1 /*
2  * Copyright (C) 2010 Red Hat, Inc.
3  * Copyright (c) 2016-2018 Christoph Hellwig.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 #include <linux/module.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
21 #include <linux/mm.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
33 #include <linux/swap.h>
34 
35 #include "internal.h"
36 
37 /*
38  * Execute a iomap write on a segment of the mapping that spans a
39  * contiguous range of pages that have identical block mapping state.
40  *
41  * This avoids the need to map pages individually, do individual allocations
42  * for each page and most importantly avoid the need for filesystem specific
43  * locking per page. Instead, all the operations are amortised over the entire
44  * range of pages. It is assumed that the filesystems will lock whatever
45  * resources they require in the iomap_begin call, and release them in the
46  * iomap_end call.
47  */
48 loff_t
iomap_apply(struct inode * inode,loff_t pos,loff_t length,unsigned flags,const struct iomap_ops * ops,void * data,iomap_actor_t actor)49 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
50 		const struct iomap_ops *ops, void *data, iomap_actor_t actor)
51 {
52 	struct iomap iomap = { 0 };
53 	loff_t written = 0, ret;
54 
55 	/*
56 	 * Need to map a range from start position for length bytes. This can
57 	 * span multiple pages - it is only guaranteed to return a range of a
58 	 * single type of pages (e.g. all into a hole, all mapped or all
59 	 * unwritten). Failure at this point has nothing to undo.
60 	 *
61 	 * If allocation is required for this range, reserve the space now so
62 	 * that the allocation is guaranteed to succeed later on. Once we copy
63 	 * the data into the page cache pages, then we cannot fail otherwise we
64 	 * expose transient stale data. If the reserve fails, we can safely
65 	 * back out at this point as there is nothing to undo.
66 	 */
67 	ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
68 	if (ret)
69 		return ret;
70 	if (WARN_ON(iomap.offset > pos))
71 		return -EIO;
72 	if (WARN_ON(iomap.length == 0))
73 		return -EIO;
74 
75 	/*
76 	 * Cut down the length to the one actually provided by the filesystem,
77 	 * as it might not be able to give us the whole size that we requested.
78 	 */
79 	if (iomap.offset + iomap.length < pos + length)
80 		length = iomap.offset + iomap.length - pos;
81 
82 	/*
83 	 * Now that we have guaranteed that the space allocation will succeed.
84 	 * we can do the copy-in page by page without having to worry about
85 	 * failures exposing transient data.
86 	 */
87 	written = actor(inode, pos, length, data, &iomap);
88 
89 	/*
90 	 * Now the data has been copied, commit the range we've copied.  This
91 	 * should not fail unless the filesystem has had a fatal error.
92 	 */
93 	if (ops->iomap_end) {
94 		ret = ops->iomap_end(inode, pos, length,
95 				     written > 0 ? written : 0,
96 				     flags, &iomap);
97 	}
98 
99 	return written ? written : ret;
100 }
101 
102 static sector_t
iomap_sector(struct iomap * iomap,loff_t pos)103 iomap_sector(struct iomap *iomap, loff_t pos)
104 {
105 	return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
106 }
107 
108 static struct iomap_page *
iomap_page_create(struct inode * inode,struct page * page)109 iomap_page_create(struct inode *inode, struct page *page)
110 {
111 	struct iomap_page *iop = to_iomap_page(page);
112 
113 	if (iop || i_blocksize(inode) == PAGE_SIZE)
114 		return iop;
115 
116 	iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
117 	atomic_set(&iop->read_count, 0);
118 	atomic_set(&iop->write_count, 0);
119 	bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
120 	set_page_private(page, (unsigned long)iop);
121 	SetPagePrivate(page);
122 	return iop;
123 }
124 
125 static void
iomap_page_release(struct page * page)126 iomap_page_release(struct page *page)
127 {
128 	struct iomap_page *iop = to_iomap_page(page);
129 
130 	if (!iop)
131 		return;
132 	WARN_ON_ONCE(atomic_read(&iop->read_count));
133 	WARN_ON_ONCE(atomic_read(&iop->write_count));
134 	ClearPagePrivate(page);
135 	set_page_private(page, 0);
136 	kfree(iop);
137 }
138 
139 /*
140  * Calculate the range inside the page that we actually need to read.
141  */
142 static void
iomap_adjust_read_range(struct inode * inode,struct iomap_page * iop,loff_t * pos,loff_t length,unsigned * offp,unsigned * lenp)143 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
144 		loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
145 {
146 	unsigned block_bits = inode->i_blkbits;
147 	unsigned block_size = (1 << block_bits);
148 	unsigned poff = offset_in_page(*pos);
149 	unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
150 	unsigned first = poff >> block_bits;
151 	unsigned last = (poff + plen - 1) >> block_bits;
152 	unsigned end = offset_in_page(i_size_read(inode)) >> block_bits;
153 
154 	/*
155 	 * If the block size is smaller than the page size we need to check the
156 	 * per-block uptodate status and adjust the offset and length if needed
157 	 * to avoid reading in already uptodate ranges.
158 	 */
159 	if (iop) {
160 		unsigned int i;
161 
162 		/* move forward for each leading block marked uptodate */
163 		for (i = first; i <= last; i++) {
164 			if (!test_bit(i, iop->uptodate))
165 				break;
166 			*pos += block_size;
167 			poff += block_size;
168 			plen -= block_size;
169 			first++;
170 		}
171 
172 		/* truncate len if we find any trailing uptodate block(s) */
173 		for ( ; i <= last; i++) {
174 			if (test_bit(i, iop->uptodate)) {
175 				plen -= (last - i + 1) * block_size;
176 				last = i - 1;
177 				break;
178 			}
179 		}
180 	}
181 
182 	/*
183 	 * If the extent spans the block that contains the i_size we need to
184 	 * handle both halves separately so that we properly zero data in the
185 	 * page cache for blocks that are entirely outside of i_size.
186 	 */
187 	if (first <= end && last > end)
188 		plen -= (last - end) * block_size;
189 
190 	*offp = poff;
191 	*lenp = plen;
192 }
193 
194 static void
iomap_set_range_uptodate(struct page * page,unsigned off,unsigned len)195 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
196 {
197 	struct iomap_page *iop = to_iomap_page(page);
198 	struct inode *inode = page->mapping->host;
199 	unsigned first = off >> inode->i_blkbits;
200 	unsigned last = (off + len - 1) >> inode->i_blkbits;
201 	unsigned int i;
202 	bool uptodate = true;
203 
204 	if (iop) {
205 		for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
206 			if (i >= first && i <= last)
207 				set_bit(i, iop->uptodate);
208 			else if (!test_bit(i, iop->uptodate))
209 				uptodate = false;
210 		}
211 	}
212 
213 	if (uptodate && !PageError(page))
214 		SetPageUptodate(page);
215 }
216 
217 static void
iomap_read_finish(struct iomap_page * iop,struct page * page)218 iomap_read_finish(struct iomap_page *iop, struct page *page)
219 {
220 	if (!iop || atomic_dec_and_test(&iop->read_count))
221 		unlock_page(page);
222 }
223 
224 static void
iomap_read_page_end_io(struct bio_vec * bvec,int error)225 iomap_read_page_end_io(struct bio_vec *bvec, int error)
226 {
227 	struct page *page = bvec->bv_page;
228 	struct iomap_page *iop = to_iomap_page(page);
229 
230 	if (unlikely(error)) {
231 		ClearPageUptodate(page);
232 		SetPageError(page);
233 	} else {
234 		iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
235 	}
236 
237 	iomap_read_finish(iop, page);
238 }
239 
240 static void
iomap_read_inline_data(struct inode * inode,struct page * page,struct iomap * iomap)241 iomap_read_inline_data(struct inode *inode, struct page *page,
242 		struct iomap *iomap)
243 {
244 	size_t size = i_size_read(inode);
245 	void *addr;
246 
247 	if (PageUptodate(page))
248 		return;
249 
250 	BUG_ON(page->index);
251 	BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
252 
253 	addr = kmap_atomic(page);
254 	memcpy(addr, iomap->inline_data, size);
255 	memset(addr + size, 0, PAGE_SIZE - size);
256 	kunmap_atomic(addr);
257 	SetPageUptodate(page);
258 }
259 
260 static void
iomap_read_end_io(struct bio * bio)261 iomap_read_end_io(struct bio *bio)
262 {
263 	int error = blk_status_to_errno(bio->bi_status);
264 	struct bio_vec *bvec;
265 	int i;
266 
267 	bio_for_each_segment_all(bvec, bio, i)
268 		iomap_read_page_end_io(bvec, error);
269 	bio_put(bio);
270 }
271 
272 struct iomap_readpage_ctx {
273 	struct page		*cur_page;
274 	bool			cur_page_in_bio;
275 	bool			is_readahead;
276 	struct bio		*bio;
277 	struct list_head	*pages;
278 };
279 
280 static loff_t
iomap_readpage_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)281 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
282 		struct iomap *iomap)
283 {
284 	struct iomap_readpage_ctx *ctx = data;
285 	struct page *page = ctx->cur_page;
286 	struct iomap_page *iop = iomap_page_create(inode, page);
287 	bool is_contig = false;
288 	loff_t orig_pos = pos;
289 	unsigned poff, plen;
290 	sector_t sector;
291 
292 	if (iomap->type == IOMAP_INLINE) {
293 		WARN_ON_ONCE(pos);
294 		iomap_read_inline_data(inode, page, iomap);
295 		return PAGE_SIZE;
296 	}
297 
298 	/* zero post-eof blocks as the page may be mapped */
299 	iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
300 	if (plen == 0)
301 		goto done;
302 
303 	if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
304 		zero_user(page, poff, plen);
305 		iomap_set_range_uptodate(page, poff, plen);
306 		goto done;
307 	}
308 
309 	ctx->cur_page_in_bio = true;
310 
311 	/*
312 	 * Try to merge into a previous segment if we can.
313 	 */
314 	sector = iomap_sector(iomap, pos);
315 	if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
316 		if (__bio_try_merge_page(ctx->bio, page, plen, poff))
317 			goto done;
318 		is_contig = true;
319 	}
320 
321 	/*
322 	 * If we start a new segment we need to increase the read count, and we
323 	 * need to do so before submitting any previous full bio to make sure
324 	 * that we don't prematurely unlock the page.
325 	 */
326 	if (iop)
327 		atomic_inc(&iop->read_count);
328 
329 	if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
330 		gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
331 		int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
332 
333 		if (ctx->bio)
334 			submit_bio(ctx->bio);
335 
336 		if (ctx->is_readahead) /* same as readahead_gfp_mask */
337 			gfp |= __GFP_NORETRY | __GFP_NOWARN;
338 		ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
339 		ctx->bio->bi_opf = REQ_OP_READ;
340 		if (ctx->is_readahead)
341 			ctx->bio->bi_opf |= REQ_RAHEAD;
342 		ctx->bio->bi_iter.bi_sector = sector;
343 		bio_set_dev(ctx->bio, iomap->bdev);
344 		ctx->bio->bi_end_io = iomap_read_end_io;
345 	}
346 
347 	__bio_add_page(ctx->bio, page, plen, poff);
348 done:
349 	/*
350 	 * Move the caller beyond our range so that it keeps making progress.
351 	 * For that we have to include any leading non-uptodate ranges, but
352 	 * we can skip trailing ones as they will be handled in the next
353 	 * iteration.
354 	 */
355 	return pos - orig_pos + plen;
356 }
357 
358 int
iomap_readpage(struct page * page,const struct iomap_ops * ops)359 iomap_readpage(struct page *page, const struct iomap_ops *ops)
360 {
361 	struct iomap_readpage_ctx ctx = { .cur_page = page };
362 	struct inode *inode = page->mapping->host;
363 	unsigned poff;
364 	loff_t ret;
365 
366 	for (poff = 0; poff < PAGE_SIZE; poff += ret) {
367 		ret = iomap_apply(inode, page_offset(page) + poff,
368 				PAGE_SIZE - poff, 0, ops, &ctx,
369 				iomap_readpage_actor);
370 		if (ret <= 0) {
371 			WARN_ON_ONCE(ret == 0);
372 			SetPageError(page);
373 			break;
374 		}
375 	}
376 
377 	if (ctx.bio) {
378 		submit_bio(ctx.bio);
379 		WARN_ON_ONCE(!ctx.cur_page_in_bio);
380 	} else {
381 		WARN_ON_ONCE(ctx.cur_page_in_bio);
382 		unlock_page(page);
383 	}
384 
385 	/*
386 	 * Just like mpage_readpages and block_read_full_page we always
387 	 * return 0 and just mark the page as PageError on errors.  This
388 	 * should be cleaned up all through the stack eventually.
389 	 */
390 	return 0;
391 }
392 EXPORT_SYMBOL_GPL(iomap_readpage);
393 
394 static struct page *
iomap_next_page(struct inode * inode,struct list_head * pages,loff_t pos,loff_t length,loff_t * done)395 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
396 		loff_t length, loff_t *done)
397 {
398 	while (!list_empty(pages)) {
399 		struct page *page = lru_to_page(pages);
400 
401 		if (page_offset(page) >= (u64)pos + length)
402 			break;
403 
404 		list_del(&page->lru);
405 		if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
406 				GFP_NOFS))
407 			return page;
408 
409 		/*
410 		 * If we already have a page in the page cache at index we are
411 		 * done.  Upper layers don't care if it is uptodate after the
412 		 * readpages call itself as every page gets checked again once
413 		 * actually needed.
414 		 */
415 		*done += PAGE_SIZE;
416 		put_page(page);
417 	}
418 
419 	return NULL;
420 }
421 
422 static loff_t
iomap_readpages_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)423 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
424 		void *data, struct iomap *iomap)
425 {
426 	struct iomap_readpage_ctx *ctx = data;
427 	loff_t done, ret;
428 
429 	for (done = 0; done < length; done += ret) {
430 		if (ctx->cur_page && offset_in_page(pos + done) == 0) {
431 			if (!ctx->cur_page_in_bio)
432 				unlock_page(ctx->cur_page);
433 			put_page(ctx->cur_page);
434 			ctx->cur_page = NULL;
435 		}
436 		if (!ctx->cur_page) {
437 			ctx->cur_page = iomap_next_page(inode, ctx->pages,
438 					pos, length, &done);
439 			if (!ctx->cur_page)
440 				break;
441 			ctx->cur_page_in_bio = false;
442 		}
443 		ret = iomap_readpage_actor(inode, pos + done, length - done,
444 				ctx, iomap);
445 	}
446 
447 	return done;
448 }
449 
450 int
iomap_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages,const struct iomap_ops * ops)451 iomap_readpages(struct address_space *mapping, struct list_head *pages,
452 		unsigned nr_pages, const struct iomap_ops *ops)
453 {
454 	struct iomap_readpage_ctx ctx = {
455 		.pages		= pages,
456 		.is_readahead	= true,
457 	};
458 	loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
459 	loff_t last = page_offset(list_entry(pages->next, struct page, lru));
460 	loff_t length = last - pos + PAGE_SIZE, ret = 0;
461 
462 	while (length > 0) {
463 		ret = iomap_apply(mapping->host, pos, length, 0, ops,
464 				&ctx, iomap_readpages_actor);
465 		if (ret <= 0) {
466 			WARN_ON_ONCE(ret == 0);
467 			goto done;
468 		}
469 		pos += ret;
470 		length -= ret;
471 	}
472 	ret = 0;
473 done:
474 	if (ctx.bio)
475 		submit_bio(ctx.bio);
476 	if (ctx.cur_page) {
477 		if (!ctx.cur_page_in_bio)
478 			unlock_page(ctx.cur_page);
479 		put_page(ctx.cur_page);
480 	}
481 
482 	/*
483 	 * Check that we didn't lose a page due to the arcance calling
484 	 * conventions..
485 	 */
486 	WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
487 	return ret;
488 }
489 EXPORT_SYMBOL_GPL(iomap_readpages);
490 
491 int
iomap_is_partially_uptodate(struct page * page,unsigned long from,unsigned long count)492 iomap_is_partially_uptodate(struct page *page, unsigned long from,
493 		unsigned long count)
494 {
495 	struct iomap_page *iop = to_iomap_page(page);
496 	struct inode *inode = page->mapping->host;
497 	unsigned first = from >> inode->i_blkbits;
498 	unsigned last = (from + count - 1) >> inode->i_blkbits;
499 	unsigned i;
500 
501 	if (iop) {
502 		for (i = first; i <= last; i++)
503 			if (!test_bit(i, iop->uptodate))
504 				return 0;
505 		return 1;
506 	}
507 
508 	return 0;
509 }
510 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
511 
512 int
iomap_releasepage(struct page * page,gfp_t gfp_mask)513 iomap_releasepage(struct page *page, gfp_t gfp_mask)
514 {
515 	/*
516 	 * mm accommodates an old ext3 case where clean pages might not have had
517 	 * the dirty bit cleared. Thus, it can send actual dirty pages to
518 	 * ->releasepage() via shrink_active_list(), skip those here.
519 	 */
520 	if (PageDirty(page) || PageWriteback(page))
521 		return 0;
522 	iomap_page_release(page);
523 	return 1;
524 }
525 EXPORT_SYMBOL_GPL(iomap_releasepage);
526 
527 void
iomap_invalidatepage(struct page * page,unsigned int offset,unsigned int len)528 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
529 {
530 	/*
531 	 * If we are invalidating the entire page, clear the dirty state from it
532 	 * and release it to avoid unnecessary buildup of the LRU.
533 	 */
534 	if (offset == 0 && len == PAGE_SIZE) {
535 		WARN_ON_ONCE(PageWriteback(page));
536 		cancel_dirty_page(page);
537 		iomap_page_release(page);
538 	}
539 }
540 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
541 
542 #ifdef CONFIG_MIGRATION
543 int
iomap_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)544 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
545 		struct page *page, enum migrate_mode mode)
546 {
547 	int ret;
548 
549 	ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
550 	if (ret != MIGRATEPAGE_SUCCESS)
551 		return ret;
552 
553 	if (page_has_private(page)) {
554 		ClearPagePrivate(page);
555 		set_page_private(newpage, page_private(page));
556 		set_page_private(page, 0);
557 		SetPagePrivate(newpage);
558 	}
559 
560 	if (mode != MIGRATE_SYNC_NO_COPY)
561 		migrate_page_copy(newpage, page);
562 	else
563 		migrate_page_states(newpage, page);
564 	return MIGRATEPAGE_SUCCESS;
565 }
566 EXPORT_SYMBOL_GPL(iomap_migrate_page);
567 #endif /* CONFIG_MIGRATION */
568 
569 static void
iomap_write_failed(struct inode * inode,loff_t pos,unsigned len)570 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
571 {
572 	loff_t i_size = i_size_read(inode);
573 
574 	/*
575 	 * Only truncate newly allocated pages beyoned EOF, even if the
576 	 * write started inside the existing inode size.
577 	 */
578 	if (pos + len > i_size)
579 		truncate_pagecache_range(inode, max(pos, i_size), pos + len);
580 }
581 
582 static int
iomap_read_page_sync(struct inode * inode,loff_t block_start,struct page * page,unsigned poff,unsigned plen,unsigned from,unsigned to,struct iomap * iomap)583 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
584 		unsigned poff, unsigned plen, unsigned from, unsigned to,
585 		struct iomap *iomap)
586 {
587 	struct bio_vec bvec;
588 	struct bio bio;
589 
590 	if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
591 		zero_user_segments(page, poff, from, to, poff + plen);
592 		iomap_set_range_uptodate(page, poff, plen);
593 		return 0;
594 	}
595 
596 	bio_init(&bio, &bvec, 1);
597 	bio.bi_opf = REQ_OP_READ;
598 	bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
599 	bio_set_dev(&bio, iomap->bdev);
600 	__bio_add_page(&bio, page, plen, poff);
601 	return submit_bio_wait(&bio);
602 }
603 
604 static int
__iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,struct page * page,struct iomap * iomap)605 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
606 		struct page *page, struct iomap *iomap)
607 {
608 	struct iomap_page *iop = iomap_page_create(inode, page);
609 	loff_t block_size = i_blocksize(inode);
610 	loff_t block_start = pos & ~(block_size - 1);
611 	loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
612 	unsigned from = offset_in_page(pos), to = from + len, poff, plen;
613 	int status = 0;
614 
615 	if (PageUptodate(page))
616 		return 0;
617 
618 	do {
619 		iomap_adjust_read_range(inode, iop, &block_start,
620 				block_end - block_start, &poff, &plen);
621 		if (plen == 0)
622 			break;
623 
624 		if ((from > poff && from < poff + plen) ||
625 		    (to > poff && to < poff + plen)) {
626 			status = iomap_read_page_sync(inode, block_start, page,
627 					poff, plen, from, to, iomap);
628 			if (status)
629 				break;
630 		}
631 
632 	} while ((block_start += plen) < block_end);
633 
634 	return status;
635 }
636 
637 static int
iomap_write_begin(struct inode * inode,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,struct iomap * iomap)638 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
639 		struct page **pagep, struct iomap *iomap)
640 {
641 	pgoff_t index = pos >> PAGE_SHIFT;
642 	struct page *page;
643 	int status = 0;
644 
645 	BUG_ON(pos + len > iomap->offset + iomap->length);
646 
647 	if (fatal_signal_pending(current))
648 		return -EINTR;
649 
650 	page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
651 	if (!page)
652 		return -ENOMEM;
653 
654 	if (iomap->type == IOMAP_INLINE)
655 		iomap_read_inline_data(inode, page, iomap);
656 	else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
657 		status = __block_write_begin_int(page, pos, len, NULL, iomap);
658 	else
659 		status = __iomap_write_begin(inode, pos, len, page, iomap);
660 	if (unlikely(status)) {
661 		unlock_page(page);
662 		put_page(page);
663 		page = NULL;
664 
665 		iomap_write_failed(inode, pos, len);
666 	}
667 
668 	*pagep = page;
669 	return status;
670 }
671 
672 int
iomap_set_page_dirty(struct page * page)673 iomap_set_page_dirty(struct page *page)
674 {
675 	struct address_space *mapping = page_mapping(page);
676 	int newly_dirty;
677 
678 	if (unlikely(!mapping))
679 		return !TestSetPageDirty(page);
680 
681 	/*
682 	 * Lock out page->mem_cgroup migration to keep PageDirty
683 	 * synchronized with per-memcg dirty page counters.
684 	 */
685 	lock_page_memcg(page);
686 	newly_dirty = !TestSetPageDirty(page);
687 	if (newly_dirty)
688 		__set_page_dirty(page, mapping, 0);
689 	unlock_page_memcg(page);
690 
691 	if (newly_dirty)
692 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
693 	return newly_dirty;
694 }
695 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
696 
697 static int
__iomap_write_end(struct inode * inode,loff_t pos,unsigned len,unsigned copied,struct page * page,struct iomap * iomap)698 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
699 		unsigned copied, struct page *page, struct iomap *iomap)
700 {
701 	flush_dcache_page(page);
702 
703 	/*
704 	 * The blocks that were entirely written will now be uptodate, so we
705 	 * don't have to worry about a readpage reading them and overwriting a
706 	 * partial write.  However if we have encountered a short write and only
707 	 * partially written into a block, it will not be marked uptodate, so a
708 	 * readpage might come in and destroy our partial write.
709 	 *
710 	 * Do the simplest thing, and just treat any short write to a non
711 	 * uptodate page as a zero-length write, and force the caller to redo
712 	 * the whole thing.
713 	 */
714 	if (unlikely(copied < len && !PageUptodate(page))) {
715 		copied = 0;
716 	} else {
717 		iomap_set_range_uptodate(page, offset_in_page(pos), len);
718 		iomap_set_page_dirty(page);
719 	}
720 	return __generic_write_end(inode, pos, copied, page);
721 }
722 
723 static int
iomap_write_end_inline(struct inode * inode,struct page * page,struct iomap * iomap,loff_t pos,unsigned copied)724 iomap_write_end_inline(struct inode *inode, struct page *page,
725 		struct iomap *iomap, loff_t pos, unsigned copied)
726 {
727 	void *addr;
728 
729 	WARN_ON_ONCE(!PageUptodate(page));
730 	BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
731 
732 	addr = kmap_atomic(page);
733 	memcpy(iomap->inline_data + pos, addr + pos, copied);
734 	kunmap_atomic(addr);
735 
736 	mark_inode_dirty(inode);
737 	__generic_write_end(inode, pos, copied, page);
738 	return copied;
739 }
740 
741 static int
iomap_write_end(struct inode * inode,loff_t pos,unsigned len,unsigned copied,struct page * page,struct iomap * iomap)742 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
743 		unsigned copied, struct page *page, struct iomap *iomap)
744 {
745 	int ret;
746 
747 	if (iomap->type == IOMAP_INLINE) {
748 		ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
749 	} else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
750 		ret = generic_write_end(NULL, inode->i_mapping, pos, len,
751 				copied, page, NULL);
752 	} else {
753 		ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
754 	}
755 
756 	if (iomap->page_done)
757 		iomap->page_done(inode, pos, copied, page, iomap);
758 
759 	if (ret < len)
760 		iomap_write_failed(inode, pos, len);
761 	return ret;
762 }
763 
764 static loff_t
iomap_write_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)765 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
766 		struct iomap *iomap)
767 {
768 	struct iov_iter *i = data;
769 	long status = 0;
770 	ssize_t written = 0;
771 	unsigned int flags = AOP_FLAG_NOFS;
772 
773 	do {
774 		struct page *page;
775 		unsigned long offset;	/* Offset into pagecache page */
776 		unsigned long bytes;	/* Bytes to write to page */
777 		size_t copied;		/* Bytes copied from user */
778 
779 		offset = offset_in_page(pos);
780 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
781 						iov_iter_count(i));
782 again:
783 		if (bytes > length)
784 			bytes = length;
785 
786 		/*
787 		 * Bring in the user page that we will copy from _first_.
788 		 * Otherwise there's a nasty deadlock on copying from the
789 		 * same page as we're writing to, without it being marked
790 		 * up-to-date.
791 		 *
792 		 * Not only is this an optimisation, but it is also required
793 		 * to check that the address is actually valid, when atomic
794 		 * usercopies are used, below.
795 		 */
796 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
797 			status = -EFAULT;
798 			break;
799 		}
800 
801 		status = iomap_write_begin(inode, pos, bytes, flags, &page,
802 				iomap);
803 		if (unlikely(status))
804 			break;
805 
806 		if (mapping_writably_mapped(inode->i_mapping))
807 			flush_dcache_page(page);
808 
809 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
810 
811 		flush_dcache_page(page);
812 
813 		status = iomap_write_end(inode, pos, bytes, copied, page,
814 				iomap);
815 		if (unlikely(status < 0))
816 			break;
817 		copied = status;
818 
819 		cond_resched();
820 
821 		iov_iter_advance(i, copied);
822 		if (unlikely(copied == 0)) {
823 			/*
824 			 * If we were unable to copy any data at all, we must
825 			 * fall back to a single segment length write.
826 			 *
827 			 * If we didn't fallback here, we could livelock
828 			 * because not all segments in the iov can be copied at
829 			 * once without a pagefault.
830 			 */
831 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
832 						iov_iter_single_seg_count(i));
833 			goto again;
834 		}
835 		pos += copied;
836 		written += copied;
837 		length -= copied;
838 
839 		balance_dirty_pages_ratelimited(inode->i_mapping);
840 	} while (iov_iter_count(i) && length);
841 
842 	return written ? written : status;
843 }
844 
845 ssize_t
iomap_file_buffered_write(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops)846 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
847 		const struct iomap_ops *ops)
848 {
849 	struct inode *inode = iocb->ki_filp->f_mapping->host;
850 	loff_t pos = iocb->ki_pos, ret = 0, written = 0;
851 
852 	while (iov_iter_count(iter)) {
853 		ret = iomap_apply(inode, pos, iov_iter_count(iter),
854 				IOMAP_WRITE, ops, iter, iomap_write_actor);
855 		if (ret <= 0)
856 			break;
857 		pos += ret;
858 		written += ret;
859 	}
860 
861 	return written ? written : ret;
862 }
863 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
864 
865 static struct page *
__iomap_read_page(struct inode * inode,loff_t offset)866 __iomap_read_page(struct inode *inode, loff_t offset)
867 {
868 	struct address_space *mapping = inode->i_mapping;
869 	struct page *page;
870 
871 	page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
872 	if (IS_ERR(page))
873 		return page;
874 	if (!PageUptodate(page)) {
875 		put_page(page);
876 		return ERR_PTR(-EIO);
877 	}
878 	return page;
879 }
880 
881 static loff_t
iomap_dirty_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)882 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
883 		struct iomap *iomap)
884 {
885 	long status = 0;
886 	ssize_t written = 0;
887 
888 	do {
889 		struct page *page, *rpage;
890 		unsigned long offset;	/* Offset into pagecache page */
891 		unsigned long bytes;	/* Bytes to write to page */
892 
893 		offset = offset_in_page(pos);
894 		bytes = min_t(loff_t, PAGE_SIZE - offset, length);
895 
896 		rpage = __iomap_read_page(inode, pos);
897 		if (IS_ERR(rpage))
898 			return PTR_ERR(rpage);
899 
900 		status = iomap_write_begin(inode, pos, bytes,
901 					   AOP_FLAG_NOFS, &page, iomap);
902 		put_page(rpage);
903 		if (unlikely(status))
904 			return status;
905 
906 		WARN_ON_ONCE(!PageUptodate(page));
907 
908 		status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
909 		if (unlikely(status <= 0)) {
910 			if (WARN_ON_ONCE(status == 0))
911 				return -EIO;
912 			return status;
913 		}
914 
915 		cond_resched();
916 
917 		pos += status;
918 		written += status;
919 		length -= status;
920 
921 		balance_dirty_pages_ratelimited(inode->i_mapping);
922 	} while (length);
923 
924 	return written;
925 }
926 
927 int
iomap_file_dirty(struct inode * inode,loff_t pos,loff_t len,const struct iomap_ops * ops)928 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
929 		const struct iomap_ops *ops)
930 {
931 	loff_t ret;
932 
933 	while (len) {
934 		ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
935 				iomap_dirty_actor);
936 		if (ret <= 0)
937 			return ret;
938 		pos += ret;
939 		len -= ret;
940 	}
941 
942 	return 0;
943 }
944 EXPORT_SYMBOL_GPL(iomap_file_dirty);
945 
iomap_zero(struct inode * inode,loff_t pos,unsigned offset,unsigned bytes,struct iomap * iomap)946 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
947 		unsigned bytes, struct iomap *iomap)
948 {
949 	struct page *page;
950 	int status;
951 
952 	status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
953 				   iomap);
954 	if (status)
955 		return status;
956 
957 	zero_user(page, offset, bytes);
958 	mark_page_accessed(page);
959 
960 	return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
961 }
962 
iomap_dax_zero(loff_t pos,unsigned offset,unsigned bytes,struct iomap * iomap)963 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
964 		struct iomap *iomap)
965 {
966 	return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
967 			iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
968 }
969 
970 static loff_t
iomap_zero_range_actor(struct inode * inode,loff_t pos,loff_t count,void * data,struct iomap * iomap)971 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
972 		void *data, struct iomap *iomap)
973 {
974 	bool *did_zero = data;
975 	loff_t written = 0;
976 	int status;
977 
978 	/* already zeroed?  we're done. */
979 	if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
980 	    	return count;
981 
982 	do {
983 		unsigned offset, bytes;
984 
985 		offset = offset_in_page(pos);
986 		bytes = min_t(loff_t, PAGE_SIZE - offset, count);
987 
988 		if (IS_DAX(inode))
989 			status = iomap_dax_zero(pos, offset, bytes, iomap);
990 		else
991 			status = iomap_zero(inode, pos, offset, bytes, iomap);
992 		if (status < 0)
993 			return status;
994 
995 		pos += bytes;
996 		count -= bytes;
997 		written += bytes;
998 		if (did_zero)
999 			*did_zero = true;
1000 	} while (count > 0);
1001 
1002 	return written;
1003 }
1004 
1005 int
iomap_zero_range(struct inode * inode,loff_t pos,loff_t len,bool * did_zero,const struct iomap_ops * ops)1006 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1007 		const struct iomap_ops *ops)
1008 {
1009 	loff_t ret;
1010 
1011 	while (len > 0) {
1012 		ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1013 				ops, did_zero, iomap_zero_range_actor);
1014 		if (ret <= 0)
1015 			return ret;
1016 
1017 		pos += ret;
1018 		len -= ret;
1019 	}
1020 
1021 	return 0;
1022 }
1023 EXPORT_SYMBOL_GPL(iomap_zero_range);
1024 
1025 int
iomap_truncate_page(struct inode * inode,loff_t pos,bool * did_zero,const struct iomap_ops * ops)1026 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1027 		const struct iomap_ops *ops)
1028 {
1029 	unsigned int blocksize = i_blocksize(inode);
1030 	unsigned int off = pos & (blocksize - 1);
1031 
1032 	/* Block boundary? Nothing to do */
1033 	if (!off)
1034 		return 0;
1035 	return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1036 }
1037 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1038 
1039 static loff_t
iomap_page_mkwrite_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1040 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1041 		void *data, struct iomap *iomap)
1042 {
1043 	struct page *page = data;
1044 	int ret;
1045 
1046 	if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1047 		ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1048 		if (ret)
1049 			return ret;
1050 		block_commit_write(page, 0, length);
1051 	} else {
1052 		WARN_ON_ONCE(!PageUptodate(page));
1053 		iomap_page_create(inode, page);
1054 		set_page_dirty(page);
1055 	}
1056 
1057 	return length;
1058 }
1059 
iomap_page_mkwrite(struct vm_fault * vmf,const struct iomap_ops * ops)1060 int iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1061 {
1062 	struct page *page = vmf->page;
1063 	struct inode *inode = file_inode(vmf->vma->vm_file);
1064 	unsigned long length;
1065 	loff_t offset, size;
1066 	ssize_t ret;
1067 
1068 	lock_page(page);
1069 	size = i_size_read(inode);
1070 	if ((page->mapping != inode->i_mapping) ||
1071 	    (page_offset(page) > size)) {
1072 		/* We overload EFAULT to mean page got truncated */
1073 		ret = -EFAULT;
1074 		goto out_unlock;
1075 	}
1076 
1077 	/* page is wholly or partially inside EOF */
1078 	if (((page->index + 1) << PAGE_SHIFT) > size)
1079 		length = offset_in_page(size);
1080 	else
1081 		length = PAGE_SIZE;
1082 
1083 	offset = page_offset(page);
1084 	while (length > 0) {
1085 		ret = iomap_apply(inode, offset, length,
1086 				IOMAP_WRITE | IOMAP_FAULT, ops, page,
1087 				iomap_page_mkwrite_actor);
1088 		if (unlikely(ret <= 0))
1089 			goto out_unlock;
1090 		offset += ret;
1091 		length -= ret;
1092 	}
1093 
1094 	wait_for_stable_page(page);
1095 	return VM_FAULT_LOCKED;
1096 out_unlock:
1097 	unlock_page(page);
1098 	return block_page_mkwrite_return(ret);
1099 }
1100 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1101 
1102 struct fiemap_ctx {
1103 	struct fiemap_extent_info *fi;
1104 	struct iomap prev;
1105 };
1106 
iomap_to_fiemap(struct fiemap_extent_info * fi,struct iomap * iomap,u32 flags)1107 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1108 		struct iomap *iomap, u32 flags)
1109 {
1110 	switch (iomap->type) {
1111 	case IOMAP_HOLE:
1112 		/* skip holes */
1113 		return 0;
1114 	case IOMAP_DELALLOC:
1115 		flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1116 		break;
1117 	case IOMAP_MAPPED:
1118 		break;
1119 	case IOMAP_UNWRITTEN:
1120 		flags |= FIEMAP_EXTENT_UNWRITTEN;
1121 		break;
1122 	case IOMAP_INLINE:
1123 		flags |= FIEMAP_EXTENT_DATA_INLINE;
1124 		break;
1125 	}
1126 
1127 	if (iomap->flags & IOMAP_F_MERGED)
1128 		flags |= FIEMAP_EXTENT_MERGED;
1129 	if (iomap->flags & IOMAP_F_SHARED)
1130 		flags |= FIEMAP_EXTENT_SHARED;
1131 
1132 	return fiemap_fill_next_extent(fi, iomap->offset,
1133 			iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1134 			iomap->length, flags);
1135 }
1136 
1137 static loff_t
iomap_fiemap_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1138 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1139 		struct iomap *iomap)
1140 {
1141 	struct fiemap_ctx *ctx = data;
1142 	loff_t ret = length;
1143 
1144 	if (iomap->type == IOMAP_HOLE)
1145 		return length;
1146 
1147 	ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1148 	ctx->prev = *iomap;
1149 	switch (ret) {
1150 	case 0:		/* success */
1151 		return length;
1152 	case 1:		/* extent array full */
1153 		return 0;
1154 	default:
1155 		return ret;
1156 	}
1157 }
1158 
iomap_fiemap(struct inode * inode,struct fiemap_extent_info * fi,loff_t start,loff_t len,const struct iomap_ops * ops)1159 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1160 		loff_t start, loff_t len, const struct iomap_ops *ops)
1161 {
1162 	struct fiemap_ctx ctx;
1163 	loff_t ret;
1164 
1165 	memset(&ctx, 0, sizeof(ctx));
1166 	ctx.fi = fi;
1167 	ctx.prev.type = IOMAP_HOLE;
1168 
1169 	ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1170 	if (ret)
1171 		return ret;
1172 
1173 	if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1174 		ret = filemap_write_and_wait(inode->i_mapping);
1175 		if (ret)
1176 			return ret;
1177 	}
1178 
1179 	while (len > 0) {
1180 		ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1181 				iomap_fiemap_actor);
1182 		/* inode with no (attribute) mapping will give ENOENT */
1183 		if (ret == -ENOENT)
1184 			break;
1185 		if (ret < 0)
1186 			return ret;
1187 		if (ret == 0)
1188 			break;
1189 
1190 		start += ret;
1191 		len -= ret;
1192 	}
1193 
1194 	if (ctx.prev.type != IOMAP_HOLE) {
1195 		ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1196 		if (ret < 0)
1197 			return ret;
1198 	}
1199 
1200 	return 0;
1201 }
1202 EXPORT_SYMBOL_GPL(iomap_fiemap);
1203 
1204 /*
1205  * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1206  * Returns true if found and updates @lastoff to the offset in file.
1207  */
1208 static bool
page_seek_hole_data(struct inode * inode,struct page * page,loff_t * lastoff,int whence)1209 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1210 		int whence)
1211 {
1212 	const struct address_space_operations *ops = inode->i_mapping->a_ops;
1213 	unsigned int bsize = i_blocksize(inode), off;
1214 	bool seek_data = whence == SEEK_DATA;
1215 	loff_t poff = page_offset(page);
1216 
1217 	if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1218 		return false;
1219 
1220 	if (*lastoff < poff) {
1221 		/*
1222 		 * Last offset smaller than the start of the page means we found
1223 		 * a hole:
1224 		 */
1225 		if (whence == SEEK_HOLE)
1226 			return true;
1227 		*lastoff = poff;
1228 	}
1229 
1230 	/*
1231 	 * Just check the page unless we can and should check block ranges:
1232 	 */
1233 	if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1234 		return PageUptodate(page) == seek_data;
1235 
1236 	lock_page(page);
1237 	if (unlikely(page->mapping != inode->i_mapping))
1238 		goto out_unlock_not_found;
1239 
1240 	for (off = 0; off < PAGE_SIZE; off += bsize) {
1241 		if (offset_in_page(*lastoff) >= off + bsize)
1242 			continue;
1243 		if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1244 			unlock_page(page);
1245 			return true;
1246 		}
1247 		*lastoff = poff + off + bsize;
1248 	}
1249 
1250 out_unlock_not_found:
1251 	unlock_page(page);
1252 	return false;
1253 }
1254 
1255 /*
1256  * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1257  *
1258  * Within unwritten extents, the page cache determines which parts are holes
1259  * and which are data: uptodate buffer heads count as data; everything else
1260  * counts as a hole.
1261  *
1262  * Returns the resulting offset on successs, and -ENOENT otherwise.
1263  */
1264 static loff_t
page_cache_seek_hole_data(struct inode * inode,loff_t offset,loff_t length,int whence)1265 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1266 		int whence)
1267 {
1268 	pgoff_t index = offset >> PAGE_SHIFT;
1269 	pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1270 	loff_t lastoff = offset;
1271 	struct pagevec pvec;
1272 
1273 	if (length <= 0)
1274 		return -ENOENT;
1275 
1276 	pagevec_init(&pvec);
1277 
1278 	do {
1279 		unsigned nr_pages, i;
1280 
1281 		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1282 						end - 1);
1283 		if (nr_pages == 0)
1284 			break;
1285 
1286 		for (i = 0; i < nr_pages; i++) {
1287 			struct page *page = pvec.pages[i];
1288 
1289 			if (page_seek_hole_data(inode, page, &lastoff, whence))
1290 				goto check_range;
1291 			lastoff = page_offset(page) + PAGE_SIZE;
1292 		}
1293 		pagevec_release(&pvec);
1294 	} while (index < end);
1295 
1296 	/* When no page at lastoff and we are not done, we found a hole. */
1297 	if (whence != SEEK_HOLE)
1298 		goto not_found;
1299 
1300 check_range:
1301 	if (lastoff < offset + length)
1302 		goto out;
1303 not_found:
1304 	lastoff = -ENOENT;
1305 out:
1306 	pagevec_release(&pvec);
1307 	return lastoff;
1308 }
1309 
1310 
1311 static loff_t
iomap_seek_hole_actor(struct inode * inode,loff_t offset,loff_t length,void * data,struct iomap * iomap)1312 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1313 		      void *data, struct iomap *iomap)
1314 {
1315 	switch (iomap->type) {
1316 	case IOMAP_UNWRITTEN:
1317 		offset = page_cache_seek_hole_data(inode, offset, length,
1318 						   SEEK_HOLE);
1319 		if (offset < 0)
1320 			return length;
1321 		/* fall through */
1322 	case IOMAP_HOLE:
1323 		*(loff_t *)data = offset;
1324 		return 0;
1325 	default:
1326 		return length;
1327 	}
1328 }
1329 
1330 loff_t
iomap_seek_hole(struct inode * inode,loff_t offset,const struct iomap_ops * ops)1331 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1332 {
1333 	loff_t size = i_size_read(inode);
1334 	loff_t length = size - offset;
1335 	loff_t ret;
1336 
1337 	/* Nothing to be found before or beyond the end of the file. */
1338 	if (offset < 0 || offset >= size)
1339 		return -ENXIO;
1340 
1341 	while (length > 0) {
1342 		ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1343 				  &offset, iomap_seek_hole_actor);
1344 		if (ret < 0)
1345 			return ret;
1346 		if (ret == 0)
1347 			break;
1348 
1349 		offset += ret;
1350 		length -= ret;
1351 	}
1352 
1353 	return offset;
1354 }
1355 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1356 
1357 static loff_t
iomap_seek_data_actor(struct inode * inode,loff_t offset,loff_t length,void * data,struct iomap * iomap)1358 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1359 		      void *data, struct iomap *iomap)
1360 {
1361 	switch (iomap->type) {
1362 	case IOMAP_HOLE:
1363 		return length;
1364 	case IOMAP_UNWRITTEN:
1365 		offset = page_cache_seek_hole_data(inode, offset, length,
1366 						   SEEK_DATA);
1367 		if (offset < 0)
1368 			return length;
1369 		/*FALLTHRU*/
1370 	default:
1371 		*(loff_t *)data = offset;
1372 		return 0;
1373 	}
1374 }
1375 
1376 loff_t
iomap_seek_data(struct inode * inode,loff_t offset,const struct iomap_ops * ops)1377 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1378 {
1379 	loff_t size = i_size_read(inode);
1380 	loff_t length = size - offset;
1381 	loff_t ret;
1382 
1383 	/* Nothing to be found before or beyond the end of the file. */
1384 	if (offset < 0 || offset >= size)
1385 		return -ENXIO;
1386 
1387 	while (length > 0) {
1388 		ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1389 				  &offset, iomap_seek_data_actor);
1390 		if (ret < 0)
1391 			return ret;
1392 		if (ret == 0)
1393 			break;
1394 
1395 		offset += ret;
1396 		length -= ret;
1397 	}
1398 
1399 	if (length <= 0)
1400 		return -ENXIO;
1401 	return offset;
1402 }
1403 EXPORT_SYMBOL_GPL(iomap_seek_data);
1404 
1405 /*
1406  * Private flags for iomap_dio, must not overlap with the public ones in
1407  * iomap.h:
1408  */
1409 #define IOMAP_DIO_WRITE_FUA	(1 << 28)
1410 #define IOMAP_DIO_NEED_SYNC	(1 << 29)
1411 #define IOMAP_DIO_WRITE		(1 << 30)
1412 #define IOMAP_DIO_DIRTY		(1 << 31)
1413 
1414 struct iomap_dio {
1415 	struct kiocb		*iocb;
1416 	iomap_dio_end_io_t	*end_io;
1417 	loff_t			i_size;
1418 	loff_t			size;
1419 	atomic_t		ref;
1420 	unsigned		flags;
1421 	int			error;
1422 	bool			wait_for_completion;
1423 
1424 	union {
1425 		/* used during submission and for synchronous completion: */
1426 		struct {
1427 			struct iov_iter		*iter;
1428 			struct task_struct	*waiter;
1429 			struct request_queue	*last_queue;
1430 			blk_qc_t		cookie;
1431 		} submit;
1432 
1433 		/* used for aio completion: */
1434 		struct {
1435 			struct work_struct	work;
1436 		} aio;
1437 	};
1438 };
1439 
iomap_dio_complete(struct iomap_dio * dio)1440 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1441 {
1442 	struct kiocb *iocb = dio->iocb;
1443 	struct inode *inode = file_inode(iocb->ki_filp);
1444 	loff_t offset = iocb->ki_pos;
1445 	ssize_t ret;
1446 
1447 	if (dio->end_io) {
1448 		ret = dio->end_io(iocb,
1449 				dio->error ? dio->error : dio->size,
1450 				dio->flags);
1451 	} else {
1452 		ret = dio->error;
1453 	}
1454 
1455 	if (likely(!ret)) {
1456 		ret = dio->size;
1457 		/* check for short read */
1458 		if (offset + ret > dio->i_size &&
1459 		    !(dio->flags & IOMAP_DIO_WRITE))
1460 			ret = dio->i_size - offset;
1461 		iocb->ki_pos += ret;
1462 	}
1463 
1464 	/*
1465 	 * Try again to invalidate clean pages which might have been cached by
1466 	 * non-direct readahead, or faulted in by get_user_pages() if the source
1467 	 * of the write was an mmap'ed region of the file we're writing.  Either
1468 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
1469 	 * this invalidation fails, tough, the write still worked...
1470 	 *
1471 	 * And this page cache invalidation has to be after dio->end_io(), as
1472 	 * some filesystems convert unwritten extents to real allocations in
1473 	 * end_io() when necessary, otherwise a racing buffer read would cache
1474 	 * zeros from unwritten extents.
1475 	 */
1476 	if (!dio->error &&
1477 	    (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1478 		int err;
1479 		err = invalidate_inode_pages2_range(inode->i_mapping,
1480 				offset >> PAGE_SHIFT,
1481 				(offset + dio->size - 1) >> PAGE_SHIFT);
1482 		if (err)
1483 			dio_warn_stale_pagecache(iocb->ki_filp);
1484 	}
1485 
1486 	/*
1487 	 * If this is a DSYNC write, make sure we push it to stable storage now
1488 	 * that we've written data.
1489 	 */
1490 	if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1491 		ret = generic_write_sync(iocb, ret);
1492 
1493 	inode_dio_end(file_inode(iocb->ki_filp));
1494 	kfree(dio);
1495 
1496 	return ret;
1497 }
1498 
iomap_dio_complete_work(struct work_struct * work)1499 static void iomap_dio_complete_work(struct work_struct *work)
1500 {
1501 	struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1502 	struct kiocb *iocb = dio->iocb;
1503 
1504 	iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1505 }
1506 
1507 /*
1508  * Set an error in the dio if none is set yet.  We have to use cmpxchg
1509  * as the submission context and the completion context(s) can race to
1510  * update the error.
1511  */
iomap_dio_set_error(struct iomap_dio * dio,int ret)1512 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1513 {
1514 	cmpxchg(&dio->error, 0, ret);
1515 }
1516 
iomap_dio_bio_end_io(struct bio * bio)1517 static void iomap_dio_bio_end_io(struct bio *bio)
1518 {
1519 	struct iomap_dio *dio = bio->bi_private;
1520 	bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1521 
1522 	if (bio->bi_status)
1523 		iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1524 
1525 	if (atomic_dec_and_test(&dio->ref)) {
1526 		if (dio->wait_for_completion) {
1527 			struct task_struct *waiter = dio->submit.waiter;
1528 			WRITE_ONCE(dio->submit.waiter, NULL);
1529 			wake_up_process(waiter);
1530 		} else if (dio->flags & IOMAP_DIO_WRITE) {
1531 			struct inode *inode = file_inode(dio->iocb->ki_filp);
1532 
1533 			INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1534 			queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1535 		} else {
1536 			iomap_dio_complete_work(&dio->aio.work);
1537 		}
1538 	}
1539 
1540 	if (should_dirty) {
1541 		bio_check_pages_dirty(bio);
1542 	} else {
1543 		struct bio_vec *bvec;
1544 		int i;
1545 
1546 		bio_for_each_segment_all(bvec, bio, i)
1547 			put_page(bvec->bv_page);
1548 		bio_put(bio);
1549 	}
1550 }
1551 
1552 static blk_qc_t
iomap_dio_zero(struct iomap_dio * dio,struct iomap * iomap,loff_t pos,unsigned len)1553 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1554 		unsigned len)
1555 {
1556 	struct page *page = ZERO_PAGE(0);
1557 	struct bio *bio;
1558 
1559 	bio = bio_alloc(GFP_KERNEL, 1);
1560 	bio_set_dev(bio, iomap->bdev);
1561 	bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1562 	bio->bi_private = dio;
1563 	bio->bi_end_io = iomap_dio_bio_end_io;
1564 
1565 	get_page(page);
1566 	__bio_add_page(bio, page, len, 0);
1567 	bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
1568 
1569 	atomic_inc(&dio->ref);
1570 	return submit_bio(bio);
1571 }
1572 
1573 static loff_t
iomap_dio_bio_actor(struct inode * inode,loff_t pos,loff_t length,struct iomap_dio * dio,struct iomap * iomap)1574 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1575 		struct iomap_dio *dio, struct iomap *iomap)
1576 {
1577 	unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1578 	unsigned int fs_block_size = i_blocksize(inode), pad;
1579 	unsigned int align = iov_iter_alignment(dio->submit.iter);
1580 	struct iov_iter iter;
1581 	struct bio *bio;
1582 	bool need_zeroout = false;
1583 	bool use_fua = false;
1584 	int nr_pages, ret;
1585 	size_t copied = 0;
1586 
1587 	if ((pos | length | align) & ((1 << blkbits) - 1))
1588 		return -EINVAL;
1589 
1590 	if (iomap->type == IOMAP_UNWRITTEN) {
1591 		dio->flags |= IOMAP_DIO_UNWRITTEN;
1592 		need_zeroout = true;
1593 	}
1594 
1595 	if (iomap->flags & IOMAP_F_SHARED)
1596 		dio->flags |= IOMAP_DIO_COW;
1597 
1598 	if (iomap->flags & IOMAP_F_NEW) {
1599 		need_zeroout = true;
1600 	} else {
1601 		/*
1602 		 * Use a FUA write if we need datasync semantics, this
1603 		 * is a pure data IO that doesn't require any metadata
1604 		 * updates and the underlying device supports FUA. This
1605 		 * allows us to avoid cache flushes on IO completion.
1606 		 */
1607 		if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1608 		    (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1609 		    blk_queue_fua(bdev_get_queue(iomap->bdev)))
1610 			use_fua = true;
1611 	}
1612 
1613 	/*
1614 	 * Operate on a partial iter trimmed to the extent we were called for.
1615 	 * We'll update the iter in the dio once we're done with this extent.
1616 	 */
1617 	iter = *dio->submit.iter;
1618 	iov_iter_truncate(&iter, length);
1619 
1620 	nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1621 	if (nr_pages <= 0)
1622 		return nr_pages;
1623 
1624 	if (need_zeroout) {
1625 		/* zero out from the start of the block to the write offset */
1626 		pad = pos & (fs_block_size - 1);
1627 		if (pad)
1628 			iomap_dio_zero(dio, iomap, pos - pad, pad);
1629 	}
1630 
1631 	do {
1632 		size_t n;
1633 		if (dio->error) {
1634 			iov_iter_revert(dio->submit.iter, copied);
1635 			return 0;
1636 		}
1637 
1638 		bio = bio_alloc(GFP_KERNEL, nr_pages);
1639 		bio_set_dev(bio, iomap->bdev);
1640 		bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1641 		bio->bi_write_hint = dio->iocb->ki_hint;
1642 		bio->bi_ioprio = dio->iocb->ki_ioprio;
1643 		bio->bi_private = dio;
1644 		bio->bi_end_io = iomap_dio_bio_end_io;
1645 
1646 		ret = bio_iov_iter_get_pages(bio, &iter);
1647 		if (unlikely(ret)) {
1648 			bio_put(bio);
1649 			return copied ? copied : ret;
1650 		}
1651 
1652 		n = bio->bi_iter.bi_size;
1653 		if (dio->flags & IOMAP_DIO_WRITE) {
1654 			bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1655 			if (use_fua)
1656 				bio->bi_opf |= REQ_FUA;
1657 			else
1658 				dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1659 			task_io_account_write(n);
1660 		} else {
1661 			bio->bi_opf = REQ_OP_READ;
1662 			if (dio->flags & IOMAP_DIO_DIRTY)
1663 				bio_set_pages_dirty(bio);
1664 		}
1665 
1666 		iov_iter_advance(dio->submit.iter, n);
1667 
1668 		dio->size += n;
1669 		pos += n;
1670 		copied += n;
1671 
1672 		nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1673 
1674 		atomic_inc(&dio->ref);
1675 
1676 		dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1677 		dio->submit.cookie = submit_bio(bio);
1678 	} while (nr_pages);
1679 
1680 	if (need_zeroout) {
1681 		/* zero out from the end of the write to the end of the block */
1682 		pad = pos & (fs_block_size - 1);
1683 		if (pad)
1684 			iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1685 	}
1686 	return copied;
1687 }
1688 
1689 static loff_t
iomap_dio_hole_actor(loff_t length,struct iomap_dio * dio)1690 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1691 {
1692 	length = iov_iter_zero(length, dio->submit.iter);
1693 	dio->size += length;
1694 	return length;
1695 }
1696 
1697 static loff_t
iomap_dio_inline_actor(struct inode * inode,loff_t pos,loff_t length,struct iomap_dio * dio,struct iomap * iomap)1698 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1699 		struct iomap_dio *dio, struct iomap *iomap)
1700 {
1701 	struct iov_iter *iter = dio->submit.iter;
1702 	size_t copied;
1703 
1704 	BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1705 
1706 	if (dio->flags & IOMAP_DIO_WRITE) {
1707 		loff_t size = inode->i_size;
1708 
1709 		if (pos > size)
1710 			memset(iomap->inline_data + size, 0, pos - size);
1711 		copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1712 		if (copied) {
1713 			if (pos + copied > size)
1714 				i_size_write(inode, pos + copied);
1715 			mark_inode_dirty(inode);
1716 		}
1717 	} else {
1718 		copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1719 	}
1720 	dio->size += copied;
1721 	return copied;
1722 }
1723 
1724 static loff_t
iomap_dio_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)1725 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1726 		void *data, struct iomap *iomap)
1727 {
1728 	struct iomap_dio *dio = data;
1729 
1730 	switch (iomap->type) {
1731 	case IOMAP_HOLE:
1732 		if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1733 			return -EIO;
1734 		return iomap_dio_hole_actor(length, dio);
1735 	case IOMAP_UNWRITTEN:
1736 		if (!(dio->flags & IOMAP_DIO_WRITE))
1737 			return iomap_dio_hole_actor(length, dio);
1738 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1739 	case IOMAP_MAPPED:
1740 		return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1741 	case IOMAP_INLINE:
1742 		return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1743 	default:
1744 		WARN_ON_ONCE(1);
1745 		return -EIO;
1746 	}
1747 }
1748 
1749 /*
1750  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1751  * is being issued as AIO or not.  This allows us to optimise pure data writes
1752  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1753  * REQ_FLUSH post write. This is slightly tricky because a single request here
1754  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1755  * may be pure data writes. In that case, we still need to do a full data sync
1756  * completion.
1757  */
1758 ssize_t
iomap_dio_rw(struct kiocb * iocb,struct iov_iter * iter,const struct iomap_ops * ops,iomap_dio_end_io_t end_io)1759 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1760 		const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1761 {
1762 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1763 	struct inode *inode = file_inode(iocb->ki_filp);
1764 	size_t count = iov_iter_count(iter);
1765 	loff_t pos = iocb->ki_pos, start = pos;
1766 	loff_t end = iocb->ki_pos + count - 1, ret = 0;
1767 	unsigned int flags = IOMAP_DIRECT;
1768 	struct blk_plug plug;
1769 	struct iomap_dio *dio;
1770 
1771 	lockdep_assert_held(&inode->i_rwsem);
1772 
1773 	if (!count)
1774 		return 0;
1775 
1776 	dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1777 	if (!dio)
1778 		return -ENOMEM;
1779 
1780 	dio->iocb = iocb;
1781 	atomic_set(&dio->ref, 1);
1782 	dio->size = 0;
1783 	dio->i_size = i_size_read(inode);
1784 	dio->end_io = end_io;
1785 	dio->error = 0;
1786 	dio->flags = 0;
1787 	dio->wait_for_completion = is_sync_kiocb(iocb);
1788 
1789 	dio->submit.iter = iter;
1790 	dio->submit.waiter = current;
1791 	dio->submit.cookie = BLK_QC_T_NONE;
1792 	dio->submit.last_queue = NULL;
1793 
1794 	if (iov_iter_rw(iter) == READ) {
1795 		if (pos >= dio->i_size)
1796 			goto out_free_dio;
1797 
1798 		if (iter->type == ITER_IOVEC)
1799 			dio->flags |= IOMAP_DIO_DIRTY;
1800 	} else {
1801 		flags |= IOMAP_WRITE;
1802 		dio->flags |= IOMAP_DIO_WRITE;
1803 
1804 		/* for data sync or sync, we need sync completion processing */
1805 		if (iocb->ki_flags & IOCB_DSYNC)
1806 			dio->flags |= IOMAP_DIO_NEED_SYNC;
1807 
1808 		/*
1809 		 * For datasync only writes, we optimistically try using FUA for
1810 		 * this IO.  Any non-FUA write that occurs will clear this flag,
1811 		 * hence we know before completion whether a cache flush is
1812 		 * necessary.
1813 		 */
1814 		if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1815 			dio->flags |= IOMAP_DIO_WRITE_FUA;
1816 	}
1817 
1818 	if (iocb->ki_flags & IOCB_NOWAIT) {
1819 		if (filemap_range_has_page(mapping, start, end)) {
1820 			ret = -EAGAIN;
1821 			goto out_free_dio;
1822 		}
1823 		flags |= IOMAP_NOWAIT;
1824 	}
1825 
1826 	ret = filemap_write_and_wait_range(mapping, start, end);
1827 	if (ret)
1828 		goto out_free_dio;
1829 
1830 	/*
1831 	 * Try to invalidate cache pages for the range we're direct
1832 	 * writing.  If this invalidation fails, tough, the write will
1833 	 * still work, but racing two incompatible write paths is a
1834 	 * pretty crazy thing to do, so we don't support it 100%.
1835 	 */
1836 	ret = invalidate_inode_pages2_range(mapping,
1837 			start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1838 	if (ret)
1839 		dio_warn_stale_pagecache(iocb->ki_filp);
1840 	ret = 0;
1841 
1842 	if (iov_iter_rw(iter) == WRITE && !dio->wait_for_completion &&
1843 	    !inode->i_sb->s_dio_done_wq) {
1844 		ret = sb_init_dio_done_wq(inode->i_sb);
1845 		if (ret < 0)
1846 			goto out_free_dio;
1847 	}
1848 
1849 	inode_dio_begin(inode);
1850 
1851 	blk_start_plug(&plug);
1852 	do {
1853 		ret = iomap_apply(inode, pos, count, flags, ops, dio,
1854 				iomap_dio_actor);
1855 		if (ret <= 0) {
1856 			/* magic error code to fall back to buffered I/O */
1857 			if (ret == -ENOTBLK) {
1858 				dio->wait_for_completion = true;
1859 				ret = 0;
1860 			}
1861 			break;
1862 		}
1863 		pos += ret;
1864 
1865 		if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1866 			break;
1867 	} while ((count = iov_iter_count(iter)) > 0);
1868 	blk_finish_plug(&plug);
1869 
1870 	if (ret < 0)
1871 		iomap_dio_set_error(dio, ret);
1872 
1873 	/*
1874 	 * If all the writes we issued were FUA, we don't need to flush the
1875 	 * cache on IO completion. Clear the sync flag for this case.
1876 	 */
1877 	if (dio->flags & IOMAP_DIO_WRITE_FUA)
1878 		dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1879 
1880 	if (!atomic_dec_and_test(&dio->ref)) {
1881 		if (!dio->wait_for_completion)
1882 			return -EIOCBQUEUED;
1883 
1884 		for (;;) {
1885 			set_current_state(TASK_UNINTERRUPTIBLE);
1886 			if (!READ_ONCE(dio->submit.waiter))
1887 				break;
1888 
1889 			if (!(iocb->ki_flags & IOCB_HIPRI) ||
1890 			    !dio->submit.last_queue ||
1891 			    !blk_poll(dio->submit.last_queue,
1892 					 dio->submit.cookie))
1893 				io_schedule();
1894 		}
1895 		__set_current_state(TASK_RUNNING);
1896 	}
1897 
1898 	ret = iomap_dio_complete(dio);
1899 
1900 	return ret;
1901 
1902 out_free_dio:
1903 	kfree(dio);
1904 	return ret;
1905 }
1906 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1907 
1908 /* Swapfile activation */
1909 
1910 #ifdef CONFIG_SWAP
1911 struct iomap_swapfile_info {
1912 	struct iomap iomap;		/* accumulated iomap */
1913 	struct swap_info_struct *sis;
1914 	uint64_t lowest_ppage;		/* lowest physical addr seen (pages) */
1915 	uint64_t highest_ppage;		/* highest physical addr seen (pages) */
1916 	unsigned long nr_pages;		/* number of pages collected */
1917 	int nr_extents;			/* extent count */
1918 };
1919 
1920 /*
1921  * Collect physical extents for this swap file.  Physical extents reported to
1922  * the swap code must be trimmed to align to a page boundary.  The logical
1923  * offset within the file is irrelevant since the swapfile code maps logical
1924  * page numbers of the swap device to the physical page-aligned extents.
1925  */
iomap_swapfile_add_extent(struct iomap_swapfile_info * isi)1926 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
1927 {
1928 	struct iomap *iomap = &isi->iomap;
1929 	unsigned long nr_pages;
1930 	uint64_t first_ppage;
1931 	uint64_t first_ppage_reported;
1932 	uint64_t next_ppage;
1933 	int error;
1934 
1935 	/*
1936 	 * Round the start up and the end down so that the physical
1937 	 * extent aligns to a page boundary.
1938 	 */
1939 	first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
1940 	next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
1941 			PAGE_SHIFT;
1942 
1943 	/* Skip too-short physical extents. */
1944 	if (first_ppage >= next_ppage)
1945 		return 0;
1946 	nr_pages = next_ppage - first_ppage;
1947 
1948 	/*
1949 	 * Calculate how much swap space we're adding; the first page contains
1950 	 * the swap header and doesn't count.  The mm still wants that first
1951 	 * page fed to add_swap_extent, however.
1952 	 */
1953 	first_ppage_reported = first_ppage;
1954 	if (iomap->offset == 0)
1955 		first_ppage_reported++;
1956 	if (isi->lowest_ppage > first_ppage_reported)
1957 		isi->lowest_ppage = first_ppage_reported;
1958 	if (isi->highest_ppage < (next_ppage - 1))
1959 		isi->highest_ppage = next_ppage - 1;
1960 
1961 	/* Add extent, set up for the next call. */
1962 	error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
1963 	if (error < 0)
1964 		return error;
1965 	isi->nr_extents += error;
1966 	isi->nr_pages += nr_pages;
1967 	return 0;
1968 }
1969 
1970 /*
1971  * Accumulate iomaps for this swap file.  We have to accumulate iomaps because
1972  * swap only cares about contiguous page-aligned physical extents and makes no
1973  * distinction between written and unwritten extents.
1974  */
iomap_swapfile_activate_actor(struct inode * inode,loff_t pos,loff_t count,void * data,struct iomap * iomap)1975 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
1976 		loff_t count, void *data, struct iomap *iomap)
1977 {
1978 	struct iomap_swapfile_info *isi = data;
1979 	int error;
1980 
1981 	switch (iomap->type) {
1982 	case IOMAP_MAPPED:
1983 	case IOMAP_UNWRITTEN:
1984 		/* Only real or unwritten extents. */
1985 		break;
1986 	case IOMAP_INLINE:
1987 		/* No inline data. */
1988 		pr_err("swapon: file is inline\n");
1989 		return -EINVAL;
1990 	default:
1991 		pr_err("swapon: file has unallocated extents\n");
1992 		return -EINVAL;
1993 	}
1994 
1995 	/* No uncommitted metadata or shared blocks. */
1996 	if (iomap->flags & IOMAP_F_DIRTY) {
1997 		pr_err("swapon: file is not committed\n");
1998 		return -EINVAL;
1999 	}
2000 	if (iomap->flags & IOMAP_F_SHARED) {
2001 		pr_err("swapon: file has shared extents\n");
2002 		return -EINVAL;
2003 	}
2004 
2005 	/* Only one bdev per swap file. */
2006 	if (iomap->bdev != isi->sis->bdev) {
2007 		pr_err("swapon: file is on multiple devices\n");
2008 		return -EINVAL;
2009 	}
2010 
2011 	if (isi->iomap.length == 0) {
2012 		/* No accumulated extent, so just store it. */
2013 		memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2014 	} else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2015 		/* Append this to the accumulated extent. */
2016 		isi->iomap.length += iomap->length;
2017 	} else {
2018 		/* Otherwise, add the retained iomap and store this one. */
2019 		error = iomap_swapfile_add_extent(isi);
2020 		if (error)
2021 			return error;
2022 		memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2023 	}
2024 	return count;
2025 }
2026 
2027 /*
2028  * Iterate a swap file's iomaps to construct physical extents that can be
2029  * passed to the swapfile subsystem.
2030  */
iomap_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * pagespan,const struct iomap_ops * ops)2031 int iomap_swapfile_activate(struct swap_info_struct *sis,
2032 		struct file *swap_file, sector_t *pagespan,
2033 		const struct iomap_ops *ops)
2034 {
2035 	struct iomap_swapfile_info isi = {
2036 		.sis = sis,
2037 		.lowest_ppage = (sector_t)-1ULL,
2038 	};
2039 	struct address_space *mapping = swap_file->f_mapping;
2040 	struct inode *inode = mapping->host;
2041 	loff_t pos = 0;
2042 	loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2043 	loff_t ret;
2044 
2045 	/*
2046 	 * Persist all file mapping metadata so that we won't have any
2047 	 * IOMAP_F_DIRTY iomaps.
2048 	 */
2049 	ret = vfs_fsync(swap_file, 1);
2050 	if (ret)
2051 		return ret;
2052 
2053 	while (len > 0) {
2054 		ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2055 				ops, &isi, iomap_swapfile_activate_actor);
2056 		if (ret <= 0)
2057 			return ret;
2058 
2059 		pos += ret;
2060 		len -= ret;
2061 	}
2062 
2063 	if (isi.iomap.length) {
2064 		ret = iomap_swapfile_add_extent(&isi);
2065 		if (ret)
2066 			return ret;
2067 	}
2068 
2069 	*pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2070 	sis->max = isi.nr_pages;
2071 	sis->pages = isi.nr_pages - 1;
2072 	sis->highest_bit = isi.nr_pages - 1;
2073 	return isi.nr_extents;
2074 }
2075 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2076 #endif /* CONFIG_SWAP */
2077 
2078 static loff_t
iomap_bmap_actor(struct inode * inode,loff_t pos,loff_t length,void * data,struct iomap * iomap)2079 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2080 		void *data, struct iomap *iomap)
2081 {
2082 	sector_t *bno = data, addr;
2083 
2084 	if (iomap->type == IOMAP_MAPPED) {
2085 		addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2086 		if (addr > INT_MAX)
2087 			WARN(1, "would truncate bmap result\n");
2088 		else
2089 			*bno = addr;
2090 	}
2091 	return 0;
2092 }
2093 
2094 /* legacy ->bmap interface.  0 is the error return (!) */
2095 sector_t
iomap_bmap(struct address_space * mapping,sector_t bno,const struct iomap_ops * ops)2096 iomap_bmap(struct address_space *mapping, sector_t bno,
2097 		const struct iomap_ops *ops)
2098 {
2099 	struct inode *inode = mapping->host;
2100 	loff_t pos = bno << inode->i_blkbits;
2101 	unsigned blocksize = i_blocksize(inode);
2102 
2103 	if (filemap_write_and_wait(mapping))
2104 		return 0;
2105 
2106 	bno = 0;
2107 	iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2108 	return bno;
2109 }
2110 EXPORT_SYMBOL_GPL(iomap_bmap);
2111