1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35 
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74 
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76 
77 EXPORT_SYMBOL(rename_lock);
78 
79 static struct kmem_cache *dentry_cache __read_mostly;
80 
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85 
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94 
95 static unsigned int d_hash_shift __read_mostly;
96 
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98 
d_hash(unsigned int hash)99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101 	return dentry_hashtable + (hash >> d_hash_shift);
102 }
103 
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106 
in_lookup_hash(const struct dentry * parent,unsigned int hash)107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113 
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122 
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
get_nr_dentry(void)137 static long get_nr_dentry(void)
138 {
139 	int i;
140 	long sum = 0;
141 	for_each_possible_cpu(i)
142 		sum += per_cpu(nr_dentry, i);
143 	return sum < 0 ? 0 : sum;
144 }
145 
get_nr_dentry_unused(void)146 static long get_nr_dentry_unused(void)
147 {
148 	int i;
149 	long sum = 0;
150 	for_each_possible_cpu(i)
151 		sum += per_cpu(nr_dentry_unused, i);
152 	return sum < 0 ? 0 : sum;
153 }
154 
proc_nr_dentry(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156 		   size_t *lenp, loff_t *ppos)
157 {
158 	dentry_stat.nr_dentry = get_nr_dentry();
159 	dentry_stat.nr_unused = get_nr_dentry_unused();
160 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163 
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169 
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182 	unsigned long a,b,mask;
183 
184 	for (;;) {
185 		a = read_word_at_a_time(cs);
186 		b = load_unaligned_zeropad(ct);
187 		if (tcount < sizeof(unsigned long))
188 			break;
189 		if (unlikely(a != b))
190 			return 1;
191 		cs += sizeof(unsigned long);
192 		ct += sizeof(unsigned long);
193 		tcount -= sizeof(unsigned long);
194 		if (!tcount)
195 			return 0;
196 	}
197 	mask = bytemask_from_count(tcount);
198 	return unlikely(!!((a ^ b) & mask));
199 }
200 
201 #else
202 
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205 	do {
206 		if (*cs != *ct)
207 			return 1;
208 		cs++;
209 		ct++;
210 		tcount--;
211 	} while (tcount);
212 	return 0;
213 }
214 
215 #endif
216 
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use 'READ_ONCE' to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236 
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
external_name(struct dentry * dentry)248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
__d_free(struct rcu_head * head)253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
__d_free_external_name(struct rcu_head * head)260 static void __d_free_external_name(struct rcu_head *head)
261 {
262 	struct external_name *name = container_of(head, struct external_name,
263 						  u.head);
264 
265 	mod_node_page_state(page_pgdat(virt_to_page(name)),
266 			    NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 			    -ksize(name));
268 
269 	kfree(name);
270 }
271 
__d_free_external(struct rcu_head * head)272 static void __d_free_external(struct rcu_head *head)
273 {
274 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
275 
276 	__d_free_external_name(&external_name(dentry)->u.head);
277 
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
dname_external(const struct dentry * dentry)281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	if (unlikely(dname_external(dentry))) {
290 		struct external_name *p = external_name(dentry);
291 		atomic_inc(&p->u.count);
292 		spin_unlock(&dentry->d_lock);
293 		name->name = p->name;
294 	} else {
295 		memcpy(name->inline_name, dentry->d_iname,
296 		       dentry->d_name.len + 1);
297 		spin_unlock(&dentry->d_lock);
298 		name->name = name->inline_name;
299 	}
300 }
301 EXPORT_SYMBOL(take_dentry_name_snapshot);
302 
release_dentry_name_snapshot(struct name_snapshot * name)303 void release_dentry_name_snapshot(struct name_snapshot *name)
304 {
305 	if (unlikely(name->name != name->inline_name)) {
306 		struct external_name *p;
307 		p = container_of(name->name, struct external_name, name[0]);
308 		if (unlikely(atomic_dec_and_test(&p->u.count)))
309 			call_rcu(&p->u.head, __d_free_external_name);
310 	}
311 }
312 EXPORT_SYMBOL(release_dentry_name_snapshot);
313 
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)314 static inline void __d_set_inode_and_type(struct dentry *dentry,
315 					  struct inode *inode,
316 					  unsigned type_flags)
317 {
318 	unsigned flags;
319 
320 	dentry->d_inode = inode;
321 	flags = READ_ONCE(dentry->d_flags);
322 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
323 	flags |= type_flags;
324 	WRITE_ONCE(dentry->d_flags, flags);
325 }
326 
__d_clear_type_and_inode(struct dentry * dentry)327 static inline void __d_clear_type_and_inode(struct dentry *dentry)
328 {
329 	unsigned flags = READ_ONCE(dentry->d_flags);
330 
331 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
332 	WRITE_ONCE(dentry->d_flags, flags);
333 	dentry->d_inode = NULL;
334 }
335 
dentry_free(struct dentry * dentry)336 static void dentry_free(struct dentry *dentry)
337 {
338 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 	if (unlikely(dname_external(dentry))) {
340 		struct external_name *p = external_name(dentry);
341 		if (likely(atomic_dec_and_test(&p->u.count))) {
342 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 			return;
344 		}
345 	}
346 	/* if dentry was never visible to RCU, immediate free is OK */
347 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
348 		__d_free(&dentry->d_u.d_rcu);
349 	else
350 		call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
dentry_unlink_inode(struct dentry * dentry)357 static void dentry_unlink_inode(struct dentry * dentry)
358 	__releases(dentry->d_lock)
359 	__releases(dentry->d_inode->i_lock)
360 {
361 	struct inode *inode = dentry->d_inode;
362 
363 	raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	raw_write_seqcount_end(&dentry->d_seq);
367 	spin_unlock(&dentry->d_lock);
368 	spin_unlock(&inode->i_lock);
369 	if (!inode->i_nlink)
370 		fsnotify_inoderemove(inode);
371 	if (dentry->d_op && dentry->d_op->d_iput)
372 		dentry->d_op->d_iput(dentry, inode);
373 	else
374 		iput(inode);
375 }
376 
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * These helper functions make sure we always follow the
389  * rules. d_lock must be held by the caller.
390  */
391 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)392 static void d_lru_add(struct dentry *dentry)
393 {
394 	D_FLAG_VERIFY(dentry, 0);
395 	dentry->d_flags |= DCACHE_LRU_LIST;
396 	this_cpu_inc(nr_dentry_unused);
397 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
398 }
399 
d_lru_del(struct dentry * dentry)400 static void d_lru_del(struct dentry *dentry)
401 {
402 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
403 	dentry->d_flags &= ~DCACHE_LRU_LIST;
404 	this_cpu_dec(nr_dentry_unused);
405 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
406 }
407 
d_shrink_del(struct dentry * dentry)408 static void d_shrink_del(struct dentry *dentry)
409 {
410 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411 	list_del_init(&dentry->d_lru);
412 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
413 	this_cpu_dec(nr_dentry_unused);
414 }
415 
d_shrink_add(struct dentry * dentry,struct list_head * list)416 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
417 {
418 	D_FLAG_VERIFY(dentry, 0);
419 	list_add(&dentry->d_lru, list);
420 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
421 	this_cpu_inc(nr_dentry_unused);
422 }
423 
424 /*
425  * These can only be called under the global LRU lock, ie during the
426  * callback for freeing the LRU list. "isolate" removes it from the
427  * LRU lists entirely, while shrink_move moves it to the indicated
428  * private list.
429  */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)430 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
431 {
432 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
433 	dentry->d_flags &= ~DCACHE_LRU_LIST;
434 	this_cpu_dec(nr_dentry_unused);
435 	list_lru_isolate(lru, &dentry->d_lru);
436 }
437 
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)438 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
439 			      struct list_head *list)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags |= DCACHE_SHRINK_LIST;
443 	list_lru_isolate_move(lru, &dentry->d_lru, list);
444 }
445 
446 /**
447  * d_drop - drop a dentry
448  * @dentry: dentry to drop
449  *
450  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
451  * be found through a VFS lookup any more. Note that this is different from
452  * deleting the dentry - d_delete will try to mark the dentry negative if
453  * possible, giving a successful _negative_ lookup, while d_drop will
454  * just make the cache lookup fail.
455  *
456  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
457  * reason (NFS timeouts or autofs deletes).
458  *
459  * __d_drop requires dentry->d_lock
460  * ___d_drop doesn't mark dentry as "unhashed"
461  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
462  */
___d_drop(struct dentry * dentry)463 static void ___d_drop(struct dentry *dentry)
464 {
465 	struct hlist_bl_head *b;
466 	/*
467 	 * Hashed dentries are normally on the dentry hashtable,
468 	 * with the exception of those newly allocated by
469 	 * d_obtain_root, which are always IS_ROOT:
470 	 */
471 	if (unlikely(IS_ROOT(dentry)))
472 		b = &dentry->d_sb->s_roots;
473 	else
474 		b = d_hash(dentry->d_name.hash);
475 
476 	hlist_bl_lock(b);
477 	__hlist_bl_del(&dentry->d_hash);
478 	hlist_bl_unlock(b);
479 }
480 
__d_drop(struct dentry * dentry)481 void __d_drop(struct dentry *dentry)
482 {
483 	if (!d_unhashed(dentry)) {
484 		___d_drop(dentry);
485 		dentry->d_hash.pprev = NULL;
486 		write_seqcount_invalidate(&dentry->d_seq);
487 	}
488 }
489 EXPORT_SYMBOL(__d_drop);
490 
d_drop(struct dentry * dentry)491 void d_drop(struct dentry *dentry)
492 {
493 	spin_lock(&dentry->d_lock);
494 	__d_drop(dentry);
495 	spin_unlock(&dentry->d_lock);
496 }
497 EXPORT_SYMBOL(d_drop);
498 
dentry_unlist(struct dentry * dentry,struct dentry * parent)499 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
500 {
501 	struct dentry *next;
502 	/*
503 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
504 	 * attached to the dentry tree
505 	 */
506 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
507 	if (unlikely(list_empty(&dentry->d_child)))
508 		return;
509 	__list_del_entry(&dentry->d_child);
510 	/*
511 	 * Cursors can move around the list of children.  While we'd been
512 	 * a normal list member, it didn't matter - ->d_child.next would've
513 	 * been updated.  However, from now on it won't be and for the
514 	 * things like d_walk() it might end up with a nasty surprise.
515 	 * Normally d_walk() doesn't care about cursors moving around -
516 	 * ->d_lock on parent prevents that and since a cursor has no children
517 	 * of its own, we get through it without ever unlocking the parent.
518 	 * There is one exception, though - if we ascend from a child that
519 	 * gets killed as soon as we unlock it, the next sibling is found
520 	 * using the value left in its ->d_child.next.  And if _that_
521 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
522 	 * before d_walk() regains parent->d_lock, we'll end up skipping
523 	 * everything the cursor had been moved past.
524 	 *
525 	 * Solution: make sure that the pointer left behind in ->d_child.next
526 	 * points to something that won't be moving around.  I.e. skip the
527 	 * cursors.
528 	 */
529 	while (dentry->d_child.next != &parent->d_subdirs) {
530 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
531 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
532 			break;
533 		dentry->d_child.next = next->d_child.next;
534 	}
535 }
536 
__dentry_kill(struct dentry * dentry)537 static void __dentry_kill(struct dentry *dentry)
538 {
539 	struct dentry *parent = NULL;
540 	bool can_free = true;
541 	if (!IS_ROOT(dentry))
542 		parent = dentry->d_parent;
543 
544 	/*
545 	 * The dentry is now unrecoverably dead to the world.
546 	 */
547 	lockref_mark_dead(&dentry->d_lockref);
548 
549 	/*
550 	 * inform the fs via d_prune that this dentry is about to be
551 	 * unhashed and destroyed.
552 	 */
553 	if (dentry->d_flags & DCACHE_OP_PRUNE)
554 		dentry->d_op->d_prune(dentry);
555 
556 	if (dentry->d_flags & DCACHE_LRU_LIST) {
557 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
558 			d_lru_del(dentry);
559 	}
560 	/* if it was on the hash then remove it */
561 	__d_drop(dentry);
562 	dentry_unlist(dentry, parent);
563 	if (parent)
564 		spin_unlock(&parent->d_lock);
565 	if (dentry->d_inode)
566 		dentry_unlink_inode(dentry);
567 	else
568 		spin_unlock(&dentry->d_lock);
569 	this_cpu_dec(nr_dentry);
570 	if (dentry->d_op && dentry->d_op->d_release)
571 		dentry->d_op->d_release(dentry);
572 
573 	spin_lock(&dentry->d_lock);
574 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
575 		dentry->d_flags |= DCACHE_MAY_FREE;
576 		can_free = false;
577 	}
578 	spin_unlock(&dentry->d_lock);
579 	if (likely(can_free))
580 		dentry_free(dentry);
581 	cond_resched();
582 }
583 
__lock_parent(struct dentry * dentry)584 static struct dentry *__lock_parent(struct dentry *dentry)
585 {
586 	struct dentry *parent;
587 	rcu_read_lock();
588 	spin_unlock(&dentry->d_lock);
589 again:
590 	parent = READ_ONCE(dentry->d_parent);
591 	spin_lock(&parent->d_lock);
592 	/*
593 	 * We can't blindly lock dentry until we are sure
594 	 * that we won't violate the locking order.
595 	 * Any changes of dentry->d_parent must have
596 	 * been done with parent->d_lock held, so
597 	 * spin_lock() above is enough of a barrier
598 	 * for checking if it's still our child.
599 	 */
600 	if (unlikely(parent != dentry->d_parent)) {
601 		spin_unlock(&parent->d_lock);
602 		goto again;
603 	}
604 	rcu_read_unlock();
605 	if (parent != dentry)
606 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
607 	else
608 		parent = NULL;
609 	return parent;
610 }
611 
lock_parent(struct dentry * dentry)612 static inline struct dentry *lock_parent(struct dentry *dentry)
613 {
614 	struct dentry *parent = dentry->d_parent;
615 	if (IS_ROOT(dentry))
616 		return NULL;
617 	if (likely(spin_trylock(&parent->d_lock)))
618 		return parent;
619 	return __lock_parent(dentry);
620 }
621 
retain_dentry(struct dentry * dentry)622 static inline bool retain_dentry(struct dentry *dentry)
623 {
624 	WARN_ON(d_in_lookup(dentry));
625 
626 	/* Unreachable? Get rid of it */
627 	if (unlikely(d_unhashed(dentry)))
628 		return false;
629 
630 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
631 		return false;
632 
633 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
634 		if (dentry->d_op->d_delete(dentry))
635 			return false;
636 	}
637 	/* retain; LRU fodder */
638 	dentry->d_lockref.count--;
639 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
640 		d_lru_add(dentry);
641 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
642 		dentry->d_flags |= DCACHE_REFERENCED;
643 	return true;
644 }
645 
646 /*
647  * Finish off a dentry we've decided to kill.
648  * dentry->d_lock must be held, returns with it unlocked.
649  * Returns dentry requiring refcount drop, or NULL if we're done.
650  */
dentry_kill(struct dentry * dentry)651 static struct dentry *dentry_kill(struct dentry *dentry)
652 	__releases(dentry->d_lock)
653 {
654 	struct inode *inode = dentry->d_inode;
655 	struct dentry *parent = NULL;
656 
657 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
658 		goto slow_positive;
659 
660 	if (!IS_ROOT(dentry)) {
661 		parent = dentry->d_parent;
662 		if (unlikely(!spin_trylock(&parent->d_lock))) {
663 			parent = __lock_parent(dentry);
664 			if (likely(inode || !dentry->d_inode))
665 				goto got_locks;
666 			/* negative that became positive */
667 			if (parent)
668 				spin_unlock(&parent->d_lock);
669 			inode = dentry->d_inode;
670 			goto slow_positive;
671 		}
672 	}
673 	__dentry_kill(dentry);
674 	return parent;
675 
676 slow_positive:
677 	spin_unlock(&dentry->d_lock);
678 	spin_lock(&inode->i_lock);
679 	spin_lock(&dentry->d_lock);
680 	parent = lock_parent(dentry);
681 got_locks:
682 	if (unlikely(dentry->d_lockref.count != 1)) {
683 		dentry->d_lockref.count--;
684 	} else if (likely(!retain_dentry(dentry))) {
685 		__dentry_kill(dentry);
686 		return parent;
687 	}
688 	/* we are keeping it, after all */
689 	if (inode)
690 		spin_unlock(&inode->i_lock);
691 	if (parent)
692 		spin_unlock(&parent->d_lock);
693 	spin_unlock(&dentry->d_lock);
694 	return NULL;
695 }
696 
697 /*
698  * Try to do a lockless dput(), and return whether that was successful.
699  *
700  * If unsuccessful, we return false, having already taken the dentry lock.
701  *
702  * The caller needs to hold the RCU read lock, so that the dentry is
703  * guaranteed to stay around even if the refcount goes down to zero!
704  */
fast_dput(struct dentry * dentry)705 static inline bool fast_dput(struct dentry *dentry)
706 {
707 	int ret;
708 	unsigned int d_flags;
709 
710 	/*
711 	 * If we have a d_op->d_delete() operation, we sould not
712 	 * let the dentry count go to zero, so use "put_or_lock".
713 	 */
714 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
715 		return lockref_put_or_lock(&dentry->d_lockref);
716 
717 	/*
718 	 * .. otherwise, we can try to just decrement the
719 	 * lockref optimistically.
720 	 */
721 	ret = lockref_put_return(&dentry->d_lockref);
722 
723 	/*
724 	 * If the lockref_put_return() failed due to the lock being held
725 	 * by somebody else, the fast path has failed. We will need to
726 	 * get the lock, and then check the count again.
727 	 */
728 	if (unlikely(ret < 0)) {
729 		spin_lock(&dentry->d_lock);
730 		if (dentry->d_lockref.count > 1) {
731 			dentry->d_lockref.count--;
732 			spin_unlock(&dentry->d_lock);
733 			return true;
734 		}
735 		return false;
736 	}
737 
738 	/*
739 	 * If we weren't the last ref, we're done.
740 	 */
741 	if (ret)
742 		return true;
743 
744 	/*
745 	 * Careful, careful. The reference count went down
746 	 * to zero, but we don't hold the dentry lock, so
747 	 * somebody else could get it again, and do another
748 	 * dput(), and we need to not race with that.
749 	 *
750 	 * However, there is a very special and common case
751 	 * where we don't care, because there is nothing to
752 	 * do: the dentry is still hashed, it does not have
753 	 * a 'delete' op, and it's referenced and already on
754 	 * the LRU list.
755 	 *
756 	 * NOTE! Since we aren't locked, these values are
757 	 * not "stable". However, it is sufficient that at
758 	 * some point after we dropped the reference the
759 	 * dentry was hashed and the flags had the proper
760 	 * value. Other dentry users may have re-gotten
761 	 * a reference to the dentry and change that, but
762 	 * our work is done - we can leave the dentry
763 	 * around with a zero refcount.
764 	 */
765 	smp_rmb();
766 	d_flags = READ_ONCE(dentry->d_flags);
767 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
768 
769 	/* Nothing to do? Dropping the reference was all we needed? */
770 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
771 		return true;
772 
773 	/*
774 	 * Not the fast normal case? Get the lock. We've already decremented
775 	 * the refcount, but we'll need to re-check the situation after
776 	 * getting the lock.
777 	 */
778 	spin_lock(&dentry->d_lock);
779 
780 	/*
781 	 * Did somebody else grab a reference to it in the meantime, and
782 	 * we're no longer the last user after all? Alternatively, somebody
783 	 * else could have killed it and marked it dead. Either way, we
784 	 * don't need to do anything else.
785 	 */
786 	if (dentry->d_lockref.count) {
787 		spin_unlock(&dentry->d_lock);
788 		return true;
789 	}
790 
791 	/*
792 	 * Re-get the reference we optimistically dropped. We hold the
793 	 * lock, and we just tested that it was zero, so we can just
794 	 * set it to 1.
795 	 */
796 	dentry->d_lockref.count = 1;
797 	return false;
798 }
799 
800 
801 /*
802  * This is dput
803  *
804  * This is complicated by the fact that we do not want to put
805  * dentries that are no longer on any hash chain on the unused
806  * list: we'd much rather just get rid of them immediately.
807  *
808  * However, that implies that we have to traverse the dentry
809  * tree upwards to the parents which might _also_ now be
810  * scheduled for deletion (it may have been only waiting for
811  * its last child to go away).
812  *
813  * This tail recursion is done by hand as we don't want to depend
814  * on the compiler to always get this right (gcc generally doesn't).
815  * Real recursion would eat up our stack space.
816  */
817 
818 /*
819  * dput - release a dentry
820  * @dentry: dentry to release
821  *
822  * Release a dentry. This will drop the usage count and if appropriate
823  * call the dentry unlink method as well as removing it from the queues and
824  * releasing its resources. If the parent dentries were scheduled for release
825  * they too may now get deleted.
826  */
dput(struct dentry * dentry)827 void dput(struct dentry *dentry)
828 {
829 	while (dentry) {
830 		might_sleep();
831 
832 		rcu_read_lock();
833 		if (likely(fast_dput(dentry))) {
834 			rcu_read_unlock();
835 			return;
836 		}
837 
838 		/* Slow case: now with the dentry lock held */
839 		rcu_read_unlock();
840 
841 		if (likely(retain_dentry(dentry))) {
842 			spin_unlock(&dentry->d_lock);
843 			return;
844 		}
845 
846 		dentry = dentry_kill(dentry);
847 	}
848 }
849 EXPORT_SYMBOL(dput);
850 
851 
852 /* This must be called with d_lock held */
__dget_dlock(struct dentry * dentry)853 static inline void __dget_dlock(struct dentry *dentry)
854 {
855 	dentry->d_lockref.count++;
856 }
857 
__dget(struct dentry * dentry)858 static inline void __dget(struct dentry *dentry)
859 {
860 	lockref_get(&dentry->d_lockref);
861 }
862 
dget_parent(struct dentry * dentry)863 struct dentry *dget_parent(struct dentry *dentry)
864 {
865 	int gotref;
866 	struct dentry *ret;
867 
868 	/*
869 	 * Do optimistic parent lookup without any
870 	 * locking.
871 	 */
872 	rcu_read_lock();
873 	ret = READ_ONCE(dentry->d_parent);
874 	gotref = lockref_get_not_zero(&ret->d_lockref);
875 	rcu_read_unlock();
876 	if (likely(gotref)) {
877 		if (likely(ret == READ_ONCE(dentry->d_parent)))
878 			return ret;
879 		dput(ret);
880 	}
881 
882 repeat:
883 	/*
884 	 * Don't need rcu_dereference because we re-check it was correct under
885 	 * the lock.
886 	 */
887 	rcu_read_lock();
888 	ret = dentry->d_parent;
889 	spin_lock(&ret->d_lock);
890 	if (unlikely(ret != dentry->d_parent)) {
891 		spin_unlock(&ret->d_lock);
892 		rcu_read_unlock();
893 		goto repeat;
894 	}
895 	rcu_read_unlock();
896 	BUG_ON(!ret->d_lockref.count);
897 	ret->d_lockref.count++;
898 	spin_unlock(&ret->d_lock);
899 	return ret;
900 }
901 EXPORT_SYMBOL(dget_parent);
902 
__d_find_any_alias(struct inode * inode)903 static struct dentry * __d_find_any_alias(struct inode *inode)
904 {
905 	struct dentry *alias;
906 
907 	if (hlist_empty(&inode->i_dentry))
908 		return NULL;
909 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
910 	__dget(alias);
911 	return alias;
912 }
913 
914 /**
915  * d_find_any_alias - find any alias for a given inode
916  * @inode: inode to find an alias for
917  *
918  * If any aliases exist for the given inode, take and return a
919  * reference for one of them.  If no aliases exist, return %NULL.
920  */
d_find_any_alias(struct inode * inode)921 struct dentry *d_find_any_alias(struct inode *inode)
922 {
923 	struct dentry *de;
924 
925 	spin_lock(&inode->i_lock);
926 	de = __d_find_any_alias(inode);
927 	spin_unlock(&inode->i_lock);
928 	return de;
929 }
930 EXPORT_SYMBOL(d_find_any_alias);
931 
932 /**
933  * d_find_alias - grab a hashed alias of inode
934  * @inode: inode in question
935  *
936  * If inode has a hashed alias, or is a directory and has any alias,
937  * acquire the reference to alias and return it. Otherwise return NULL.
938  * Notice that if inode is a directory there can be only one alias and
939  * it can be unhashed only if it has no children, or if it is the root
940  * of a filesystem, or if the directory was renamed and d_revalidate
941  * was the first vfs operation to notice.
942  *
943  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
944  * any other hashed alias over that one.
945  */
__d_find_alias(struct inode * inode)946 static struct dentry *__d_find_alias(struct inode *inode)
947 {
948 	struct dentry *alias;
949 
950 	if (S_ISDIR(inode->i_mode))
951 		return __d_find_any_alias(inode);
952 
953 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
954 		spin_lock(&alias->d_lock);
955  		if (!d_unhashed(alias)) {
956 			__dget_dlock(alias);
957 			spin_unlock(&alias->d_lock);
958 			return alias;
959 		}
960 		spin_unlock(&alias->d_lock);
961 	}
962 	return NULL;
963 }
964 
d_find_alias(struct inode * inode)965 struct dentry *d_find_alias(struct inode *inode)
966 {
967 	struct dentry *de = NULL;
968 
969 	if (!hlist_empty(&inode->i_dentry)) {
970 		spin_lock(&inode->i_lock);
971 		de = __d_find_alias(inode);
972 		spin_unlock(&inode->i_lock);
973 	}
974 	return de;
975 }
976 EXPORT_SYMBOL(d_find_alias);
977 
978 /*
979  *	Try to kill dentries associated with this inode.
980  * WARNING: you must own a reference to inode.
981  */
d_prune_aliases(struct inode * inode)982 void d_prune_aliases(struct inode *inode)
983 {
984 	struct dentry *dentry;
985 restart:
986 	spin_lock(&inode->i_lock);
987 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
988 		spin_lock(&dentry->d_lock);
989 		if (!dentry->d_lockref.count) {
990 			struct dentry *parent = lock_parent(dentry);
991 			if (likely(!dentry->d_lockref.count)) {
992 				__dentry_kill(dentry);
993 				dput(parent);
994 				goto restart;
995 			}
996 			if (parent)
997 				spin_unlock(&parent->d_lock);
998 		}
999 		spin_unlock(&dentry->d_lock);
1000 	}
1001 	spin_unlock(&inode->i_lock);
1002 }
1003 EXPORT_SYMBOL(d_prune_aliases);
1004 
1005 /*
1006  * Lock a dentry from shrink list.
1007  * Called under rcu_read_lock() and dentry->d_lock; the former
1008  * guarantees that nothing we access will be freed under us.
1009  * Note that dentry is *not* protected from concurrent dentry_kill(),
1010  * d_delete(), etc.
1011  *
1012  * Return false if dentry has been disrupted or grabbed, leaving
1013  * the caller to kick it off-list.  Otherwise, return true and have
1014  * that dentry's inode and parent both locked.
1015  */
shrink_lock_dentry(struct dentry * dentry)1016 static bool shrink_lock_dentry(struct dentry *dentry)
1017 {
1018 	struct inode *inode;
1019 	struct dentry *parent;
1020 
1021 	if (dentry->d_lockref.count)
1022 		return false;
1023 
1024 	inode = dentry->d_inode;
1025 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1026 		spin_unlock(&dentry->d_lock);
1027 		spin_lock(&inode->i_lock);
1028 		spin_lock(&dentry->d_lock);
1029 		if (unlikely(dentry->d_lockref.count))
1030 			goto out;
1031 		/* changed inode means that somebody had grabbed it */
1032 		if (unlikely(inode != dentry->d_inode))
1033 			goto out;
1034 	}
1035 
1036 	parent = dentry->d_parent;
1037 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1038 		return true;
1039 
1040 	spin_unlock(&dentry->d_lock);
1041 	spin_lock(&parent->d_lock);
1042 	if (unlikely(parent != dentry->d_parent)) {
1043 		spin_unlock(&parent->d_lock);
1044 		spin_lock(&dentry->d_lock);
1045 		goto out;
1046 	}
1047 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1048 	if (likely(!dentry->d_lockref.count))
1049 		return true;
1050 	spin_unlock(&parent->d_lock);
1051 out:
1052 	if (inode)
1053 		spin_unlock(&inode->i_lock);
1054 	return false;
1055 }
1056 
shrink_dentry_list(struct list_head * list)1057 static void shrink_dentry_list(struct list_head *list)
1058 {
1059 	while (!list_empty(list)) {
1060 		struct dentry *dentry, *parent;
1061 
1062 		dentry = list_entry(list->prev, struct dentry, d_lru);
1063 		spin_lock(&dentry->d_lock);
1064 		rcu_read_lock();
1065 		if (!shrink_lock_dentry(dentry)) {
1066 			bool can_free = false;
1067 			rcu_read_unlock();
1068 			d_shrink_del(dentry);
1069 			if (dentry->d_lockref.count < 0)
1070 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1071 			spin_unlock(&dentry->d_lock);
1072 			if (can_free)
1073 				dentry_free(dentry);
1074 			continue;
1075 		}
1076 		rcu_read_unlock();
1077 		d_shrink_del(dentry);
1078 		parent = dentry->d_parent;
1079 		__dentry_kill(dentry);
1080 		if (parent == dentry)
1081 			continue;
1082 		/*
1083 		 * We need to prune ancestors too. This is necessary to prevent
1084 		 * quadratic behavior of shrink_dcache_parent(), but is also
1085 		 * expected to be beneficial in reducing dentry cache
1086 		 * fragmentation.
1087 		 */
1088 		dentry = parent;
1089 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1090 			dentry = dentry_kill(dentry);
1091 	}
1092 }
1093 
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1094 static enum lru_status dentry_lru_isolate(struct list_head *item,
1095 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1096 {
1097 	struct list_head *freeable = arg;
1098 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1099 
1100 
1101 	/*
1102 	 * we are inverting the lru lock/dentry->d_lock here,
1103 	 * so use a trylock. If we fail to get the lock, just skip
1104 	 * it
1105 	 */
1106 	if (!spin_trylock(&dentry->d_lock))
1107 		return LRU_SKIP;
1108 
1109 	/*
1110 	 * Referenced dentries are still in use. If they have active
1111 	 * counts, just remove them from the LRU. Otherwise give them
1112 	 * another pass through the LRU.
1113 	 */
1114 	if (dentry->d_lockref.count) {
1115 		d_lru_isolate(lru, dentry);
1116 		spin_unlock(&dentry->d_lock);
1117 		return LRU_REMOVED;
1118 	}
1119 
1120 	if (dentry->d_flags & DCACHE_REFERENCED) {
1121 		dentry->d_flags &= ~DCACHE_REFERENCED;
1122 		spin_unlock(&dentry->d_lock);
1123 
1124 		/*
1125 		 * The list move itself will be made by the common LRU code. At
1126 		 * this point, we've dropped the dentry->d_lock but keep the
1127 		 * lru lock. This is safe to do, since every list movement is
1128 		 * protected by the lru lock even if both locks are held.
1129 		 *
1130 		 * This is guaranteed by the fact that all LRU management
1131 		 * functions are intermediated by the LRU API calls like
1132 		 * list_lru_add and list_lru_del. List movement in this file
1133 		 * only ever occur through this functions or through callbacks
1134 		 * like this one, that are called from the LRU API.
1135 		 *
1136 		 * The only exceptions to this are functions like
1137 		 * shrink_dentry_list, and code that first checks for the
1138 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1139 		 * operating only with stack provided lists after they are
1140 		 * properly isolated from the main list.  It is thus, always a
1141 		 * local access.
1142 		 */
1143 		return LRU_ROTATE;
1144 	}
1145 
1146 	d_lru_shrink_move(lru, dentry, freeable);
1147 	spin_unlock(&dentry->d_lock);
1148 
1149 	return LRU_REMOVED;
1150 }
1151 
1152 /**
1153  * prune_dcache_sb - shrink the dcache
1154  * @sb: superblock
1155  * @sc: shrink control, passed to list_lru_shrink_walk()
1156  *
1157  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1158  * is done when we need more memory and called from the superblock shrinker
1159  * function.
1160  *
1161  * This function may fail to free any resources if all the dentries are in
1162  * use.
1163  */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1164 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1165 {
1166 	LIST_HEAD(dispose);
1167 	long freed;
1168 
1169 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1170 				     dentry_lru_isolate, &dispose);
1171 	shrink_dentry_list(&dispose);
1172 	return freed;
1173 }
1174 
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1175 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1176 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1177 {
1178 	struct list_head *freeable = arg;
1179 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1180 
1181 	/*
1182 	 * we are inverting the lru lock/dentry->d_lock here,
1183 	 * so use a trylock. If we fail to get the lock, just skip
1184 	 * it
1185 	 */
1186 	if (!spin_trylock(&dentry->d_lock))
1187 		return LRU_SKIP;
1188 
1189 	d_lru_shrink_move(lru, dentry, freeable);
1190 	spin_unlock(&dentry->d_lock);
1191 
1192 	return LRU_REMOVED;
1193 }
1194 
1195 
1196 /**
1197  * shrink_dcache_sb - shrink dcache for a superblock
1198  * @sb: superblock
1199  *
1200  * Shrink the dcache for the specified super block. This is used to free
1201  * the dcache before unmounting a file system.
1202  */
shrink_dcache_sb(struct super_block * sb)1203 void shrink_dcache_sb(struct super_block *sb)
1204 {
1205 	long freed;
1206 
1207 	do {
1208 		LIST_HEAD(dispose);
1209 
1210 		freed = list_lru_walk(&sb->s_dentry_lru,
1211 			dentry_lru_isolate_shrink, &dispose, 1024);
1212 
1213 		this_cpu_sub(nr_dentry_unused, freed);
1214 		shrink_dentry_list(&dispose);
1215 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1216 }
1217 EXPORT_SYMBOL(shrink_dcache_sb);
1218 
1219 /**
1220  * enum d_walk_ret - action to talke during tree walk
1221  * @D_WALK_CONTINUE:	contrinue walk
1222  * @D_WALK_QUIT:	quit walk
1223  * @D_WALK_NORETRY:	quit when retry is needed
1224  * @D_WALK_SKIP:	skip this dentry and its children
1225  */
1226 enum d_walk_ret {
1227 	D_WALK_CONTINUE,
1228 	D_WALK_QUIT,
1229 	D_WALK_NORETRY,
1230 	D_WALK_SKIP,
1231 };
1232 
1233 /**
1234  * d_walk - walk the dentry tree
1235  * @parent:	start of walk
1236  * @data:	data passed to @enter() and @finish()
1237  * @enter:	callback when first entering the dentry
1238  *
1239  * The @enter() callbacks are called with d_lock held.
1240  */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1241 static void d_walk(struct dentry *parent, void *data,
1242 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1243 {
1244 	struct dentry *this_parent;
1245 	struct list_head *next;
1246 	unsigned seq = 0;
1247 	enum d_walk_ret ret;
1248 	bool retry = true;
1249 
1250 again:
1251 	read_seqbegin_or_lock(&rename_lock, &seq);
1252 	this_parent = parent;
1253 	spin_lock(&this_parent->d_lock);
1254 
1255 	ret = enter(data, this_parent);
1256 	switch (ret) {
1257 	case D_WALK_CONTINUE:
1258 		break;
1259 	case D_WALK_QUIT:
1260 	case D_WALK_SKIP:
1261 		goto out_unlock;
1262 	case D_WALK_NORETRY:
1263 		retry = false;
1264 		break;
1265 	}
1266 repeat:
1267 	next = this_parent->d_subdirs.next;
1268 resume:
1269 	while (next != &this_parent->d_subdirs) {
1270 		struct list_head *tmp = next;
1271 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1272 		next = tmp->next;
1273 
1274 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1275 			continue;
1276 
1277 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1278 
1279 		ret = enter(data, dentry);
1280 		switch (ret) {
1281 		case D_WALK_CONTINUE:
1282 			break;
1283 		case D_WALK_QUIT:
1284 			spin_unlock(&dentry->d_lock);
1285 			goto out_unlock;
1286 		case D_WALK_NORETRY:
1287 			retry = false;
1288 			break;
1289 		case D_WALK_SKIP:
1290 			spin_unlock(&dentry->d_lock);
1291 			continue;
1292 		}
1293 
1294 		if (!list_empty(&dentry->d_subdirs)) {
1295 			spin_unlock(&this_parent->d_lock);
1296 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1297 			this_parent = dentry;
1298 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1299 			goto repeat;
1300 		}
1301 		spin_unlock(&dentry->d_lock);
1302 	}
1303 	/*
1304 	 * All done at this level ... ascend and resume the search.
1305 	 */
1306 	rcu_read_lock();
1307 ascend:
1308 	if (this_parent != parent) {
1309 		struct dentry *child = this_parent;
1310 		this_parent = child->d_parent;
1311 
1312 		spin_unlock(&child->d_lock);
1313 		spin_lock(&this_parent->d_lock);
1314 
1315 		/* might go back up the wrong parent if we have had a rename. */
1316 		if (need_seqretry(&rename_lock, seq))
1317 			goto rename_retry;
1318 		/* go into the first sibling still alive */
1319 		do {
1320 			next = child->d_child.next;
1321 			if (next == &this_parent->d_subdirs)
1322 				goto ascend;
1323 			child = list_entry(next, struct dentry, d_child);
1324 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1325 		rcu_read_unlock();
1326 		goto resume;
1327 	}
1328 	if (need_seqretry(&rename_lock, seq))
1329 		goto rename_retry;
1330 	rcu_read_unlock();
1331 
1332 out_unlock:
1333 	spin_unlock(&this_parent->d_lock);
1334 	done_seqretry(&rename_lock, seq);
1335 	return;
1336 
1337 rename_retry:
1338 	spin_unlock(&this_parent->d_lock);
1339 	rcu_read_unlock();
1340 	BUG_ON(seq & 1);
1341 	if (!retry)
1342 		return;
1343 	seq = 1;
1344 	goto again;
1345 }
1346 
1347 struct check_mount {
1348 	struct vfsmount *mnt;
1349 	unsigned int mounted;
1350 };
1351 
path_check_mount(void * data,struct dentry * dentry)1352 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1353 {
1354 	struct check_mount *info = data;
1355 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1356 
1357 	if (likely(!d_mountpoint(dentry)))
1358 		return D_WALK_CONTINUE;
1359 	if (__path_is_mountpoint(&path)) {
1360 		info->mounted = 1;
1361 		return D_WALK_QUIT;
1362 	}
1363 	return D_WALK_CONTINUE;
1364 }
1365 
1366 /**
1367  * path_has_submounts - check for mounts over a dentry in the
1368  *                      current namespace.
1369  * @parent: path to check.
1370  *
1371  * Return true if the parent or its subdirectories contain
1372  * a mount point in the current namespace.
1373  */
path_has_submounts(const struct path * parent)1374 int path_has_submounts(const struct path *parent)
1375 {
1376 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1377 
1378 	read_seqlock_excl(&mount_lock);
1379 	d_walk(parent->dentry, &data, path_check_mount);
1380 	read_sequnlock_excl(&mount_lock);
1381 
1382 	return data.mounted;
1383 }
1384 EXPORT_SYMBOL(path_has_submounts);
1385 
1386 /*
1387  * Called by mount code to set a mountpoint and check if the mountpoint is
1388  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1389  * subtree can become unreachable).
1390  *
1391  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1392  * this reason take rename_lock and d_lock on dentry and ancestors.
1393  */
d_set_mounted(struct dentry * dentry)1394 int d_set_mounted(struct dentry *dentry)
1395 {
1396 	struct dentry *p;
1397 	int ret = -ENOENT;
1398 	write_seqlock(&rename_lock);
1399 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1400 		/* Need exclusion wrt. d_invalidate() */
1401 		spin_lock(&p->d_lock);
1402 		if (unlikely(d_unhashed(p))) {
1403 			spin_unlock(&p->d_lock);
1404 			goto out;
1405 		}
1406 		spin_unlock(&p->d_lock);
1407 	}
1408 	spin_lock(&dentry->d_lock);
1409 	if (!d_unlinked(dentry)) {
1410 		ret = -EBUSY;
1411 		if (!d_mountpoint(dentry)) {
1412 			dentry->d_flags |= DCACHE_MOUNTED;
1413 			ret = 0;
1414 		}
1415 	}
1416  	spin_unlock(&dentry->d_lock);
1417 out:
1418 	write_sequnlock(&rename_lock);
1419 	return ret;
1420 }
1421 
1422 /*
1423  * Search the dentry child list of the specified parent,
1424  * and move any unused dentries to the end of the unused
1425  * list for prune_dcache(). We descend to the next level
1426  * whenever the d_subdirs list is non-empty and continue
1427  * searching.
1428  *
1429  * It returns zero iff there are no unused children,
1430  * otherwise  it returns the number of children moved to
1431  * the end of the unused list. This may not be the total
1432  * number of unused children, because select_parent can
1433  * drop the lock and return early due to latency
1434  * constraints.
1435  */
1436 
1437 struct select_data {
1438 	struct dentry *start;
1439 	struct list_head dispose;
1440 	int found;
1441 };
1442 
select_collect(void * _data,struct dentry * dentry)1443 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1444 {
1445 	struct select_data *data = _data;
1446 	enum d_walk_ret ret = D_WALK_CONTINUE;
1447 
1448 	if (data->start == dentry)
1449 		goto out;
1450 
1451 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1452 		data->found++;
1453 	} else {
1454 		if (dentry->d_flags & DCACHE_LRU_LIST)
1455 			d_lru_del(dentry);
1456 		if (!dentry->d_lockref.count) {
1457 			d_shrink_add(dentry, &data->dispose);
1458 			data->found++;
1459 		}
1460 	}
1461 	/*
1462 	 * We can return to the caller if we have found some (this
1463 	 * ensures forward progress). We'll be coming back to find
1464 	 * the rest.
1465 	 */
1466 	if (!list_empty(&data->dispose))
1467 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1468 out:
1469 	return ret;
1470 }
1471 
1472 /**
1473  * shrink_dcache_parent - prune dcache
1474  * @parent: parent of entries to prune
1475  *
1476  * Prune the dcache to remove unused children of the parent dentry.
1477  */
shrink_dcache_parent(struct dentry * parent)1478 void shrink_dcache_parent(struct dentry *parent)
1479 {
1480 	for (;;) {
1481 		struct select_data data;
1482 
1483 		INIT_LIST_HEAD(&data.dispose);
1484 		data.start = parent;
1485 		data.found = 0;
1486 
1487 		d_walk(parent, &data, select_collect);
1488 
1489 		if (!list_empty(&data.dispose)) {
1490 			shrink_dentry_list(&data.dispose);
1491 			continue;
1492 		}
1493 
1494 		cond_resched();
1495 		if (!data.found)
1496 			break;
1497 	}
1498 }
1499 EXPORT_SYMBOL(shrink_dcache_parent);
1500 
umount_check(void * _data,struct dentry * dentry)1501 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1502 {
1503 	/* it has busy descendents; complain about those instead */
1504 	if (!list_empty(&dentry->d_subdirs))
1505 		return D_WALK_CONTINUE;
1506 
1507 	/* root with refcount 1 is fine */
1508 	if (dentry == _data && dentry->d_lockref.count == 1)
1509 		return D_WALK_CONTINUE;
1510 
1511 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1512 			" still in use (%d) [unmount of %s %s]\n",
1513 		       dentry,
1514 		       dentry->d_inode ?
1515 		       dentry->d_inode->i_ino : 0UL,
1516 		       dentry,
1517 		       dentry->d_lockref.count,
1518 		       dentry->d_sb->s_type->name,
1519 		       dentry->d_sb->s_id);
1520 	WARN_ON(1);
1521 	return D_WALK_CONTINUE;
1522 }
1523 
do_one_tree(struct dentry * dentry)1524 static void do_one_tree(struct dentry *dentry)
1525 {
1526 	shrink_dcache_parent(dentry);
1527 	d_walk(dentry, dentry, umount_check);
1528 	d_drop(dentry);
1529 	dput(dentry);
1530 }
1531 
1532 /*
1533  * destroy the dentries attached to a superblock on unmounting
1534  */
shrink_dcache_for_umount(struct super_block * sb)1535 void shrink_dcache_for_umount(struct super_block *sb)
1536 {
1537 	struct dentry *dentry;
1538 
1539 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1540 
1541 	dentry = sb->s_root;
1542 	sb->s_root = NULL;
1543 	do_one_tree(dentry);
1544 
1545 	while (!hlist_bl_empty(&sb->s_roots)) {
1546 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1547 		do_one_tree(dentry);
1548 	}
1549 }
1550 
find_submount(void * _data,struct dentry * dentry)1551 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1552 {
1553 	struct dentry **victim = _data;
1554 	if (d_mountpoint(dentry)) {
1555 		__dget_dlock(dentry);
1556 		*victim = dentry;
1557 		return D_WALK_QUIT;
1558 	}
1559 	return D_WALK_CONTINUE;
1560 }
1561 
1562 /**
1563  * d_invalidate - detach submounts, prune dcache, and drop
1564  * @dentry: dentry to invalidate (aka detach, prune and drop)
1565  */
d_invalidate(struct dentry * dentry)1566 void d_invalidate(struct dentry *dentry)
1567 {
1568 	bool had_submounts = false;
1569 	spin_lock(&dentry->d_lock);
1570 	if (d_unhashed(dentry)) {
1571 		spin_unlock(&dentry->d_lock);
1572 		return;
1573 	}
1574 	__d_drop(dentry);
1575 	spin_unlock(&dentry->d_lock);
1576 
1577 	/* Negative dentries can be dropped without further checks */
1578 	if (!dentry->d_inode)
1579 		return;
1580 
1581 	shrink_dcache_parent(dentry);
1582 	for (;;) {
1583 		struct dentry *victim = NULL;
1584 		d_walk(dentry, &victim, find_submount);
1585 		if (!victim) {
1586 			if (had_submounts)
1587 				shrink_dcache_parent(dentry);
1588 			return;
1589 		}
1590 		had_submounts = true;
1591 		detach_mounts(victim);
1592 		dput(victim);
1593 	}
1594 }
1595 EXPORT_SYMBOL(d_invalidate);
1596 
1597 /**
1598  * __d_alloc	-	allocate a dcache entry
1599  * @sb: filesystem it will belong to
1600  * @name: qstr of the name
1601  *
1602  * Allocates a dentry. It returns %NULL if there is insufficient memory
1603  * available. On a success the dentry is returned. The name passed in is
1604  * copied and the copy passed in may be reused after this call.
1605  */
1606 
__d_alloc(struct super_block * sb,const struct qstr * name)1607 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1608 {
1609 	struct external_name *ext = NULL;
1610 	struct dentry *dentry;
1611 	char *dname;
1612 	int err;
1613 
1614 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1615 	if (!dentry)
1616 		return NULL;
1617 
1618 	/*
1619 	 * We guarantee that the inline name is always NUL-terminated.
1620 	 * This way the memcpy() done by the name switching in rename
1621 	 * will still always have a NUL at the end, even if we might
1622 	 * be overwriting an internal NUL character
1623 	 */
1624 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1625 	if (unlikely(!name)) {
1626 		name = &slash_name;
1627 		dname = dentry->d_iname;
1628 	} else if (name->len > DNAME_INLINE_LEN-1) {
1629 		size_t size = offsetof(struct external_name, name[1]);
1630 
1631 		ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1632 		if (!ext) {
1633 			kmem_cache_free(dentry_cache, dentry);
1634 			return NULL;
1635 		}
1636 		atomic_set(&ext->u.count, 1);
1637 		dname = ext->name;
1638 	} else  {
1639 		dname = dentry->d_iname;
1640 	}
1641 
1642 	dentry->d_name.len = name->len;
1643 	dentry->d_name.hash = name->hash;
1644 	memcpy(dname, name->name, name->len);
1645 	dname[name->len] = 0;
1646 
1647 	/* Make sure we always see the terminating NUL character */
1648 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1649 
1650 	dentry->d_lockref.count = 1;
1651 	dentry->d_flags = 0;
1652 	spin_lock_init(&dentry->d_lock);
1653 	seqcount_init(&dentry->d_seq);
1654 	dentry->d_inode = NULL;
1655 	dentry->d_parent = dentry;
1656 	dentry->d_sb = sb;
1657 	dentry->d_op = NULL;
1658 	dentry->d_fsdata = NULL;
1659 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1660 	INIT_LIST_HEAD(&dentry->d_lru);
1661 	INIT_LIST_HEAD(&dentry->d_subdirs);
1662 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1663 	INIT_LIST_HEAD(&dentry->d_child);
1664 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1665 
1666 	if (dentry->d_op && dentry->d_op->d_init) {
1667 		err = dentry->d_op->d_init(dentry);
1668 		if (err) {
1669 			if (dname_external(dentry))
1670 				kfree(external_name(dentry));
1671 			kmem_cache_free(dentry_cache, dentry);
1672 			return NULL;
1673 		}
1674 	}
1675 
1676 	if (unlikely(ext)) {
1677 		pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1678 		mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1679 				    ksize(ext));
1680 	}
1681 
1682 	this_cpu_inc(nr_dentry);
1683 
1684 	return dentry;
1685 }
1686 
1687 /**
1688  * d_alloc	-	allocate a dcache entry
1689  * @parent: parent of entry to allocate
1690  * @name: qstr of the name
1691  *
1692  * Allocates a dentry. It returns %NULL if there is insufficient memory
1693  * available. On a success the dentry is returned. The name passed in is
1694  * copied and the copy passed in may be reused after this call.
1695  */
d_alloc(struct dentry * parent,const struct qstr * name)1696 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1697 {
1698 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1699 	if (!dentry)
1700 		return NULL;
1701 	dentry->d_flags |= DCACHE_RCUACCESS;
1702 	spin_lock(&parent->d_lock);
1703 	/*
1704 	 * don't need child lock because it is not subject
1705 	 * to concurrency here
1706 	 */
1707 	__dget_dlock(parent);
1708 	dentry->d_parent = parent;
1709 	list_add(&dentry->d_child, &parent->d_subdirs);
1710 	spin_unlock(&parent->d_lock);
1711 
1712 	return dentry;
1713 }
1714 EXPORT_SYMBOL(d_alloc);
1715 
d_alloc_anon(struct super_block * sb)1716 struct dentry *d_alloc_anon(struct super_block *sb)
1717 {
1718 	return __d_alloc(sb, NULL);
1719 }
1720 EXPORT_SYMBOL(d_alloc_anon);
1721 
d_alloc_cursor(struct dentry * parent)1722 struct dentry *d_alloc_cursor(struct dentry * parent)
1723 {
1724 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1725 	if (dentry) {
1726 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1727 		dentry->d_parent = dget(parent);
1728 	}
1729 	return dentry;
1730 }
1731 
1732 /**
1733  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1734  * @sb: the superblock
1735  * @name: qstr of the name
1736  *
1737  * For a filesystem that just pins its dentries in memory and never
1738  * performs lookups at all, return an unhashed IS_ROOT dentry.
1739  */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1740 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1741 {
1742 	return __d_alloc(sb, name);
1743 }
1744 EXPORT_SYMBOL(d_alloc_pseudo);
1745 
d_alloc_name(struct dentry * parent,const char * name)1746 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1747 {
1748 	struct qstr q;
1749 
1750 	q.name = name;
1751 	q.hash_len = hashlen_string(parent, name);
1752 	return d_alloc(parent, &q);
1753 }
1754 EXPORT_SYMBOL(d_alloc_name);
1755 
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1756 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1757 {
1758 	WARN_ON_ONCE(dentry->d_op);
1759 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1760 				DCACHE_OP_COMPARE	|
1761 				DCACHE_OP_REVALIDATE	|
1762 				DCACHE_OP_WEAK_REVALIDATE	|
1763 				DCACHE_OP_DELETE	|
1764 				DCACHE_OP_REAL));
1765 	dentry->d_op = op;
1766 	if (!op)
1767 		return;
1768 	if (op->d_hash)
1769 		dentry->d_flags |= DCACHE_OP_HASH;
1770 	if (op->d_compare)
1771 		dentry->d_flags |= DCACHE_OP_COMPARE;
1772 	if (op->d_revalidate)
1773 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1774 	if (op->d_weak_revalidate)
1775 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1776 	if (op->d_delete)
1777 		dentry->d_flags |= DCACHE_OP_DELETE;
1778 	if (op->d_prune)
1779 		dentry->d_flags |= DCACHE_OP_PRUNE;
1780 	if (op->d_real)
1781 		dentry->d_flags |= DCACHE_OP_REAL;
1782 
1783 }
1784 EXPORT_SYMBOL(d_set_d_op);
1785 
1786 
1787 /*
1788  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1789  * @dentry - The dentry to mark
1790  *
1791  * Mark a dentry as falling through to the lower layer (as set with
1792  * d_pin_lower()).  This flag may be recorded on the medium.
1793  */
d_set_fallthru(struct dentry * dentry)1794 void d_set_fallthru(struct dentry *dentry)
1795 {
1796 	spin_lock(&dentry->d_lock);
1797 	dentry->d_flags |= DCACHE_FALLTHRU;
1798 	spin_unlock(&dentry->d_lock);
1799 }
1800 EXPORT_SYMBOL(d_set_fallthru);
1801 
d_flags_for_inode(struct inode * inode)1802 static unsigned d_flags_for_inode(struct inode *inode)
1803 {
1804 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1805 
1806 	if (!inode)
1807 		return DCACHE_MISS_TYPE;
1808 
1809 	if (S_ISDIR(inode->i_mode)) {
1810 		add_flags = DCACHE_DIRECTORY_TYPE;
1811 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1812 			if (unlikely(!inode->i_op->lookup))
1813 				add_flags = DCACHE_AUTODIR_TYPE;
1814 			else
1815 				inode->i_opflags |= IOP_LOOKUP;
1816 		}
1817 		goto type_determined;
1818 	}
1819 
1820 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1821 		if (unlikely(inode->i_op->get_link)) {
1822 			add_flags = DCACHE_SYMLINK_TYPE;
1823 			goto type_determined;
1824 		}
1825 		inode->i_opflags |= IOP_NOFOLLOW;
1826 	}
1827 
1828 	if (unlikely(!S_ISREG(inode->i_mode)))
1829 		add_flags = DCACHE_SPECIAL_TYPE;
1830 
1831 type_determined:
1832 	if (unlikely(IS_AUTOMOUNT(inode)))
1833 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1834 	return add_flags;
1835 }
1836 
__d_instantiate(struct dentry * dentry,struct inode * inode)1837 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1838 {
1839 	unsigned add_flags = d_flags_for_inode(inode);
1840 	WARN_ON(d_in_lookup(dentry));
1841 
1842 	spin_lock(&dentry->d_lock);
1843 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1844 	raw_write_seqcount_begin(&dentry->d_seq);
1845 	__d_set_inode_and_type(dentry, inode, add_flags);
1846 	raw_write_seqcount_end(&dentry->d_seq);
1847 	fsnotify_update_flags(dentry);
1848 	spin_unlock(&dentry->d_lock);
1849 }
1850 
1851 /**
1852  * d_instantiate - fill in inode information for a dentry
1853  * @entry: dentry to complete
1854  * @inode: inode to attach to this dentry
1855  *
1856  * Fill in inode information in the entry.
1857  *
1858  * This turns negative dentries into productive full members
1859  * of society.
1860  *
1861  * NOTE! This assumes that the inode count has been incremented
1862  * (or otherwise set) by the caller to indicate that it is now
1863  * in use by the dcache.
1864  */
1865 
d_instantiate(struct dentry * entry,struct inode * inode)1866 void d_instantiate(struct dentry *entry, struct inode * inode)
1867 {
1868 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1869 	if (inode) {
1870 		security_d_instantiate(entry, inode);
1871 		spin_lock(&inode->i_lock);
1872 		__d_instantiate(entry, inode);
1873 		spin_unlock(&inode->i_lock);
1874 	}
1875 }
1876 EXPORT_SYMBOL(d_instantiate);
1877 
1878 /*
1879  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1880  * with lockdep-related part of unlock_new_inode() done before
1881  * anything else.  Use that instead of open-coding d_instantiate()/
1882  * unlock_new_inode() combinations.
1883  */
d_instantiate_new(struct dentry * entry,struct inode * inode)1884 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1885 {
1886 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1887 	BUG_ON(!inode);
1888 	lockdep_annotate_inode_mutex_key(inode);
1889 	security_d_instantiate(entry, inode);
1890 	spin_lock(&inode->i_lock);
1891 	__d_instantiate(entry, inode);
1892 	WARN_ON(!(inode->i_state & I_NEW));
1893 	inode->i_state &= ~I_NEW & ~I_CREATING;
1894 	smp_mb();
1895 	wake_up_bit(&inode->i_state, __I_NEW);
1896 	spin_unlock(&inode->i_lock);
1897 }
1898 EXPORT_SYMBOL(d_instantiate_new);
1899 
d_make_root(struct inode * root_inode)1900 struct dentry *d_make_root(struct inode *root_inode)
1901 {
1902 	struct dentry *res = NULL;
1903 
1904 	if (root_inode) {
1905 		res = d_alloc_anon(root_inode->i_sb);
1906 		if (res) {
1907 			res->d_flags |= DCACHE_RCUACCESS;
1908 			d_instantiate(res, root_inode);
1909 		} else {
1910 			iput(root_inode);
1911 		}
1912 	}
1913 	return res;
1914 }
1915 EXPORT_SYMBOL(d_make_root);
1916 
__d_instantiate_anon(struct dentry * dentry,struct inode * inode,bool disconnected)1917 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1918 					   struct inode *inode,
1919 					   bool disconnected)
1920 {
1921 	struct dentry *res;
1922 	unsigned add_flags;
1923 
1924 	security_d_instantiate(dentry, inode);
1925 	spin_lock(&inode->i_lock);
1926 	res = __d_find_any_alias(inode);
1927 	if (res) {
1928 		spin_unlock(&inode->i_lock);
1929 		dput(dentry);
1930 		goto out_iput;
1931 	}
1932 
1933 	/* attach a disconnected dentry */
1934 	add_flags = d_flags_for_inode(inode);
1935 
1936 	if (disconnected)
1937 		add_flags |= DCACHE_DISCONNECTED;
1938 
1939 	spin_lock(&dentry->d_lock);
1940 	__d_set_inode_and_type(dentry, inode, add_flags);
1941 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1942 	if (!disconnected) {
1943 		hlist_bl_lock(&dentry->d_sb->s_roots);
1944 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1945 		hlist_bl_unlock(&dentry->d_sb->s_roots);
1946 	}
1947 	spin_unlock(&dentry->d_lock);
1948 	spin_unlock(&inode->i_lock);
1949 
1950 	return dentry;
1951 
1952  out_iput:
1953 	iput(inode);
1954 	return res;
1955 }
1956 
d_instantiate_anon(struct dentry * dentry,struct inode * inode)1957 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1958 {
1959 	return __d_instantiate_anon(dentry, inode, true);
1960 }
1961 EXPORT_SYMBOL(d_instantiate_anon);
1962 
__d_obtain_alias(struct inode * inode,bool disconnected)1963 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1964 {
1965 	struct dentry *tmp;
1966 	struct dentry *res;
1967 
1968 	if (!inode)
1969 		return ERR_PTR(-ESTALE);
1970 	if (IS_ERR(inode))
1971 		return ERR_CAST(inode);
1972 
1973 	res = d_find_any_alias(inode);
1974 	if (res)
1975 		goto out_iput;
1976 
1977 	tmp = d_alloc_anon(inode->i_sb);
1978 	if (!tmp) {
1979 		res = ERR_PTR(-ENOMEM);
1980 		goto out_iput;
1981 	}
1982 
1983 	return __d_instantiate_anon(tmp, inode, disconnected);
1984 
1985 out_iput:
1986 	iput(inode);
1987 	return res;
1988 }
1989 
1990 /**
1991  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1992  * @inode: inode to allocate the dentry for
1993  *
1994  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1995  * similar open by handle operations.  The returned dentry may be anonymous,
1996  * or may have a full name (if the inode was already in the cache).
1997  *
1998  * When called on a directory inode, we must ensure that the inode only ever
1999  * has one dentry.  If a dentry is found, that is returned instead of
2000  * allocating a new one.
2001  *
2002  * On successful return, the reference to the inode has been transferred
2003  * to the dentry.  In case of an error the reference on the inode is released.
2004  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2005  * be passed in and the error will be propagated to the return value,
2006  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2007  */
d_obtain_alias(struct inode * inode)2008 struct dentry *d_obtain_alias(struct inode *inode)
2009 {
2010 	return __d_obtain_alias(inode, true);
2011 }
2012 EXPORT_SYMBOL(d_obtain_alias);
2013 
2014 /**
2015  * d_obtain_root - find or allocate a dentry for a given inode
2016  * @inode: inode to allocate the dentry for
2017  *
2018  * Obtain an IS_ROOT dentry for the root of a filesystem.
2019  *
2020  * We must ensure that directory inodes only ever have one dentry.  If a
2021  * dentry is found, that is returned instead of allocating a new one.
2022  *
2023  * On successful return, the reference to the inode has been transferred
2024  * to the dentry.  In case of an error the reference on the inode is
2025  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2026  * error will be propagate to the return value, with a %NULL @inode
2027  * replaced by ERR_PTR(-ESTALE).
2028  */
d_obtain_root(struct inode * inode)2029 struct dentry *d_obtain_root(struct inode *inode)
2030 {
2031 	return __d_obtain_alias(inode, false);
2032 }
2033 EXPORT_SYMBOL(d_obtain_root);
2034 
2035 /**
2036  * d_add_ci - lookup or allocate new dentry with case-exact name
2037  * @inode:  the inode case-insensitive lookup has found
2038  * @dentry: the negative dentry that was passed to the parent's lookup func
2039  * @name:   the case-exact name to be associated with the returned dentry
2040  *
2041  * This is to avoid filling the dcache with case-insensitive names to the
2042  * same inode, only the actual correct case is stored in the dcache for
2043  * case-insensitive filesystems.
2044  *
2045  * For a case-insensitive lookup match and if the the case-exact dentry
2046  * already exists in in the dcache, use it and return it.
2047  *
2048  * If no entry exists with the exact case name, allocate new dentry with
2049  * the exact case, and return the spliced entry.
2050  */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2051 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2052 			struct qstr *name)
2053 {
2054 	struct dentry *found, *res;
2055 
2056 	/*
2057 	 * First check if a dentry matching the name already exists,
2058 	 * if not go ahead and create it now.
2059 	 */
2060 	found = d_hash_and_lookup(dentry->d_parent, name);
2061 	if (found) {
2062 		iput(inode);
2063 		return found;
2064 	}
2065 	if (d_in_lookup(dentry)) {
2066 		found = d_alloc_parallel(dentry->d_parent, name,
2067 					dentry->d_wait);
2068 		if (IS_ERR(found) || !d_in_lookup(found)) {
2069 			iput(inode);
2070 			return found;
2071 		}
2072 	} else {
2073 		found = d_alloc(dentry->d_parent, name);
2074 		if (!found) {
2075 			iput(inode);
2076 			return ERR_PTR(-ENOMEM);
2077 		}
2078 	}
2079 	res = d_splice_alias(inode, found);
2080 	if (res) {
2081 		dput(found);
2082 		return res;
2083 	}
2084 	return found;
2085 }
2086 EXPORT_SYMBOL(d_add_ci);
2087 
2088 
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2089 static inline bool d_same_name(const struct dentry *dentry,
2090 				const struct dentry *parent,
2091 				const struct qstr *name)
2092 {
2093 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2094 		if (dentry->d_name.len != name->len)
2095 			return false;
2096 		return dentry_cmp(dentry, name->name, name->len) == 0;
2097 	}
2098 	return parent->d_op->d_compare(dentry,
2099 				       dentry->d_name.len, dentry->d_name.name,
2100 				       name) == 0;
2101 }
2102 
2103 /**
2104  * __d_lookup_rcu - search for a dentry (racy, store-free)
2105  * @parent: parent dentry
2106  * @name: qstr of name we wish to find
2107  * @seqp: returns d_seq value at the point where the dentry was found
2108  * Returns: dentry, or NULL
2109  *
2110  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2111  * resolution (store-free path walking) design described in
2112  * Documentation/filesystems/path-lookup.txt.
2113  *
2114  * This is not to be used outside core vfs.
2115  *
2116  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2117  * held, and rcu_read_lock held. The returned dentry must not be stored into
2118  * without taking d_lock and checking d_seq sequence count against @seq
2119  * returned here.
2120  *
2121  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2122  * function.
2123  *
2124  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2125  * the returned dentry, so long as its parent's seqlock is checked after the
2126  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2127  * is formed, giving integrity down the path walk.
2128  *
2129  * NOTE! The caller *has* to check the resulting dentry against the sequence
2130  * number we've returned before using any of the resulting dentry state!
2131  */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2132 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2133 				const struct qstr *name,
2134 				unsigned *seqp)
2135 {
2136 	u64 hashlen = name->hash_len;
2137 	const unsigned char *str = name->name;
2138 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2139 	struct hlist_bl_node *node;
2140 	struct dentry *dentry;
2141 
2142 	/*
2143 	 * Note: There is significant duplication with __d_lookup_rcu which is
2144 	 * required to prevent single threaded performance regressions
2145 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2146 	 * Keep the two functions in sync.
2147 	 */
2148 
2149 	/*
2150 	 * The hash list is protected using RCU.
2151 	 *
2152 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2153 	 * races with d_move().
2154 	 *
2155 	 * It is possible that concurrent renames can mess up our list
2156 	 * walk here and result in missing our dentry, resulting in the
2157 	 * false-negative result. d_lookup() protects against concurrent
2158 	 * renames using rename_lock seqlock.
2159 	 *
2160 	 * See Documentation/filesystems/path-lookup.txt for more details.
2161 	 */
2162 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2163 		unsigned seq;
2164 
2165 seqretry:
2166 		/*
2167 		 * The dentry sequence count protects us from concurrent
2168 		 * renames, and thus protects parent and name fields.
2169 		 *
2170 		 * The caller must perform a seqcount check in order
2171 		 * to do anything useful with the returned dentry.
2172 		 *
2173 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2174 		 * we don't wait for the sequence count to stabilize if it
2175 		 * is in the middle of a sequence change. If we do the slow
2176 		 * dentry compare, we will do seqretries until it is stable,
2177 		 * and if we end up with a successful lookup, we actually
2178 		 * want to exit RCU lookup anyway.
2179 		 *
2180 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2181 		 * we are still guaranteed NUL-termination of ->d_name.name.
2182 		 */
2183 		seq = raw_seqcount_begin(&dentry->d_seq);
2184 		if (dentry->d_parent != parent)
2185 			continue;
2186 		if (d_unhashed(dentry))
2187 			continue;
2188 
2189 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2190 			int tlen;
2191 			const char *tname;
2192 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2193 				continue;
2194 			tlen = dentry->d_name.len;
2195 			tname = dentry->d_name.name;
2196 			/* we want a consistent (name,len) pair */
2197 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2198 				cpu_relax();
2199 				goto seqretry;
2200 			}
2201 			if (parent->d_op->d_compare(dentry,
2202 						    tlen, tname, name) != 0)
2203 				continue;
2204 		} else {
2205 			if (dentry->d_name.hash_len != hashlen)
2206 				continue;
2207 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2208 				continue;
2209 		}
2210 		*seqp = seq;
2211 		return dentry;
2212 	}
2213 	return NULL;
2214 }
2215 
2216 /**
2217  * d_lookup - search for a dentry
2218  * @parent: parent dentry
2219  * @name: qstr of name we wish to find
2220  * Returns: dentry, or NULL
2221  *
2222  * d_lookup searches the children of the parent dentry for the name in
2223  * question. If the dentry is found its reference count is incremented and the
2224  * dentry is returned. The caller must use dput to free the entry when it has
2225  * finished using it. %NULL is returned if the dentry does not exist.
2226  */
d_lookup(const struct dentry * parent,const struct qstr * name)2227 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2228 {
2229 	struct dentry *dentry;
2230 	unsigned seq;
2231 
2232 	do {
2233 		seq = read_seqbegin(&rename_lock);
2234 		dentry = __d_lookup(parent, name);
2235 		if (dentry)
2236 			break;
2237 	} while (read_seqretry(&rename_lock, seq));
2238 	return dentry;
2239 }
2240 EXPORT_SYMBOL(d_lookup);
2241 
2242 /**
2243  * __d_lookup - search for a dentry (racy)
2244  * @parent: parent dentry
2245  * @name: qstr of name we wish to find
2246  * Returns: dentry, or NULL
2247  *
2248  * __d_lookup is like d_lookup, however it may (rarely) return a
2249  * false-negative result due to unrelated rename activity.
2250  *
2251  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2252  * however it must be used carefully, eg. with a following d_lookup in
2253  * the case of failure.
2254  *
2255  * __d_lookup callers must be commented.
2256  */
__d_lookup(const struct dentry * parent,const struct qstr * name)2257 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2258 {
2259 	unsigned int hash = name->hash;
2260 	struct hlist_bl_head *b = d_hash(hash);
2261 	struct hlist_bl_node *node;
2262 	struct dentry *found = NULL;
2263 	struct dentry *dentry;
2264 
2265 	/*
2266 	 * Note: There is significant duplication with __d_lookup_rcu which is
2267 	 * required to prevent single threaded performance regressions
2268 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2269 	 * Keep the two functions in sync.
2270 	 */
2271 
2272 	/*
2273 	 * The hash list is protected using RCU.
2274 	 *
2275 	 * Take d_lock when comparing a candidate dentry, to avoid races
2276 	 * with d_move().
2277 	 *
2278 	 * It is possible that concurrent renames can mess up our list
2279 	 * walk here and result in missing our dentry, resulting in the
2280 	 * false-negative result. d_lookup() protects against concurrent
2281 	 * renames using rename_lock seqlock.
2282 	 *
2283 	 * See Documentation/filesystems/path-lookup.txt for more details.
2284 	 */
2285 	rcu_read_lock();
2286 
2287 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2288 
2289 		if (dentry->d_name.hash != hash)
2290 			continue;
2291 
2292 		spin_lock(&dentry->d_lock);
2293 		if (dentry->d_parent != parent)
2294 			goto next;
2295 		if (d_unhashed(dentry))
2296 			goto next;
2297 
2298 		if (!d_same_name(dentry, parent, name))
2299 			goto next;
2300 
2301 		dentry->d_lockref.count++;
2302 		found = dentry;
2303 		spin_unlock(&dentry->d_lock);
2304 		break;
2305 next:
2306 		spin_unlock(&dentry->d_lock);
2307  	}
2308  	rcu_read_unlock();
2309 
2310  	return found;
2311 }
2312 
2313 /**
2314  * d_hash_and_lookup - hash the qstr then search for a dentry
2315  * @dir: Directory to search in
2316  * @name: qstr of name we wish to find
2317  *
2318  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2319  */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2320 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2321 {
2322 	/*
2323 	 * Check for a fs-specific hash function. Note that we must
2324 	 * calculate the standard hash first, as the d_op->d_hash()
2325 	 * routine may choose to leave the hash value unchanged.
2326 	 */
2327 	name->hash = full_name_hash(dir, name->name, name->len);
2328 	if (dir->d_flags & DCACHE_OP_HASH) {
2329 		int err = dir->d_op->d_hash(dir, name);
2330 		if (unlikely(err < 0))
2331 			return ERR_PTR(err);
2332 	}
2333 	return d_lookup(dir, name);
2334 }
2335 EXPORT_SYMBOL(d_hash_and_lookup);
2336 
2337 /*
2338  * When a file is deleted, we have two options:
2339  * - turn this dentry into a negative dentry
2340  * - unhash this dentry and free it.
2341  *
2342  * Usually, we want to just turn this into
2343  * a negative dentry, but if anybody else is
2344  * currently using the dentry or the inode
2345  * we can't do that and we fall back on removing
2346  * it from the hash queues and waiting for
2347  * it to be deleted later when it has no users
2348  */
2349 
2350 /**
2351  * d_delete - delete a dentry
2352  * @dentry: The dentry to delete
2353  *
2354  * Turn the dentry into a negative dentry if possible, otherwise
2355  * remove it from the hash queues so it can be deleted later
2356  */
2357 
d_delete(struct dentry * dentry)2358 void d_delete(struct dentry * dentry)
2359 {
2360 	struct inode *inode = dentry->d_inode;
2361 	int isdir = d_is_dir(dentry);
2362 
2363 	spin_lock(&inode->i_lock);
2364 	spin_lock(&dentry->d_lock);
2365 	/*
2366 	 * Are we the only user?
2367 	 */
2368 	if (dentry->d_lockref.count == 1) {
2369 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2370 		dentry_unlink_inode(dentry);
2371 	} else {
2372 		__d_drop(dentry);
2373 		spin_unlock(&dentry->d_lock);
2374 		spin_unlock(&inode->i_lock);
2375 	}
2376 	fsnotify_nameremove(dentry, isdir);
2377 }
2378 EXPORT_SYMBOL(d_delete);
2379 
__d_rehash(struct dentry * entry)2380 static void __d_rehash(struct dentry *entry)
2381 {
2382 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2383 
2384 	hlist_bl_lock(b);
2385 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2386 	hlist_bl_unlock(b);
2387 }
2388 
2389 /**
2390  * d_rehash	- add an entry back to the hash
2391  * @entry: dentry to add to the hash
2392  *
2393  * Adds a dentry to the hash according to its name.
2394  */
2395 
d_rehash(struct dentry * entry)2396 void d_rehash(struct dentry * entry)
2397 {
2398 	spin_lock(&entry->d_lock);
2399 	__d_rehash(entry);
2400 	spin_unlock(&entry->d_lock);
2401 }
2402 EXPORT_SYMBOL(d_rehash);
2403 
start_dir_add(struct inode * dir)2404 static inline unsigned start_dir_add(struct inode *dir)
2405 {
2406 
2407 	for (;;) {
2408 		unsigned n = dir->i_dir_seq;
2409 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2410 			return n;
2411 		cpu_relax();
2412 	}
2413 }
2414 
end_dir_add(struct inode * dir,unsigned n)2415 static inline void end_dir_add(struct inode *dir, unsigned n)
2416 {
2417 	smp_store_release(&dir->i_dir_seq, n + 2);
2418 }
2419 
d_wait_lookup(struct dentry * dentry)2420 static void d_wait_lookup(struct dentry *dentry)
2421 {
2422 	if (d_in_lookup(dentry)) {
2423 		DECLARE_WAITQUEUE(wait, current);
2424 		add_wait_queue(dentry->d_wait, &wait);
2425 		do {
2426 			set_current_state(TASK_UNINTERRUPTIBLE);
2427 			spin_unlock(&dentry->d_lock);
2428 			schedule();
2429 			spin_lock(&dentry->d_lock);
2430 		} while (d_in_lookup(dentry));
2431 	}
2432 }
2433 
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2434 struct dentry *d_alloc_parallel(struct dentry *parent,
2435 				const struct qstr *name,
2436 				wait_queue_head_t *wq)
2437 {
2438 	unsigned int hash = name->hash;
2439 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2440 	struct hlist_bl_node *node;
2441 	struct dentry *new = d_alloc(parent, name);
2442 	struct dentry *dentry;
2443 	unsigned seq, r_seq, d_seq;
2444 
2445 	if (unlikely(!new))
2446 		return ERR_PTR(-ENOMEM);
2447 
2448 retry:
2449 	rcu_read_lock();
2450 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2451 	r_seq = read_seqbegin(&rename_lock);
2452 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2453 	if (unlikely(dentry)) {
2454 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2455 			rcu_read_unlock();
2456 			goto retry;
2457 		}
2458 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2459 			rcu_read_unlock();
2460 			dput(dentry);
2461 			goto retry;
2462 		}
2463 		rcu_read_unlock();
2464 		dput(new);
2465 		return dentry;
2466 	}
2467 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2468 		rcu_read_unlock();
2469 		goto retry;
2470 	}
2471 
2472 	if (unlikely(seq & 1)) {
2473 		rcu_read_unlock();
2474 		goto retry;
2475 	}
2476 
2477 	hlist_bl_lock(b);
2478 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2479 		hlist_bl_unlock(b);
2480 		rcu_read_unlock();
2481 		goto retry;
2482 	}
2483 	/*
2484 	 * No changes for the parent since the beginning of d_lookup().
2485 	 * Since all removals from the chain happen with hlist_bl_lock(),
2486 	 * any potential in-lookup matches are going to stay here until
2487 	 * we unlock the chain.  All fields are stable in everything
2488 	 * we encounter.
2489 	 */
2490 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2491 		if (dentry->d_name.hash != hash)
2492 			continue;
2493 		if (dentry->d_parent != parent)
2494 			continue;
2495 		if (!d_same_name(dentry, parent, name))
2496 			continue;
2497 		hlist_bl_unlock(b);
2498 		/* now we can try to grab a reference */
2499 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2500 			rcu_read_unlock();
2501 			goto retry;
2502 		}
2503 
2504 		rcu_read_unlock();
2505 		/*
2506 		 * somebody is likely to be still doing lookup for it;
2507 		 * wait for them to finish
2508 		 */
2509 		spin_lock(&dentry->d_lock);
2510 		d_wait_lookup(dentry);
2511 		/*
2512 		 * it's not in-lookup anymore; in principle we should repeat
2513 		 * everything from dcache lookup, but it's likely to be what
2514 		 * d_lookup() would've found anyway.  If it is, just return it;
2515 		 * otherwise we really have to repeat the whole thing.
2516 		 */
2517 		if (unlikely(dentry->d_name.hash != hash))
2518 			goto mismatch;
2519 		if (unlikely(dentry->d_parent != parent))
2520 			goto mismatch;
2521 		if (unlikely(d_unhashed(dentry)))
2522 			goto mismatch;
2523 		if (unlikely(!d_same_name(dentry, parent, name)))
2524 			goto mismatch;
2525 		/* OK, it *is* a hashed match; return it */
2526 		spin_unlock(&dentry->d_lock);
2527 		dput(new);
2528 		return dentry;
2529 	}
2530 	rcu_read_unlock();
2531 	/* we can't take ->d_lock here; it's OK, though. */
2532 	new->d_flags |= DCACHE_PAR_LOOKUP;
2533 	new->d_wait = wq;
2534 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2535 	hlist_bl_unlock(b);
2536 	return new;
2537 mismatch:
2538 	spin_unlock(&dentry->d_lock);
2539 	dput(dentry);
2540 	goto retry;
2541 }
2542 EXPORT_SYMBOL(d_alloc_parallel);
2543 
__d_lookup_done(struct dentry * dentry)2544 void __d_lookup_done(struct dentry *dentry)
2545 {
2546 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2547 						 dentry->d_name.hash);
2548 	hlist_bl_lock(b);
2549 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2550 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2551 	wake_up_all(dentry->d_wait);
2552 	dentry->d_wait = NULL;
2553 	hlist_bl_unlock(b);
2554 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2555 	INIT_LIST_HEAD(&dentry->d_lru);
2556 }
2557 EXPORT_SYMBOL(__d_lookup_done);
2558 
2559 /* inode->i_lock held if inode is non-NULL */
2560 
__d_add(struct dentry * dentry,struct inode * inode)2561 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2562 {
2563 	struct inode *dir = NULL;
2564 	unsigned n;
2565 	spin_lock(&dentry->d_lock);
2566 	if (unlikely(d_in_lookup(dentry))) {
2567 		dir = dentry->d_parent->d_inode;
2568 		n = start_dir_add(dir);
2569 		__d_lookup_done(dentry);
2570 	}
2571 	if (inode) {
2572 		unsigned add_flags = d_flags_for_inode(inode);
2573 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2574 		raw_write_seqcount_begin(&dentry->d_seq);
2575 		__d_set_inode_and_type(dentry, inode, add_flags);
2576 		raw_write_seqcount_end(&dentry->d_seq);
2577 		fsnotify_update_flags(dentry);
2578 	}
2579 	__d_rehash(dentry);
2580 	if (dir)
2581 		end_dir_add(dir, n);
2582 	spin_unlock(&dentry->d_lock);
2583 	if (inode)
2584 		spin_unlock(&inode->i_lock);
2585 }
2586 
2587 /**
2588  * d_add - add dentry to hash queues
2589  * @entry: dentry to add
2590  * @inode: The inode to attach to this dentry
2591  *
2592  * This adds the entry to the hash queues and initializes @inode.
2593  * The entry was actually filled in earlier during d_alloc().
2594  */
2595 
d_add(struct dentry * entry,struct inode * inode)2596 void d_add(struct dentry *entry, struct inode *inode)
2597 {
2598 	if (inode) {
2599 		security_d_instantiate(entry, inode);
2600 		spin_lock(&inode->i_lock);
2601 	}
2602 	__d_add(entry, inode);
2603 }
2604 EXPORT_SYMBOL(d_add);
2605 
2606 /**
2607  * d_exact_alias - find and hash an exact unhashed alias
2608  * @entry: dentry to add
2609  * @inode: The inode to go with this dentry
2610  *
2611  * If an unhashed dentry with the same name/parent and desired
2612  * inode already exists, hash and return it.  Otherwise, return
2613  * NULL.
2614  *
2615  * Parent directory should be locked.
2616  */
d_exact_alias(struct dentry * entry,struct inode * inode)2617 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2618 {
2619 	struct dentry *alias;
2620 	unsigned int hash = entry->d_name.hash;
2621 
2622 	spin_lock(&inode->i_lock);
2623 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2624 		/*
2625 		 * Don't need alias->d_lock here, because aliases with
2626 		 * d_parent == entry->d_parent are not subject to name or
2627 		 * parent changes, because the parent inode i_mutex is held.
2628 		 */
2629 		if (alias->d_name.hash != hash)
2630 			continue;
2631 		if (alias->d_parent != entry->d_parent)
2632 			continue;
2633 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2634 			continue;
2635 		spin_lock(&alias->d_lock);
2636 		if (!d_unhashed(alias)) {
2637 			spin_unlock(&alias->d_lock);
2638 			alias = NULL;
2639 		} else {
2640 			__dget_dlock(alias);
2641 			__d_rehash(alias);
2642 			spin_unlock(&alias->d_lock);
2643 		}
2644 		spin_unlock(&inode->i_lock);
2645 		return alias;
2646 	}
2647 	spin_unlock(&inode->i_lock);
2648 	return NULL;
2649 }
2650 EXPORT_SYMBOL(d_exact_alias);
2651 
swap_names(struct dentry * dentry,struct dentry * target)2652 static void swap_names(struct dentry *dentry, struct dentry *target)
2653 {
2654 	if (unlikely(dname_external(target))) {
2655 		if (unlikely(dname_external(dentry))) {
2656 			/*
2657 			 * Both external: swap the pointers
2658 			 */
2659 			swap(target->d_name.name, dentry->d_name.name);
2660 		} else {
2661 			/*
2662 			 * dentry:internal, target:external.  Steal target's
2663 			 * storage and make target internal.
2664 			 */
2665 			memcpy(target->d_iname, dentry->d_name.name,
2666 					dentry->d_name.len + 1);
2667 			dentry->d_name.name = target->d_name.name;
2668 			target->d_name.name = target->d_iname;
2669 		}
2670 	} else {
2671 		if (unlikely(dname_external(dentry))) {
2672 			/*
2673 			 * dentry:external, target:internal.  Give dentry's
2674 			 * storage to target and make dentry internal
2675 			 */
2676 			memcpy(dentry->d_iname, target->d_name.name,
2677 					target->d_name.len + 1);
2678 			target->d_name.name = dentry->d_name.name;
2679 			dentry->d_name.name = dentry->d_iname;
2680 		} else {
2681 			/*
2682 			 * Both are internal.
2683 			 */
2684 			unsigned int i;
2685 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2686 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2687 				swap(((long *) &dentry->d_iname)[i],
2688 				     ((long *) &target->d_iname)[i]);
2689 			}
2690 		}
2691 	}
2692 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2693 }
2694 
copy_name(struct dentry * dentry,struct dentry * target)2695 static void copy_name(struct dentry *dentry, struct dentry *target)
2696 {
2697 	struct external_name *old_name = NULL;
2698 	if (unlikely(dname_external(dentry)))
2699 		old_name = external_name(dentry);
2700 	if (unlikely(dname_external(target))) {
2701 		atomic_inc(&external_name(target)->u.count);
2702 		dentry->d_name = target->d_name;
2703 	} else {
2704 		memcpy(dentry->d_iname, target->d_name.name,
2705 				target->d_name.len + 1);
2706 		dentry->d_name.name = dentry->d_iname;
2707 		dentry->d_name.hash_len = target->d_name.hash_len;
2708 	}
2709 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2710 		call_rcu(&old_name->u.head, __d_free_external_name);
2711 }
2712 
2713 /*
2714  * __d_move - move a dentry
2715  * @dentry: entry to move
2716  * @target: new dentry
2717  * @exchange: exchange the two dentries
2718  *
2719  * Update the dcache to reflect the move of a file name. Negative
2720  * dcache entries should not be moved in this way. Caller must hold
2721  * rename_lock, the i_mutex of the source and target directories,
2722  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2723  */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2724 static void __d_move(struct dentry *dentry, struct dentry *target,
2725 		     bool exchange)
2726 {
2727 	struct dentry *old_parent, *p;
2728 	struct inode *dir = NULL;
2729 	unsigned n;
2730 
2731 	WARN_ON(!dentry->d_inode);
2732 	if (WARN_ON(dentry == target))
2733 		return;
2734 
2735 	BUG_ON(d_ancestor(target, dentry));
2736 	old_parent = dentry->d_parent;
2737 	p = d_ancestor(old_parent, target);
2738 	if (IS_ROOT(dentry)) {
2739 		BUG_ON(p);
2740 		spin_lock(&target->d_parent->d_lock);
2741 	} else if (!p) {
2742 		/* target is not a descendent of dentry->d_parent */
2743 		spin_lock(&target->d_parent->d_lock);
2744 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2745 	} else {
2746 		BUG_ON(p == dentry);
2747 		spin_lock(&old_parent->d_lock);
2748 		if (p != target)
2749 			spin_lock_nested(&target->d_parent->d_lock,
2750 					DENTRY_D_LOCK_NESTED);
2751 	}
2752 	spin_lock_nested(&dentry->d_lock, 2);
2753 	spin_lock_nested(&target->d_lock, 3);
2754 
2755 	if (unlikely(d_in_lookup(target))) {
2756 		dir = target->d_parent->d_inode;
2757 		n = start_dir_add(dir);
2758 		__d_lookup_done(target);
2759 	}
2760 
2761 	write_seqcount_begin(&dentry->d_seq);
2762 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2763 
2764 	/* unhash both */
2765 	if (!d_unhashed(dentry))
2766 		___d_drop(dentry);
2767 	if (!d_unhashed(target))
2768 		___d_drop(target);
2769 
2770 	/* ... and switch them in the tree */
2771 	dentry->d_parent = target->d_parent;
2772 	if (!exchange) {
2773 		copy_name(dentry, target);
2774 		target->d_hash.pprev = NULL;
2775 		dentry->d_parent->d_lockref.count++;
2776 		if (dentry == old_parent)
2777 			dentry->d_flags |= DCACHE_RCUACCESS;
2778 		else
2779 			WARN_ON(!--old_parent->d_lockref.count);
2780 	} else {
2781 		target->d_parent = old_parent;
2782 		swap_names(dentry, target);
2783 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2784 		__d_rehash(target);
2785 		fsnotify_update_flags(target);
2786 	}
2787 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2788 	__d_rehash(dentry);
2789 	fsnotify_update_flags(dentry);
2790 
2791 	write_seqcount_end(&target->d_seq);
2792 	write_seqcount_end(&dentry->d_seq);
2793 
2794 	if (dir)
2795 		end_dir_add(dir, n);
2796 
2797 	if (dentry->d_parent != old_parent)
2798 		spin_unlock(&dentry->d_parent->d_lock);
2799 	if (dentry != old_parent)
2800 		spin_unlock(&old_parent->d_lock);
2801 	spin_unlock(&target->d_lock);
2802 	spin_unlock(&dentry->d_lock);
2803 }
2804 
2805 /*
2806  * d_move - move a dentry
2807  * @dentry: entry to move
2808  * @target: new dentry
2809  *
2810  * Update the dcache to reflect the move of a file name. Negative
2811  * dcache entries should not be moved in this way. See the locking
2812  * requirements for __d_move.
2813  */
d_move(struct dentry * dentry,struct dentry * target)2814 void d_move(struct dentry *dentry, struct dentry *target)
2815 {
2816 	write_seqlock(&rename_lock);
2817 	__d_move(dentry, target, false);
2818 	write_sequnlock(&rename_lock);
2819 }
2820 EXPORT_SYMBOL(d_move);
2821 
2822 /*
2823  * d_exchange - exchange two dentries
2824  * @dentry1: first dentry
2825  * @dentry2: second dentry
2826  */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2827 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2828 {
2829 	write_seqlock(&rename_lock);
2830 
2831 	WARN_ON(!dentry1->d_inode);
2832 	WARN_ON(!dentry2->d_inode);
2833 	WARN_ON(IS_ROOT(dentry1));
2834 	WARN_ON(IS_ROOT(dentry2));
2835 
2836 	__d_move(dentry1, dentry2, true);
2837 
2838 	write_sequnlock(&rename_lock);
2839 }
2840 
2841 /**
2842  * d_ancestor - search for an ancestor
2843  * @p1: ancestor dentry
2844  * @p2: child dentry
2845  *
2846  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2847  * an ancestor of p2, else NULL.
2848  */
d_ancestor(struct dentry * p1,struct dentry * p2)2849 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2850 {
2851 	struct dentry *p;
2852 
2853 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2854 		if (p->d_parent == p1)
2855 			return p;
2856 	}
2857 	return NULL;
2858 }
2859 
2860 /*
2861  * This helper attempts to cope with remotely renamed directories
2862  *
2863  * It assumes that the caller is already holding
2864  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2865  *
2866  * Note: If ever the locking in lock_rename() changes, then please
2867  * remember to update this too...
2868  */
__d_unalias(struct inode * inode,struct dentry * dentry,struct dentry * alias)2869 static int __d_unalias(struct inode *inode,
2870 		struct dentry *dentry, struct dentry *alias)
2871 {
2872 	struct mutex *m1 = NULL;
2873 	struct rw_semaphore *m2 = NULL;
2874 	int ret = -ESTALE;
2875 
2876 	/* If alias and dentry share a parent, then no extra locks required */
2877 	if (alias->d_parent == dentry->d_parent)
2878 		goto out_unalias;
2879 
2880 	/* See lock_rename() */
2881 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2882 		goto out_err;
2883 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2884 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2885 		goto out_err;
2886 	m2 = &alias->d_parent->d_inode->i_rwsem;
2887 out_unalias:
2888 	__d_move(alias, dentry, false);
2889 	ret = 0;
2890 out_err:
2891 	if (m2)
2892 		up_read(m2);
2893 	if (m1)
2894 		mutex_unlock(m1);
2895 	return ret;
2896 }
2897 
2898 /**
2899  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2900  * @inode:  the inode which may have a disconnected dentry
2901  * @dentry: a negative dentry which we want to point to the inode.
2902  *
2903  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2904  * place of the given dentry and return it, else simply d_add the inode
2905  * to the dentry and return NULL.
2906  *
2907  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2908  * we should error out: directories can't have multiple aliases.
2909  *
2910  * This is needed in the lookup routine of any filesystem that is exportable
2911  * (via knfsd) so that we can build dcache paths to directories effectively.
2912  *
2913  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2914  * is returned.  This matches the expected return value of ->lookup.
2915  *
2916  * Cluster filesystems may call this function with a negative, hashed dentry.
2917  * In that case, we know that the inode will be a regular file, and also this
2918  * will only occur during atomic_open. So we need to check for the dentry
2919  * being already hashed only in the final case.
2920  */
d_splice_alias(struct inode * inode,struct dentry * dentry)2921 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2922 {
2923 	if (IS_ERR(inode))
2924 		return ERR_CAST(inode);
2925 
2926 	BUG_ON(!d_unhashed(dentry));
2927 
2928 	if (!inode)
2929 		goto out;
2930 
2931 	security_d_instantiate(dentry, inode);
2932 	spin_lock(&inode->i_lock);
2933 	if (S_ISDIR(inode->i_mode)) {
2934 		struct dentry *new = __d_find_any_alias(inode);
2935 		if (unlikely(new)) {
2936 			/* The reference to new ensures it remains an alias */
2937 			spin_unlock(&inode->i_lock);
2938 			write_seqlock(&rename_lock);
2939 			if (unlikely(d_ancestor(new, dentry))) {
2940 				write_sequnlock(&rename_lock);
2941 				dput(new);
2942 				new = ERR_PTR(-ELOOP);
2943 				pr_warn_ratelimited(
2944 					"VFS: Lookup of '%s' in %s %s"
2945 					" would have caused loop\n",
2946 					dentry->d_name.name,
2947 					inode->i_sb->s_type->name,
2948 					inode->i_sb->s_id);
2949 			} else if (!IS_ROOT(new)) {
2950 				struct dentry *old_parent = dget(new->d_parent);
2951 				int err = __d_unalias(inode, dentry, new);
2952 				write_sequnlock(&rename_lock);
2953 				if (err) {
2954 					dput(new);
2955 					new = ERR_PTR(err);
2956 				}
2957 				dput(old_parent);
2958 			} else {
2959 				__d_move(new, dentry, false);
2960 				write_sequnlock(&rename_lock);
2961 			}
2962 			iput(inode);
2963 			return new;
2964 		}
2965 	}
2966 out:
2967 	__d_add(dentry, inode);
2968 	return NULL;
2969 }
2970 EXPORT_SYMBOL(d_splice_alias);
2971 
2972 /*
2973  * Test whether new_dentry is a subdirectory of old_dentry.
2974  *
2975  * Trivially implemented using the dcache structure
2976  */
2977 
2978 /**
2979  * is_subdir - is new dentry a subdirectory of old_dentry
2980  * @new_dentry: new dentry
2981  * @old_dentry: old dentry
2982  *
2983  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2984  * Returns false otherwise.
2985  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2986  */
2987 
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)2988 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2989 {
2990 	bool result;
2991 	unsigned seq;
2992 
2993 	if (new_dentry == old_dentry)
2994 		return true;
2995 
2996 	do {
2997 		/* for restarting inner loop in case of seq retry */
2998 		seq = read_seqbegin(&rename_lock);
2999 		/*
3000 		 * Need rcu_readlock to protect against the d_parent trashing
3001 		 * due to d_move
3002 		 */
3003 		rcu_read_lock();
3004 		if (d_ancestor(old_dentry, new_dentry))
3005 			result = true;
3006 		else
3007 			result = false;
3008 		rcu_read_unlock();
3009 	} while (read_seqretry(&rename_lock, seq));
3010 
3011 	return result;
3012 }
3013 EXPORT_SYMBOL(is_subdir);
3014 
d_genocide_kill(void * data,struct dentry * dentry)3015 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3016 {
3017 	struct dentry *root = data;
3018 	if (dentry != root) {
3019 		if (d_unhashed(dentry) || !dentry->d_inode)
3020 			return D_WALK_SKIP;
3021 
3022 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3023 			dentry->d_flags |= DCACHE_GENOCIDE;
3024 			dentry->d_lockref.count--;
3025 		}
3026 	}
3027 	return D_WALK_CONTINUE;
3028 }
3029 
d_genocide(struct dentry * parent)3030 void d_genocide(struct dentry *parent)
3031 {
3032 	d_walk(parent, parent, d_genocide_kill);
3033 }
3034 
3035 EXPORT_SYMBOL(d_genocide);
3036 
d_tmpfile(struct dentry * dentry,struct inode * inode)3037 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3038 {
3039 	inode_dec_link_count(inode);
3040 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3041 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3042 		!d_unlinked(dentry));
3043 	spin_lock(&dentry->d_parent->d_lock);
3044 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3045 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3046 				(unsigned long long)inode->i_ino);
3047 	spin_unlock(&dentry->d_lock);
3048 	spin_unlock(&dentry->d_parent->d_lock);
3049 	d_instantiate(dentry, inode);
3050 }
3051 EXPORT_SYMBOL(d_tmpfile);
3052 
3053 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3054 static int __init set_dhash_entries(char *str)
3055 {
3056 	if (!str)
3057 		return 0;
3058 	dhash_entries = simple_strtoul(str, &str, 0);
3059 	return 1;
3060 }
3061 __setup("dhash_entries=", set_dhash_entries);
3062 
dcache_init_early(void)3063 static void __init dcache_init_early(void)
3064 {
3065 	/* If hashes are distributed across NUMA nodes, defer
3066 	 * hash allocation until vmalloc space is available.
3067 	 */
3068 	if (hashdist)
3069 		return;
3070 
3071 	dentry_hashtable =
3072 		alloc_large_system_hash("Dentry cache",
3073 					sizeof(struct hlist_bl_head),
3074 					dhash_entries,
3075 					13,
3076 					HASH_EARLY | HASH_ZERO,
3077 					&d_hash_shift,
3078 					NULL,
3079 					0,
3080 					0);
3081 	d_hash_shift = 32 - d_hash_shift;
3082 }
3083 
dcache_init(void)3084 static void __init dcache_init(void)
3085 {
3086 	/*
3087 	 * A constructor could be added for stable state like the lists,
3088 	 * but it is probably not worth it because of the cache nature
3089 	 * of the dcache.
3090 	 */
3091 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3092 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3093 		d_iname);
3094 
3095 	/* Hash may have been set up in dcache_init_early */
3096 	if (!hashdist)
3097 		return;
3098 
3099 	dentry_hashtable =
3100 		alloc_large_system_hash("Dentry cache",
3101 					sizeof(struct hlist_bl_head),
3102 					dhash_entries,
3103 					13,
3104 					HASH_ZERO,
3105 					&d_hash_shift,
3106 					NULL,
3107 					0,
3108 					0);
3109 	d_hash_shift = 32 - d_hash_shift;
3110 }
3111 
3112 /* SLAB cache for __getname() consumers */
3113 struct kmem_cache *names_cachep __read_mostly;
3114 EXPORT_SYMBOL(names_cachep);
3115 
vfs_caches_init_early(void)3116 void __init vfs_caches_init_early(void)
3117 {
3118 	int i;
3119 
3120 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3121 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3122 
3123 	dcache_init_early();
3124 	inode_init_early();
3125 }
3126 
vfs_caches_init(void)3127 void __init vfs_caches_init(void)
3128 {
3129 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3130 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3131 
3132 	dcache_init();
3133 	inode_init();
3134 	files_init();
3135 	files_maxfiles_init();
3136 	mnt_init();
3137 	bdev_cache_init();
3138 	chrdev_init();
3139 }
3140