1 /*
2 * This contains encryption functions for per-file encryption.
3 *
4 * Copyright (C) 2015, Google, Inc.
5 * Copyright (C) 2015, Motorola Mobility
6 *
7 * Written by Michael Halcrow, 2014.
8 *
9 * Filename encryption additions
10 * Uday Savagaonkar, 2014
11 * Encryption policy handling additions
12 * Ildar Muslukhov, 2014
13 * Add fscrypt_pullback_bio_page()
14 * Jaegeuk Kim, 2015.
15 *
16 * This has not yet undergone a rigorous security audit.
17 *
18 * The usage of AES-XTS should conform to recommendations in NIST
19 * Special Publication 800-38E and IEEE P1619/D16.
20 */
21
22 #include <linux/pagemap.h>
23 #include <linux/mempool.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/ratelimit.h>
27 #include <linux/dcache.h>
28 #include <linux/namei.h>
29 #include <crypto/aes.h>
30 #include <crypto/skcipher.h>
31 #include "fscrypt_private.h"
32
33 static unsigned int num_prealloc_crypto_pages = 32;
34 static unsigned int num_prealloc_crypto_ctxs = 128;
35
36 module_param(num_prealloc_crypto_pages, uint, 0444);
37 MODULE_PARM_DESC(num_prealloc_crypto_pages,
38 "Number of crypto pages to preallocate");
39 module_param(num_prealloc_crypto_ctxs, uint, 0444);
40 MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
41 "Number of crypto contexts to preallocate");
42
43 static mempool_t *fscrypt_bounce_page_pool = NULL;
44
45 static LIST_HEAD(fscrypt_free_ctxs);
46 static DEFINE_SPINLOCK(fscrypt_ctx_lock);
47
48 static struct workqueue_struct *fscrypt_read_workqueue;
49 static DEFINE_MUTEX(fscrypt_init_mutex);
50
51 static struct kmem_cache *fscrypt_ctx_cachep;
52 struct kmem_cache *fscrypt_info_cachep;
53
fscrypt_enqueue_decrypt_work(struct work_struct * work)54 void fscrypt_enqueue_decrypt_work(struct work_struct *work)
55 {
56 queue_work(fscrypt_read_workqueue, work);
57 }
58 EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
59
60 /**
61 * fscrypt_release_ctx() - Releases an encryption context
62 * @ctx: The encryption context to release.
63 *
64 * If the encryption context was allocated from the pre-allocated pool, returns
65 * it to that pool. Else, frees it.
66 *
67 * If there's a bounce page in the context, this frees that.
68 */
fscrypt_release_ctx(struct fscrypt_ctx * ctx)69 void fscrypt_release_ctx(struct fscrypt_ctx *ctx)
70 {
71 unsigned long flags;
72
73 if (ctx->flags & FS_CTX_HAS_BOUNCE_BUFFER_FL && ctx->w.bounce_page) {
74 mempool_free(ctx->w.bounce_page, fscrypt_bounce_page_pool);
75 ctx->w.bounce_page = NULL;
76 }
77 ctx->w.control_page = NULL;
78 if (ctx->flags & FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
79 kmem_cache_free(fscrypt_ctx_cachep, ctx);
80 } else {
81 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
82 list_add(&ctx->free_list, &fscrypt_free_ctxs);
83 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
84 }
85 }
86 EXPORT_SYMBOL(fscrypt_release_ctx);
87
88 /**
89 * fscrypt_get_ctx() - Gets an encryption context
90 * @inode: The inode for which we are doing the crypto
91 * @gfp_flags: The gfp flag for memory allocation
92 *
93 * Allocates and initializes an encryption context.
94 *
95 * Return: An allocated and initialized encryption context on success; error
96 * value or NULL otherwise.
97 */
fscrypt_get_ctx(const struct inode * inode,gfp_t gfp_flags)98 struct fscrypt_ctx *fscrypt_get_ctx(const struct inode *inode, gfp_t gfp_flags)
99 {
100 struct fscrypt_ctx *ctx = NULL;
101 struct fscrypt_info *ci = inode->i_crypt_info;
102 unsigned long flags;
103
104 if (ci == NULL)
105 return ERR_PTR(-ENOKEY);
106
107 /*
108 * We first try getting the ctx from a free list because in
109 * the common case the ctx will have an allocated and
110 * initialized crypto tfm, so it's probably a worthwhile
111 * optimization. For the bounce page, we first try getting it
112 * from the kernel allocator because that's just about as fast
113 * as getting it from a list and because a cache of free pages
114 * should generally be a "last resort" option for a filesystem
115 * to be able to do its job.
116 */
117 spin_lock_irqsave(&fscrypt_ctx_lock, flags);
118 ctx = list_first_entry_or_null(&fscrypt_free_ctxs,
119 struct fscrypt_ctx, free_list);
120 if (ctx)
121 list_del(&ctx->free_list);
122 spin_unlock_irqrestore(&fscrypt_ctx_lock, flags);
123 if (!ctx) {
124 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, gfp_flags);
125 if (!ctx)
126 return ERR_PTR(-ENOMEM);
127 ctx->flags |= FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
128 } else {
129 ctx->flags &= ~FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
130 }
131 ctx->flags &= ~FS_CTX_HAS_BOUNCE_BUFFER_FL;
132 return ctx;
133 }
134 EXPORT_SYMBOL(fscrypt_get_ctx);
135
fscrypt_do_page_crypto(const struct inode * inode,fscrypt_direction_t rw,u64 lblk_num,struct page * src_page,struct page * dest_page,unsigned int len,unsigned int offs,gfp_t gfp_flags)136 int fscrypt_do_page_crypto(const struct inode *inode, fscrypt_direction_t rw,
137 u64 lblk_num, struct page *src_page,
138 struct page *dest_page, unsigned int len,
139 unsigned int offs, gfp_t gfp_flags)
140 {
141 struct {
142 __le64 index;
143 u8 padding[FS_IV_SIZE - sizeof(__le64)];
144 } iv;
145 struct skcipher_request *req = NULL;
146 DECLARE_CRYPTO_WAIT(wait);
147 struct scatterlist dst, src;
148 struct fscrypt_info *ci = inode->i_crypt_info;
149 struct crypto_skcipher *tfm = ci->ci_ctfm;
150 int res = 0;
151
152 BUG_ON(len == 0);
153
154 BUILD_BUG_ON(sizeof(iv) != FS_IV_SIZE);
155 BUILD_BUG_ON(AES_BLOCK_SIZE != FS_IV_SIZE);
156 iv.index = cpu_to_le64(lblk_num);
157 memset(iv.padding, 0, sizeof(iv.padding));
158
159 if (ci->ci_essiv_tfm != NULL) {
160 crypto_cipher_encrypt_one(ci->ci_essiv_tfm, (u8 *)&iv,
161 (u8 *)&iv);
162 }
163
164 req = skcipher_request_alloc(tfm, gfp_flags);
165 if (!req)
166 return -ENOMEM;
167
168 skcipher_request_set_callback(
169 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
170 crypto_req_done, &wait);
171
172 sg_init_table(&dst, 1);
173 sg_set_page(&dst, dest_page, len, offs);
174 sg_init_table(&src, 1);
175 sg_set_page(&src, src_page, len, offs);
176 skcipher_request_set_crypt(req, &src, &dst, len, &iv);
177 if (rw == FS_DECRYPT)
178 res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
179 else
180 res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
181 skcipher_request_free(req);
182 if (res) {
183 fscrypt_err(inode->i_sb,
184 "%scryption failed for inode %lu, block %llu: %d",
185 (rw == FS_DECRYPT ? "de" : "en"),
186 inode->i_ino, lblk_num, res);
187 return res;
188 }
189 return 0;
190 }
191
fscrypt_alloc_bounce_page(struct fscrypt_ctx * ctx,gfp_t gfp_flags)192 struct page *fscrypt_alloc_bounce_page(struct fscrypt_ctx *ctx,
193 gfp_t gfp_flags)
194 {
195 ctx->w.bounce_page = mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
196 if (ctx->w.bounce_page == NULL)
197 return ERR_PTR(-ENOMEM);
198 ctx->flags |= FS_CTX_HAS_BOUNCE_BUFFER_FL;
199 return ctx->w.bounce_page;
200 }
201
202 /**
203 * fscypt_encrypt_page() - Encrypts a page
204 * @inode: The inode for which the encryption should take place
205 * @page: The page to encrypt. Must be locked for bounce-page
206 * encryption.
207 * @len: Length of data to encrypt in @page and encrypted
208 * data in returned page.
209 * @offs: Offset of data within @page and returned
210 * page holding encrypted data.
211 * @lblk_num: Logical block number. This must be unique for multiple
212 * calls with same inode, except when overwriting
213 * previously written data.
214 * @gfp_flags: The gfp flag for memory allocation
215 *
216 * Encrypts @page using the ctx encryption context. Performs encryption
217 * either in-place or into a newly allocated bounce page.
218 * Called on the page write path.
219 *
220 * Bounce page allocation is the default.
221 * In this case, the contents of @page are encrypted and stored in an
222 * allocated bounce page. @page has to be locked and the caller must call
223 * fscrypt_restore_control_page() on the returned ciphertext page to
224 * release the bounce buffer and the encryption context.
225 *
226 * In-place encryption is used by setting the FS_CFLG_OWN_PAGES flag in
227 * fscrypt_operations. Here, the input-page is returned with its content
228 * encrypted.
229 *
230 * Return: A page with the encrypted content on success. Else, an
231 * error value or NULL.
232 */
fscrypt_encrypt_page(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num,gfp_t gfp_flags)233 struct page *fscrypt_encrypt_page(const struct inode *inode,
234 struct page *page,
235 unsigned int len,
236 unsigned int offs,
237 u64 lblk_num, gfp_t gfp_flags)
238
239 {
240 struct fscrypt_ctx *ctx;
241 struct page *ciphertext_page = page;
242 int err;
243
244 BUG_ON(len % FS_CRYPTO_BLOCK_SIZE != 0);
245
246 if (inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES) {
247 /* with inplace-encryption we just encrypt the page */
248 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num, page,
249 ciphertext_page, len, offs,
250 gfp_flags);
251 if (err)
252 return ERR_PTR(err);
253
254 return ciphertext_page;
255 }
256
257 BUG_ON(!PageLocked(page));
258
259 ctx = fscrypt_get_ctx(inode, gfp_flags);
260 if (IS_ERR(ctx))
261 return (struct page *)ctx;
262
263 /* The encryption operation will require a bounce page. */
264 ciphertext_page = fscrypt_alloc_bounce_page(ctx, gfp_flags);
265 if (IS_ERR(ciphertext_page))
266 goto errout;
267
268 ctx->w.control_page = page;
269 err = fscrypt_do_page_crypto(inode, FS_ENCRYPT, lblk_num,
270 page, ciphertext_page, len, offs,
271 gfp_flags);
272 if (err) {
273 ciphertext_page = ERR_PTR(err);
274 goto errout;
275 }
276 SetPagePrivate(ciphertext_page);
277 set_page_private(ciphertext_page, (unsigned long)ctx);
278 lock_page(ciphertext_page);
279 return ciphertext_page;
280
281 errout:
282 fscrypt_release_ctx(ctx);
283 return ciphertext_page;
284 }
285 EXPORT_SYMBOL(fscrypt_encrypt_page);
286
287 /**
288 * fscrypt_decrypt_page() - Decrypts a page in-place
289 * @inode: The corresponding inode for the page to decrypt.
290 * @page: The page to decrypt. Must be locked in case
291 * it is a writeback page (FS_CFLG_OWN_PAGES unset).
292 * @len: Number of bytes in @page to be decrypted.
293 * @offs: Start of data in @page.
294 * @lblk_num: Logical block number.
295 *
296 * Decrypts page in-place using the ctx encryption context.
297 *
298 * Called from the read completion callback.
299 *
300 * Return: Zero on success, non-zero otherwise.
301 */
fscrypt_decrypt_page(const struct inode * inode,struct page * page,unsigned int len,unsigned int offs,u64 lblk_num)302 int fscrypt_decrypt_page(const struct inode *inode, struct page *page,
303 unsigned int len, unsigned int offs, u64 lblk_num)
304 {
305 if (!(inode->i_sb->s_cop->flags & FS_CFLG_OWN_PAGES))
306 BUG_ON(!PageLocked(page));
307
308 return fscrypt_do_page_crypto(inode, FS_DECRYPT, lblk_num, page, page,
309 len, offs, GFP_NOFS);
310 }
311 EXPORT_SYMBOL(fscrypt_decrypt_page);
312
313 /*
314 * Validate dentries for encrypted directories to make sure we aren't
315 * potentially caching stale data after a key has been added or
316 * removed.
317 */
fscrypt_d_revalidate(struct dentry * dentry,unsigned int flags)318 static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
319 {
320 struct dentry *dir;
321 int dir_has_key, cached_with_key;
322
323 if (flags & LOOKUP_RCU)
324 return -ECHILD;
325
326 dir = dget_parent(dentry);
327 if (!IS_ENCRYPTED(d_inode(dir))) {
328 dput(dir);
329 return 0;
330 }
331
332 spin_lock(&dentry->d_lock);
333 cached_with_key = dentry->d_flags & DCACHE_ENCRYPTED_WITH_KEY;
334 spin_unlock(&dentry->d_lock);
335 dir_has_key = (d_inode(dir)->i_crypt_info != NULL);
336 dput(dir);
337
338 /*
339 * If the dentry was cached without the key, and it is a
340 * negative dentry, it might be a valid name. We can't check
341 * if the key has since been made available due to locking
342 * reasons, so we fail the validation so ext4_lookup() can do
343 * this check.
344 *
345 * We also fail the validation if the dentry was created with
346 * the key present, but we no longer have the key, or vice versa.
347 */
348 if ((!cached_with_key && d_is_negative(dentry)) ||
349 (!cached_with_key && dir_has_key) ||
350 (cached_with_key && !dir_has_key))
351 return 0;
352 return 1;
353 }
354
355 const struct dentry_operations fscrypt_d_ops = {
356 .d_revalidate = fscrypt_d_revalidate,
357 };
358
fscrypt_restore_control_page(struct page * page)359 void fscrypt_restore_control_page(struct page *page)
360 {
361 struct fscrypt_ctx *ctx;
362
363 ctx = (struct fscrypt_ctx *)page_private(page);
364 set_page_private(page, (unsigned long)NULL);
365 ClearPagePrivate(page);
366 unlock_page(page);
367 fscrypt_release_ctx(ctx);
368 }
369 EXPORT_SYMBOL(fscrypt_restore_control_page);
370
fscrypt_destroy(void)371 static void fscrypt_destroy(void)
372 {
373 struct fscrypt_ctx *pos, *n;
374
375 list_for_each_entry_safe(pos, n, &fscrypt_free_ctxs, free_list)
376 kmem_cache_free(fscrypt_ctx_cachep, pos);
377 INIT_LIST_HEAD(&fscrypt_free_ctxs);
378 mempool_destroy(fscrypt_bounce_page_pool);
379 fscrypt_bounce_page_pool = NULL;
380 }
381
382 /**
383 * fscrypt_initialize() - allocate major buffers for fs encryption.
384 * @cop_flags: fscrypt operations flags
385 *
386 * We only call this when we start accessing encrypted files, since it
387 * results in memory getting allocated that wouldn't otherwise be used.
388 *
389 * Return: Zero on success, non-zero otherwise.
390 */
fscrypt_initialize(unsigned int cop_flags)391 int fscrypt_initialize(unsigned int cop_flags)
392 {
393 int i, res = -ENOMEM;
394
395 /* No need to allocate a bounce page pool if this FS won't use it. */
396 if (cop_flags & FS_CFLG_OWN_PAGES)
397 return 0;
398
399 mutex_lock(&fscrypt_init_mutex);
400 if (fscrypt_bounce_page_pool)
401 goto already_initialized;
402
403 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
404 struct fscrypt_ctx *ctx;
405
406 ctx = kmem_cache_zalloc(fscrypt_ctx_cachep, GFP_NOFS);
407 if (!ctx)
408 goto fail;
409 list_add(&ctx->free_list, &fscrypt_free_ctxs);
410 }
411
412 fscrypt_bounce_page_pool =
413 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
414 if (!fscrypt_bounce_page_pool)
415 goto fail;
416
417 already_initialized:
418 mutex_unlock(&fscrypt_init_mutex);
419 return 0;
420 fail:
421 fscrypt_destroy();
422 mutex_unlock(&fscrypt_init_mutex);
423 return res;
424 }
425
fscrypt_msg(struct super_block * sb,const char * level,const char * fmt,...)426 void fscrypt_msg(struct super_block *sb, const char *level,
427 const char *fmt, ...)
428 {
429 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
430 DEFAULT_RATELIMIT_BURST);
431 struct va_format vaf;
432 va_list args;
433
434 if (!__ratelimit(&rs))
435 return;
436
437 va_start(args, fmt);
438 vaf.fmt = fmt;
439 vaf.va = &args;
440 if (sb)
441 printk("%sfscrypt (%s): %pV\n", level, sb->s_id, &vaf);
442 else
443 printk("%sfscrypt: %pV\n", level, &vaf);
444 va_end(args);
445 }
446
447 /**
448 * fscrypt_init() - Set up for fs encryption.
449 */
fscrypt_init(void)450 static int __init fscrypt_init(void)
451 {
452 /*
453 * Use an unbound workqueue to allow bios to be decrypted in parallel
454 * even when they happen to complete on the same CPU. This sacrifices
455 * locality, but it's worthwhile since decryption is CPU-intensive.
456 *
457 * Also use a high-priority workqueue to prioritize decryption work,
458 * which blocks reads from completing, over regular application tasks.
459 */
460 fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
461 WQ_UNBOUND | WQ_HIGHPRI,
462 num_online_cpus());
463 if (!fscrypt_read_workqueue)
464 goto fail;
465
466 fscrypt_ctx_cachep = KMEM_CACHE(fscrypt_ctx, SLAB_RECLAIM_ACCOUNT);
467 if (!fscrypt_ctx_cachep)
468 goto fail_free_queue;
469
470 fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
471 if (!fscrypt_info_cachep)
472 goto fail_free_ctx;
473
474 return 0;
475
476 fail_free_ctx:
477 kmem_cache_destroy(fscrypt_ctx_cachep);
478 fail_free_queue:
479 destroy_workqueue(fscrypt_read_workqueue);
480 fail:
481 return -ENOMEM;
482 }
module_init(fscrypt_init)483 module_init(fscrypt_init)
484
485 /**
486 * fscrypt_exit() - Shutdown the fs encryption system
487 */
488 static void __exit fscrypt_exit(void)
489 {
490 fscrypt_destroy();
491
492 if (fscrypt_read_workqueue)
493 destroy_workqueue(fscrypt_read_workqueue);
494 kmem_cache_destroy(fscrypt_ctx_cachep);
495 kmem_cache_destroy(fscrypt_info_cachep);
496
497 fscrypt_essiv_cleanup();
498 }
499 module_exit(fscrypt_exit);
500
501 MODULE_LICENSE("GPL");
502