput;
964 }
965 msg_ptr->m_ts = msg_len;
966 msg_ptr->m_type = msg_prio;
967
968 /*
969 * msg_insert really wants us to have a valid, spare node struct so
970 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
971 * fall back to that if necessary.
972 */
973 if (!info->node_cache)
974 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
975
976 spin_lock(&info->lock);
977
978 if (!info->node_cache && new_leaf) {
979 /* Save our speculative allocation into the cache */
980 INIT_LIST_HEAD(&new_leaf->msg_list);
981 info->node_cache = new_leaf;
982 new_leaf = NULL;
983 } else {
984 kfree(new_leaf);
985 }
986
987 if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
988 if (f.file->f_flags & O_NONBLOCK) {
989 ret = -EAGAIN;
990 } else {
991 wait.task = current;
992 wait.msg = (void *) msg_ptr;
993 wait.state = STATE_NONE;
994 ret = wq_sleep(info, SEND, timeout, &wait);
995 /*
996 * wq_sleep must be called with info->lock held, and
997 * returns with the lock released
998 */
999 goto out_free;
1000 }
1001 } else {
1002 receiver = wq_get_first_waiter(info, RECV);
1003 if (receiver) {
1004 pipelined_send(&wake_q, info, msg_ptr, receiver);
1005 } else {
1006 /* adds message to the queue */
1007 ret = msg_insert(msg_ptr, info);
1008 if (ret)
1009 goto out_unlock;
1010 __do_notify(info);
1011 }
1012 inode->i_atime = inode->i_mtime = inode->i_ctime =
1013 current_time(inode);
1014 }
1015 out_unlock:
1016 spin_unlock(&info->lock);
1017 wake_up_q(&wake_q);
1018 out_free:
1019 if (ret)
1020 free_msg(msg_ptr);
1021 out_fput:
1022 fdput(f);
1023 out:
1024 return ret;
1025 }
1026
do_mq_timedreceive(mqd_t mqdes,char __user * u_msg_ptr,size_t msg_len,unsigned int __user * u_msg_prio,struct timespec64 * ts)1027 static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1028 size_t msg_len, unsigned int __user *u_msg_prio,
1029 struct timespec64 *ts)
1030 {
1031 ssize_t ret;
1032 struct msg_msg *msg_ptr;
1033 struct fd f;
1034 struct inode *inode;
1035 struct mqueue_inode_info *info;
1036 struct ext_wait_queue wait;
1037 ktime_t expires, *timeout = NULL;
1038 struct posix_msg_tree_node *new_leaf = NULL;
1039
1040 if (ts) {
1041 expires = timespec64_to_ktime(*ts);
1042 timeout = &expires;
1043 }
1044
1045 audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1046
1047 f = fdget(mqdes);
1048 if (unlikely(!f.file)) {
1049 ret = -EBADF;
1050 goto out;
1051 }
1052
1053 inode = file_inode(f.file);
1054 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1055 ret = -EBADF;
1056 goto out_fput;
1057 }
1058 info = MQUEUE_I(inode);
1059 audit_file(f.file);
1060
1061 if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1062 ret = -EBADF;
1063 goto out_fput;
1064 }
1065
1066 /* checks if buffer is big enough */
1067 if (unlikely(msg_len < info->attr.mq_msgsize)) {
1068 ret = -EMSGSIZE;
1069 goto out_fput;
1070 }
1071
1072 /*
1073 * msg_insert really wants us to have a valid, spare node struct so
1074 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1075 * fall back to that if necessary.
1076 */
1077 if (!info->node_cache)
1078 new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1079
1080 spin_lock(&info->lock);
1081
1082 if (!info->node_cache && new_leaf) {
1083 /* Save our speculative allocation into the cache */
1084 INIT_LIST_HEAD(&new_leaf->msg_list);
1085 info->node_cache = new_leaf;
1086 } else {
1087 kfree(new_leaf);
1088 }
1089
1090 if (info->attr.mq_curmsgs == 0) {
1091 if (f.file->f_flags & O_NONBLOCK) {
1092 spin_unlock(&info->lock);
1093 ret = -EAGAIN;
1094 } else {
1095 wait.task = current;
1096 wait.state = STATE_NONE;
1097 ret = wq_sleep(info, RECV, timeout, &wait);
1098 msg_ptr = wait.msg;
1099 }
1100 } else {
1101 DEFINE_WAKE_Q(wake_q);
1102
1103 msg_ptr = msg_get(info);
1104
1105 inode->i_atime = inode->i_mtime = inode->i_ctime =
1106 current_time(inode);
1107
1108 /* There is now free space in queue. */
1109 pipelined_receive(&wake_q, info);
1110 spin_unlock(&info->lock);
1111 wake_up_q(&wake_q);
1112 ret = 0;
1113 }
1114 if (ret == 0) {
1115 ret = msg_ptr->m_ts;
1116
1117 if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1118 store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1119 ret = -EFAULT;
1120 }
1121 free_msg(msg_ptr);
1122 }
1123 out_fput:
1124 fdput(f);
1125 out:
1126 return ret;
1127 }
1128
SYSCALL_DEFINE5(mq_timedsend,mqd_t,mqdes,const char __user *,u_msg_ptr,size_t,msg_len,unsigned int,msg_prio,const struct __kernel_timespec __user *,u_abs_timeout)1129 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1130 size_t, msg_len, unsigned int, msg_prio,
1131 const struct __kernel_timespec __user *, u_abs_timeout)
1132 {
1133 struct timespec64 ts, *p = NULL;
1134 if (u_abs_timeout) {
1135 int res = prepare_timeout(u_abs_timeout, &ts);
1136 if (res)
1137 return res;
1138 p = &ts;
1139 }
1140 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1141 }
1142
SYSCALL_DEFINE5(mq_timedreceive,mqd_t,mqdes,char __user *,u_msg_ptr,size_t,msg_len,unsigned int __user *,u_msg_prio,const struct __kernel_timespec __user *,u_abs_timeout)1143 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1144 size_t, msg_len, unsigned int __user *, u_msg_prio,
1145 const struct __kernel_timespec __user *, u_abs_timeout)
1146 {
1147 struct timespec64 ts, *p = NULL;
1148 if (u_abs_timeout) {
1149 int res = prepare_timeout(u_abs_timeout, &ts);
1150 if (res)
1151 return res;
1152 p = &ts;
1153 }
1154 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1155 }
1156
1157 /*
1158 * Notes: the case when user wants us to deregister (with NULL as pointer)
1159 * and he isn't currently owner of notification, will be silently discarded.
1160 * It isn't explicitly defined in the POSIX.
1161 */
do_mq_notify(mqd_t mqdes,const struct sigevent * notification)1162 static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
1163 {
1164 int ret;
1165 struct fd f;
1166 struct sock *sock;
1167 struct inode *inode;
1168 struct mqueue_inode_info *info;
1169 struct sk_buff *nc;
1170
1171 audit_mq_notify(mqdes, notification);
1172
1173 nc = NULL;
1174 sock = NULL;
1175 if (notification != NULL) {
1176 if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1177 notification->sigev_notify != SIGEV_SIGNAL &&
1178 notification->sigev_notify != SIGEV_THREAD))
1179 return -EINVAL;
1180 if (notification->sigev_notify == SIGEV_SIGNAL &&
1181 !valid_signal(notification->sigev_signo)) {
1182 return -EINVAL;
1183 }
1184 if (notification->sigev_notify == SIGEV_THREAD) {
1185 long timeo;
1186
1187 /* create the notify skb */
1188 nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1189 if (!nc) {
1190 ret = -ENOMEM;
1191 goto out;
1192 }
1193 if (copy_from_user(nc->data,
1194 notification->sigev_value.sival_ptr,
1195 NOTIFY_COOKIE_LEN)) {
1196 ret = -EFAULT;
1197 goto out;
1198 }
1199
1200 /* TODO: add a header? */
1201 skb_put(nc, NOTIFY_COOKIE_LEN);
1202 /* and attach it to the socket */
1203 retry:
1204 f = fdget(notification->sigev_signo);
1205 if (!f.file) {
1206 ret = -EBADF;
1207 goto out;
1208 }
1209 sock = netlink_getsockbyfilp(f.file);
1210 fdput(f);
1211 if (IS_ERR(sock)) {
1212 ret = PTR_ERR(sock);
1213 sock = NULL;
1214 goto out;
1215 }
1216
1217 timeo = MAX_SCHEDULE_TIMEOUT;
1218 ret = netlink_attachskb(sock, nc, &timeo, NULL);
1219 if (ret == 1) {
1220 sock = NULL;
1221 goto retry;
1222 }
1223 if (ret) {
1224 sock = NULL;
1225 nc = NULL;
1226 goto out;
1227 }
1228 }
1229 }
1230
1231 f = fdget(mqdes);
1232 if (!f.file) {
1233 ret = -EBADF;
1234 goto out;
1235 }
1236
1237 inode = file_inode(f.file);
1238 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1239 ret = -EBADF;
1240 goto out_fput;
1241 }
1242 info = MQUEUE_I(inode);
1243
1244 ret = 0;
1245 spin_lock(&info->lock);
1246 if (notification == NULL) {
1247 if (info->notify_owner == task_tgid(current)) {
1248 remove_notification(info);
1249 inode->i_atime = inode->i_ctime = current_time(inode);
1250 }
1251 } else if (info->notify_owner != NULL) {
1252 ret = -EBUSY;
1253 } else {
1254 switch (notification->sigev_notify) {
1255 case SIGEV_NONE:
1256 info->notify.sigev_notify = SIGEV_NONE;
1257 break;
1258 case SIGEV_THREAD:
1259 info->notify_sock = sock;
1260 info->notify_cookie = nc;
1261 sock = NULL;
1262 nc = NULL;
1263 info->notify.sigev_notify = SIGEV_THREAD;
1264 break;
1265 case SIGEV_SIGNAL:
1266 info->notify.sigev_signo = notification->sigev_signo;
1267 info->notify.sigev_value = notification->sigev_value;
1268 info->notify.sigev_notify = SIGEV_SIGNAL;
1269 break;
1270 }
1271
1272 info->notify_owner = get_pid(task_tgid(current));
1273 info->notify_user_ns = get_user_ns(current_user_ns());
1274 inode->i_atime = inode->i_ctime = current_time(inode);
1275 }
1276 spin_unlock(&info->lock);
1277 out_fput:
1278 fdput(f);
1279 out:
1280 if (sock)
1281 netlink_detachskb(sock, nc);
1282 else if (nc)
1283 dev_kfree_skb(nc);
1284
1285 return ret;
1286 }
1287
SYSCALL_DEFINE2(mq_notify,mqd_t,mqdes,const struct sigevent __user *,u_notification)1288 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1289 const struct sigevent __user *, u_notification)
1290 {
1291 struct sigevent n, *p = NULL;
1292 if (u_notification) {
1293 if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1294 return -EFAULT;
1295 p = &n;
1296 }
1297 return do_mq_notify(mqdes, p);
1298 }
1299
do_mq_getsetattr(int mqdes,struct mq_attr * new,struct mq_attr * old)1300 static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1301 {
1302 struct fd f;
1303 struct inode *inode;
1304 struct mqueue_inode_info *info;
1305
1306 if (new && (new->mq_flags & (~O_NONBLOCK)))
1307 return -EINVAL;
1308
1309 f = fdget(mqdes);
1310 if (!f.file)
1311 return -EBADF;
1312
1313 if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1314 fdput(f);
1315 return -EBADF;
1316 }
1317
1318 inode = file_inode(f.file);
1319 info = MQUEUE_I(inode);
1320
1321 spin_lock(&info->lock);
1322
1323 if (old) {
1324 *old = info->attr;
1325 old->mq_flags = f.file->f_flags & O_NONBLOCK;
1326 }
1327 if (new) {
1328 audit_mq_getsetattr(mqdes, new);
1329 spin_lock(&f.file->f_lock);
1330 if (new->mq_flags & O_NONBLOCK)
1331 f.file->f_flags |= O_NONBLOCK;
1332 else
1333 f.file->f_flags &= ~O_NONBLOCK;
1334 spin_unlock(&f.file->f_lock);
1335
1336 inode->i_atime = inode->i_ctime = current_time(inode);
1337 }
1338
1339 spin_unlock(&info->lock);
1340 fdput(f);
1341 return 0;
1342 }
1343
SYSCALL_DEFINE3(mq_getsetattr,mqd_t,mqdes,const struct mq_attr __user *,u_mqstat,struct mq_attr __user *,u_omqstat)1344 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1345 const struct mq_attr __user *, u_mqstat,
1346 struct mq_attr __user *, u_omqstat)
1347 {
1348 int ret;
1349 struct mq_attr mqstat, omqstat;
1350 struct mq_attr *new = NULL, *old = NULL;
1351
1352 if (u_mqstat) {
1353 new = &mqstat;
1354 if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1355 return -EFAULT;
1356 }
1357 if (u_omqstat)
1358 old = &omqstat;
1359
1360 ret = do_mq_getsetattr(mqdes, new, old);
1361 if (ret || !old)
1362 return ret;
1363
1364 if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1365 return -EFAULT;
1366 return 0;
1367 }
1368
1369 #ifdef CONFIG_COMPAT
1370
1371 struct compat_mq_attr {
1372 compat_long_t mq_flags; /* message queue flags */
1373 compat_long_t mq_maxmsg; /* maximum number of messages */
1374 compat_long_t mq_msgsize; /* maximum message size */
1375 compat_long_t mq_curmsgs; /* number of messages currently queued */
1376 compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1377 };
1378
get_compat_mq_attr(struct mq_attr * attr,const struct compat_mq_attr __user * uattr)1379 static inline int get_compat_mq_attr(struct mq_attr *attr,
1380 const struct compat_mq_attr __user *uattr)
1381 {
1382 struct compat_mq_attr v;
1383
1384 if (copy_from_user(&v, uattr, sizeof(*uattr)))
1385 return -EFAULT;
1386
1387 memset(attr, 0, sizeof(*attr));
1388 attr->mq_flags = v.mq_flags;
1389 attr->mq_maxmsg = v.mq_maxmsg;
1390 attr->mq_msgsize = v.mq_msgsize;
1391 attr->mq_curmsgs = v.mq_curmsgs;
1392 return 0;
1393 }
1394
put_compat_mq_attr(const struct mq_attr * attr,struct compat_mq_attr __user * uattr)1395 static inline int put_compat_mq_attr(const struct mq_attr *attr,
1396 struct compat_mq_attr __user *uattr)
1397 {
1398 struct compat_mq_attr v;
1399
1400 memset(&v, 0, sizeof(v));
1401 v.mq_flags = attr->mq_flags;
1402 v.mq_maxmsg = attr->mq_maxmsg;
1403 v.mq_msgsize = attr->mq_msgsize;
1404 v.mq_curmsgs = attr->mq_curmsgs;
1405 if (copy_to_user(uattr, &v, sizeof(*uattr)))
1406 return -EFAULT;
1407 return 0;
1408 }
1409
COMPAT_SYSCALL_DEFINE4(mq_open,const char __user *,u_name,int,oflag,compat_mode_t,mode,struct compat_mq_attr __user *,u_attr)1410 COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1411 int, oflag, compat_mode_t, mode,
1412 struct compat_mq_attr __user *, u_attr)
1413 {
1414 struct mq_attr attr, *p = NULL;
1415 if (u_attr && oflag & O_CREAT) {
1416 p = &attr;
1417 if (get_compat_mq_attr(&attr, u_attr))
1418 return -EFAULT;
1419 }
1420 return do_mq_open(u_name, oflag, mode, p);
1421 }
1422
COMPAT_SYSCALL_DEFINE2(mq_notify,mqd_t,mqdes,const struct compat_sigevent __user *,u_notification)1423 COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1424 const struct compat_sigevent __user *, u_notification)
1425 {
1426 struct sigevent n, *p = NULL;
1427 if (u_notification) {
1428 if (get_compat_sigevent(&n, u_notification))
1429 return -EFAULT;
1430 if (n.sigev_notify == SIGEV_THREAD)
1431 n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1432 p = &n;
1433 }
1434 return do_mq_notify(mqdes, p);
1435 }
1436
COMPAT_SYSCALL_DEFINE3(mq_getsetattr,mqd_t,mqdes,const struct compat_mq_attr __user *,u_mqstat,struct compat_mq_attr __user *,u_omqstat)1437 COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1438 const struct compat_mq_attr __user *, u_mqstat,
1439 struct compat_mq_attr __user *, u_omqstat)
1440 {
1441 int ret;
1442 struct mq_attr mqstat, omqstat;
1443 struct mq_attr *new = NULL, *old = NULL;
1444
1445 if (u_mqstat) {
1446 new = &mqstat;
1447 if (get_compat_mq_attr(new, u_mqstat))
1448 return -EFAULT;
1449 }
1450 if (u_omqstat)
1451 old = &omqstat;
1452
1453 ret = do_mq_getsetattr(mqdes, new, old);
1454 if (ret || !old)
1455 return ret;
1456
1457 if (put_compat_mq_attr(old, u_omqstat))
1458 return -EFAULT;
1459 return 0;
1460 }
1461 #endif
1462
1463 #ifdef CONFIG_COMPAT_32BIT_TIME
compat_prepare_timeout(const struct compat_timespec __user * p,struct timespec64 * ts)1464 static int compat_prepare_timeout(const struct compat_timespec __user *p,
1465 struct timespec64 *ts)
1466 {
1467 if (compat_get_timespec64(ts, p))
1468 return -EFAULT;
1469 if (!timespec64_valid(ts))
1470 return -EINVAL;
1471 return 0;
1472 }
1473
COMPAT_SYSCALL_DEFINE5(mq_timedsend,mqd_t,mqdes,const char __user *,u_msg_ptr,compat_size_t,msg_len,unsigned int,msg_prio,const struct compat_timespec __user *,u_abs_timeout)1474 COMPAT_SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes,
1475 const char __user *, u_msg_ptr,
1476 compat_size_t, msg_len, unsigned int, msg_prio,
1477 const struct compat_timespec __user *, u_abs_timeout)
1478 {
1479 struct timespec64 ts, *p = NULL;
1480 if (u_abs_timeout) {
1481 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1482 if (res)
1483 return res;
1484 p = &ts;
1485 }
1486 return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1487 }
1488
COMPAT_SYSCALL_DEFINE5(mq_timedreceive,mqd_t,mqdes,char __user *,u_msg_ptr,compat_size_t,msg_len,unsigned int __user *,u_msg_prio,const struct compat_timespec __user *,u_abs_timeout)1489 COMPAT_SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes,
1490 char __user *, u_msg_ptr,
1491 compat_size_t, msg_len, unsigned int __user *, u_msg_prio,
1492 const struct compat_timespec __user *, u_abs_timeout)
1493 {
1494 struct timespec64 ts, *p = NULL;
1495 if (u_abs_timeout) {
1496 int res = compat_prepare_timeout(u_abs_timeout, &ts);
1497 if (res)
1498 return res;
1499 p = &ts;
1500 }
1501 return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1502 }
1503 #endif
1504
1505 static const struct inode_operations mqueue_dir_inode_operations = {
1506 .lookup = simple_lookup,
1507 .create = mqueue_create,
1508 .unlink = mqueue_unlink,
1509 };
1510
1511 static const struct file_operations mqueue_file_operations = {
1512 .flush = mqueue_flush_file,
1513 .poll = mqueue_poll_file,
1514 .read = mqueue_read_file,
1515 .llseek = default_llseek,
1516 };
1517
1518 static const struct super_operations mqueue_super_ops = {
1519 .alloc_inode = mqueue_alloc_inode,
1520 .destroy_inode = mqueue_destroy_inode,
1521 .evict_inode = mqueue_evict_inode,
1522 .statfs = simple_statfs,
1523 };
1524
1525 static struct file_system_type mqueue_fs_type = {
1526 .name = "mqueue",
1527 .mount = mqueue_mount,
1528 .kill_sb = kill_litter_super,
1529 .fs_flags = FS_USERNS_MOUNT,
1530 };
1531
mq_init_ns(struct ipc_namespace * ns)1532 int mq_init_ns(struct ipc_namespace *ns)
1533 {
1534 ns->mq_queues_count = 0;
1535 ns->mq_queues_max = DFLT_QUEUESMAX;
1536 ns->mq_msg_max = DFLT_MSGMAX;
1537 ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1538 ns->mq_msg_default = DFLT_MSG;
1539 ns->mq_msgsize_default = DFLT_MSGSIZE;
1540
1541 ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1542 if (IS_ERR(ns->mq_mnt)) {
1543 int err = PTR_ERR(ns->mq_mnt);
1544 ns->mq_mnt = NULL;
1545 return err;
1546 }
1547 return 0;
1548 }
1549
mq_clear_sbinfo(struct ipc_namespace * ns)1550 void mq_clear_sbinfo(struct ipc_namespace *ns)
1551 {
1552 ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1553 }
1554
mq_put_mnt(struct ipc_namespace * ns)1555 void mq_put_mnt(struct ipc_namespace *ns)
1556 {
1557 kern_unmount(ns->mq_mnt);
1558 }
1559
init_mqueue_fs(void)1560 static int __init init_mqueue_fs(void)
1561 {
1562 int error;
1563
1564 mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1565 sizeof(struct mqueue_inode_info), 0,
1566 SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1567 if (mqueue_inode_cachep == NULL)
1568 return -ENOMEM;
1569
1570 /* ignore failures - they are not fatal */
1571 mq_sysctl_table = mq_register_sysctl_table();
1572
1573 error = register_filesystem(&mqueue_fs_type);
1574 if (error)
1575 goto out_sysctl;
1576
1577 spin_lock_init(&mq_lock);
1578
1579 error = mq_init_ns(&init_ipc_ns);
1580 if (error)
1581 goto out_filesystem;
1582
1583 return 0;
1584
1585 out_filesystem:
1586 unregister_filesystem(&mqueue_fs_type);
1587 out_sysctl:
1588 if (mq_sysctl_table)
1589 unregister_sysctl_table(mq_sysctl_table);
1590 kmem_cache_destroy(mqueue_inode_cachep);
1591 return error;
1592 }
1593
1594 device_initcall(init_mqueue_fs);
1595