1 /*
2  *  linux/fs/exec.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * #!-checking implemented by tytso.
9  */
10 /*
11  * Demand-loading implemented 01.12.91 - no need to read anything but
12  * the header into memory. The inode of the executable is put into
13  * "current->executable", and page faults do the actual loading. Clean.
14  *
15  * Once more I can proudly say that linux stood up to being changed: it
16  * was less than 2 hours work to get demand-loading completely implemented.
17  *
18  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
19  * current->executable is only used by the procfs.  This allows a dispatch
20  * table to check for several different types  of binary formats.  We keep
21  * trying until we recognize the file or we run out of supported binary
22  * formats.
23  */
24 
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65 
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69 
70 #include <trace/events/task.h>
71 #include "internal.h"
72 
73 #include <trace/events/sched.h>
74 
75 int suid_dumpable = 0;
76 
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79 
__register_binfmt(struct linux_binfmt * fmt,int insert)80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 	BUG_ON(!fmt);
83 	if (WARN_ON(!fmt->load_binary))
84 		return;
85 	write_lock(&binfmt_lock);
86 	insert ? list_add(&fmt->lh, &formats) :
87 		 list_add_tail(&fmt->lh, &formats);
88 	write_unlock(&binfmt_lock);
89 }
90 
91 EXPORT_SYMBOL(__register_binfmt);
92 
unregister_binfmt(struct linux_binfmt * fmt)93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 	write_lock(&binfmt_lock);
96 	list_del(&fmt->lh);
97 	write_unlock(&binfmt_lock);
98 }
99 
100 EXPORT_SYMBOL(unregister_binfmt);
101 
put_binfmt(struct linux_binfmt * fmt)102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 	module_put(fmt->module);
105 }
106 
path_noexec(const struct path * path)107 bool path_noexec(const struct path *path)
108 {
109 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112 
113 #ifdef CONFIG_USELIB
114 /*
115  * Note that a shared library must be both readable and executable due to
116  * security reasons.
117  *
118  * Also note that we take the address to load from from the file itself.
119  */
SYSCALL_DEFINE1(uselib,const char __user *,library)120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122 	struct linux_binfmt *fmt;
123 	struct file *file;
124 	struct filename *tmp = getname(library);
125 	int error = PTR_ERR(tmp);
126 	static const struct open_flags uselib_flags = {
127 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 		.acc_mode = MAY_READ | MAY_EXEC,
129 		.intent = LOOKUP_OPEN,
130 		.lookup_flags = LOOKUP_FOLLOW,
131 	};
132 
133 	if (IS_ERR(tmp))
134 		goto out;
135 
136 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 	putname(tmp);
138 	error = PTR_ERR(file);
139 	if (IS_ERR(file))
140 		goto out;
141 
142 	error = -EINVAL;
143 	if (!S_ISREG(file_inode(file)->i_mode))
144 		goto exit;
145 
146 	error = -EACCES;
147 	if (path_noexec(&file->f_path))
148 		goto exit;
149 
150 	fsnotify_open(file);
151 
152 	error = -ENOEXEC;
153 
154 	read_lock(&binfmt_lock);
155 	list_for_each_entry(fmt, &formats, lh) {
156 		if (!fmt->load_shlib)
157 			continue;
158 		if (!try_module_get(fmt->module))
159 			continue;
160 		read_unlock(&binfmt_lock);
161 		error = fmt->load_shlib(file);
162 		read_lock(&binfmt_lock);
163 		put_binfmt(fmt);
164 		if (error != -ENOEXEC)
165 			break;
166 	}
167 	read_unlock(&binfmt_lock);
168 exit:
169 	fput(file);
170 out:
171   	return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174 
175 #ifdef CONFIG_MMU
176 /*
177  * The nascent bprm->mm is not visible until exec_mmap() but it can
178  * use a lot of memory, account these pages in current->mm temporary
179  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180  * change the counter back via acct_arg_size(0).
181  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184 	struct mm_struct *mm = current->mm;
185 	long diff = (long)(pages - bprm->vma_pages);
186 
187 	if (!mm || !diff)
188 		return;
189 
190 	bprm->vma_pages = pages;
191 	add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 		int write)
196 {
197 	struct page *page;
198 	int ret;
199 	unsigned int gup_flags = FOLL_FORCE;
200 
201 #ifdef CONFIG_STACK_GROWSUP
202 	if (write) {
203 		ret = expand_downwards(bprm->vma, pos);
204 		if (ret < 0)
205 			return NULL;
206 	}
207 #endif
208 
209 	if (write)
210 		gup_flags |= FOLL_WRITE;
211 
212 	/*
213 	 * We are doing an exec().  'current' is the process
214 	 * doing the exec and bprm->mm is the new process's mm.
215 	 */
216 	ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 			&page, NULL, NULL);
218 	if (ret <= 0)
219 		return NULL;
220 
221 	if (write) {
222 		unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 		unsigned long ptr_size, limit;
224 
225 		/*
226 		 * Since the stack will hold pointers to the strings, we
227 		 * must account for them as well.
228 		 *
229 		 * The size calculation is the entire vma while each arg page is
230 		 * built, so each time we get here it's calculating how far it
231 		 * is currently (rather than each call being just the newly
232 		 * added size from the arg page).  As a result, we need to
233 		 * always add the entire size of the pointers, so that on the
234 		 * last call to get_arg_page() we'll actually have the entire
235 		 * correct size.
236 		 */
237 		ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
238 		if (ptr_size > ULONG_MAX - size)
239 			goto fail;
240 		size += ptr_size;
241 
242 		acct_arg_size(bprm, size / PAGE_SIZE);
243 
244 		/*
245 		 * We've historically supported up to 32 pages (ARG_MAX)
246 		 * of argument strings even with small stacks
247 		 */
248 		if (size <= ARG_MAX)
249 			return page;
250 
251 		/*
252 		 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 		 * (whichever is smaller) for the argv+env strings.
254 		 * This ensures that:
255 		 *  - the remaining binfmt code will not run out of stack space,
256 		 *  - the program will have a reasonable amount of stack left
257 		 *    to work from.
258 		 */
259 		limit = _STK_LIM / 4 * 3;
260 		limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
261 		if (size > limit)
262 			goto fail;
263 	}
264 
265 	return page;
266 
267 fail:
268 	put_page(page);
269 	return NULL;
270 }
271 
put_arg_page(struct page * page)272 static void put_arg_page(struct page *page)
273 {
274 	put_page(page);
275 }
276 
free_arg_pages(struct linux_binprm * bprm)277 static void free_arg_pages(struct linux_binprm *bprm)
278 {
279 }
280 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
282 		struct page *page)
283 {
284 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
285 }
286 
__bprm_mm_init(struct linux_binprm * bprm)287 static int __bprm_mm_init(struct linux_binprm *bprm)
288 {
289 	int err;
290 	struct vm_area_struct *vma = NULL;
291 	struct mm_struct *mm = bprm->mm;
292 
293 	bprm->vma = vma = vm_area_alloc(mm);
294 	if (!vma)
295 		return -ENOMEM;
296 	vma_set_anonymous(vma);
297 
298 	if (down_write_killable(&mm->mmap_sem)) {
299 		err = -EINTR;
300 		goto err_free;
301 	}
302 
303 	/*
304 	 * Place the stack at the largest stack address the architecture
305 	 * supports. Later, we'll move this to an appropriate place. We don't
306 	 * use STACK_TOP because that can depend on attributes which aren't
307 	 * configured yet.
308 	 */
309 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
310 	vma->vm_end = STACK_TOP_MAX;
311 	vma->vm_start = vma->vm_end - PAGE_SIZE;
312 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
313 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
314 
315 	err = insert_vm_struct(mm, vma);
316 	if (err)
317 		goto err;
318 
319 	mm->stack_vm = mm->total_vm = 1;
320 	arch_bprm_mm_init(mm, vma);
321 	up_write(&mm->mmap_sem);
322 	bprm->p = vma->vm_end - sizeof(void *);
323 	return 0;
324 err:
325 	up_write(&mm->mmap_sem);
326 err_free:
327 	bprm->vma = NULL;
328 	vm_area_free(vma);
329 	return err;
330 }
331 
valid_arg_len(struct linux_binprm * bprm,long len)332 static bool valid_arg_len(struct linux_binprm *bprm, long len)
333 {
334 	return len <= MAX_ARG_STRLEN;
335 }
336 
337 #else
338 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)339 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
340 {
341 }
342 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)343 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
344 		int write)
345 {
346 	struct page *page;
347 
348 	page = bprm->page[pos / PAGE_SIZE];
349 	if (!page && write) {
350 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
351 		if (!page)
352 			return NULL;
353 		bprm->page[pos / PAGE_SIZE] = page;
354 	}
355 
356 	return page;
357 }
358 
put_arg_page(struct page * page)359 static void put_arg_page(struct page *page)
360 {
361 }
362 
free_arg_page(struct linux_binprm * bprm,int i)363 static void free_arg_page(struct linux_binprm *bprm, int i)
364 {
365 	if (bprm->page[i]) {
366 		__free_page(bprm->page[i]);
367 		bprm->page[i] = NULL;
368 	}
369 }
370 
free_arg_pages(struct linux_binprm * bprm)371 static void free_arg_pages(struct linux_binprm *bprm)
372 {
373 	int i;
374 
375 	for (i = 0; i < MAX_ARG_PAGES; i++)
376 		free_arg_page(bprm, i);
377 }
378 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)379 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
380 		struct page *page)
381 {
382 }
383 
__bprm_mm_init(struct linux_binprm * bprm)384 static int __bprm_mm_init(struct linux_binprm *bprm)
385 {
386 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
387 	return 0;
388 }
389 
valid_arg_len(struct linux_binprm * bprm,long len)390 static bool valid_arg_len(struct linux_binprm *bprm, long len)
391 {
392 	return len <= bprm->p;
393 }
394 
395 #endif /* CONFIG_MMU */
396 
397 /*
398  * Create a new mm_struct and populate it with a temporary stack
399  * vm_area_struct.  We don't have enough context at this point to set the stack
400  * flags, permissions, and offset, so we use temporary values.  We'll update
401  * them later in setup_arg_pages().
402  */
bprm_mm_init(struct linux_binprm * bprm)403 static int bprm_mm_init(struct linux_binprm *bprm)
404 {
405 	int err;
406 	struct mm_struct *mm = NULL;
407 
408 	bprm->mm = mm = mm_alloc();
409 	err = -ENOMEM;
410 	if (!mm)
411 		goto err;
412 
413 	/* Save current stack limit for all calculations made during exec. */
414 	task_lock(current->group_leader);
415 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
416 	task_unlock(current->group_leader);
417 
418 	err = __bprm_mm_init(bprm);
419 	if (err)
420 		goto err;
421 
422 	return 0;
423 
424 err:
425 	if (mm) {
426 		bprm->mm = NULL;
427 		mmdrop(mm);
428 	}
429 
430 	return err;
431 }
432 
433 struct user_arg_ptr {
434 #ifdef CONFIG_COMPAT
435 	bool is_compat;
436 #endif
437 	union {
438 		const char __user *const __user *native;
439 #ifdef CONFIG_COMPAT
440 		const compat_uptr_t __user *compat;
441 #endif
442 	} ptr;
443 };
444 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)445 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
446 {
447 	const char __user *native;
448 
449 #ifdef CONFIG_COMPAT
450 	if (unlikely(argv.is_compat)) {
451 		compat_uptr_t compat;
452 
453 		if (get_user(compat, argv.ptr.compat + nr))
454 			return ERR_PTR(-EFAULT);
455 
456 		return compat_ptr(compat);
457 	}
458 #endif
459 
460 	if (get_user(native, argv.ptr.native + nr))
461 		return ERR_PTR(-EFAULT);
462 
463 	return native;
464 }
465 
466 /*
467  * count() counts the number of strings in array ARGV.
468  */
count(struct user_arg_ptr argv,int max)469 static int count(struct user_arg_ptr argv, int max)
470 {
471 	int i = 0;
472 
473 	if (argv.ptr.native != NULL) {
474 		for (;;) {
475 			const char __user *p = get_user_arg_ptr(argv, i);
476 
477 			if (!p)
478 				break;
479 
480 			if (IS_ERR(p))
481 				return -EFAULT;
482 
483 			if (i >= max)
484 				return -E2BIG;
485 			++i;
486 
487 			if (fatal_signal_pending(current))
488 				return -ERESTARTNOHAND;
489 			cond_resched();
490 		}
491 	}
492 	return i;
493 }
494 
495 /*
496  * 'copy_strings()' copies argument/environment strings from the old
497  * processes's memory to the new process's stack.  The call to get_user_pages()
498  * ensures the destination page is created and not swapped out.
499  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)500 static int copy_strings(int argc, struct user_arg_ptr argv,
501 			struct linux_binprm *bprm)
502 {
503 	struct page *kmapped_page = NULL;
504 	char *kaddr = NULL;
505 	unsigned long kpos = 0;
506 	int ret;
507 
508 	while (argc-- > 0) {
509 		const char __user *str;
510 		int len;
511 		unsigned long pos;
512 
513 		ret = -EFAULT;
514 		str = get_user_arg_ptr(argv, argc);
515 		if (IS_ERR(str))
516 			goto out;
517 
518 		len = strnlen_user(str, MAX_ARG_STRLEN);
519 		if (!len)
520 			goto out;
521 
522 		ret = -E2BIG;
523 		if (!valid_arg_len(bprm, len))
524 			goto out;
525 
526 		/* We're going to work our way backwords. */
527 		pos = bprm->p;
528 		str += len;
529 		bprm->p -= len;
530 
531 		while (len > 0) {
532 			int offset, bytes_to_copy;
533 
534 			if (fatal_signal_pending(current)) {
535 				ret = -ERESTARTNOHAND;
536 				goto out;
537 			}
538 			cond_resched();
539 
540 			offset = pos % PAGE_SIZE;
541 			if (offset == 0)
542 				offset = PAGE_SIZE;
543 
544 			bytes_to_copy = offset;
545 			if (bytes_to_copy > len)
546 				bytes_to_copy = len;
547 
548 			offset -= bytes_to_copy;
549 			pos -= bytes_to_copy;
550 			str -= bytes_to_copy;
551 			len -= bytes_to_copy;
552 
553 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
554 				struct page *page;
555 
556 				page = get_arg_page(bprm, pos, 1);
557 				if (!page) {
558 					ret = -E2BIG;
559 					goto out;
560 				}
561 
562 				if (kmapped_page) {
563 					flush_kernel_dcache_page(kmapped_page);
564 					kunmap(kmapped_page);
565 					put_arg_page(kmapped_page);
566 				}
567 				kmapped_page = page;
568 				kaddr = kmap(kmapped_page);
569 				kpos = pos & PAGE_MASK;
570 				flush_arg_page(bprm, kpos, kmapped_page);
571 			}
572 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
573 				ret = -EFAULT;
574 				goto out;
575 			}
576 		}
577 	}
578 	ret = 0;
579 out:
580 	if (kmapped_page) {
581 		flush_kernel_dcache_page(kmapped_page);
582 		kunmap(kmapped_page);
583 		put_arg_page(kmapped_page);
584 	}
585 	return ret;
586 }
587 
588 /*
589  * Like copy_strings, but get argv and its values from kernel memory.
590  */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)591 int copy_strings_kernel(int argc, const char *const *__argv,
592 			struct linux_binprm *bprm)
593 {
594 	int r;
595 	mm_segment_t oldfs = get_fs();
596 	struct user_arg_ptr argv = {
597 		.ptr.native = (const char __user *const  __user *)__argv,
598 	};
599 
600 	set_fs(KERNEL_DS);
601 	r = copy_strings(argc, argv, bprm);
602 	set_fs(oldfs);
603 
604 	return r;
605 }
606 EXPORT_SYMBOL(copy_strings_kernel);
607 
608 #ifdef CONFIG_MMU
609 
610 /*
611  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
612  * the binfmt code determines where the new stack should reside, we shift it to
613  * its final location.  The process proceeds as follows:
614  *
615  * 1) Use shift to calculate the new vma endpoints.
616  * 2) Extend vma to cover both the old and new ranges.  This ensures the
617  *    arguments passed to subsequent functions are consistent.
618  * 3) Move vma's page tables to the new range.
619  * 4) Free up any cleared pgd range.
620  * 5) Shrink the vma to cover only the new range.
621  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)622 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
623 {
624 	struct mm_struct *mm = vma->vm_mm;
625 	unsigned long old_start = vma->vm_start;
626 	unsigned long old_end = vma->vm_end;
627 	unsigned long length = old_end - old_start;
628 	unsigned long new_start = old_start - shift;
629 	unsigned long new_end = old_end - shift;
630 	struct mmu_gather tlb;
631 
632 	BUG_ON(new_start > new_end);
633 
634 	/*
635 	 * ensure there are no vmas between where we want to go
636 	 * and where we are
637 	 */
638 	if (vma != find_vma(mm, new_start))
639 		return -EFAULT;
640 
641 	/*
642 	 * cover the whole range: [new_start, old_end)
643 	 */
644 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
645 		return -ENOMEM;
646 
647 	/*
648 	 * move the page tables downwards, on failure we rely on
649 	 * process cleanup to remove whatever mess we made.
650 	 */
651 	if (length != move_page_tables(vma, old_start,
652 				       vma, new_start, length, false))
653 		return -ENOMEM;
654 
655 	lru_add_drain();
656 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
657 	if (new_end > old_start) {
658 		/*
659 		 * when the old and new regions overlap clear from new_end.
660 		 */
661 		free_pgd_range(&tlb, new_end, old_end, new_end,
662 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
663 	} else {
664 		/*
665 		 * otherwise, clean from old_start; this is done to not touch
666 		 * the address space in [new_end, old_start) some architectures
667 		 * have constraints on va-space that make this illegal (IA64) -
668 		 * for the others its just a little faster.
669 		 */
670 		free_pgd_range(&tlb, old_start, old_end, new_end,
671 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
672 	}
673 	tlb_finish_mmu(&tlb, old_start, old_end);
674 
675 	/*
676 	 * Shrink the vma to just the new range.  Always succeeds.
677 	 */
678 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
679 
680 	return 0;
681 }
682 
683 /*
684  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
685  * the stack is optionally relocated, and some extra space is added.
686  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)687 int setup_arg_pages(struct linux_binprm *bprm,
688 		    unsigned long stack_top,
689 		    int executable_stack)
690 {
691 	unsigned long ret;
692 	unsigned long stack_shift;
693 	struct mm_struct *mm = current->mm;
694 	struct vm_area_struct *vma = bprm->vma;
695 	struct vm_area_struct *prev = NULL;
696 	unsigned long vm_flags;
697 	unsigned long stack_base;
698 	unsigned long stack_size;
699 	unsigned long stack_expand;
700 	unsigned long rlim_stack;
701 
702 #ifdef CONFIG_STACK_GROWSUP
703 	/* Limit stack size */
704 	stack_base = bprm->rlim_stack.rlim_max;
705 	if (stack_base > STACK_SIZE_MAX)
706 		stack_base = STACK_SIZE_MAX;
707 
708 	/* Add space for stack randomization. */
709 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
710 
711 	/* Make sure we didn't let the argument array grow too large. */
712 	if (vma->vm_end - vma->vm_start > stack_base)
713 		return -ENOMEM;
714 
715 	stack_base = PAGE_ALIGN(stack_top - stack_base);
716 
717 	stack_shift = vma->vm_start - stack_base;
718 	mm->arg_start = bprm->p - stack_shift;
719 	bprm->p = vma->vm_end - stack_shift;
720 #else
721 	stack_top = arch_align_stack(stack_top);
722 	stack_top = PAGE_ALIGN(stack_top);
723 
724 	if (unlikely(stack_top < mmap_min_addr) ||
725 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
726 		return -ENOMEM;
727 
728 	stack_shift = vma->vm_end - stack_top;
729 
730 	bprm->p -= stack_shift;
731 	mm->arg_start = bprm->p;
732 #endif
733 
734 	if (bprm->loader)
735 		bprm->loader -= stack_shift;
736 	bprm->exec -= stack_shift;
737 
738 	if (down_write_killable(&mm->mmap_sem))
739 		return -EINTR;
740 
741 	vm_flags = VM_STACK_FLAGS;
742 
743 	/*
744 	 * Adjust stack execute permissions; explicitly enable for
745 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
746 	 * (arch default) otherwise.
747 	 */
748 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
749 		vm_flags |= VM_EXEC;
750 	else if (executable_stack == EXSTACK_DISABLE_X)
751 		vm_flags &= ~VM_EXEC;
752 	vm_flags |= mm->def_flags;
753 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
754 
755 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
756 			vm_flags);
757 	if (ret)
758 		goto out_unlock;
759 	BUG_ON(prev != vma);
760 
761 	/* Move stack pages down in memory. */
762 	if (stack_shift) {
763 		ret = shift_arg_pages(vma, stack_shift);
764 		if (ret)
765 			goto out_unlock;
766 	}
767 
768 	/* mprotect_fixup is overkill to remove the temporary stack flags */
769 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
770 
771 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
772 	stack_size = vma->vm_end - vma->vm_start;
773 	/*
774 	 * Align this down to a page boundary as expand_stack
775 	 * will align it up.
776 	 */
777 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
778 #ifdef CONFIG_STACK_GROWSUP
779 	if (stack_size + stack_expand > rlim_stack)
780 		stack_base = vma->vm_start + rlim_stack;
781 	else
782 		stack_base = vma->vm_end + stack_expand;
783 #else
784 	if (stack_size + stack_expand > rlim_stack)
785 		stack_base = vma->vm_end - rlim_stack;
786 	else
787 		stack_base = vma->vm_start - stack_expand;
788 #endif
789 	current->mm->start_stack = bprm->p;
790 	ret = expand_stack(vma, stack_base);
791 	if (ret)
792 		ret = -EFAULT;
793 
794 out_unlock:
795 	up_write(&mm->mmap_sem);
796 	return ret;
797 }
798 EXPORT_SYMBOL(setup_arg_pages);
799 
800 #else
801 
802 /*
803  * Transfer the program arguments and environment from the holding pages
804  * onto the stack. The provided stack pointer is adjusted accordingly.
805  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)806 int transfer_args_to_stack(struct linux_binprm *bprm,
807 			   unsigned long *sp_location)
808 {
809 	unsigned long index, stop, sp;
810 	int ret = 0;
811 
812 	stop = bprm->p >> PAGE_SHIFT;
813 	sp = *sp_location;
814 
815 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
816 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
817 		char *src = kmap(bprm->page[index]) + offset;
818 		sp -= PAGE_SIZE - offset;
819 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
820 			ret = -EFAULT;
821 		kunmap(bprm->page[index]);
822 		if (ret)
823 			goto out;
824 	}
825 
826 	*sp_location = sp;
827 
828 out:
829 	return ret;
830 }
831 EXPORT_SYMBOL(transfer_args_to_stack);
832 
833 #endif /* CONFIG_MMU */
834 
do_open_execat(int fd,struct filename * name,int flags)835 static struct file *do_open_execat(int fd, struct filename *name, int flags)
836 {
837 	struct file *file;
838 	int err;
839 	struct open_flags open_exec_flags = {
840 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
841 		.acc_mode = MAY_EXEC,
842 		.intent = LOOKUP_OPEN,
843 		.lookup_flags = LOOKUP_FOLLOW,
844 	};
845 
846 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
847 		return ERR_PTR(-EINVAL);
848 	if (flags & AT_SYMLINK_NOFOLLOW)
849 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
850 	if (flags & AT_EMPTY_PATH)
851 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
852 
853 	file = do_filp_open(fd, name, &open_exec_flags);
854 	if (IS_ERR(file))
855 		goto out;
856 
857 	err = -EACCES;
858 	if (!S_ISREG(file_inode(file)->i_mode))
859 		goto exit;
860 
861 	if (path_noexec(&file->f_path))
862 		goto exit;
863 
864 	err = deny_write_access(file);
865 	if (err)
866 		goto exit;
867 
868 	if (name->name[0] != '\0')
869 		fsnotify_open(file);
870 
871 out:
872 	return file;
873 
874 exit:
875 	fput(file);
876 	return ERR_PTR(err);
877 }
878 
open_exec(const char * name)879 struct file *open_exec(const char *name)
880 {
881 	struct filename *filename = getname_kernel(name);
882 	struct file *f = ERR_CAST(filename);
883 
884 	if (!IS_ERR(filename)) {
885 		f = do_open_execat(AT_FDCWD, filename, 0);
886 		putname(filename);
887 	}
888 	return f;
889 }
890 EXPORT_SYMBOL(open_exec);
891 
kernel_read_file(struct file * file,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)892 int kernel_read_file(struct file *file, void **buf, loff_t *size,
893 		     loff_t max_size, enum kernel_read_file_id id)
894 {
895 	loff_t i_size, pos;
896 	ssize_t bytes = 0;
897 	int ret;
898 
899 	if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
900 		return -EINVAL;
901 
902 	ret = deny_write_access(file);
903 	if (ret)
904 		return ret;
905 
906 	ret = security_kernel_read_file(file, id);
907 	if (ret)
908 		goto out;
909 
910 	i_size = i_size_read(file_inode(file));
911 	if (max_size > 0 && i_size > max_size) {
912 		ret = -EFBIG;
913 		goto out;
914 	}
915 	if (i_size <= 0) {
916 		ret = -EINVAL;
917 		goto out;
918 	}
919 
920 	if (id != READING_FIRMWARE_PREALLOC_BUFFER)
921 		*buf = vmalloc(i_size);
922 	if (!*buf) {
923 		ret = -ENOMEM;
924 		goto out;
925 	}
926 
927 	pos = 0;
928 	while (pos < i_size) {
929 		bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
930 		if (bytes < 0) {
931 			ret = bytes;
932 			goto out;
933 		}
934 
935 		if (bytes == 0)
936 			break;
937 	}
938 
939 	if (pos != i_size) {
940 		ret = -EIO;
941 		goto out_free;
942 	}
943 
944 	ret = security_kernel_post_read_file(file, *buf, i_size, id);
945 	if (!ret)
946 		*size = pos;
947 
948 out_free:
949 	if (ret < 0) {
950 		if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
951 			vfree(*buf);
952 			*buf = NULL;
953 		}
954 	}
955 
956 out:
957 	allow_write_access(file);
958 	return ret;
959 }
960 EXPORT_SYMBOL_GPL(kernel_read_file);
961 
kernel_read_file_from_path(const char * path,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)962 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
963 			       loff_t max_size, enum kernel_read_file_id id)
964 {
965 	struct file *file;
966 	int ret;
967 
968 	if (!path || !*path)
969 		return -EINVAL;
970 
971 	file = filp_open(path, O_RDONLY, 0);
972 	if (IS_ERR(file))
973 		return PTR_ERR(file);
974 
975 	ret = kernel_read_file(file, buf, size, max_size, id);
976 	fput(file);
977 	return ret;
978 }
979 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
980 
kernel_read_file_from_fd(int fd,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)981 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
982 			     enum kernel_read_file_id id)
983 {
984 	struct fd f = fdget(fd);
985 	int ret = -EBADF;
986 
987 	if (!f.file)
988 		goto out;
989 
990 	ret = kernel_read_file(f.file, buf, size, max_size, id);
991 out:
992 	fdput(f);
993 	return ret;
994 }
995 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
996 
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)997 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
998 {
999 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1000 	if (res > 0)
1001 		flush_icache_range(addr, addr + len);
1002 	return res;
1003 }
1004 EXPORT_SYMBOL(read_code);
1005 
exec_mmap(struct mm_struct * mm)1006 static int exec_mmap(struct mm_struct *mm)
1007 {
1008 	struct task_struct *tsk;
1009 	struct mm_struct *old_mm, *active_mm;
1010 
1011 	/* Notify parent that we're no longer interested in the old VM */
1012 	tsk = current;
1013 	old_mm = current->mm;
1014 	mm_release(tsk, old_mm);
1015 
1016 	if (old_mm) {
1017 		sync_mm_rss(old_mm);
1018 		/*
1019 		 * Make sure that if there is a core dump in progress
1020 		 * for the old mm, we get out and die instead of going
1021 		 * through with the exec.  We must hold mmap_sem around
1022 		 * checking core_state and changing tsk->mm.
1023 		 */
1024 		down_read(&old_mm->mmap_sem);
1025 		if (unlikely(old_mm->core_state)) {
1026 			up_read(&old_mm->mmap_sem);
1027 			return -EINTR;
1028 		}
1029 	}
1030 	task_lock(tsk);
1031 	active_mm = tsk->active_mm;
1032 	tsk->mm = mm;
1033 	tsk->active_mm = mm;
1034 	activate_mm(active_mm, mm);
1035 	tsk->mm->vmacache_seqnum = 0;
1036 	vmacache_flush(tsk);
1037 	task_unlock(tsk);
1038 	if (old_mm) {
1039 		up_read(&old_mm->mmap_sem);
1040 		BUG_ON(active_mm != old_mm);
1041 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1042 		mm_update_next_owner(old_mm);
1043 		mmput(old_mm);
1044 		return 0;
1045 	}
1046 	mmdrop(active_mm);
1047 	return 0;
1048 }
1049 
1050 /*
1051  * This function makes sure the current process has its own signal table,
1052  * so that flush_signal_handlers can later reset the handlers without
1053  * disturbing other processes.  (Other processes might share the signal
1054  * table via the CLONE_SIGHAND option to clone().)
1055  */
de_thread(struct task_struct * tsk)1056 static int de_thread(struct task_struct *tsk)
1057 {
1058 	struct signal_struct *sig = tsk->signal;
1059 	struct sighand_struct *oldsighand = tsk->sighand;
1060 	spinlock_t *lock = &oldsighand->siglock;
1061 
1062 	if (thread_group_empty(tsk))
1063 		goto no_thread_group;
1064 
1065 	/*
1066 	 * Kill all other threads in the thread group.
1067 	 */
1068 	spin_lock_irq(lock);
1069 	if (signal_group_exit(sig)) {
1070 		/*
1071 		 * Another group action in progress, just
1072 		 * return so that the signal is processed.
1073 		 */
1074 		spin_unlock_irq(lock);
1075 		return -EAGAIN;
1076 	}
1077 
1078 	sig->group_exit_task = tsk;
1079 	sig->notify_count = zap_other_threads(tsk);
1080 	if (!thread_group_leader(tsk))
1081 		sig->notify_count--;
1082 
1083 	while (sig->notify_count) {
1084 		__set_current_state(TASK_KILLABLE);
1085 		spin_unlock_irq(lock);
1086 		schedule();
1087 		if (unlikely(__fatal_signal_pending(tsk)))
1088 			goto killed;
1089 		spin_lock_irq(lock);
1090 	}
1091 	spin_unlock_irq(lock);
1092 
1093 	/*
1094 	 * At this point all other threads have exited, all we have to
1095 	 * do is to wait for the thread group leader to become inactive,
1096 	 * and to assume its PID:
1097 	 */
1098 	if (!thread_group_leader(tsk)) {
1099 		struct task_struct *leader = tsk->group_leader;
1100 
1101 		for (;;) {
1102 			cgroup_threadgroup_change_begin(tsk);
1103 			write_lock_irq(&tasklist_lock);
1104 			/*
1105 			 * Do this under tasklist_lock to ensure that
1106 			 * exit_notify() can't miss ->group_exit_task
1107 			 */
1108 			sig->notify_count = -1;
1109 			if (likely(leader->exit_state))
1110 				break;
1111 			__set_current_state(TASK_KILLABLE);
1112 			write_unlock_irq(&tasklist_lock);
1113 			cgroup_threadgroup_change_end(tsk);
1114 			schedule();
1115 			if (unlikely(__fatal_signal_pending(tsk)))
1116 				goto killed;
1117 		}
1118 
1119 		/*
1120 		 * The only record we have of the real-time age of a
1121 		 * process, regardless of execs it's done, is start_time.
1122 		 * All the past CPU time is accumulated in signal_struct
1123 		 * from sister threads now dead.  But in this non-leader
1124 		 * exec, nothing survives from the original leader thread,
1125 		 * whose birth marks the true age of this process now.
1126 		 * When we take on its identity by switching to its PID, we
1127 		 * also take its birthdate (always earlier than our own).
1128 		 */
1129 		tsk->start_time = leader->start_time;
1130 		tsk->real_start_time = leader->real_start_time;
1131 
1132 		BUG_ON(!same_thread_group(leader, tsk));
1133 		BUG_ON(has_group_leader_pid(tsk));
1134 		/*
1135 		 * An exec() starts a new thread group with the
1136 		 * TGID of the previous thread group. Rehash the
1137 		 * two threads with a switched PID, and release
1138 		 * the former thread group leader:
1139 		 */
1140 
1141 		/* Become a process group leader with the old leader's pid.
1142 		 * The old leader becomes a thread of the this thread group.
1143 		 * Note: The old leader also uses this pid until release_task
1144 		 *       is called.  Odd but simple and correct.
1145 		 */
1146 		tsk->pid = leader->pid;
1147 		change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1148 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1149 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1150 		transfer_pid(leader, tsk, PIDTYPE_SID);
1151 
1152 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1153 		list_replace_init(&leader->sibling, &tsk->sibling);
1154 
1155 		tsk->group_leader = tsk;
1156 		leader->group_leader = tsk;
1157 
1158 		tsk->exit_signal = SIGCHLD;
1159 		leader->exit_signal = -1;
1160 
1161 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1162 		leader->exit_state = EXIT_DEAD;
1163 
1164 		/*
1165 		 * We are going to release_task()->ptrace_unlink() silently,
1166 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1167 		 * the tracer wont't block again waiting for this thread.
1168 		 */
1169 		if (unlikely(leader->ptrace))
1170 			__wake_up_parent(leader, leader->parent);
1171 		write_unlock_irq(&tasklist_lock);
1172 		cgroup_threadgroup_change_end(tsk);
1173 
1174 		release_task(leader);
1175 	}
1176 
1177 	sig->group_exit_task = NULL;
1178 	sig->notify_count = 0;
1179 
1180 no_thread_group:
1181 	/* we have changed execution domain */
1182 	tsk->exit_signal = SIGCHLD;
1183 
1184 #ifdef CONFIG_POSIX_TIMERS
1185 	exit_itimers(sig);
1186 	flush_itimer_signals();
1187 #endif
1188 
1189 	if (atomic_read(&oldsighand->count) != 1) {
1190 		struct sighand_struct *newsighand;
1191 		/*
1192 		 * This ->sighand is shared with the CLONE_SIGHAND
1193 		 * but not CLONE_THREAD task, switch to the new one.
1194 		 */
1195 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1196 		if (!newsighand)
1197 			return -ENOMEM;
1198 
1199 		atomic_set(&newsighand->count, 1);
1200 		memcpy(newsighand->action, oldsighand->action,
1201 		       sizeof(newsighand->action));
1202 
1203 		write_lock_irq(&tasklist_lock);
1204 		spin_lock(&oldsighand->siglock);
1205 		rcu_assign_pointer(tsk->sighand, newsighand);
1206 		spin_unlock(&oldsighand->siglock);
1207 		write_unlock_irq(&tasklist_lock);
1208 
1209 		__cleanup_sighand(oldsighand);
1210 	}
1211 
1212 	BUG_ON(!thread_group_leader(tsk));
1213 	return 0;
1214 
1215 killed:
1216 	/* protects against exit_notify() and __exit_signal() */
1217 	read_lock(&tasklist_lock);
1218 	sig->group_exit_task = NULL;
1219 	sig->notify_count = 0;
1220 	read_unlock(&tasklist_lock);
1221 	return -EAGAIN;
1222 }
1223 
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1224 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1225 {
1226 	task_lock(tsk);
1227 	strncpy(buf, tsk->comm, buf_size);
1228 	task_unlock(tsk);
1229 	return buf;
1230 }
1231 EXPORT_SYMBOL_GPL(__get_task_comm);
1232 
1233 /*
1234  * These functions flushes out all traces of the currently running executable
1235  * so that a new one can be started
1236  */
1237 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1238 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1239 {
1240 	task_lock(tsk);
1241 	trace_task_rename(tsk, buf);
1242 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1243 	task_unlock(tsk);
1244 	perf_event_comm(tsk, exec);
1245 }
1246 
1247 /*
1248  * Calling this is the point of no return. None of the failures will be
1249  * seen by userspace since either the process is already taking a fatal
1250  * signal (via de_thread() or coredump), or will have SEGV raised
1251  * (after exec_mmap()) by search_binary_handlers (see below).
1252  */
flush_old_exec(struct linux_binprm * bprm)1253 int flush_old_exec(struct linux_binprm * bprm)
1254 {
1255 	int retval;
1256 
1257 	/*
1258 	 * Make sure we have a private signal table and that
1259 	 * we are unassociated from the previous thread group.
1260 	 */
1261 	retval = de_thread(current);
1262 	if (retval)
1263 		goto out;
1264 
1265 	/*
1266 	 * Must be called _before_ exec_mmap() as bprm->mm is
1267 	 * not visibile until then. This also enables the update
1268 	 * to be lockless.
1269 	 */
1270 	set_mm_exe_file(bprm->mm, bprm->file);
1271 
1272 	/*
1273 	 * Release all of the old mmap stuff
1274 	 */
1275 	acct_arg_size(bprm, 0);
1276 	retval = exec_mmap(bprm->mm);
1277 	if (retval)
1278 		goto out;
1279 
1280 	/*
1281 	 * After clearing bprm->mm (to mark that current is using the
1282 	 * prepared mm now), we have nothing left of the original
1283 	 * process. If anything from here on returns an error, the check
1284 	 * in search_binary_handler() will SEGV current.
1285 	 */
1286 	bprm->mm = NULL;
1287 
1288 	set_fs(USER_DS);
1289 	current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1290 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1291 	flush_thread();
1292 	current->personality &= ~bprm->per_clear;
1293 
1294 	/*
1295 	 * We have to apply CLOEXEC before we change whether the process is
1296 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1297 	 * trying to access the should-be-closed file descriptors of a process
1298 	 * undergoing exec(2).
1299 	 */
1300 	do_close_on_exec(current->files);
1301 	return 0;
1302 
1303 out:
1304 	return retval;
1305 }
1306 EXPORT_SYMBOL(flush_old_exec);
1307 
would_dump(struct linux_binprm * bprm,struct file * file)1308 void would_dump(struct linux_binprm *bprm, struct file *file)
1309 {
1310 	struct inode *inode = file_inode(file);
1311 	if (inode_permission(inode, MAY_READ) < 0) {
1312 		struct user_namespace *old, *user_ns;
1313 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1314 
1315 		/* Ensure mm->user_ns contains the executable */
1316 		user_ns = old = bprm->mm->user_ns;
1317 		while ((user_ns != &init_user_ns) &&
1318 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1319 			user_ns = user_ns->parent;
1320 
1321 		if (old != user_ns) {
1322 			bprm->mm->user_ns = get_user_ns(user_ns);
1323 			put_user_ns(old);
1324 		}
1325 	}
1326 }
1327 EXPORT_SYMBOL(would_dump);
1328 
setup_new_exec(struct linux_binprm * bprm)1329 void setup_new_exec(struct linux_binprm * bprm)
1330 {
1331 	/*
1332 	 * Once here, prepare_binrpm() will not be called any more, so
1333 	 * the final state of setuid/setgid/fscaps can be merged into the
1334 	 * secureexec flag.
1335 	 */
1336 	bprm->secureexec |= bprm->cap_elevated;
1337 
1338 	if (bprm->secureexec) {
1339 		/* Make sure parent cannot signal privileged process. */
1340 		current->pdeath_signal = 0;
1341 
1342 		/*
1343 		 * For secureexec, reset the stack limit to sane default to
1344 		 * avoid bad behavior from the prior rlimits. This has to
1345 		 * happen before arch_pick_mmap_layout(), which examines
1346 		 * RLIMIT_STACK, but after the point of no return to avoid
1347 		 * needing to clean up the change on failure.
1348 		 */
1349 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1350 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1351 	}
1352 
1353 	arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1354 
1355 	current->sas_ss_sp = current->sas_ss_size = 0;
1356 
1357 	/*
1358 	 * Figure out dumpability. Note that this checking only of current
1359 	 * is wrong, but userspace depends on it. This should be testing
1360 	 * bprm->secureexec instead.
1361 	 */
1362 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1363 	    !(uid_eq(current_euid(), current_uid()) &&
1364 	      gid_eq(current_egid(), current_gid())))
1365 		set_dumpable(current->mm, suid_dumpable);
1366 	else
1367 		set_dumpable(current->mm, SUID_DUMP_USER);
1368 
1369 	arch_setup_new_exec();
1370 	perf_event_exec();
1371 	__set_task_comm(current, kbasename(bprm->filename), true);
1372 
1373 	/* Set the new mm task size. We have to do that late because it may
1374 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1375 	 * some architectures like powerpc
1376 	 */
1377 	current->mm->task_size = TASK_SIZE;
1378 
1379 	/* An exec changes our domain. We are no longer part of the thread
1380 	   group */
1381 	current->self_exec_id++;
1382 	flush_signal_handlers(current, 0);
1383 }
1384 EXPORT_SYMBOL(setup_new_exec);
1385 
1386 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1387 void finalize_exec(struct linux_binprm *bprm)
1388 {
1389 	/* Store any stack rlimit changes before starting thread. */
1390 	task_lock(current->group_leader);
1391 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1392 	task_unlock(current->group_leader);
1393 }
1394 EXPORT_SYMBOL(finalize_exec);
1395 
1396 /*
1397  * Prepare credentials and lock ->cred_guard_mutex.
1398  * install_exec_creds() commits the new creds and drops the lock.
1399  * Or, if exec fails before, free_bprm() should release ->cred and
1400  * and unlock.
1401  */
prepare_bprm_creds(struct linux_binprm * bprm)1402 int prepare_bprm_creds(struct linux_binprm *bprm)
1403 {
1404 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1405 		return -ERESTARTNOINTR;
1406 
1407 	bprm->cred = prepare_exec_creds();
1408 	if (likely(bprm->cred))
1409 		return 0;
1410 
1411 	mutex_unlock(&current->signal->cred_guard_mutex);
1412 	return -ENOMEM;
1413 }
1414 
free_bprm(struct linux_binprm * bprm)1415 static void free_bprm(struct linux_binprm *bprm)
1416 {
1417 	free_arg_pages(bprm);
1418 	if (bprm->cred) {
1419 		mutex_unlock(&current->signal->cred_guard_mutex);
1420 		abort_creds(bprm->cred);
1421 	}
1422 	if (bprm->file) {
1423 		allow_write_access(bprm->file);
1424 		fput(bprm->file);
1425 	}
1426 	/* If a binfmt changed the interp, free it. */
1427 	if (bprm->interp != bprm->filename)
1428 		kfree(bprm->interp);
1429 	kfree(bprm);
1430 }
1431 
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1432 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1433 {
1434 	/* If a binfmt changed the interp, free it first. */
1435 	if (bprm->interp != bprm->filename)
1436 		kfree(bprm->interp);
1437 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1438 	if (!bprm->interp)
1439 		return -ENOMEM;
1440 	return 0;
1441 }
1442 EXPORT_SYMBOL(bprm_change_interp);
1443 
1444 /*
1445  * install the new credentials for this executable
1446  */
install_exec_creds(struct linux_binprm * bprm)1447 void install_exec_creds(struct linux_binprm *bprm)
1448 {
1449 	security_bprm_committing_creds(bprm);
1450 
1451 	commit_creds(bprm->cred);
1452 	bprm->cred = NULL;
1453 
1454 	/*
1455 	 * Disable monitoring for regular users
1456 	 * when executing setuid binaries. Must
1457 	 * wait until new credentials are committed
1458 	 * by commit_creds() above
1459 	 */
1460 	if (get_dumpable(current->mm) != SUID_DUMP_USER)
1461 		perf_event_exit_task(current);
1462 	/*
1463 	 * cred_guard_mutex must be held at least to this point to prevent
1464 	 * ptrace_attach() from altering our determination of the task's
1465 	 * credentials; any time after this it may be unlocked.
1466 	 */
1467 	security_bprm_committed_creds(bprm);
1468 	mutex_unlock(&current->signal->cred_guard_mutex);
1469 }
1470 EXPORT_SYMBOL(install_exec_creds);
1471 
1472 /*
1473  * determine how safe it is to execute the proposed program
1474  * - the caller must hold ->cred_guard_mutex to protect against
1475  *   PTRACE_ATTACH or seccomp thread-sync
1476  */
check_unsafe_exec(struct linux_binprm * bprm)1477 static void check_unsafe_exec(struct linux_binprm *bprm)
1478 {
1479 	struct task_struct *p = current, *t;
1480 	unsigned n_fs;
1481 
1482 	if (p->ptrace)
1483 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1484 
1485 	/*
1486 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1487 	 * mess up.
1488 	 */
1489 	if (task_no_new_privs(current))
1490 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1491 
1492 	t = p;
1493 	n_fs = 1;
1494 	spin_lock(&p->fs->lock);
1495 	rcu_read_lock();
1496 	while_each_thread(p, t) {
1497 		if (t->fs == p->fs)
1498 			n_fs++;
1499 	}
1500 	rcu_read_unlock();
1501 
1502 	if (p->fs->users > n_fs)
1503 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1504 	else
1505 		p->fs->in_exec = 1;
1506 	spin_unlock(&p->fs->lock);
1507 }
1508 
bprm_fill_uid(struct linux_binprm * bprm)1509 static void bprm_fill_uid(struct linux_binprm *bprm)
1510 {
1511 	struct inode *inode;
1512 	unsigned int mode;
1513 	kuid_t uid;
1514 	kgid_t gid;
1515 
1516 	/*
1517 	 * Since this can be called multiple times (via prepare_binprm),
1518 	 * we must clear any previous work done when setting set[ug]id
1519 	 * bits from any earlier bprm->file uses (for example when run
1520 	 * first for a setuid script then again for its interpreter).
1521 	 */
1522 	bprm->cred->euid = current_euid();
1523 	bprm->cred->egid = current_egid();
1524 
1525 	if (!mnt_may_suid(bprm->file->f_path.mnt))
1526 		return;
1527 
1528 	if (task_no_new_privs(current))
1529 		return;
1530 
1531 	inode = bprm->file->f_path.dentry->d_inode;
1532 	mode = READ_ONCE(inode->i_mode);
1533 	if (!(mode & (S_ISUID|S_ISGID)))
1534 		return;
1535 
1536 	/* Be careful if suid/sgid is set */
1537 	inode_lock(inode);
1538 
1539 	/* reload atomically mode/uid/gid now that lock held */
1540 	mode = inode->i_mode;
1541 	uid = inode->i_uid;
1542 	gid = inode->i_gid;
1543 	inode_unlock(inode);
1544 
1545 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1546 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1547 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1548 		return;
1549 
1550 	if (mode & S_ISUID) {
1551 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1552 		bprm->cred->euid = uid;
1553 	}
1554 
1555 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1556 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1557 		bprm->cred->egid = gid;
1558 	}
1559 }
1560 
1561 /*
1562  * Fill the binprm structure from the inode.
1563  * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1564  *
1565  * This may be called multiple times for binary chains (scripts for example).
1566  */
prepare_binprm(struct linux_binprm * bprm)1567 int prepare_binprm(struct linux_binprm *bprm)
1568 {
1569 	int retval;
1570 	loff_t pos = 0;
1571 
1572 	bprm_fill_uid(bprm);
1573 
1574 	/* fill in binprm security blob */
1575 	retval = security_bprm_set_creds(bprm);
1576 	if (retval)
1577 		return retval;
1578 	bprm->called_set_creds = 1;
1579 
1580 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1581 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1582 }
1583 
1584 EXPORT_SYMBOL(prepare_binprm);
1585 
1586 /*
1587  * Arguments are '\0' separated strings found at the location bprm->p
1588  * points to; chop off the first by relocating brpm->p to right after
1589  * the first '\0' encountered.
1590  */
remove_arg_zero(struct linux_binprm * bprm)1591 int remove_arg_zero(struct linux_binprm *bprm)
1592 {
1593 	int ret = 0;
1594 	unsigned long offset;
1595 	char *kaddr;
1596 	struct page *page;
1597 
1598 	if (!bprm->argc)
1599 		return 0;
1600 
1601 	do {
1602 		offset = bprm->p & ~PAGE_MASK;
1603 		page = get_arg_page(bprm, bprm->p, 0);
1604 		if (!page) {
1605 			ret = -EFAULT;
1606 			goto out;
1607 		}
1608 		kaddr = kmap_atomic(page);
1609 
1610 		for (; offset < PAGE_SIZE && kaddr[offset];
1611 				offset++, bprm->p++)
1612 			;
1613 
1614 		kunmap_atomic(kaddr);
1615 		put_arg_page(page);
1616 	} while (offset == PAGE_SIZE);
1617 
1618 	bprm->p++;
1619 	bprm->argc--;
1620 	ret = 0;
1621 
1622 out:
1623 	return ret;
1624 }
1625 EXPORT_SYMBOL(remove_arg_zero);
1626 
1627 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1628 /*
1629  * cycle the list of binary formats handler, until one recognizes the image
1630  */
search_binary_handler(struct linux_binprm * bprm)1631 int search_binary_handler(struct linux_binprm *bprm)
1632 {
1633 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1634 	struct linux_binfmt *fmt;
1635 	int retval;
1636 
1637 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1638 	if (bprm->recursion_depth > 5)
1639 		return -ELOOP;
1640 
1641 	retval = security_bprm_check(bprm);
1642 	if (retval)
1643 		return retval;
1644 
1645 	retval = -ENOENT;
1646  retry:
1647 	read_lock(&binfmt_lock);
1648 	list_for_each_entry(fmt, &formats, lh) {
1649 		if (!try_module_get(fmt->module))
1650 			continue;
1651 		read_unlock(&binfmt_lock);
1652 		bprm->recursion_depth++;
1653 		retval = fmt->load_binary(bprm);
1654 		read_lock(&binfmt_lock);
1655 		put_binfmt(fmt);
1656 		bprm->recursion_depth--;
1657 		if (retval < 0 && !bprm->mm) {
1658 			/* we got to flush_old_exec() and failed after it */
1659 			read_unlock(&binfmt_lock);
1660 			force_sigsegv(SIGSEGV, current);
1661 			return retval;
1662 		}
1663 		if (retval != -ENOEXEC || !bprm->file) {
1664 			read_unlock(&binfmt_lock);
1665 			return retval;
1666 		}
1667 	}
1668 	read_unlock(&binfmt_lock);
1669 
1670 	if (need_retry) {
1671 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1672 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1673 			return retval;
1674 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1675 			return retval;
1676 		need_retry = false;
1677 		goto retry;
1678 	}
1679 
1680 	return retval;
1681 }
1682 EXPORT_SYMBOL(search_binary_handler);
1683 
exec_binprm(struct linux_binprm * bprm)1684 static int exec_binprm(struct linux_binprm *bprm)
1685 {
1686 	pid_t old_pid, old_vpid;
1687 	int ret;
1688 
1689 	/* Need to fetch pid before load_binary changes it */
1690 	old_pid = current->pid;
1691 	rcu_read_lock();
1692 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1693 	rcu_read_unlock();
1694 
1695 	ret = search_binary_handler(bprm);
1696 	if (ret >= 0) {
1697 		audit_bprm(bprm);
1698 		trace_sched_process_exec(current, old_pid, bprm);
1699 		ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1700 		proc_exec_connector(current);
1701 	}
1702 
1703 	return ret;
1704 }
1705 
1706 /*
1707  * sys_execve() executes a new program.
1708  */
__do_execve_file(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags,struct file * file)1709 static int __do_execve_file(int fd, struct filename *filename,
1710 			    struct user_arg_ptr argv,
1711 			    struct user_arg_ptr envp,
1712 			    int flags, struct file *file)
1713 {
1714 	char *pathbuf = NULL;
1715 	struct linux_binprm *bprm;
1716 	struct files_struct *displaced;
1717 	int retval;
1718 
1719 	if (IS_ERR(filename))
1720 		return PTR_ERR(filename);
1721 
1722 	/*
1723 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1724 	 * set*uid() to execve() because too many poorly written programs
1725 	 * don't check setuid() return code.  Here we additionally recheck
1726 	 * whether NPROC limit is still exceeded.
1727 	 */
1728 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1729 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1730 		retval = -EAGAIN;
1731 		goto out_ret;
1732 	}
1733 
1734 	/* We're below the limit (still or again), so we don't want to make
1735 	 * further execve() calls fail. */
1736 	current->flags &= ~PF_NPROC_EXCEEDED;
1737 
1738 	retval = unshare_files(&displaced);
1739 	if (retval)
1740 		goto out_ret;
1741 
1742 	retval = -ENOMEM;
1743 	bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1744 	if (!bprm)
1745 		goto out_files;
1746 
1747 	retval = prepare_bprm_creds(bprm);
1748 	if (retval)
1749 		goto out_free;
1750 
1751 	check_unsafe_exec(bprm);
1752 	current->in_execve = 1;
1753 
1754 	if (!file)
1755 		file = do_open_execat(fd, filename, flags);
1756 	retval = PTR_ERR(file);
1757 	if (IS_ERR(file))
1758 		goto out_unmark;
1759 
1760 	sched_exec();
1761 
1762 	bprm->file = file;
1763 	if (!filename) {
1764 		bprm->filename = "none";
1765 	} else if (fd == AT_FDCWD || filename->name[0] == '/') {
1766 		bprm->filename = filename->name;
1767 	} else {
1768 		if (filename->name[0] == '\0')
1769 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1770 		else
1771 			pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1772 					    fd, filename->name);
1773 		if (!pathbuf) {
1774 			retval = -ENOMEM;
1775 			goto out_unmark;
1776 		}
1777 		/*
1778 		 * Record that a name derived from an O_CLOEXEC fd will be
1779 		 * inaccessible after exec. Relies on having exclusive access to
1780 		 * current->files (due to unshare_files above).
1781 		 */
1782 		if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1783 			bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1784 		bprm->filename = pathbuf;
1785 	}
1786 	bprm->interp = bprm->filename;
1787 
1788 	retval = bprm_mm_init(bprm);
1789 	if (retval)
1790 		goto out_unmark;
1791 
1792 	bprm->argc = count(argv, MAX_ARG_STRINGS);
1793 	if ((retval = bprm->argc) < 0)
1794 		goto out;
1795 
1796 	bprm->envc = count(envp, MAX_ARG_STRINGS);
1797 	if ((retval = bprm->envc) < 0)
1798 		goto out;
1799 
1800 	retval = prepare_binprm(bprm);
1801 	if (retval < 0)
1802 		goto out;
1803 
1804 	retval = copy_strings_kernel(1, &bprm->filename, bprm);
1805 	if (retval < 0)
1806 		goto out;
1807 
1808 	bprm->exec = bprm->p;
1809 	retval = copy_strings(bprm->envc, envp, bprm);
1810 	if (retval < 0)
1811 		goto out;
1812 
1813 	retval = copy_strings(bprm->argc, argv, bprm);
1814 	if (retval < 0)
1815 		goto out;
1816 
1817 	would_dump(bprm, bprm->file);
1818 
1819 	retval = exec_binprm(bprm);
1820 	if (retval < 0)
1821 		goto out;
1822 
1823 	/* execve succeeded */
1824 	current->fs->in_exec = 0;
1825 	current->in_execve = 0;
1826 	membarrier_execve(current);
1827 	rseq_execve(current);
1828 	acct_update_integrals(current);
1829 	task_numa_free(current);
1830 	free_bprm(bprm);
1831 	kfree(pathbuf);
1832 	if (filename)
1833 		putname(filename);
1834 	if (displaced)
1835 		put_files_struct(displaced);
1836 	return retval;
1837 
1838 out:
1839 	if (bprm->mm) {
1840 		acct_arg_size(bprm, 0);
1841 		mmput(bprm->mm);
1842 	}
1843 
1844 out_unmark:
1845 	current->fs->in_exec = 0;
1846 	current->in_execve = 0;
1847 
1848 out_free:
1849 	free_bprm(bprm);
1850 	kfree(pathbuf);
1851 
1852 out_files:
1853 	if (displaced)
1854 		reset_files_struct(displaced);
1855 out_ret:
1856 	if (filename)
1857 		putname(filename);
1858 	return retval;
1859 }
1860 
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1861 static int do_execveat_common(int fd, struct filename *filename,
1862 			      struct user_arg_ptr argv,
1863 			      struct user_arg_ptr envp,
1864 			      int flags)
1865 {
1866 	return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1867 }
1868 
do_execve_file(struct file * file,void * __argv,void * __envp)1869 int do_execve_file(struct file *file, void *__argv, void *__envp)
1870 {
1871 	struct user_arg_ptr argv = { .ptr.native = __argv };
1872 	struct user_arg_ptr envp = { .ptr.native = __envp };
1873 
1874 	return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1875 }
1876 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1877 int do_execve(struct filename *filename,
1878 	const char __user *const __user *__argv,
1879 	const char __user *const __user *__envp)
1880 {
1881 	struct user_arg_ptr argv = { .ptr.native = __argv };
1882 	struct user_arg_ptr envp = { .ptr.native = __envp };
1883 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1884 }
1885 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1886 int do_execveat(int fd, struct filename *filename,
1887 		const char __user *const __user *__argv,
1888 		const char __user *const __user *__envp,
1889 		int flags)
1890 {
1891 	struct user_arg_ptr argv = { .ptr.native = __argv };
1892 	struct user_arg_ptr envp = { .ptr.native = __envp };
1893 
1894 	return do_execveat_common(fd, filename, argv, envp, flags);
1895 }
1896 
1897 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1898 static int compat_do_execve(struct filename *filename,
1899 	const compat_uptr_t __user *__argv,
1900 	const compat_uptr_t __user *__envp)
1901 {
1902 	struct user_arg_ptr argv = {
1903 		.is_compat = true,
1904 		.ptr.compat = __argv,
1905 	};
1906 	struct user_arg_ptr envp = {
1907 		.is_compat = true,
1908 		.ptr.compat = __envp,
1909 	};
1910 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1911 }
1912 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1913 static int compat_do_execveat(int fd, struct filename *filename,
1914 			      const compat_uptr_t __user *__argv,
1915 			      const compat_uptr_t __user *__envp,
1916 			      int flags)
1917 {
1918 	struct user_arg_ptr argv = {
1919 		.is_compat = true,
1920 		.ptr.compat = __argv,
1921 	};
1922 	struct user_arg_ptr envp = {
1923 		.is_compat = true,
1924 		.ptr.compat = __envp,
1925 	};
1926 	return do_execveat_common(fd, filename, argv, envp, flags);
1927 }
1928 #endif
1929 
set_binfmt(struct linux_binfmt * new)1930 void set_binfmt(struct linux_binfmt *new)
1931 {
1932 	struct mm_struct *mm = current->mm;
1933 
1934 	if (mm->binfmt)
1935 		module_put(mm->binfmt->module);
1936 
1937 	mm->binfmt = new;
1938 	if (new)
1939 		__module_get(new->module);
1940 }
1941 EXPORT_SYMBOL(set_binfmt);
1942 
1943 /*
1944  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1945  */
set_dumpable(struct mm_struct * mm,int value)1946 void set_dumpable(struct mm_struct *mm, int value)
1947 {
1948 	unsigned long old, new;
1949 
1950 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1951 		return;
1952 
1953 	do {
1954 		old = READ_ONCE(mm->flags);
1955 		new = (old & ~MMF_DUMPABLE_MASK) | value;
1956 	} while (cmpxchg(&mm->flags, old, new) != old);
1957 }
1958 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1959 SYSCALL_DEFINE3(execve,
1960 		const char __user *, filename,
1961 		const char __user *const __user *, argv,
1962 		const char __user *const __user *, envp)
1963 {
1964 	return do_execve(getname(filename), argv, envp);
1965 }
1966 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)1967 SYSCALL_DEFINE5(execveat,
1968 		int, fd, const char __user *, filename,
1969 		const char __user *const __user *, argv,
1970 		const char __user *const __user *, envp,
1971 		int, flags)
1972 {
1973 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1974 
1975 	return do_execveat(fd,
1976 			   getname_flags(filename, lookup_flags, NULL),
1977 			   argv, envp, flags);
1978 }
1979 
1980 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)1981 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1982 	const compat_uptr_t __user *, argv,
1983 	const compat_uptr_t __user *, envp)
1984 {
1985 	return compat_do_execve(getname(filename), argv, envp);
1986 }
1987 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)1988 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1989 		       const char __user *, filename,
1990 		       const compat_uptr_t __user *, argv,
1991 		       const compat_uptr_t __user *, envp,
1992 		       int,  flags)
1993 {
1994 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1995 
1996 	return compat_do_execveat(fd,
1997 				  getname_flags(filename, lookup_flags, NULL),
1998 				  argv, envp, flags);
1999 }
2000 #endif
2001