1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
18 #include <linux/fs.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/uio.h>
24 #include <trace/events/writeback.h>
25 #include <linux/sched/signal.h>
26
27 #include "gfs2.h"
28 #include "incore.h"
29 #include "bmap.h"
30 #include "glock.h"
31 #include "inode.h"
32 #include "log.h"
33 #include "meta_io.h"
34 #include "quota.h"
35 #include "trans.h"
36 #include "rgrp.h"
37 #include "super.h"
38 #include "util.h"
39 #include "glops.h"
40 #include "aops.h"
41
42
gfs2_page_add_databufs(struct gfs2_inode * ip,struct page * page,unsigned int from,unsigned int len)43 void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
44 unsigned int from, unsigned int len)
45 {
46 struct buffer_head *head = page_buffers(page);
47 unsigned int bsize = head->b_size;
48 struct buffer_head *bh;
49 unsigned int to = from + len;
50 unsigned int start, end;
51
52 for (bh = head, start = 0; bh != head || !start;
53 bh = bh->b_this_page, start = end) {
54 end = start + bsize;
55 if (end <= from)
56 continue;
57 if (start >= to)
58 break;
59 set_buffer_uptodate(bh);
60 gfs2_trans_add_data(ip->i_gl, bh);
61 }
62 }
63
64 /**
65 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
66 * @inode: The inode
67 * @lblock: The block number to look up
68 * @bh_result: The buffer head to return the result in
69 * @create: Non-zero if we may add block to the file
70 *
71 * Returns: errno
72 */
73
gfs2_get_block_noalloc(struct inode * inode,sector_t lblock,struct buffer_head * bh_result,int create)74 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
75 struct buffer_head *bh_result, int create)
76 {
77 int error;
78
79 error = gfs2_block_map(inode, lblock, bh_result, 0);
80 if (error)
81 return error;
82 if (!buffer_mapped(bh_result))
83 return -EIO;
84 return 0;
85 }
86
87 /**
88 * gfs2_writepage_common - Common bits of writepage
89 * @page: The page to be written
90 * @wbc: The writeback control
91 *
92 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
93 */
94
gfs2_writepage_common(struct page * page,struct writeback_control * wbc)95 static int gfs2_writepage_common(struct page *page,
96 struct writeback_control *wbc)
97 {
98 struct inode *inode = page->mapping->host;
99 struct gfs2_inode *ip = GFS2_I(inode);
100 struct gfs2_sbd *sdp = GFS2_SB(inode);
101 loff_t i_size = i_size_read(inode);
102 pgoff_t end_index = i_size >> PAGE_SHIFT;
103 unsigned offset;
104
105 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
106 goto out;
107 if (current->journal_info)
108 goto redirty;
109 /* Is the page fully outside i_size? (truncate in progress) */
110 offset = i_size & (PAGE_SIZE-1);
111 if (page->index > end_index || (page->index == end_index && !offset)) {
112 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
113 goto out;
114 }
115 return 1;
116 redirty:
117 redirty_page_for_writepage(wbc, page);
118 out:
119 unlock_page(page);
120 return 0;
121 }
122
123 /**
124 * gfs2_writepage - Write page for writeback mappings
125 * @page: The page
126 * @wbc: The writeback control
127 *
128 */
129
gfs2_writepage(struct page * page,struct writeback_control * wbc)130 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
131 {
132 int ret;
133
134 ret = gfs2_writepage_common(page, wbc);
135 if (ret <= 0)
136 return ret;
137
138 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
139 }
140
141 /* This is the same as calling block_write_full_page, but it also
142 * writes pages outside of i_size
143 */
gfs2_write_full_page(struct page * page,get_block_t * get_block,struct writeback_control * wbc)144 static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
145 struct writeback_control *wbc)
146 {
147 struct inode * const inode = page->mapping->host;
148 loff_t i_size = i_size_read(inode);
149 const pgoff_t end_index = i_size >> PAGE_SHIFT;
150 unsigned offset;
151
152 /*
153 * The page straddles i_size. It must be zeroed out on each and every
154 * writepage invocation because it may be mmapped. "A file is mapped
155 * in multiples of the page size. For a file that is not a multiple of
156 * the page size, the remaining memory is zeroed when mapped, and
157 * writes to that region are not written out to the file."
158 */
159 offset = i_size & (PAGE_SIZE-1);
160 if (page->index == end_index && offset)
161 zero_user_segment(page, offset, PAGE_SIZE);
162
163 return __block_write_full_page(inode, page, get_block, wbc,
164 end_buffer_async_write);
165 }
166
167 /**
168 * __gfs2_jdata_writepage - The core of jdata writepage
169 * @page: The page to write
170 * @wbc: The writeback control
171 *
172 * This is shared between writepage and writepages and implements the
173 * core of the writepage operation. If a transaction is required then
174 * PageChecked will have been set and the transaction will have
175 * already been started before this is called.
176 */
177
__gfs2_jdata_writepage(struct page * page,struct writeback_control * wbc)178 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
179 {
180 struct inode *inode = page->mapping->host;
181 struct gfs2_inode *ip = GFS2_I(inode);
182 struct gfs2_sbd *sdp = GFS2_SB(inode);
183
184 if (PageChecked(page)) {
185 ClearPageChecked(page);
186 if (!page_has_buffers(page)) {
187 create_empty_buffers(page, inode->i_sb->s_blocksize,
188 BIT(BH_Dirty)|BIT(BH_Uptodate));
189 }
190 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize);
191 }
192 return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
193 }
194
195 /**
196 * gfs2_jdata_writepage - Write complete page
197 * @page: Page to write
198 * @wbc: The writeback control
199 *
200 * Returns: errno
201 *
202 */
203
gfs2_jdata_writepage(struct page * page,struct writeback_control * wbc)204 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
205 {
206 struct inode *inode = page->mapping->host;
207 struct gfs2_inode *ip = GFS2_I(inode);
208 struct gfs2_sbd *sdp = GFS2_SB(inode);
209 int ret;
210
211 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
212 goto out;
213 if (PageChecked(page) || current->journal_info)
214 goto out_ignore;
215 ret = __gfs2_jdata_writepage(page, wbc);
216 return ret;
217
218 out_ignore:
219 redirty_page_for_writepage(wbc, page);
220 out:
221 unlock_page(page);
222 return 0;
223 }
224
225 /**
226 * gfs2_writepages - Write a bunch of dirty pages back to disk
227 * @mapping: The mapping to write
228 * @wbc: Write-back control
229 *
230 * Used for both ordered and writeback modes.
231 */
gfs2_writepages(struct address_space * mapping,struct writeback_control * wbc)232 static int gfs2_writepages(struct address_space *mapping,
233 struct writeback_control *wbc)
234 {
235 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
236 int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
237
238 /*
239 * Even if we didn't write any pages here, we might still be holding
240 * dirty pages in the ail. We forcibly flush the ail because we don't
241 * want balance_dirty_pages() to loop indefinitely trying to write out
242 * pages held in the ail that it can't find.
243 */
244 if (ret == 0)
245 set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
246
247 return ret;
248 }
249
250 /**
251 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
252 * @mapping: The mapping
253 * @wbc: The writeback control
254 * @pvec: The vector of pages
255 * @nr_pages: The number of pages to write
256 * @done_index: Page index
257 *
258 * Returns: non-zero if loop should terminate, zero otherwise
259 */
260
gfs2_write_jdata_pagevec(struct address_space * mapping,struct writeback_control * wbc,struct pagevec * pvec,int nr_pages,pgoff_t * done_index)261 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
262 struct writeback_control *wbc,
263 struct pagevec *pvec,
264 int nr_pages,
265 pgoff_t *done_index)
266 {
267 struct inode *inode = mapping->host;
268 struct gfs2_sbd *sdp = GFS2_SB(inode);
269 unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
270 int i;
271 int ret;
272
273 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
274 if (ret < 0)
275 return ret;
276
277 for(i = 0; i < nr_pages; i++) {
278 struct page *page = pvec->pages[i];
279
280 *done_index = page->index;
281
282 lock_page(page);
283
284 if (unlikely(page->mapping != mapping)) {
285 continue_unlock:
286 unlock_page(page);
287 continue;
288 }
289
290 if (!PageDirty(page)) {
291 /* someone wrote it for us */
292 goto continue_unlock;
293 }
294
295 if (PageWriteback(page)) {
296 if (wbc->sync_mode != WB_SYNC_NONE)
297 wait_on_page_writeback(page);
298 else
299 goto continue_unlock;
300 }
301
302 BUG_ON(PageWriteback(page));
303 if (!clear_page_dirty_for_io(page))
304 goto continue_unlock;
305
306 trace_wbc_writepage(wbc, inode_to_bdi(inode));
307
308 ret = __gfs2_jdata_writepage(page, wbc);
309 if (unlikely(ret)) {
310 if (ret == AOP_WRITEPAGE_ACTIVATE) {
311 unlock_page(page);
312 ret = 0;
313 } else {
314
315 /*
316 * done_index is set past this page,
317 * so media errors will not choke
318 * background writeout for the entire
319 * file. This has consequences for
320 * range_cyclic semantics (ie. it may
321 * not be suitable for data integrity
322 * writeout).
323 */
324 *done_index = page->index + 1;
325 ret = 1;
326 break;
327 }
328 }
329
330 /*
331 * We stop writing back only if we are not doing
332 * integrity sync. In case of integrity sync we have to
333 * keep going until we have written all the pages
334 * we tagged for writeback prior to entering this loop.
335 */
336 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
337 ret = 1;
338 break;
339 }
340
341 }
342 gfs2_trans_end(sdp);
343 return ret;
344 }
345
346 /**
347 * gfs2_write_cache_jdata - Like write_cache_pages but different
348 * @mapping: The mapping to write
349 * @wbc: The writeback control
350 *
351 * The reason that we use our own function here is that we need to
352 * start transactions before we grab page locks. This allows us
353 * to get the ordering right.
354 */
355
gfs2_write_cache_jdata(struct address_space * mapping,struct writeback_control * wbc)356 static int gfs2_write_cache_jdata(struct address_space *mapping,
357 struct writeback_control *wbc)
358 {
359 int ret = 0;
360 int done = 0;
361 struct pagevec pvec;
362 int nr_pages;
363 pgoff_t uninitialized_var(writeback_index);
364 pgoff_t index;
365 pgoff_t end;
366 pgoff_t done_index;
367 int cycled;
368 int range_whole = 0;
369 int tag;
370
371 pagevec_init(&pvec);
372 if (wbc->range_cyclic) {
373 writeback_index = mapping->writeback_index; /* prev offset */
374 index = writeback_index;
375 if (index == 0)
376 cycled = 1;
377 else
378 cycled = 0;
379 end = -1;
380 } else {
381 index = wbc->range_start >> PAGE_SHIFT;
382 end = wbc->range_end >> PAGE_SHIFT;
383 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
384 range_whole = 1;
385 cycled = 1; /* ignore range_cyclic tests */
386 }
387 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
388 tag = PAGECACHE_TAG_TOWRITE;
389 else
390 tag = PAGECACHE_TAG_DIRTY;
391
392 retry:
393 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
394 tag_pages_for_writeback(mapping, index, end);
395 done_index = index;
396 while (!done && (index <= end)) {
397 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
398 tag);
399 if (nr_pages == 0)
400 break;
401
402 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
403 if (ret)
404 done = 1;
405 if (ret > 0)
406 ret = 0;
407 pagevec_release(&pvec);
408 cond_resched();
409 }
410
411 if (!cycled && !done) {
412 /*
413 * range_cyclic:
414 * We hit the last page and there is more work to be done: wrap
415 * back to the start of the file
416 */
417 cycled = 1;
418 index = 0;
419 end = writeback_index - 1;
420 goto retry;
421 }
422
423 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
424 mapping->writeback_index = done_index;
425
426 return ret;
427 }
428
429
430 /**
431 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
432 * @mapping: The mapping to write
433 * @wbc: The writeback control
434 *
435 */
436
gfs2_jdata_writepages(struct address_space * mapping,struct writeback_control * wbc)437 static int gfs2_jdata_writepages(struct address_space *mapping,
438 struct writeback_control *wbc)
439 {
440 struct gfs2_inode *ip = GFS2_I(mapping->host);
441 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
442 int ret;
443
444 ret = gfs2_write_cache_jdata(mapping, wbc);
445 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
446 gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
447 GFS2_LFC_JDATA_WPAGES);
448 ret = gfs2_write_cache_jdata(mapping, wbc);
449 }
450 return ret;
451 }
452
453 /**
454 * stuffed_readpage - Fill in a Linux page with stuffed file data
455 * @ip: the inode
456 * @page: the page
457 *
458 * Returns: errno
459 */
460
stuffed_readpage(struct gfs2_inode * ip,struct page * page)461 int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
462 {
463 struct buffer_head *dibh;
464 u64 dsize = i_size_read(&ip->i_inode);
465 void *kaddr;
466 int error;
467
468 /*
469 * Due to the order of unstuffing files and ->fault(), we can be
470 * asked for a zero page in the case of a stuffed file being extended,
471 * so we need to supply one here. It doesn't happen often.
472 */
473 if (unlikely(page->index)) {
474 zero_user(page, 0, PAGE_SIZE);
475 SetPageUptodate(page);
476 return 0;
477 }
478
479 error = gfs2_meta_inode_buffer(ip, &dibh);
480 if (error)
481 return error;
482
483 kaddr = kmap_atomic(page);
484 if (dsize > gfs2_max_stuffed_size(ip))
485 dsize = gfs2_max_stuffed_size(ip);
486 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
487 memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
488 kunmap_atomic(kaddr);
489 flush_dcache_page(page);
490 brelse(dibh);
491 SetPageUptodate(page);
492
493 return 0;
494 }
495
496
497 /**
498 * __gfs2_readpage - readpage
499 * @file: The file to read a page for
500 * @page: The page to read
501 *
502 * This is the core of gfs2's readpage. It's used by the internal file
503 * reading code as in that case we already hold the glock. Also it's
504 * called by gfs2_readpage() once the required lock has been granted.
505 */
506
__gfs2_readpage(void * file,struct page * page)507 static int __gfs2_readpage(void *file, struct page *page)
508 {
509 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
510 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
511
512 int error;
513
514 if (i_blocksize(page->mapping->host) == PAGE_SIZE &&
515 !page_has_buffers(page)) {
516 error = iomap_readpage(page, &gfs2_iomap_ops);
517 } else if (gfs2_is_stuffed(ip)) {
518 error = stuffed_readpage(ip, page);
519 unlock_page(page);
520 } else {
521 error = mpage_readpage(page, gfs2_block_map);
522 }
523
524 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
525 return -EIO;
526
527 return error;
528 }
529
530 /**
531 * gfs2_readpage - read a page of a file
532 * @file: The file to read
533 * @page: The page of the file
534 *
535 * This deals with the locking required. We have to unlock and
536 * relock the page in order to get the locking in the right
537 * order.
538 */
539
gfs2_readpage(struct file * file,struct page * page)540 static int gfs2_readpage(struct file *file, struct page *page)
541 {
542 struct address_space *mapping = page->mapping;
543 struct gfs2_inode *ip = GFS2_I(mapping->host);
544 struct gfs2_holder gh;
545 int error;
546
547 unlock_page(page);
548 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
549 error = gfs2_glock_nq(&gh);
550 if (unlikely(error))
551 goto out;
552 error = AOP_TRUNCATED_PAGE;
553 lock_page(page);
554 if (page->mapping == mapping && !PageUptodate(page))
555 error = __gfs2_readpage(file, page);
556 else
557 unlock_page(page);
558 gfs2_glock_dq(&gh);
559 out:
560 gfs2_holder_uninit(&gh);
561 if (error && error != AOP_TRUNCATED_PAGE)
562 lock_page(page);
563 return error;
564 }
565
566 /**
567 * gfs2_internal_read - read an internal file
568 * @ip: The gfs2 inode
569 * @buf: The buffer to fill
570 * @pos: The file position
571 * @size: The amount to read
572 *
573 */
574
gfs2_internal_read(struct gfs2_inode * ip,char * buf,loff_t * pos,unsigned size)575 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
576 unsigned size)
577 {
578 struct address_space *mapping = ip->i_inode.i_mapping;
579 unsigned long index = *pos / PAGE_SIZE;
580 unsigned offset = *pos & (PAGE_SIZE - 1);
581 unsigned copied = 0;
582 unsigned amt;
583 struct page *page;
584 void *p;
585
586 do {
587 amt = size - copied;
588 if (offset + size > PAGE_SIZE)
589 amt = PAGE_SIZE - offset;
590 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
591 if (IS_ERR(page))
592 return PTR_ERR(page);
593 p = kmap_atomic(page);
594 memcpy(buf + copied, p + offset, amt);
595 kunmap_atomic(p);
596 put_page(page);
597 copied += amt;
598 index++;
599 offset = 0;
600 } while(copied < size);
601 (*pos) += size;
602 return size;
603 }
604
605 /**
606 * gfs2_readpages - Read a bunch of pages at once
607 * @file: The file to read from
608 * @mapping: Address space info
609 * @pages: List of pages to read
610 * @nr_pages: Number of pages to read
611 *
612 * Some notes:
613 * 1. This is only for readahead, so we can simply ignore any things
614 * which are slightly inconvenient (such as locking conflicts between
615 * the page lock and the glock) and return having done no I/O. Its
616 * obviously not something we'd want to do on too regular a basis.
617 * Any I/O we ignore at this time will be done via readpage later.
618 * 2. We don't handle stuffed files here we let readpage do the honours.
619 * 3. mpage_readpages() does most of the heavy lifting in the common case.
620 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
621 */
622
gfs2_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)623 static int gfs2_readpages(struct file *file, struct address_space *mapping,
624 struct list_head *pages, unsigned nr_pages)
625 {
626 struct inode *inode = mapping->host;
627 struct gfs2_inode *ip = GFS2_I(inode);
628 struct gfs2_sbd *sdp = GFS2_SB(inode);
629 struct gfs2_holder gh;
630 int ret;
631
632 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
633 ret = gfs2_glock_nq(&gh);
634 if (unlikely(ret))
635 goto out_uninit;
636 if (!gfs2_is_stuffed(ip))
637 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
638 gfs2_glock_dq(&gh);
639 out_uninit:
640 gfs2_holder_uninit(&gh);
641 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
642 ret = -EIO;
643 return ret;
644 }
645
646 /**
647 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
648 * @inode: the rindex inode
649 */
adjust_fs_space(struct inode * inode)650 void adjust_fs_space(struct inode *inode)
651 {
652 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
653 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
654 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
655 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
656 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
657 struct buffer_head *m_bh, *l_bh;
658 u64 fs_total, new_free;
659
660 /* Total up the file system space, according to the latest rindex. */
661 fs_total = gfs2_ri_total(sdp);
662 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
663 return;
664
665 spin_lock(&sdp->sd_statfs_spin);
666 gfs2_statfs_change_in(m_sc, m_bh->b_data +
667 sizeof(struct gfs2_dinode));
668 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
669 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
670 else
671 new_free = 0;
672 spin_unlock(&sdp->sd_statfs_spin);
673 fs_warn(sdp, "File system extended by %llu blocks.\n",
674 (unsigned long long)new_free);
675 gfs2_statfs_change(sdp, new_free, new_free, 0);
676
677 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
678 goto out;
679 update_statfs(sdp, m_bh, l_bh);
680 brelse(l_bh);
681 out:
682 brelse(m_bh);
683 }
684
685 /**
686 * gfs2_stuffed_write_end - Write end for stuffed files
687 * @inode: The inode
688 * @dibh: The buffer_head containing the on-disk inode
689 * @pos: The file position
690 * @copied: How much was actually copied by the VFS
691 * @page: The page
692 *
693 * This copies the data from the page into the inode block after
694 * the inode data structure itself.
695 *
696 * Returns: copied bytes or errno
697 */
gfs2_stuffed_write_end(struct inode * inode,struct buffer_head * dibh,loff_t pos,unsigned copied,struct page * page)698 int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
699 loff_t pos, unsigned copied,
700 struct page *page)
701 {
702 struct gfs2_inode *ip = GFS2_I(inode);
703 u64 to = pos + copied;
704 void *kaddr;
705 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
706
707 BUG_ON(pos + copied > gfs2_max_stuffed_size(ip));
708
709 kaddr = kmap_atomic(page);
710 memcpy(buf + pos, kaddr + pos, copied);
711 flush_dcache_page(page);
712 kunmap_atomic(kaddr);
713
714 WARN_ON(!PageUptodate(page));
715 unlock_page(page);
716 put_page(page);
717
718 if (copied) {
719 if (inode->i_size < to)
720 i_size_write(inode, to);
721 mark_inode_dirty(inode);
722 }
723 return copied;
724 }
725
726 /**
727 * jdata_set_page_dirty - Page dirtying function
728 * @page: The page to dirty
729 *
730 * Returns: 1 if it dirtyed the page, or 0 otherwise
731 */
732
jdata_set_page_dirty(struct page * page)733 static int jdata_set_page_dirty(struct page *page)
734 {
735 SetPageChecked(page);
736 return __set_page_dirty_buffers(page);
737 }
738
739 /**
740 * gfs2_bmap - Block map function
741 * @mapping: Address space info
742 * @lblock: The block to map
743 *
744 * Returns: The disk address for the block or 0 on hole or error
745 */
746
gfs2_bmap(struct address_space * mapping,sector_t lblock)747 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
748 {
749 struct gfs2_inode *ip = GFS2_I(mapping->host);
750 struct gfs2_holder i_gh;
751 sector_t dblock = 0;
752 int error;
753
754 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
755 if (error)
756 return 0;
757
758 if (!gfs2_is_stuffed(ip))
759 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
760
761 gfs2_glock_dq_uninit(&i_gh);
762
763 return dblock;
764 }
765
gfs2_discard(struct gfs2_sbd * sdp,struct buffer_head * bh)766 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
767 {
768 struct gfs2_bufdata *bd;
769
770 lock_buffer(bh);
771 gfs2_log_lock(sdp);
772 clear_buffer_dirty(bh);
773 bd = bh->b_private;
774 if (bd) {
775 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
776 list_del_init(&bd->bd_list);
777 else
778 gfs2_remove_from_journal(bh, REMOVE_JDATA);
779 }
780 bh->b_bdev = NULL;
781 clear_buffer_mapped(bh);
782 clear_buffer_req(bh);
783 clear_buffer_new(bh);
784 gfs2_log_unlock(sdp);
785 unlock_buffer(bh);
786 }
787
gfs2_invalidatepage(struct page * page,unsigned int offset,unsigned int length)788 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
789 unsigned int length)
790 {
791 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
792 unsigned int stop = offset + length;
793 int partial_page = (offset || length < PAGE_SIZE);
794 struct buffer_head *bh, *head;
795 unsigned long pos = 0;
796
797 BUG_ON(!PageLocked(page));
798 if (!partial_page)
799 ClearPageChecked(page);
800 if (!page_has_buffers(page))
801 goto out;
802
803 bh = head = page_buffers(page);
804 do {
805 if (pos + bh->b_size > stop)
806 return;
807
808 if (offset <= pos)
809 gfs2_discard(sdp, bh);
810 pos += bh->b_size;
811 bh = bh->b_this_page;
812 } while (bh != head);
813 out:
814 if (!partial_page)
815 try_to_release_page(page, 0);
816 }
817
818 /**
819 * gfs2_releasepage - free the metadata associated with a page
820 * @page: the page that's being released
821 * @gfp_mask: passed from Linux VFS, ignored by us
822 *
823 * Call try_to_free_buffers() if the buffers in this page can be
824 * released.
825 *
826 * Returns: 0
827 */
828
gfs2_releasepage(struct page * page,gfp_t gfp_mask)829 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
830 {
831 struct address_space *mapping = page->mapping;
832 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
833 struct buffer_head *bh, *head;
834 struct gfs2_bufdata *bd;
835
836 if (!page_has_buffers(page))
837 return 0;
838
839 /*
840 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
841 * clean pages might not have had the dirty bit cleared. Thus, it can
842 * send actual dirty pages to ->releasepage() via shrink_active_list().
843 *
844 * As a workaround, we skip pages that contain dirty buffers below.
845 * Once ->releasepage isn't called on dirty pages anymore, we can warn
846 * on dirty buffers like we used to here again.
847 */
848
849 gfs2_log_lock(sdp);
850 spin_lock(&sdp->sd_ail_lock);
851 head = bh = page_buffers(page);
852 do {
853 if (atomic_read(&bh->b_count))
854 goto cannot_release;
855 bd = bh->b_private;
856 if (bd && bd->bd_tr)
857 goto cannot_release;
858 if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
859 goto cannot_release;
860 bh = bh->b_this_page;
861 } while(bh != head);
862 spin_unlock(&sdp->sd_ail_lock);
863
864 head = bh = page_buffers(page);
865 do {
866 bd = bh->b_private;
867 if (bd) {
868 gfs2_assert_warn(sdp, bd->bd_bh == bh);
869 if (!list_empty(&bd->bd_list))
870 list_del_init(&bd->bd_list);
871 bd->bd_bh = NULL;
872 bh->b_private = NULL;
873 kmem_cache_free(gfs2_bufdata_cachep, bd);
874 }
875
876 bh = bh->b_this_page;
877 } while (bh != head);
878 gfs2_log_unlock(sdp);
879
880 return try_to_free_buffers(page);
881
882 cannot_release:
883 spin_unlock(&sdp->sd_ail_lock);
884 gfs2_log_unlock(sdp);
885 return 0;
886 }
887
888 static const struct address_space_operations gfs2_writeback_aops = {
889 .writepage = gfs2_writepage,
890 .writepages = gfs2_writepages,
891 .readpage = gfs2_readpage,
892 .readpages = gfs2_readpages,
893 .bmap = gfs2_bmap,
894 .invalidatepage = gfs2_invalidatepage,
895 .releasepage = gfs2_releasepage,
896 .direct_IO = noop_direct_IO,
897 .migratepage = buffer_migrate_page,
898 .is_partially_uptodate = block_is_partially_uptodate,
899 .error_remove_page = generic_error_remove_page,
900 };
901
902 static const struct address_space_operations gfs2_ordered_aops = {
903 .writepage = gfs2_writepage,
904 .writepages = gfs2_writepages,
905 .readpage = gfs2_readpage,
906 .readpages = gfs2_readpages,
907 .set_page_dirty = __set_page_dirty_buffers,
908 .bmap = gfs2_bmap,
909 .invalidatepage = gfs2_invalidatepage,
910 .releasepage = gfs2_releasepage,
911 .direct_IO = noop_direct_IO,
912 .migratepage = buffer_migrate_page,
913 .is_partially_uptodate = block_is_partially_uptodate,
914 .error_remove_page = generic_error_remove_page,
915 };
916
917 static const struct address_space_operations gfs2_jdata_aops = {
918 .writepage = gfs2_jdata_writepage,
919 .writepages = gfs2_jdata_writepages,
920 .readpage = gfs2_readpage,
921 .readpages = gfs2_readpages,
922 .set_page_dirty = jdata_set_page_dirty,
923 .bmap = gfs2_bmap,
924 .invalidatepage = gfs2_invalidatepage,
925 .releasepage = gfs2_releasepage,
926 .is_partially_uptodate = block_is_partially_uptodate,
927 .error_remove_page = generic_error_remove_page,
928 };
929
gfs2_set_aops(struct inode * inode)930 void gfs2_set_aops(struct inode *inode)
931 {
932 struct gfs2_inode *ip = GFS2_I(inode);
933
934 if (gfs2_is_writeback(ip))
935 inode->i_mapping->a_ops = &gfs2_writeback_aops;
936 else if (gfs2_is_ordered(ip))
937 inode->i_mapping->a_ops = &gfs2_ordered_aops;
938 else if (gfs2_is_jdata(ip))
939 inode->i_mapping->a_ops = &gfs2_jdata_aops;
940 else
941 BUG();
942 }
943
944