1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "disk-io.h"
12 #include "ordered-data.h"
13 #include "transaction.h"
14 #include "backref.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
19 #include "raid56.h"
20 
21 /*
22  * This is only the first step towards a full-features scrub. It reads all
23  * extent and super block and verifies the checksums. In case a bad checksum
24  * is found or the extent cannot be read, good data will be written back if
25  * any can be found.
26  *
27  * Future enhancements:
28  *  - In case an unrepairable extent is encountered, track which files are
29  *    affected and report them
30  *  - track and record media errors, throw out bad devices
31  *  - add a mode to also read unallocated space
32  */
33 
34 struct scrub_block;
35 struct scrub_ctx;
36 
37 /*
38  * the following three values only influence the performance.
39  * The last one configures the number of parallel and outstanding I/O
40  * operations. The first two values configure an upper limit for the number
41  * of (dynamically allocated) pages that are added to a bio.
42  */
43 #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */
46 
47 /*
48  * the following value times PAGE_SIZE needs to be large enough to match the
49  * largest node/leaf/sector size that shall be supported.
50  * Values larger than BTRFS_STRIPE_LEN are not supported.
51  */
52 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
53 
54 struct scrub_recover {
55 	refcount_t		refs;
56 	struct btrfs_bio	*bbio;
57 	u64			map_length;
58 };
59 
60 struct scrub_page {
61 	struct scrub_block	*sblock;
62 	struct page		*page;
63 	struct btrfs_device	*dev;
64 	struct list_head	list;
65 	u64			flags;  /* extent flags */
66 	u64			generation;
67 	u64			logical;
68 	u64			physical;
69 	u64			physical_for_dev_replace;
70 	atomic_t		refs;
71 	struct {
72 		unsigned int	mirror_num:8;
73 		unsigned int	have_csum:1;
74 		unsigned int	io_error:1;
75 	};
76 	u8			csum[BTRFS_CSUM_SIZE];
77 
78 	struct scrub_recover	*recover;
79 };
80 
81 struct scrub_bio {
82 	int			index;
83 	struct scrub_ctx	*sctx;
84 	struct btrfs_device	*dev;
85 	struct bio		*bio;
86 	blk_status_t		status;
87 	u64			logical;
88 	u64			physical;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO];
91 #else
92 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO];
93 #endif
94 	int			page_count;
95 	int			next_free;
96 	struct btrfs_work	work;
97 };
98 
99 struct scrub_block {
100 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 	int			page_count;
102 	atomic_t		outstanding_pages;
103 	refcount_t		refs; /* free mem on transition to zero */
104 	struct scrub_ctx	*sctx;
105 	struct scrub_parity	*sparity;
106 	struct {
107 		unsigned int	header_error:1;
108 		unsigned int	checksum_error:1;
109 		unsigned int	no_io_error_seen:1;
110 		unsigned int	generation_error:1; /* also sets header_error */
111 
112 		/* The following is for the data used to check parity */
113 		/* It is for the data with checksum */
114 		unsigned int	data_corrected:1;
115 	};
116 	struct btrfs_work	work;
117 };
118 
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity {
121 	struct scrub_ctx	*sctx;
122 
123 	struct btrfs_device	*scrub_dev;
124 
125 	u64			logic_start;
126 
127 	u64			logic_end;
128 
129 	int			nsectors;
130 
131 	u64			stripe_len;
132 
133 	refcount_t		refs;
134 
135 	struct list_head	spages;
136 
137 	/* Work of parity check and repair */
138 	struct btrfs_work	work;
139 
140 	/* Mark the parity blocks which have data */
141 	unsigned long		*dbitmap;
142 
143 	/*
144 	 * Mark the parity blocks which have data, but errors happen when
145 	 * read data or check data
146 	 */
147 	unsigned long		*ebitmap;
148 
149 	unsigned long		bitmap[0];
150 };
151 
152 struct scrub_ctx {
153 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
154 	struct btrfs_fs_info	*fs_info;
155 	int			first_free;
156 	int			curr;
157 	atomic_t		bios_in_flight;
158 	atomic_t		workers_pending;
159 	spinlock_t		list_lock;
160 	wait_queue_head_t	list_wait;
161 	u16			csum_size;
162 	struct list_head	csum_list;
163 	atomic_t		cancel_req;
164 	int			readonly;
165 	int			pages_per_rd_bio;
166 
167 	int			is_dev_replace;
168 
169 	struct scrub_bio        *wr_curr_bio;
170 	struct mutex            wr_lock;
171 	int                     pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 	struct btrfs_device     *wr_tgtdev;
173 	bool                    flush_all_writes;
174 
175 	/*
176 	 * statistics
177 	 */
178 	struct btrfs_scrub_progress stat;
179 	spinlock_t		stat_lock;
180 
181 	/*
182 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 	 * decrement bios_in_flight and workers_pending and then do a wakeup
184 	 * on the list_wait wait queue. We must ensure the main scrub task
185 	 * doesn't free the scrub context before or while the workers are
186 	 * doing the wakeup() call.
187 	 */
188 	refcount_t              refs;
189 };
190 
191 struct scrub_warning {
192 	struct btrfs_path	*path;
193 	u64			extent_item_size;
194 	const char		*errstr;
195 	u64			physical;
196 	u64			logical;
197 	struct btrfs_device	*dev;
198 };
199 
200 struct full_stripe_lock {
201 	struct rb_node node;
202 	u64 logical;
203 	u64 refs;
204 	struct mutex mutex;
205 };
206 
207 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
208 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
209 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
210 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
211 				     struct scrub_block *sblocks_for_recheck);
212 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
213 				struct scrub_block *sblock,
214 				int retry_failed_mirror);
215 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
216 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
217 					     struct scrub_block *sblock_good);
218 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
219 					    struct scrub_block *sblock_good,
220 					    int page_num, int force_write);
221 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
222 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
223 					   int page_num);
224 static int scrub_checksum_data(struct scrub_block *sblock);
225 static int scrub_checksum_tree_block(struct scrub_block *sblock);
226 static int scrub_checksum_super(struct scrub_block *sblock);
227 static void scrub_block_get(struct scrub_block *sblock);
228 static void scrub_block_put(struct scrub_block *sblock);
229 static void scrub_page_get(struct scrub_page *spage);
230 static void scrub_page_put(struct scrub_page *spage);
231 static void scrub_parity_get(struct scrub_parity *sparity);
232 static void scrub_parity_put(struct scrub_parity *sparity);
233 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
234 				    struct scrub_page *spage);
235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
236 		       u64 physical, struct btrfs_device *dev, u64 flags,
237 		       u64 gen, int mirror_num, u8 *csum, int force,
238 		       u64 physical_for_dev_replace);
239 static void scrub_bio_end_io(struct bio *bio);
240 static void scrub_bio_end_io_worker(struct btrfs_work *work);
241 static void scrub_block_complete(struct scrub_block *sblock);
242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243 			       u64 extent_logical, u64 extent_len,
244 			       u64 *extent_physical,
245 			       struct btrfs_device **extent_dev,
246 			       int *extent_mirror_num);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 				    struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
253 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254 static void scrub_put_ctx(struct scrub_ctx *sctx);
255 
scrub_is_page_on_raid56(struct scrub_page * page)256 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
257 {
258 	return page->recover &&
259 	       (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
260 }
261 
scrub_pending_bio_inc(struct scrub_ctx * sctx)262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
263 {
264 	refcount_inc(&sctx->refs);
265 	atomic_inc(&sctx->bios_in_flight);
266 }
267 
scrub_pending_bio_dec(struct scrub_ctx * sctx)268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
269 {
270 	atomic_dec(&sctx->bios_in_flight);
271 	wake_up(&sctx->list_wait);
272 	scrub_put_ctx(sctx);
273 }
274 
__scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)275 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
276 {
277 	while (atomic_read(&fs_info->scrub_pause_req)) {
278 		mutex_unlock(&fs_info->scrub_lock);
279 		wait_event(fs_info->scrub_pause_wait,
280 		   atomic_read(&fs_info->scrub_pause_req) == 0);
281 		mutex_lock(&fs_info->scrub_lock);
282 	}
283 }
284 
scrub_pause_on(struct btrfs_fs_info * fs_info)285 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
286 {
287 	atomic_inc(&fs_info->scrubs_paused);
288 	wake_up(&fs_info->scrub_pause_wait);
289 }
290 
scrub_pause_off(struct btrfs_fs_info * fs_info)291 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
292 {
293 	mutex_lock(&fs_info->scrub_lock);
294 	__scrub_blocked_if_needed(fs_info);
295 	atomic_dec(&fs_info->scrubs_paused);
296 	mutex_unlock(&fs_info->scrub_lock);
297 
298 	wake_up(&fs_info->scrub_pause_wait);
299 }
300 
scrub_blocked_if_needed(struct btrfs_fs_info * fs_info)301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
302 {
303 	scrub_pause_on(fs_info);
304 	scrub_pause_off(fs_info);
305 }
306 
307 /*
308  * Insert new full stripe lock into full stripe locks tree
309  *
310  * Return pointer to existing or newly inserted full_stripe_lock structure if
311  * everything works well.
312  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
313  *
314  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
315  * function
316  */
insert_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)317 static struct full_stripe_lock *insert_full_stripe_lock(
318 		struct btrfs_full_stripe_locks_tree *locks_root,
319 		u64 fstripe_logical)
320 {
321 	struct rb_node **p;
322 	struct rb_node *parent = NULL;
323 	struct full_stripe_lock *entry;
324 	struct full_stripe_lock *ret;
325 
326 	lockdep_assert_held(&locks_root->lock);
327 
328 	p = &locks_root->root.rb_node;
329 	while (*p) {
330 		parent = *p;
331 		entry = rb_entry(parent, struct full_stripe_lock, node);
332 		if (fstripe_logical < entry->logical) {
333 			p = &(*p)->rb_left;
334 		} else if (fstripe_logical > entry->logical) {
335 			p = &(*p)->rb_right;
336 		} else {
337 			entry->refs++;
338 			return entry;
339 		}
340 	}
341 
342 	/* Insert new lock */
343 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
344 	if (!ret)
345 		return ERR_PTR(-ENOMEM);
346 	ret->logical = fstripe_logical;
347 	ret->refs = 1;
348 	mutex_init(&ret->mutex);
349 
350 	rb_link_node(&ret->node, parent, p);
351 	rb_insert_color(&ret->node, &locks_root->root);
352 	return ret;
353 }
354 
355 /*
356  * Search for a full stripe lock of a block group
357  *
358  * Return pointer to existing full stripe lock if found
359  * Return NULL if not found
360  */
search_full_stripe_lock(struct btrfs_full_stripe_locks_tree * locks_root,u64 fstripe_logical)361 static struct full_stripe_lock *search_full_stripe_lock(
362 		struct btrfs_full_stripe_locks_tree *locks_root,
363 		u64 fstripe_logical)
364 {
365 	struct rb_node *node;
366 	struct full_stripe_lock *entry;
367 
368 	lockdep_assert_held(&locks_root->lock);
369 
370 	node = locks_root->root.rb_node;
371 	while (node) {
372 		entry = rb_entry(node, struct full_stripe_lock, node);
373 		if (fstripe_logical < entry->logical)
374 			node = node->rb_left;
375 		else if (fstripe_logical > entry->logical)
376 			node = node->rb_right;
377 		else
378 			return entry;
379 	}
380 	return NULL;
381 }
382 
383 /*
384  * Helper to get full stripe logical from a normal bytenr.
385  *
386  * Caller must ensure @cache is a RAID56 block group.
387  */
get_full_stripe_logical(struct btrfs_block_group_cache * cache,u64 bytenr)388 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
389 				   u64 bytenr)
390 {
391 	u64 ret;
392 
393 	/*
394 	 * Due to chunk item size limit, full stripe length should not be
395 	 * larger than U32_MAX. Just a sanity check here.
396 	 */
397 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
398 
399 	/*
400 	 * round_down() can only handle power of 2, while RAID56 full
401 	 * stripe length can be 64KiB * n, so we need to manually round down.
402 	 */
403 	ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
404 		cache->full_stripe_len + cache->key.objectid;
405 	return ret;
406 }
407 
408 /*
409  * Lock a full stripe to avoid concurrency of recovery and read
410  *
411  * It's only used for profiles with parities (RAID5/6), for other profiles it
412  * does nothing.
413  *
414  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
415  * So caller must call unlock_full_stripe() at the same context.
416  *
417  * Return <0 if encounters error.
418  */
lock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool * locked_ret)419 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
420 			    bool *locked_ret)
421 {
422 	struct btrfs_block_group_cache *bg_cache;
423 	struct btrfs_full_stripe_locks_tree *locks_root;
424 	struct full_stripe_lock *existing;
425 	u64 fstripe_start;
426 	int ret = 0;
427 
428 	*locked_ret = false;
429 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
430 	if (!bg_cache) {
431 		ASSERT(0);
432 		return -ENOENT;
433 	}
434 
435 	/* Profiles not based on parity don't need full stripe lock */
436 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
437 		goto out;
438 	locks_root = &bg_cache->full_stripe_locks_root;
439 
440 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
441 
442 	/* Now insert the full stripe lock */
443 	mutex_lock(&locks_root->lock);
444 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
445 	mutex_unlock(&locks_root->lock);
446 	if (IS_ERR(existing)) {
447 		ret = PTR_ERR(existing);
448 		goto out;
449 	}
450 	mutex_lock(&existing->mutex);
451 	*locked_ret = true;
452 out:
453 	btrfs_put_block_group(bg_cache);
454 	return ret;
455 }
456 
457 /*
458  * Unlock a full stripe.
459  *
460  * NOTE: Caller must ensure it's the same context calling corresponding
461  * lock_full_stripe().
462  *
463  * Return 0 if we unlock full stripe without problem.
464  * Return <0 for error
465  */
unlock_full_stripe(struct btrfs_fs_info * fs_info,u64 bytenr,bool locked)466 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
467 			      bool locked)
468 {
469 	struct btrfs_block_group_cache *bg_cache;
470 	struct btrfs_full_stripe_locks_tree *locks_root;
471 	struct full_stripe_lock *fstripe_lock;
472 	u64 fstripe_start;
473 	bool freeit = false;
474 	int ret = 0;
475 
476 	/* If we didn't acquire full stripe lock, no need to continue */
477 	if (!locked)
478 		return 0;
479 
480 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
481 	if (!bg_cache) {
482 		ASSERT(0);
483 		return -ENOENT;
484 	}
485 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
486 		goto out;
487 
488 	locks_root = &bg_cache->full_stripe_locks_root;
489 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
490 
491 	mutex_lock(&locks_root->lock);
492 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
493 	/* Unpaired unlock_full_stripe() detected */
494 	if (!fstripe_lock) {
495 		WARN_ON(1);
496 		ret = -ENOENT;
497 		mutex_unlock(&locks_root->lock);
498 		goto out;
499 	}
500 
501 	if (fstripe_lock->refs == 0) {
502 		WARN_ON(1);
503 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
504 			fstripe_lock->logical);
505 	} else {
506 		fstripe_lock->refs--;
507 	}
508 
509 	if (fstripe_lock->refs == 0) {
510 		rb_erase(&fstripe_lock->node, &locks_root->root);
511 		freeit = true;
512 	}
513 	mutex_unlock(&locks_root->lock);
514 
515 	mutex_unlock(&fstripe_lock->mutex);
516 	if (freeit)
517 		kfree(fstripe_lock);
518 out:
519 	btrfs_put_block_group(bg_cache);
520 	return ret;
521 }
522 
scrub_free_csums(struct scrub_ctx * sctx)523 static void scrub_free_csums(struct scrub_ctx *sctx)
524 {
525 	while (!list_empty(&sctx->csum_list)) {
526 		struct btrfs_ordered_sum *sum;
527 		sum = list_first_entry(&sctx->csum_list,
528 				       struct btrfs_ordered_sum, list);
529 		list_del(&sum->list);
530 		kfree(sum);
531 	}
532 }
533 
scrub_free_ctx(struct scrub_ctx * sctx)534 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
535 {
536 	int i;
537 
538 	if (!sctx)
539 		return;
540 
541 	/* this can happen when scrub is cancelled */
542 	if (sctx->curr != -1) {
543 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
544 
545 		for (i = 0; i < sbio->page_count; i++) {
546 			WARN_ON(!sbio->pagev[i]->page);
547 			scrub_block_put(sbio->pagev[i]->sblock);
548 		}
549 		bio_put(sbio->bio);
550 	}
551 
552 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
553 		struct scrub_bio *sbio = sctx->bios[i];
554 
555 		if (!sbio)
556 			break;
557 		kfree(sbio);
558 	}
559 
560 	kfree(sctx->wr_curr_bio);
561 	scrub_free_csums(sctx);
562 	kfree(sctx);
563 }
564 
scrub_put_ctx(struct scrub_ctx * sctx)565 static void scrub_put_ctx(struct scrub_ctx *sctx)
566 {
567 	if (refcount_dec_and_test(&sctx->refs))
568 		scrub_free_ctx(sctx);
569 }
570 
571 static noinline_for_stack
scrub_setup_ctx(struct btrfs_device * dev,int is_dev_replace)572 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
573 {
574 	struct scrub_ctx *sctx;
575 	int		i;
576 	struct btrfs_fs_info *fs_info = dev->fs_info;
577 
578 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
579 	if (!sctx)
580 		goto nomem;
581 	refcount_set(&sctx->refs, 1);
582 	sctx->is_dev_replace = is_dev_replace;
583 	sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
584 	sctx->curr = -1;
585 	sctx->fs_info = dev->fs_info;
586 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
587 		struct scrub_bio *sbio;
588 
589 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
590 		if (!sbio)
591 			goto nomem;
592 		sctx->bios[i] = sbio;
593 
594 		sbio->index = i;
595 		sbio->sctx = sctx;
596 		sbio->page_count = 0;
597 		btrfs_init_work(&sbio->work, btrfs_scrub_helper,
598 				scrub_bio_end_io_worker, NULL, NULL);
599 
600 		if (i != SCRUB_BIOS_PER_SCTX - 1)
601 			sctx->bios[i]->next_free = i + 1;
602 		else
603 			sctx->bios[i]->next_free = -1;
604 	}
605 	sctx->first_free = 0;
606 	atomic_set(&sctx->bios_in_flight, 0);
607 	atomic_set(&sctx->workers_pending, 0);
608 	atomic_set(&sctx->cancel_req, 0);
609 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
610 	INIT_LIST_HEAD(&sctx->csum_list);
611 
612 	spin_lock_init(&sctx->list_lock);
613 	spin_lock_init(&sctx->stat_lock);
614 	init_waitqueue_head(&sctx->list_wait);
615 
616 	WARN_ON(sctx->wr_curr_bio != NULL);
617 	mutex_init(&sctx->wr_lock);
618 	sctx->wr_curr_bio = NULL;
619 	if (is_dev_replace) {
620 		WARN_ON(!fs_info->dev_replace.tgtdev);
621 		sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
622 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
623 		sctx->flush_all_writes = false;
624 	}
625 
626 	return sctx;
627 
628 nomem:
629 	scrub_free_ctx(sctx);
630 	return ERR_PTR(-ENOMEM);
631 }
632 
scrub_print_warning_inode(u64 inum,u64 offset,u64 root,void * warn_ctx)633 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
634 				     void *warn_ctx)
635 {
636 	u64 isize;
637 	u32 nlink;
638 	int ret;
639 	int i;
640 	unsigned nofs_flag;
641 	struct extent_buffer *eb;
642 	struct btrfs_inode_item *inode_item;
643 	struct scrub_warning *swarn = warn_ctx;
644 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
645 	struct inode_fs_paths *ipath = NULL;
646 	struct btrfs_root *local_root;
647 	struct btrfs_key root_key;
648 	struct btrfs_key key;
649 
650 	root_key.objectid = root;
651 	root_key.type = BTRFS_ROOT_ITEM_KEY;
652 	root_key.offset = (u64)-1;
653 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
654 	if (IS_ERR(local_root)) {
655 		ret = PTR_ERR(local_root);
656 		goto err;
657 	}
658 
659 	/*
660 	 * this makes the path point to (inum INODE_ITEM ioff)
661 	 */
662 	key.objectid = inum;
663 	key.type = BTRFS_INODE_ITEM_KEY;
664 	key.offset = 0;
665 
666 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
667 	if (ret) {
668 		btrfs_release_path(swarn->path);
669 		goto err;
670 	}
671 
672 	eb = swarn->path->nodes[0];
673 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
674 					struct btrfs_inode_item);
675 	isize = btrfs_inode_size(eb, inode_item);
676 	nlink = btrfs_inode_nlink(eb, inode_item);
677 	btrfs_release_path(swarn->path);
678 
679 	/*
680 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
681 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
682 	 * not seem to be strictly necessary.
683 	 */
684 	nofs_flag = memalloc_nofs_save();
685 	ipath = init_ipath(4096, local_root, swarn->path);
686 	memalloc_nofs_restore(nofs_flag);
687 	if (IS_ERR(ipath)) {
688 		ret = PTR_ERR(ipath);
689 		ipath = NULL;
690 		goto err;
691 	}
692 	ret = paths_from_inode(inum, ipath);
693 
694 	if (ret < 0)
695 		goto err;
696 
697 	/*
698 	 * we deliberately ignore the bit ipath might have been too small to
699 	 * hold all of the paths here
700 	 */
701 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
702 		btrfs_warn_in_rcu(fs_info,
703 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
704 				  swarn->errstr, swarn->logical,
705 				  rcu_str_deref(swarn->dev->name),
706 				  swarn->physical,
707 				  root, inum, offset,
708 				  min(isize - offset, (u64)PAGE_SIZE), nlink,
709 				  (char *)(unsigned long)ipath->fspath->val[i]);
710 
711 	free_ipath(ipath);
712 	return 0;
713 
714 err:
715 	btrfs_warn_in_rcu(fs_info,
716 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
717 			  swarn->errstr, swarn->logical,
718 			  rcu_str_deref(swarn->dev->name),
719 			  swarn->physical,
720 			  root, inum, offset, ret);
721 
722 	free_ipath(ipath);
723 	return 0;
724 }
725 
scrub_print_warning(const char * errstr,struct scrub_block * sblock)726 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
727 {
728 	struct btrfs_device *dev;
729 	struct btrfs_fs_info *fs_info;
730 	struct btrfs_path *path;
731 	struct btrfs_key found_key;
732 	struct extent_buffer *eb;
733 	struct btrfs_extent_item *ei;
734 	struct scrub_warning swarn;
735 	unsigned long ptr = 0;
736 	u64 extent_item_pos;
737 	u64 flags = 0;
738 	u64 ref_root;
739 	u32 item_size;
740 	u8 ref_level = 0;
741 	int ret;
742 
743 	WARN_ON(sblock->page_count < 1);
744 	dev = sblock->pagev[0]->dev;
745 	fs_info = sblock->sctx->fs_info;
746 
747 	path = btrfs_alloc_path();
748 	if (!path)
749 		return;
750 
751 	swarn.physical = sblock->pagev[0]->physical;
752 	swarn.logical = sblock->pagev[0]->logical;
753 	swarn.errstr = errstr;
754 	swarn.dev = NULL;
755 
756 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
757 				  &flags);
758 	if (ret < 0)
759 		goto out;
760 
761 	extent_item_pos = swarn.logical - found_key.objectid;
762 	swarn.extent_item_size = found_key.offset;
763 
764 	eb = path->nodes[0];
765 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
766 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
767 
768 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
769 		do {
770 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
771 						      item_size, &ref_root,
772 						      &ref_level);
773 			btrfs_warn_in_rcu(fs_info,
774 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
775 				errstr, swarn.logical,
776 				rcu_str_deref(dev->name),
777 				swarn.physical,
778 				ref_level ? "node" : "leaf",
779 				ret < 0 ? -1 : ref_level,
780 				ret < 0 ? -1 : ref_root);
781 		} while (ret != 1);
782 		btrfs_release_path(path);
783 	} else {
784 		btrfs_release_path(path);
785 		swarn.path = path;
786 		swarn.dev = dev;
787 		iterate_extent_inodes(fs_info, found_key.objectid,
788 					extent_item_pos, 1,
789 					scrub_print_warning_inode, &swarn, false);
790 	}
791 
792 out:
793 	btrfs_free_path(path);
794 }
795 
scrub_get_recover(struct scrub_recover * recover)796 static inline void scrub_get_recover(struct scrub_recover *recover)
797 {
798 	refcount_inc(&recover->refs);
799 }
800 
scrub_put_recover(struct btrfs_fs_info * fs_info,struct scrub_recover * recover)801 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
802 				     struct scrub_recover *recover)
803 {
804 	if (refcount_dec_and_test(&recover->refs)) {
805 		btrfs_bio_counter_dec(fs_info);
806 		btrfs_put_bbio(recover->bbio);
807 		kfree(recover);
808 	}
809 }
810 
811 /*
812  * scrub_handle_errored_block gets called when either verification of the
813  * pages failed or the bio failed to read, e.g. with EIO. In the latter
814  * case, this function handles all pages in the bio, even though only one
815  * may be bad.
816  * The goal of this function is to repair the errored block by using the
817  * contents of one of the mirrors.
818  */
scrub_handle_errored_block(struct scrub_block * sblock_to_check)819 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
820 {
821 	struct scrub_ctx *sctx = sblock_to_check->sctx;
822 	struct btrfs_device *dev;
823 	struct btrfs_fs_info *fs_info;
824 	u64 logical;
825 	unsigned int failed_mirror_index;
826 	unsigned int is_metadata;
827 	unsigned int have_csum;
828 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
829 	struct scrub_block *sblock_bad;
830 	int ret;
831 	int mirror_index;
832 	int page_num;
833 	int success;
834 	bool full_stripe_locked;
835 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
836 				      DEFAULT_RATELIMIT_BURST);
837 
838 	BUG_ON(sblock_to_check->page_count < 1);
839 	fs_info = sctx->fs_info;
840 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
841 		/*
842 		 * if we find an error in a super block, we just report it.
843 		 * They will get written with the next transaction commit
844 		 * anyway
845 		 */
846 		spin_lock(&sctx->stat_lock);
847 		++sctx->stat.super_errors;
848 		spin_unlock(&sctx->stat_lock);
849 		return 0;
850 	}
851 	logical = sblock_to_check->pagev[0]->logical;
852 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
853 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
854 	is_metadata = !(sblock_to_check->pagev[0]->flags &
855 			BTRFS_EXTENT_FLAG_DATA);
856 	have_csum = sblock_to_check->pagev[0]->have_csum;
857 	dev = sblock_to_check->pagev[0]->dev;
858 
859 	/*
860 	 * For RAID5/6, race can happen for a different device scrub thread.
861 	 * For data corruption, Parity and Data threads will both try
862 	 * to recovery the data.
863 	 * Race can lead to doubly added csum error, or even unrecoverable
864 	 * error.
865 	 */
866 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
867 	if (ret < 0) {
868 		spin_lock(&sctx->stat_lock);
869 		if (ret == -ENOMEM)
870 			sctx->stat.malloc_errors++;
871 		sctx->stat.read_errors++;
872 		sctx->stat.uncorrectable_errors++;
873 		spin_unlock(&sctx->stat_lock);
874 		return ret;
875 	}
876 
877 	/*
878 	 * read all mirrors one after the other. This includes to
879 	 * re-read the extent or metadata block that failed (that was
880 	 * the cause that this fixup code is called) another time,
881 	 * page by page this time in order to know which pages
882 	 * caused I/O errors and which ones are good (for all mirrors).
883 	 * It is the goal to handle the situation when more than one
884 	 * mirror contains I/O errors, but the errors do not
885 	 * overlap, i.e. the data can be repaired by selecting the
886 	 * pages from those mirrors without I/O error on the
887 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
888 	 * would be that mirror #1 has an I/O error on the first page,
889 	 * the second page is good, and mirror #2 has an I/O error on
890 	 * the second page, but the first page is good.
891 	 * Then the first page of the first mirror can be repaired by
892 	 * taking the first page of the second mirror, and the
893 	 * second page of the second mirror can be repaired by
894 	 * copying the contents of the 2nd page of the 1st mirror.
895 	 * One more note: if the pages of one mirror contain I/O
896 	 * errors, the checksum cannot be verified. In order to get
897 	 * the best data for repairing, the first attempt is to find
898 	 * a mirror without I/O errors and with a validated checksum.
899 	 * Only if this is not possible, the pages are picked from
900 	 * mirrors with I/O errors without considering the checksum.
901 	 * If the latter is the case, at the end, the checksum of the
902 	 * repaired area is verified in order to correctly maintain
903 	 * the statistics.
904 	 */
905 
906 	sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
907 				      sizeof(*sblocks_for_recheck), GFP_NOFS);
908 	if (!sblocks_for_recheck) {
909 		spin_lock(&sctx->stat_lock);
910 		sctx->stat.malloc_errors++;
911 		sctx->stat.read_errors++;
912 		sctx->stat.uncorrectable_errors++;
913 		spin_unlock(&sctx->stat_lock);
914 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
915 		goto out;
916 	}
917 
918 	/* setup the context, map the logical blocks and alloc the pages */
919 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
920 	if (ret) {
921 		spin_lock(&sctx->stat_lock);
922 		sctx->stat.read_errors++;
923 		sctx->stat.uncorrectable_errors++;
924 		spin_unlock(&sctx->stat_lock);
925 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
926 		goto out;
927 	}
928 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
929 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
930 
931 	/* build and submit the bios for the failed mirror, check checksums */
932 	scrub_recheck_block(fs_info, sblock_bad, 1);
933 
934 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
935 	    sblock_bad->no_io_error_seen) {
936 		/*
937 		 * the error disappeared after reading page by page, or
938 		 * the area was part of a huge bio and other parts of the
939 		 * bio caused I/O errors, or the block layer merged several
940 		 * read requests into one and the error is caused by a
941 		 * different bio (usually one of the two latter cases is
942 		 * the cause)
943 		 */
944 		spin_lock(&sctx->stat_lock);
945 		sctx->stat.unverified_errors++;
946 		sblock_to_check->data_corrected = 1;
947 		spin_unlock(&sctx->stat_lock);
948 
949 		if (sctx->is_dev_replace)
950 			scrub_write_block_to_dev_replace(sblock_bad);
951 		goto out;
952 	}
953 
954 	if (!sblock_bad->no_io_error_seen) {
955 		spin_lock(&sctx->stat_lock);
956 		sctx->stat.read_errors++;
957 		spin_unlock(&sctx->stat_lock);
958 		if (__ratelimit(&_rs))
959 			scrub_print_warning("i/o error", sblock_to_check);
960 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
961 	} else if (sblock_bad->checksum_error) {
962 		spin_lock(&sctx->stat_lock);
963 		sctx->stat.csum_errors++;
964 		spin_unlock(&sctx->stat_lock);
965 		if (__ratelimit(&_rs))
966 			scrub_print_warning("checksum error", sblock_to_check);
967 		btrfs_dev_stat_inc_and_print(dev,
968 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
969 	} else if (sblock_bad->header_error) {
970 		spin_lock(&sctx->stat_lock);
971 		sctx->stat.verify_errors++;
972 		spin_unlock(&sctx->stat_lock);
973 		if (__ratelimit(&_rs))
974 			scrub_print_warning("checksum/header error",
975 					    sblock_to_check);
976 		if (sblock_bad->generation_error)
977 			btrfs_dev_stat_inc_and_print(dev,
978 				BTRFS_DEV_STAT_GENERATION_ERRS);
979 		else
980 			btrfs_dev_stat_inc_and_print(dev,
981 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
982 	}
983 
984 	if (sctx->readonly) {
985 		ASSERT(!sctx->is_dev_replace);
986 		goto out;
987 	}
988 
989 	/*
990 	 * now build and submit the bios for the other mirrors, check
991 	 * checksums.
992 	 * First try to pick the mirror which is completely without I/O
993 	 * errors and also does not have a checksum error.
994 	 * If one is found, and if a checksum is present, the full block
995 	 * that is known to contain an error is rewritten. Afterwards
996 	 * the block is known to be corrected.
997 	 * If a mirror is found which is completely correct, and no
998 	 * checksum is present, only those pages are rewritten that had
999 	 * an I/O error in the block to be repaired, since it cannot be
1000 	 * determined, which copy of the other pages is better (and it
1001 	 * could happen otherwise that a correct page would be
1002 	 * overwritten by a bad one).
1003 	 */
1004 	for (mirror_index = 0; ;mirror_index++) {
1005 		struct scrub_block *sblock_other;
1006 
1007 		if (mirror_index == failed_mirror_index)
1008 			continue;
1009 
1010 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1011 		if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1012 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1013 				break;
1014 			if (!sblocks_for_recheck[mirror_index].page_count)
1015 				break;
1016 
1017 			sblock_other = sblocks_for_recheck + mirror_index;
1018 		} else {
1019 			struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1020 			int max_allowed = r->bbio->num_stripes -
1021 						r->bbio->num_tgtdevs;
1022 
1023 			if (mirror_index >= max_allowed)
1024 				break;
1025 			if (!sblocks_for_recheck[1].page_count)
1026 				break;
1027 
1028 			ASSERT(failed_mirror_index == 0);
1029 			sblock_other = sblocks_for_recheck + 1;
1030 			sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1031 		}
1032 
1033 		/* build and submit the bios, check checksums */
1034 		scrub_recheck_block(fs_info, sblock_other, 0);
1035 
1036 		if (!sblock_other->header_error &&
1037 		    !sblock_other->checksum_error &&
1038 		    sblock_other->no_io_error_seen) {
1039 			if (sctx->is_dev_replace) {
1040 				scrub_write_block_to_dev_replace(sblock_other);
1041 				goto corrected_error;
1042 			} else {
1043 				ret = scrub_repair_block_from_good_copy(
1044 						sblock_bad, sblock_other);
1045 				if (!ret)
1046 					goto corrected_error;
1047 			}
1048 		}
1049 	}
1050 
1051 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1052 		goto did_not_correct_error;
1053 
1054 	/*
1055 	 * In case of I/O errors in the area that is supposed to be
1056 	 * repaired, continue by picking good copies of those pages.
1057 	 * Select the good pages from mirrors to rewrite bad pages from
1058 	 * the area to fix. Afterwards verify the checksum of the block
1059 	 * that is supposed to be repaired. This verification step is
1060 	 * only done for the purpose of statistic counting and for the
1061 	 * final scrub report, whether errors remain.
1062 	 * A perfect algorithm could make use of the checksum and try
1063 	 * all possible combinations of pages from the different mirrors
1064 	 * until the checksum verification succeeds. For example, when
1065 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1066 	 * of mirror #2 is readable but the final checksum test fails,
1067 	 * then the 2nd page of mirror #3 could be tried, whether now
1068 	 * the final checksum succeeds. But this would be a rare
1069 	 * exception and is therefore not implemented. At least it is
1070 	 * avoided that the good copy is overwritten.
1071 	 * A more useful improvement would be to pick the sectors
1072 	 * without I/O error based on sector sizes (512 bytes on legacy
1073 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1074 	 * mirror could be repaired by taking 512 byte of a different
1075 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1076 	 * area are unreadable.
1077 	 */
1078 	success = 1;
1079 	for (page_num = 0; page_num < sblock_bad->page_count;
1080 	     page_num++) {
1081 		struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1082 		struct scrub_block *sblock_other = NULL;
1083 
1084 		/* skip no-io-error page in scrub */
1085 		if (!page_bad->io_error && !sctx->is_dev_replace)
1086 			continue;
1087 
1088 		if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1089 			/*
1090 			 * In case of dev replace, if raid56 rebuild process
1091 			 * didn't work out correct data, then copy the content
1092 			 * in sblock_bad to make sure target device is identical
1093 			 * to source device, instead of writing garbage data in
1094 			 * sblock_for_recheck array to target device.
1095 			 */
1096 			sblock_other = NULL;
1097 		} else if (page_bad->io_error) {
1098 			/* try to find no-io-error page in mirrors */
1099 			for (mirror_index = 0;
1100 			     mirror_index < BTRFS_MAX_MIRRORS &&
1101 			     sblocks_for_recheck[mirror_index].page_count > 0;
1102 			     mirror_index++) {
1103 				if (!sblocks_for_recheck[mirror_index].
1104 				    pagev[page_num]->io_error) {
1105 					sblock_other = sblocks_for_recheck +
1106 						       mirror_index;
1107 					break;
1108 				}
1109 			}
1110 			if (!sblock_other)
1111 				success = 0;
1112 		}
1113 
1114 		if (sctx->is_dev_replace) {
1115 			/*
1116 			 * did not find a mirror to fetch the page
1117 			 * from. scrub_write_page_to_dev_replace()
1118 			 * handles this case (page->io_error), by
1119 			 * filling the block with zeros before
1120 			 * submitting the write request
1121 			 */
1122 			if (!sblock_other)
1123 				sblock_other = sblock_bad;
1124 
1125 			if (scrub_write_page_to_dev_replace(sblock_other,
1126 							    page_num) != 0) {
1127 				btrfs_dev_replace_stats_inc(
1128 					&fs_info->dev_replace.num_write_errors);
1129 				success = 0;
1130 			}
1131 		} else if (sblock_other) {
1132 			ret = scrub_repair_page_from_good_copy(sblock_bad,
1133 							       sblock_other,
1134 							       page_num, 0);
1135 			if (0 == ret)
1136 				page_bad->io_error = 0;
1137 			else
1138 				success = 0;
1139 		}
1140 	}
1141 
1142 	if (success && !sctx->is_dev_replace) {
1143 		if (is_metadata || have_csum) {
1144 			/*
1145 			 * need to verify the checksum now that all
1146 			 * sectors on disk are repaired (the write
1147 			 * request for data to be repaired is on its way).
1148 			 * Just be lazy and use scrub_recheck_block()
1149 			 * which re-reads the data before the checksum
1150 			 * is verified, but most likely the data comes out
1151 			 * of the page cache.
1152 			 */
1153 			scrub_recheck_block(fs_info, sblock_bad, 1);
1154 			if (!sblock_bad->header_error &&
1155 			    !sblock_bad->checksum_error &&
1156 			    sblock_bad->no_io_error_seen)
1157 				goto corrected_error;
1158 			else
1159 				goto did_not_correct_error;
1160 		} else {
1161 corrected_error:
1162 			spin_lock(&sctx->stat_lock);
1163 			sctx->stat.corrected_errors++;
1164 			sblock_to_check->data_corrected = 1;
1165 			spin_unlock(&sctx->stat_lock);
1166 			btrfs_err_rl_in_rcu(fs_info,
1167 				"fixed up error at logical %llu on dev %s",
1168 				logical, rcu_str_deref(dev->name));
1169 		}
1170 	} else {
1171 did_not_correct_error:
1172 		spin_lock(&sctx->stat_lock);
1173 		sctx->stat.uncorrectable_errors++;
1174 		spin_unlock(&sctx->stat_lock);
1175 		btrfs_err_rl_in_rcu(fs_info,
1176 			"unable to fixup (regular) error at logical %llu on dev %s",
1177 			logical, rcu_str_deref(dev->name));
1178 	}
1179 
1180 out:
1181 	if (sblocks_for_recheck) {
1182 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1183 		     mirror_index++) {
1184 			struct scrub_block *sblock = sblocks_for_recheck +
1185 						     mirror_index;
1186 			struct scrub_recover *recover;
1187 			int page_index;
1188 
1189 			for (page_index = 0; page_index < sblock->page_count;
1190 			     page_index++) {
1191 				sblock->pagev[page_index]->sblock = NULL;
1192 				recover = sblock->pagev[page_index]->recover;
1193 				if (recover) {
1194 					scrub_put_recover(fs_info, recover);
1195 					sblock->pagev[page_index]->recover =
1196 									NULL;
1197 				}
1198 				scrub_page_put(sblock->pagev[page_index]);
1199 			}
1200 		}
1201 		kfree(sblocks_for_recheck);
1202 	}
1203 
1204 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1205 	if (ret < 0)
1206 		return ret;
1207 	return 0;
1208 }
1209 
scrub_nr_raid_mirrors(struct btrfs_bio * bbio)1210 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1211 {
1212 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1213 		return 2;
1214 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1215 		return 3;
1216 	else
1217 		return (int)bbio->num_stripes;
1218 }
1219 
scrub_stripe_index_and_offset(u64 logical,u64 map_type,u64 * raid_map,u64 mapped_length,int nstripes,int mirror,int * stripe_index,u64 * stripe_offset)1220 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1221 						 u64 *raid_map,
1222 						 u64 mapped_length,
1223 						 int nstripes, int mirror,
1224 						 int *stripe_index,
1225 						 u64 *stripe_offset)
1226 {
1227 	int i;
1228 
1229 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1230 		/* RAID5/6 */
1231 		for (i = 0; i < nstripes; i++) {
1232 			if (raid_map[i] == RAID6_Q_STRIPE ||
1233 			    raid_map[i] == RAID5_P_STRIPE)
1234 				continue;
1235 
1236 			if (logical >= raid_map[i] &&
1237 			    logical < raid_map[i] + mapped_length)
1238 				break;
1239 		}
1240 
1241 		*stripe_index = i;
1242 		*stripe_offset = logical - raid_map[i];
1243 	} else {
1244 		/* The other RAID type */
1245 		*stripe_index = mirror;
1246 		*stripe_offset = 0;
1247 	}
1248 }
1249 
scrub_setup_recheck_block(struct scrub_block * original_sblock,struct scrub_block * sblocks_for_recheck)1250 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1251 				     struct scrub_block *sblocks_for_recheck)
1252 {
1253 	struct scrub_ctx *sctx = original_sblock->sctx;
1254 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1255 	u64 length = original_sblock->page_count * PAGE_SIZE;
1256 	u64 logical = original_sblock->pagev[0]->logical;
1257 	u64 generation = original_sblock->pagev[0]->generation;
1258 	u64 flags = original_sblock->pagev[0]->flags;
1259 	u64 have_csum = original_sblock->pagev[0]->have_csum;
1260 	struct scrub_recover *recover;
1261 	struct btrfs_bio *bbio;
1262 	u64 sublen;
1263 	u64 mapped_length;
1264 	u64 stripe_offset;
1265 	int stripe_index;
1266 	int page_index = 0;
1267 	int mirror_index;
1268 	int nmirrors;
1269 	int ret;
1270 
1271 	/*
1272 	 * note: the two members refs and outstanding_pages
1273 	 * are not used (and not set) in the blocks that are used for
1274 	 * the recheck procedure
1275 	 */
1276 
1277 	while (length > 0) {
1278 		sublen = min_t(u64, length, PAGE_SIZE);
1279 		mapped_length = sublen;
1280 		bbio = NULL;
1281 
1282 		/*
1283 		 * with a length of PAGE_SIZE, each returned stripe
1284 		 * represents one mirror
1285 		 */
1286 		btrfs_bio_counter_inc_blocked(fs_info);
1287 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1288 				logical, &mapped_length, &bbio);
1289 		if (ret || !bbio || mapped_length < sublen) {
1290 			btrfs_put_bbio(bbio);
1291 			btrfs_bio_counter_dec(fs_info);
1292 			return -EIO;
1293 		}
1294 
1295 		recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1296 		if (!recover) {
1297 			btrfs_put_bbio(bbio);
1298 			btrfs_bio_counter_dec(fs_info);
1299 			return -ENOMEM;
1300 		}
1301 
1302 		refcount_set(&recover->refs, 1);
1303 		recover->bbio = bbio;
1304 		recover->map_length = mapped_length;
1305 
1306 		BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1307 
1308 		nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1309 
1310 		for (mirror_index = 0; mirror_index < nmirrors;
1311 		     mirror_index++) {
1312 			struct scrub_block *sblock;
1313 			struct scrub_page *page;
1314 
1315 			sblock = sblocks_for_recheck + mirror_index;
1316 			sblock->sctx = sctx;
1317 
1318 			page = kzalloc(sizeof(*page), GFP_NOFS);
1319 			if (!page) {
1320 leave_nomem:
1321 				spin_lock(&sctx->stat_lock);
1322 				sctx->stat.malloc_errors++;
1323 				spin_unlock(&sctx->stat_lock);
1324 				scrub_put_recover(fs_info, recover);
1325 				return -ENOMEM;
1326 			}
1327 			scrub_page_get(page);
1328 			sblock->pagev[page_index] = page;
1329 			page->sblock = sblock;
1330 			page->flags = flags;
1331 			page->generation = generation;
1332 			page->logical = logical;
1333 			page->have_csum = have_csum;
1334 			if (have_csum)
1335 				memcpy(page->csum,
1336 				       original_sblock->pagev[0]->csum,
1337 				       sctx->csum_size);
1338 
1339 			scrub_stripe_index_and_offset(logical,
1340 						      bbio->map_type,
1341 						      bbio->raid_map,
1342 						      mapped_length,
1343 						      bbio->num_stripes -
1344 						      bbio->num_tgtdevs,
1345 						      mirror_index,
1346 						      &stripe_index,
1347 						      &stripe_offset);
1348 			page->physical = bbio->stripes[stripe_index].physical +
1349 					 stripe_offset;
1350 			page->dev = bbio->stripes[stripe_index].dev;
1351 
1352 			BUG_ON(page_index >= original_sblock->page_count);
1353 			page->physical_for_dev_replace =
1354 				original_sblock->pagev[page_index]->
1355 				physical_for_dev_replace;
1356 			/* for missing devices, dev->bdev is NULL */
1357 			page->mirror_num = mirror_index + 1;
1358 			sblock->page_count++;
1359 			page->page = alloc_page(GFP_NOFS);
1360 			if (!page->page)
1361 				goto leave_nomem;
1362 
1363 			scrub_get_recover(recover);
1364 			page->recover = recover;
1365 		}
1366 		scrub_put_recover(fs_info, recover);
1367 		length -= sublen;
1368 		logical += sublen;
1369 		page_index++;
1370 	}
1371 
1372 	return 0;
1373 }
1374 
scrub_bio_wait_endio(struct bio * bio)1375 static void scrub_bio_wait_endio(struct bio *bio)
1376 {
1377 	complete(bio->bi_private);
1378 }
1379 
scrub_submit_raid56_bio_wait(struct btrfs_fs_info * fs_info,struct bio * bio,struct scrub_page * page)1380 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1381 					struct bio *bio,
1382 					struct scrub_page *page)
1383 {
1384 	DECLARE_COMPLETION_ONSTACK(done);
1385 	int ret;
1386 	int mirror_num;
1387 
1388 	bio->bi_iter.bi_sector = page->logical >> 9;
1389 	bio->bi_private = &done;
1390 	bio->bi_end_io = scrub_bio_wait_endio;
1391 
1392 	mirror_num = page->sblock->pagev[0]->mirror_num;
1393 	ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1394 				    page->recover->map_length,
1395 				    mirror_num, 0);
1396 	if (ret)
1397 		return ret;
1398 
1399 	wait_for_completion_io(&done);
1400 	return blk_status_to_errno(bio->bi_status);
1401 }
1402 
scrub_recheck_block_on_raid56(struct btrfs_fs_info * fs_info,struct scrub_block * sblock)1403 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1404 					  struct scrub_block *sblock)
1405 {
1406 	struct scrub_page *first_page = sblock->pagev[0];
1407 	struct bio *bio;
1408 	int page_num;
1409 
1410 	/* All pages in sblock belong to the same stripe on the same device. */
1411 	ASSERT(first_page->dev);
1412 	if (!first_page->dev->bdev)
1413 		goto out;
1414 
1415 	bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1416 	bio_set_dev(bio, first_page->dev->bdev);
1417 
1418 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1419 		struct scrub_page *page = sblock->pagev[page_num];
1420 
1421 		WARN_ON(!page->page);
1422 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1423 	}
1424 
1425 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1426 		bio_put(bio);
1427 		goto out;
1428 	}
1429 
1430 	bio_put(bio);
1431 
1432 	scrub_recheck_block_checksum(sblock);
1433 
1434 	return;
1435 out:
1436 	for (page_num = 0; page_num < sblock->page_count; page_num++)
1437 		sblock->pagev[page_num]->io_error = 1;
1438 
1439 	sblock->no_io_error_seen = 0;
1440 }
1441 
1442 /*
1443  * this function will check the on disk data for checksum errors, header
1444  * errors and read I/O errors. If any I/O errors happen, the exact pages
1445  * which are errored are marked as being bad. The goal is to enable scrub
1446  * to take those pages that are not errored from all the mirrors so that
1447  * the pages that are errored in the just handled mirror can be repaired.
1448  */
scrub_recheck_block(struct btrfs_fs_info * fs_info,struct scrub_block * sblock,int retry_failed_mirror)1449 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1450 				struct scrub_block *sblock,
1451 				int retry_failed_mirror)
1452 {
1453 	int page_num;
1454 
1455 	sblock->no_io_error_seen = 1;
1456 
1457 	/* short cut for raid56 */
1458 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1459 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1460 
1461 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1462 		struct bio *bio;
1463 		struct scrub_page *page = sblock->pagev[page_num];
1464 
1465 		if (page->dev->bdev == NULL) {
1466 			page->io_error = 1;
1467 			sblock->no_io_error_seen = 0;
1468 			continue;
1469 		}
1470 
1471 		WARN_ON(!page->page);
1472 		bio = btrfs_io_bio_alloc(1);
1473 		bio_set_dev(bio, page->dev->bdev);
1474 
1475 		bio_add_page(bio, page->page, PAGE_SIZE, 0);
1476 		bio->bi_iter.bi_sector = page->physical >> 9;
1477 		bio->bi_opf = REQ_OP_READ;
1478 
1479 		if (btrfsic_submit_bio_wait(bio)) {
1480 			page->io_error = 1;
1481 			sblock->no_io_error_seen = 0;
1482 		}
1483 
1484 		bio_put(bio);
1485 	}
1486 
1487 	if (sblock->no_io_error_seen)
1488 		scrub_recheck_block_checksum(sblock);
1489 }
1490 
scrub_check_fsid(u8 fsid[],struct scrub_page * spage)1491 static inline int scrub_check_fsid(u8 fsid[],
1492 				   struct scrub_page *spage)
1493 {
1494 	struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1495 	int ret;
1496 
1497 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1498 	return !ret;
1499 }
1500 
scrub_recheck_block_checksum(struct scrub_block * sblock)1501 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1502 {
1503 	sblock->header_error = 0;
1504 	sblock->checksum_error = 0;
1505 	sblock->generation_error = 0;
1506 
1507 	if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1508 		scrub_checksum_data(sblock);
1509 	else
1510 		scrub_checksum_tree_block(sblock);
1511 }
1512 
scrub_repair_block_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good)1513 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1514 					     struct scrub_block *sblock_good)
1515 {
1516 	int page_num;
1517 	int ret = 0;
1518 
1519 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1520 		int ret_sub;
1521 
1522 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1523 							   sblock_good,
1524 							   page_num, 1);
1525 		if (ret_sub)
1526 			ret = ret_sub;
1527 	}
1528 
1529 	return ret;
1530 }
1531 
scrub_repair_page_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good,int page_num,int force_write)1532 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1533 					    struct scrub_block *sblock_good,
1534 					    int page_num, int force_write)
1535 {
1536 	struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1537 	struct scrub_page *page_good = sblock_good->pagev[page_num];
1538 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1539 
1540 	BUG_ON(page_bad->page == NULL);
1541 	BUG_ON(page_good->page == NULL);
1542 	if (force_write || sblock_bad->header_error ||
1543 	    sblock_bad->checksum_error || page_bad->io_error) {
1544 		struct bio *bio;
1545 		int ret;
1546 
1547 		if (!page_bad->dev->bdev) {
1548 			btrfs_warn_rl(fs_info,
1549 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1550 			return -EIO;
1551 		}
1552 
1553 		bio = btrfs_io_bio_alloc(1);
1554 		bio_set_dev(bio, page_bad->dev->bdev);
1555 		bio->bi_iter.bi_sector = page_bad->physical >> 9;
1556 		bio->bi_opf = REQ_OP_WRITE;
1557 
1558 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1559 		if (PAGE_SIZE != ret) {
1560 			bio_put(bio);
1561 			return -EIO;
1562 		}
1563 
1564 		if (btrfsic_submit_bio_wait(bio)) {
1565 			btrfs_dev_stat_inc_and_print(page_bad->dev,
1566 				BTRFS_DEV_STAT_WRITE_ERRS);
1567 			btrfs_dev_replace_stats_inc(
1568 				&fs_info->dev_replace.num_write_errors);
1569 			bio_put(bio);
1570 			return -EIO;
1571 		}
1572 		bio_put(bio);
1573 	}
1574 
1575 	return 0;
1576 }
1577 
scrub_write_block_to_dev_replace(struct scrub_block * sblock)1578 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1579 {
1580 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1581 	int page_num;
1582 
1583 	/*
1584 	 * This block is used for the check of the parity on the source device,
1585 	 * so the data needn't be written into the destination device.
1586 	 */
1587 	if (sblock->sparity)
1588 		return;
1589 
1590 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1591 		int ret;
1592 
1593 		ret = scrub_write_page_to_dev_replace(sblock, page_num);
1594 		if (ret)
1595 			btrfs_dev_replace_stats_inc(
1596 				&fs_info->dev_replace.num_write_errors);
1597 	}
1598 }
1599 
scrub_write_page_to_dev_replace(struct scrub_block * sblock,int page_num)1600 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1601 					   int page_num)
1602 {
1603 	struct scrub_page *spage = sblock->pagev[page_num];
1604 
1605 	BUG_ON(spage->page == NULL);
1606 	if (spage->io_error) {
1607 		void *mapped_buffer = kmap_atomic(spage->page);
1608 
1609 		clear_page(mapped_buffer);
1610 		flush_dcache_page(spage->page);
1611 		kunmap_atomic(mapped_buffer);
1612 	}
1613 	return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1614 }
1615 
scrub_add_page_to_wr_bio(struct scrub_ctx * sctx,struct scrub_page * spage)1616 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1617 				    struct scrub_page *spage)
1618 {
1619 	struct scrub_bio *sbio;
1620 	int ret;
1621 
1622 	mutex_lock(&sctx->wr_lock);
1623 again:
1624 	if (!sctx->wr_curr_bio) {
1625 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1626 					      GFP_KERNEL);
1627 		if (!sctx->wr_curr_bio) {
1628 			mutex_unlock(&sctx->wr_lock);
1629 			return -ENOMEM;
1630 		}
1631 		sctx->wr_curr_bio->sctx = sctx;
1632 		sctx->wr_curr_bio->page_count = 0;
1633 	}
1634 	sbio = sctx->wr_curr_bio;
1635 	if (sbio->page_count == 0) {
1636 		struct bio *bio;
1637 
1638 		sbio->physical = spage->physical_for_dev_replace;
1639 		sbio->logical = spage->logical;
1640 		sbio->dev = sctx->wr_tgtdev;
1641 		bio = sbio->bio;
1642 		if (!bio) {
1643 			bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1644 			sbio->bio = bio;
1645 		}
1646 
1647 		bio->bi_private = sbio;
1648 		bio->bi_end_io = scrub_wr_bio_end_io;
1649 		bio_set_dev(bio, sbio->dev->bdev);
1650 		bio->bi_iter.bi_sector = sbio->physical >> 9;
1651 		bio->bi_opf = REQ_OP_WRITE;
1652 		sbio->status = 0;
1653 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1654 		   spage->physical_for_dev_replace ||
1655 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1656 		   spage->logical) {
1657 		scrub_wr_submit(sctx);
1658 		goto again;
1659 	}
1660 
1661 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1662 	if (ret != PAGE_SIZE) {
1663 		if (sbio->page_count < 1) {
1664 			bio_put(sbio->bio);
1665 			sbio->bio = NULL;
1666 			mutex_unlock(&sctx->wr_lock);
1667 			return -EIO;
1668 		}
1669 		scrub_wr_submit(sctx);
1670 		goto again;
1671 	}
1672 
1673 	sbio->pagev[sbio->page_count] = spage;
1674 	scrub_page_get(spage);
1675 	sbio->page_count++;
1676 	if (sbio->page_count == sctx->pages_per_wr_bio)
1677 		scrub_wr_submit(sctx);
1678 	mutex_unlock(&sctx->wr_lock);
1679 
1680 	return 0;
1681 }
1682 
scrub_wr_submit(struct scrub_ctx * sctx)1683 static void scrub_wr_submit(struct scrub_ctx *sctx)
1684 {
1685 	struct scrub_bio *sbio;
1686 
1687 	if (!sctx->wr_curr_bio)
1688 		return;
1689 
1690 	sbio = sctx->wr_curr_bio;
1691 	sctx->wr_curr_bio = NULL;
1692 	WARN_ON(!sbio->bio->bi_disk);
1693 	scrub_pending_bio_inc(sctx);
1694 	/* process all writes in a single worker thread. Then the block layer
1695 	 * orders the requests before sending them to the driver which
1696 	 * doubled the write performance on spinning disks when measured
1697 	 * with Linux 3.5 */
1698 	btrfsic_submit_bio(sbio->bio);
1699 }
1700 
scrub_wr_bio_end_io(struct bio * bio)1701 static void scrub_wr_bio_end_io(struct bio *bio)
1702 {
1703 	struct scrub_bio *sbio = bio->bi_private;
1704 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1705 
1706 	sbio->status = bio->bi_status;
1707 	sbio->bio = bio;
1708 
1709 	btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1710 			 scrub_wr_bio_end_io_worker, NULL, NULL);
1711 	btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1712 }
1713 
scrub_wr_bio_end_io_worker(struct btrfs_work * work)1714 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1715 {
1716 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1717 	struct scrub_ctx *sctx = sbio->sctx;
1718 	int i;
1719 
1720 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1721 	if (sbio->status) {
1722 		struct btrfs_dev_replace *dev_replace =
1723 			&sbio->sctx->fs_info->dev_replace;
1724 
1725 		for (i = 0; i < sbio->page_count; i++) {
1726 			struct scrub_page *spage = sbio->pagev[i];
1727 
1728 			spage->io_error = 1;
1729 			btrfs_dev_replace_stats_inc(&dev_replace->
1730 						    num_write_errors);
1731 		}
1732 	}
1733 
1734 	for (i = 0; i < sbio->page_count; i++)
1735 		scrub_page_put(sbio->pagev[i]);
1736 
1737 	bio_put(sbio->bio);
1738 	kfree(sbio);
1739 	scrub_pending_bio_dec(sctx);
1740 }
1741 
scrub_checksum(struct scrub_block * sblock)1742 static int scrub_checksum(struct scrub_block *sblock)
1743 {
1744 	u64 flags;
1745 	int ret;
1746 
1747 	/*
1748 	 * No need to initialize these stats currently,
1749 	 * because this function only use return value
1750 	 * instead of these stats value.
1751 	 *
1752 	 * Todo:
1753 	 * always use stats
1754 	 */
1755 	sblock->header_error = 0;
1756 	sblock->generation_error = 0;
1757 	sblock->checksum_error = 0;
1758 
1759 	WARN_ON(sblock->page_count < 1);
1760 	flags = sblock->pagev[0]->flags;
1761 	ret = 0;
1762 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1763 		ret = scrub_checksum_data(sblock);
1764 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1765 		ret = scrub_checksum_tree_block(sblock);
1766 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1767 		(void)scrub_checksum_super(sblock);
1768 	else
1769 		WARN_ON(1);
1770 	if (ret)
1771 		scrub_handle_errored_block(sblock);
1772 
1773 	return ret;
1774 }
1775 
scrub_checksum_data(struct scrub_block * sblock)1776 static int scrub_checksum_data(struct scrub_block *sblock)
1777 {
1778 	struct scrub_ctx *sctx = sblock->sctx;
1779 	u8 csum[BTRFS_CSUM_SIZE];
1780 	u8 *on_disk_csum;
1781 	struct page *page;
1782 	void *buffer;
1783 	u32 crc = ~(u32)0;
1784 	u64 len;
1785 	int index;
1786 
1787 	BUG_ON(sblock->page_count < 1);
1788 	if (!sblock->pagev[0]->have_csum)
1789 		return 0;
1790 
1791 	on_disk_csum = sblock->pagev[0]->csum;
1792 	page = sblock->pagev[0]->page;
1793 	buffer = kmap_atomic(page);
1794 
1795 	len = sctx->fs_info->sectorsize;
1796 	index = 0;
1797 	for (;;) {
1798 		u64 l = min_t(u64, len, PAGE_SIZE);
1799 
1800 		crc = btrfs_csum_data(buffer, crc, l);
1801 		kunmap_atomic(buffer);
1802 		len -= l;
1803 		if (len == 0)
1804 			break;
1805 		index++;
1806 		BUG_ON(index >= sblock->page_count);
1807 		BUG_ON(!sblock->pagev[index]->page);
1808 		page = sblock->pagev[index]->page;
1809 		buffer = kmap_atomic(page);
1810 	}
1811 
1812 	btrfs_csum_final(crc, csum);
1813 	if (memcmp(csum, on_disk_csum, sctx->csum_size))
1814 		sblock->checksum_error = 1;
1815 
1816 	return sblock->checksum_error;
1817 }
1818 
scrub_checksum_tree_block(struct scrub_block * sblock)1819 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1820 {
1821 	struct scrub_ctx *sctx = sblock->sctx;
1822 	struct btrfs_header *h;
1823 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1824 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1825 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1826 	struct page *page;
1827 	void *mapped_buffer;
1828 	u64 mapped_size;
1829 	void *p;
1830 	u32 crc = ~(u32)0;
1831 	u64 len;
1832 	int index;
1833 
1834 	BUG_ON(sblock->page_count < 1);
1835 	page = sblock->pagev[0]->page;
1836 	mapped_buffer = kmap_atomic(page);
1837 	h = (struct btrfs_header *)mapped_buffer;
1838 	memcpy(on_disk_csum, h->csum, sctx->csum_size);
1839 
1840 	/*
1841 	 * we don't use the getter functions here, as we
1842 	 * a) don't have an extent buffer and
1843 	 * b) the page is already kmapped
1844 	 */
1845 	if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1846 		sblock->header_error = 1;
1847 
1848 	if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1849 		sblock->header_error = 1;
1850 		sblock->generation_error = 1;
1851 	}
1852 
1853 	if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1854 		sblock->header_error = 1;
1855 
1856 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1857 		   BTRFS_UUID_SIZE))
1858 		sblock->header_error = 1;
1859 
1860 	len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1861 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1862 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1863 	index = 0;
1864 	for (;;) {
1865 		u64 l = min_t(u64, len, mapped_size);
1866 
1867 		crc = btrfs_csum_data(p, crc, l);
1868 		kunmap_atomic(mapped_buffer);
1869 		len -= l;
1870 		if (len == 0)
1871 			break;
1872 		index++;
1873 		BUG_ON(index >= sblock->page_count);
1874 		BUG_ON(!sblock->pagev[index]->page);
1875 		page = sblock->pagev[index]->page;
1876 		mapped_buffer = kmap_atomic(page);
1877 		mapped_size = PAGE_SIZE;
1878 		p = mapped_buffer;
1879 	}
1880 
1881 	btrfs_csum_final(crc, calculated_csum);
1882 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1883 		sblock->checksum_error = 1;
1884 
1885 	return sblock->header_error || sblock->checksum_error;
1886 }
1887 
scrub_checksum_super(struct scrub_block * sblock)1888 static int scrub_checksum_super(struct scrub_block *sblock)
1889 {
1890 	struct btrfs_super_block *s;
1891 	struct scrub_ctx *sctx = sblock->sctx;
1892 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1893 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1894 	struct page *page;
1895 	void *mapped_buffer;
1896 	u64 mapped_size;
1897 	void *p;
1898 	u32 crc = ~(u32)0;
1899 	int fail_gen = 0;
1900 	int fail_cor = 0;
1901 	u64 len;
1902 	int index;
1903 
1904 	BUG_ON(sblock->page_count < 1);
1905 	page = sblock->pagev[0]->page;
1906 	mapped_buffer = kmap_atomic(page);
1907 	s = (struct btrfs_super_block *)mapped_buffer;
1908 	memcpy(on_disk_csum, s->csum, sctx->csum_size);
1909 
1910 	if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1911 		++fail_cor;
1912 
1913 	if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1914 		++fail_gen;
1915 
1916 	if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1917 		++fail_cor;
1918 
1919 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1920 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1921 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1922 	index = 0;
1923 	for (;;) {
1924 		u64 l = min_t(u64, len, mapped_size);
1925 
1926 		crc = btrfs_csum_data(p, crc, l);
1927 		kunmap_atomic(mapped_buffer);
1928 		len -= l;
1929 		if (len == 0)
1930 			break;
1931 		index++;
1932 		BUG_ON(index >= sblock->page_count);
1933 		BUG_ON(!sblock->pagev[index]->page);
1934 		page = sblock->pagev[index]->page;
1935 		mapped_buffer = kmap_atomic(page);
1936 		mapped_size = PAGE_SIZE;
1937 		p = mapped_buffer;
1938 	}
1939 
1940 	btrfs_csum_final(crc, calculated_csum);
1941 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1942 		++fail_cor;
1943 
1944 	if (fail_cor + fail_gen) {
1945 		/*
1946 		 * if we find an error in a super block, we just report it.
1947 		 * They will get written with the next transaction commit
1948 		 * anyway
1949 		 */
1950 		spin_lock(&sctx->stat_lock);
1951 		++sctx->stat.super_errors;
1952 		spin_unlock(&sctx->stat_lock);
1953 		if (fail_cor)
1954 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1955 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1956 		else
1957 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1958 				BTRFS_DEV_STAT_GENERATION_ERRS);
1959 	}
1960 
1961 	return fail_cor + fail_gen;
1962 }
1963 
scrub_block_get(struct scrub_block * sblock)1964 static void scrub_block_get(struct scrub_block *sblock)
1965 {
1966 	refcount_inc(&sblock->refs);
1967 }
1968 
scrub_block_put(struct scrub_block * sblock)1969 static void scrub_block_put(struct scrub_block *sblock)
1970 {
1971 	if (refcount_dec_and_test(&sblock->refs)) {
1972 		int i;
1973 
1974 		if (sblock->sparity)
1975 			scrub_parity_put(sblock->sparity);
1976 
1977 		for (i = 0; i < sblock->page_count; i++)
1978 			scrub_page_put(sblock->pagev[i]);
1979 		kfree(sblock);
1980 	}
1981 }
1982 
scrub_page_get(struct scrub_page * spage)1983 static void scrub_page_get(struct scrub_page *spage)
1984 {
1985 	atomic_inc(&spage->refs);
1986 }
1987 
scrub_page_put(struct scrub_page * spage)1988 static void scrub_page_put(struct scrub_page *spage)
1989 {
1990 	if (atomic_dec_and_test(&spage->refs)) {
1991 		if (spage->page)
1992 			__free_page(spage->page);
1993 		kfree(spage);
1994 	}
1995 }
1996 
scrub_submit(struct scrub_ctx * sctx)1997 static void scrub_submit(struct scrub_ctx *sctx)
1998 {
1999 	struct scrub_bio *sbio;
2000 
2001 	if (sctx->curr == -1)
2002 		return;
2003 
2004 	sbio = sctx->bios[sctx->curr];
2005 	sctx->curr = -1;
2006 	scrub_pending_bio_inc(sctx);
2007 	btrfsic_submit_bio(sbio->bio);
2008 }
2009 
scrub_add_page_to_rd_bio(struct scrub_ctx * sctx,struct scrub_page * spage)2010 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2011 				    struct scrub_page *spage)
2012 {
2013 	struct scrub_block *sblock = spage->sblock;
2014 	struct scrub_bio *sbio;
2015 	int ret;
2016 
2017 again:
2018 	/*
2019 	 * grab a fresh bio or wait for one to become available
2020 	 */
2021 	while (sctx->curr == -1) {
2022 		spin_lock(&sctx->list_lock);
2023 		sctx->curr = sctx->first_free;
2024 		if (sctx->curr != -1) {
2025 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2026 			sctx->bios[sctx->curr]->next_free = -1;
2027 			sctx->bios[sctx->curr]->page_count = 0;
2028 			spin_unlock(&sctx->list_lock);
2029 		} else {
2030 			spin_unlock(&sctx->list_lock);
2031 			wait_event(sctx->list_wait, sctx->first_free != -1);
2032 		}
2033 	}
2034 	sbio = sctx->bios[sctx->curr];
2035 	if (sbio->page_count == 0) {
2036 		struct bio *bio;
2037 
2038 		sbio->physical = spage->physical;
2039 		sbio->logical = spage->logical;
2040 		sbio->dev = spage->dev;
2041 		bio = sbio->bio;
2042 		if (!bio) {
2043 			bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2044 			sbio->bio = bio;
2045 		}
2046 
2047 		bio->bi_private = sbio;
2048 		bio->bi_end_io = scrub_bio_end_io;
2049 		bio_set_dev(bio, sbio->dev->bdev);
2050 		bio->bi_iter.bi_sector = sbio->physical >> 9;
2051 		bio->bi_opf = REQ_OP_READ;
2052 		sbio->status = 0;
2053 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2054 		   spage->physical ||
2055 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
2056 		   spage->logical ||
2057 		   sbio->dev != spage->dev) {
2058 		scrub_submit(sctx);
2059 		goto again;
2060 	}
2061 
2062 	sbio->pagev[sbio->page_count] = spage;
2063 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2064 	if (ret != PAGE_SIZE) {
2065 		if (sbio->page_count < 1) {
2066 			bio_put(sbio->bio);
2067 			sbio->bio = NULL;
2068 			return -EIO;
2069 		}
2070 		scrub_submit(sctx);
2071 		goto again;
2072 	}
2073 
2074 	scrub_block_get(sblock); /* one for the page added to the bio */
2075 	atomic_inc(&sblock->outstanding_pages);
2076 	sbio->page_count++;
2077 	if (sbio->page_count == sctx->pages_per_rd_bio)
2078 		scrub_submit(sctx);
2079 
2080 	return 0;
2081 }
2082 
scrub_missing_raid56_end_io(struct bio * bio)2083 static void scrub_missing_raid56_end_io(struct bio *bio)
2084 {
2085 	struct scrub_block *sblock = bio->bi_private;
2086 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2087 
2088 	if (bio->bi_status)
2089 		sblock->no_io_error_seen = 0;
2090 
2091 	bio_put(bio);
2092 
2093 	btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2094 }
2095 
scrub_missing_raid56_worker(struct btrfs_work * work)2096 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2097 {
2098 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2099 	struct scrub_ctx *sctx = sblock->sctx;
2100 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2101 	u64 logical;
2102 	struct btrfs_device *dev;
2103 
2104 	logical = sblock->pagev[0]->logical;
2105 	dev = sblock->pagev[0]->dev;
2106 
2107 	if (sblock->no_io_error_seen)
2108 		scrub_recheck_block_checksum(sblock);
2109 
2110 	if (!sblock->no_io_error_seen) {
2111 		spin_lock(&sctx->stat_lock);
2112 		sctx->stat.read_errors++;
2113 		spin_unlock(&sctx->stat_lock);
2114 		btrfs_err_rl_in_rcu(fs_info,
2115 			"IO error rebuilding logical %llu for dev %s",
2116 			logical, rcu_str_deref(dev->name));
2117 	} else if (sblock->header_error || sblock->checksum_error) {
2118 		spin_lock(&sctx->stat_lock);
2119 		sctx->stat.uncorrectable_errors++;
2120 		spin_unlock(&sctx->stat_lock);
2121 		btrfs_err_rl_in_rcu(fs_info,
2122 			"failed to rebuild valid logical %llu for dev %s",
2123 			logical, rcu_str_deref(dev->name));
2124 	} else {
2125 		scrub_write_block_to_dev_replace(sblock);
2126 	}
2127 
2128 	scrub_block_put(sblock);
2129 
2130 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2131 		mutex_lock(&sctx->wr_lock);
2132 		scrub_wr_submit(sctx);
2133 		mutex_unlock(&sctx->wr_lock);
2134 	}
2135 
2136 	scrub_pending_bio_dec(sctx);
2137 }
2138 
scrub_missing_raid56_pages(struct scrub_block * sblock)2139 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2140 {
2141 	struct scrub_ctx *sctx = sblock->sctx;
2142 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2143 	u64 length = sblock->page_count * PAGE_SIZE;
2144 	u64 logical = sblock->pagev[0]->logical;
2145 	struct btrfs_bio *bbio = NULL;
2146 	struct bio *bio;
2147 	struct btrfs_raid_bio *rbio;
2148 	int ret;
2149 	int i;
2150 
2151 	btrfs_bio_counter_inc_blocked(fs_info);
2152 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2153 			&length, &bbio);
2154 	if (ret || !bbio || !bbio->raid_map)
2155 		goto bbio_out;
2156 
2157 	if (WARN_ON(!sctx->is_dev_replace ||
2158 		    !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2159 		/*
2160 		 * We shouldn't be scrubbing a missing device. Even for dev
2161 		 * replace, we should only get here for RAID 5/6. We either
2162 		 * managed to mount something with no mirrors remaining or
2163 		 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2164 		 */
2165 		goto bbio_out;
2166 	}
2167 
2168 	bio = btrfs_io_bio_alloc(0);
2169 	bio->bi_iter.bi_sector = logical >> 9;
2170 	bio->bi_private = sblock;
2171 	bio->bi_end_io = scrub_missing_raid56_end_io;
2172 
2173 	rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2174 	if (!rbio)
2175 		goto rbio_out;
2176 
2177 	for (i = 0; i < sblock->page_count; i++) {
2178 		struct scrub_page *spage = sblock->pagev[i];
2179 
2180 		raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2181 	}
2182 
2183 	btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2184 			scrub_missing_raid56_worker, NULL, NULL);
2185 	scrub_block_get(sblock);
2186 	scrub_pending_bio_inc(sctx);
2187 	raid56_submit_missing_rbio(rbio);
2188 	return;
2189 
2190 rbio_out:
2191 	bio_put(bio);
2192 bbio_out:
2193 	btrfs_bio_counter_dec(fs_info);
2194 	btrfs_put_bbio(bbio);
2195 	spin_lock(&sctx->stat_lock);
2196 	sctx->stat.malloc_errors++;
2197 	spin_unlock(&sctx->stat_lock);
2198 }
2199 
scrub_pages(struct scrub_ctx * sctx,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum,int force,u64 physical_for_dev_replace)2200 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2201 		       u64 physical, struct btrfs_device *dev, u64 flags,
2202 		       u64 gen, int mirror_num, u8 *csum, int force,
2203 		       u64 physical_for_dev_replace)
2204 {
2205 	struct scrub_block *sblock;
2206 	int index;
2207 
2208 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2209 	if (!sblock) {
2210 		spin_lock(&sctx->stat_lock);
2211 		sctx->stat.malloc_errors++;
2212 		spin_unlock(&sctx->stat_lock);
2213 		return -ENOMEM;
2214 	}
2215 
2216 	/* one ref inside this function, plus one for each page added to
2217 	 * a bio later on */
2218 	refcount_set(&sblock->refs, 1);
2219 	sblock->sctx = sctx;
2220 	sblock->no_io_error_seen = 1;
2221 
2222 	for (index = 0; len > 0; index++) {
2223 		struct scrub_page *spage;
2224 		u64 l = min_t(u64, len, PAGE_SIZE);
2225 
2226 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2227 		if (!spage) {
2228 leave_nomem:
2229 			spin_lock(&sctx->stat_lock);
2230 			sctx->stat.malloc_errors++;
2231 			spin_unlock(&sctx->stat_lock);
2232 			scrub_block_put(sblock);
2233 			return -ENOMEM;
2234 		}
2235 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2236 		scrub_page_get(spage);
2237 		sblock->pagev[index] = spage;
2238 		spage->sblock = sblock;
2239 		spage->dev = dev;
2240 		spage->flags = flags;
2241 		spage->generation = gen;
2242 		spage->logical = logical;
2243 		spage->physical = physical;
2244 		spage->physical_for_dev_replace = physical_for_dev_replace;
2245 		spage->mirror_num = mirror_num;
2246 		if (csum) {
2247 			spage->have_csum = 1;
2248 			memcpy(spage->csum, csum, sctx->csum_size);
2249 		} else {
2250 			spage->have_csum = 0;
2251 		}
2252 		sblock->page_count++;
2253 		spage->page = alloc_page(GFP_KERNEL);
2254 		if (!spage->page)
2255 			goto leave_nomem;
2256 		len -= l;
2257 		logical += l;
2258 		physical += l;
2259 		physical_for_dev_replace += l;
2260 	}
2261 
2262 	WARN_ON(sblock->page_count == 0);
2263 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2264 		/*
2265 		 * This case should only be hit for RAID 5/6 device replace. See
2266 		 * the comment in scrub_missing_raid56_pages() for details.
2267 		 */
2268 		scrub_missing_raid56_pages(sblock);
2269 	} else {
2270 		for (index = 0; index < sblock->page_count; index++) {
2271 			struct scrub_page *spage = sblock->pagev[index];
2272 			int ret;
2273 
2274 			ret = scrub_add_page_to_rd_bio(sctx, spage);
2275 			if (ret) {
2276 				scrub_block_put(sblock);
2277 				return ret;
2278 			}
2279 		}
2280 
2281 		if (force)
2282 			scrub_submit(sctx);
2283 	}
2284 
2285 	/* last one frees, either here or in bio completion for last page */
2286 	scrub_block_put(sblock);
2287 	return 0;
2288 }
2289 
scrub_bio_end_io(struct bio * bio)2290 static void scrub_bio_end_io(struct bio *bio)
2291 {
2292 	struct scrub_bio *sbio = bio->bi_private;
2293 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2294 
2295 	sbio->status = bio->bi_status;
2296 	sbio->bio = bio;
2297 
2298 	btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2299 }
2300 
scrub_bio_end_io_worker(struct btrfs_work * work)2301 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2302 {
2303 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2304 	struct scrub_ctx *sctx = sbio->sctx;
2305 	int i;
2306 
2307 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2308 	if (sbio->status) {
2309 		for (i = 0; i < sbio->page_count; i++) {
2310 			struct scrub_page *spage = sbio->pagev[i];
2311 
2312 			spage->io_error = 1;
2313 			spage->sblock->no_io_error_seen = 0;
2314 		}
2315 	}
2316 
2317 	/* now complete the scrub_block items that have all pages completed */
2318 	for (i = 0; i < sbio->page_count; i++) {
2319 		struct scrub_page *spage = sbio->pagev[i];
2320 		struct scrub_block *sblock = spage->sblock;
2321 
2322 		if (atomic_dec_and_test(&sblock->outstanding_pages))
2323 			scrub_block_complete(sblock);
2324 		scrub_block_put(sblock);
2325 	}
2326 
2327 	bio_put(sbio->bio);
2328 	sbio->bio = NULL;
2329 	spin_lock(&sctx->list_lock);
2330 	sbio->next_free = sctx->first_free;
2331 	sctx->first_free = sbio->index;
2332 	spin_unlock(&sctx->list_lock);
2333 
2334 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2335 		mutex_lock(&sctx->wr_lock);
2336 		scrub_wr_submit(sctx);
2337 		mutex_unlock(&sctx->wr_lock);
2338 	}
2339 
2340 	scrub_pending_bio_dec(sctx);
2341 }
2342 
__scrub_mark_bitmap(struct scrub_parity * sparity,unsigned long * bitmap,u64 start,u64 len)2343 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2344 				       unsigned long *bitmap,
2345 				       u64 start, u64 len)
2346 {
2347 	u64 offset;
2348 	u64 nsectors64;
2349 	u32 nsectors;
2350 	int sectorsize = sparity->sctx->fs_info->sectorsize;
2351 
2352 	if (len >= sparity->stripe_len) {
2353 		bitmap_set(bitmap, 0, sparity->nsectors);
2354 		return;
2355 	}
2356 
2357 	start -= sparity->logic_start;
2358 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2359 	offset = div_u64(offset, sectorsize);
2360 	nsectors64 = div_u64(len, sectorsize);
2361 
2362 	ASSERT(nsectors64 < UINT_MAX);
2363 	nsectors = (u32)nsectors64;
2364 
2365 	if (offset + nsectors <= sparity->nsectors) {
2366 		bitmap_set(bitmap, offset, nsectors);
2367 		return;
2368 	}
2369 
2370 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2371 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2372 }
2373 
scrub_parity_mark_sectors_error(struct scrub_parity * sparity,u64 start,u64 len)2374 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2375 						   u64 start, u64 len)
2376 {
2377 	__scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2378 }
2379 
scrub_parity_mark_sectors_data(struct scrub_parity * sparity,u64 start,u64 len)2380 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2381 						  u64 start, u64 len)
2382 {
2383 	__scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2384 }
2385 
scrub_block_complete(struct scrub_block * sblock)2386 static void scrub_block_complete(struct scrub_block *sblock)
2387 {
2388 	int corrupted = 0;
2389 
2390 	if (!sblock->no_io_error_seen) {
2391 		corrupted = 1;
2392 		scrub_handle_errored_block(sblock);
2393 	} else {
2394 		/*
2395 		 * if has checksum error, write via repair mechanism in
2396 		 * dev replace case, otherwise write here in dev replace
2397 		 * case.
2398 		 */
2399 		corrupted = scrub_checksum(sblock);
2400 		if (!corrupted && sblock->sctx->is_dev_replace)
2401 			scrub_write_block_to_dev_replace(sblock);
2402 	}
2403 
2404 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2405 		u64 start = sblock->pagev[0]->logical;
2406 		u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2407 			  PAGE_SIZE;
2408 
2409 		scrub_parity_mark_sectors_error(sblock->sparity,
2410 						start, end - start);
2411 	}
2412 }
2413 
scrub_find_csum(struct scrub_ctx * sctx,u64 logical,u8 * csum)2414 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2415 {
2416 	struct btrfs_ordered_sum *sum = NULL;
2417 	unsigned long index;
2418 	unsigned long num_sectors;
2419 
2420 	while (!list_empty(&sctx->csum_list)) {
2421 		sum = list_first_entry(&sctx->csum_list,
2422 				       struct btrfs_ordered_sum, list);
2423 		if (sum->bytenr > logical)
2424 			return 0;
2425 		if (sum->bytenr + sum->len > logical)
2426 			break;
2427 
2428 		++sctx->stat.csum_discards;
2429 		list_del(&sum->list);
2430 		kfree(sum);
2431 		sum = NULL;
2432 	}
2433 	if (!sum)
2434 		return 0;
2435 
2436 	index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2437 	ASSERT(index < UINT_MAX);
2438 
2439 	num_sectors = sum->len / sctx->fs_info->sectorsize;
2440 	memcpy(csum, sum->sums + index, sctx->csum_size);
2441 	if (index == num_sectors - 1) {
2442 		list_del(&sum->list);
2443 		kfree(sum);
2444 	}
2445 	return 1;
2446 }
2447 
2448 /* scrub extent tries to collect up to 64 kB for each bio */
scrub_extent(struct scrub_ctx * sctx,struct map_lookup * map,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u64 physical_for_dev_replace)2449 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2450 			u64 logical, u64 len,
2451 			u64 physical, struct btrfs_device *dev, u64 flags,
2452 			u64 gen, int mirror_num, u64 physical_for_dev_replace)
2453 {
2454 	int ret;
2455 	u8 csum[BTRFS_CSUM_SIZE];
2456 	u32 blocksize;
2457 
2458 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2459 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2460 			blocksize = map->stripe_len;
2461 		else
2462 			blocksize = sctx->fs_info->sectorsize;
2463 		spin_lock(&sctx->stat_lock);
2464 		sctx->stat.data_extents_scrubbed++;
2465 		sctx->stat.data_bytes_scrubbed += len;
2466 		spin_unlock(&sctx->stat_lock);
2467 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2468 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2469 			blocksize = map->stripe_len;
2470 		else
2471 			blocksize = sctx->fs_info->nodesize;
2472 		spin_lock(&sctx->stat_lock);
2473 		sctx->stat.tree_extents_scrubbed++;
2474 		sctx->stat.tree_bytes_scrubbed += len;
2475 		spin_unlock(&sctx->stat_lock);
2476 	} else {
2477 		blocksize = sctx->fs_info->sectorsize;
2478 		WARN_ON(1);
2479 	}
2480 
2481 	while (len) {
2482 		u64 l = min_t(u64, len, blocksize);
2483 		int have_csum = 0;
2484 
2485 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2486 			/* push csums to sbio */
2487 			have_csum = scrub_find_csum(sctx, logical, csum);
2488 			if (have_csum == 0)
2489 				++sctx->stat.no_csum;
2490 		}
2491 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2492 				  mirror_num, have_csum ? csum : NULL, 0,
2493 				  physical_for_dev_replace);
2494 		if (ret)
2495 			return ret;
2496 		len -= l;
2497 		logical += l;
2498 		physical += l;
2499 		physical_for_dev_replace += l;
2500 	}
2501 	return 0;
2502 }
2503 
scrub_pages_for_parity(struct scrub_parity * sparity,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num,u8 * csum)2504 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2505 				  u64 logical, u64 len,
2506 				  u64 physical, struct btrfs_device *dev,
2507 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2508 {
2509 	struct scrub_ctx *sctx = sparity->sctx;
2510 	struct scrub_block *sblock;
2511 	int index;
2512 
2513 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2514 	if (!sblock) {
2515 		spin_lock(&sctx->stat_lock);
2516 		sctx->stat.malloc_errors++;
2517 		spin_unlock(&sctx->stat_lock);
2518 		return -ENOMEM;
2519 	}
2520 
2521 	/* one ref inside this function, plus one for each page added to
2522 	 * a bio later on */
2523 	refcount_set(&sblock->refs, 1);
2524 	sblock->sctx = sctx;
2525 	sblock->no_io_error_seen = 1;
2526 	sblock->sparity = sparity;
2527 	scrub_parity_get(sparity);
2528 
2529 	for (index = 0; len > 0; index++) {
2530 		struct scrub_page *spage;
2531 		u64 l = min_t(u64, len, PAGE_SIZE);
2532 
2533 		spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2534 		if (!spage) {
2535 leave_nomem:
2536 			spin_lock(&sctx->stat_lock);
2537 			sctx->stat.malloc_errors++;
2538 			spin_unlock(&sctx->stat_lock);
2539 			scrub_block_put(sblock);
2540 			return -ENOMEM;
2541 		}
2542 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2543 		/* For scrub block */
2544 		scrub_page_get(spage);
2545 		sblock->pagev[index] = spage;
2546 		/* For scrub parity */
2547 		scrub_page_get(spage);
2548 		list_add_tail(&spage->list, &sparity->spages);
2549 		spage->sblock = sblock;
2550 		spage->dev = dev;
2551 		spage->flags = flags;
2552 		spage->generation = gen;
2553 		spage->logical = logical;
2554 		spage->physical = physical;
2555 		spage->mirror_num = mirror_num;
2556 		if (csum) {
2557 			spage->have_csum = 1;
2558 			memcpy(spage->csum, csum, sctx->csum_size);
2559 		} else {
2560 			spage->have_csum = 0;
2561 		}
2562 		sblock->page_count++;
2563 		spage->page = alloc_page(GFP_KERNEL);
2564 		if (!spage->page)
2565 			goto leave_nomem;
2566 		len -= l;
2567 		logical += l;
2568 		physical += l;
2569 	}
2570 
2571 	WARN_ON(sblock->page_count == 0);
2572 	for (index = 0; index < sblock->page_count; index++) {
2573 		struct scrub_page *spage = sblock->pagev[index];
2574 		int ret;
2575 
2576 		ret = scrub_add_page_to_rd_bio(sctx, spage);
2577 		if (ret) {
2578 			scrub_block_put(sblock);
2579 			return ret;
2580 		}
2581 	}
2582 
2583 	/* last one frees, either here or in bio completion for last page */
2584 	scrub_block_put(sblock);
2585 	return 0;
2586 }
2587 
scrub_extent_for_parity(struct scrub_parity * sparity,u64 logical,u64 len,u64 physical,struct btrfs_device * dev,u64 flags,u64 gen,int mirror_num)2588 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2589 				   u64 logical, u64 len,
2590 				   u64 physical, struct btrfs_device *dev,
2591 				   u64 flags, u64 gen, int mirror_num)
2592 {
2593 	struct scrub_ctx *sctx = sparity->sctx;
2594 	int ret;
2595 	u8 csum[BTRFS_CSUM_SIZE];
2596 	u32 blocksize;
2597 
2598 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2599 		scrub_parity_mark_sectors_error(sparity, logical, len);
2600 		return 0;
2601 	}
2602 
2603 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2604 		blocksize = sparity->stripe_len;
2605 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2606 		blocksize = sparity->stripe_len;
2607 	} else {
2608 		blocksize = sctx->fs_info->sectorsize;
2609 		WARN_ON(1);
2610 	}
2611 
2612 	while (len) {
2613 		u64 l = min_t(u64, len, blocksize);
2614 		int have_csum = 0;
2615 
2616 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2617 			/* push csums to sbio */
2618 			have_csum = scrub_find_csum(sctx, logical, csum);
2619 			if (have_csum == 0)
2620 				goto skip;
2621 		}
2622 		ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2623 					     flags, gen, mirror_num,
2624 					     have_csum ? csum : NULL);
2625 		if (ret)
2626 			return ret;
2627 skip:
2628 		len -= l;
2629 		logical += l;
2630 		physical += l;
2631 	}
2632 	return 0;
2633 }
2634 
2635 /*
2636  * Given a physical address, this will calculate it's
2637  * logical offset. if this is a parity stripe, it will return
2638  * the most left data stripe's logical offset.
2639  *
2640  * return 0 if it is a data stripe, 1 means parity stripe.
2641  */
get_raid56_logic_offset(u64 physical,int num,struct map_lookup * map,u64 * offset,u64 * stripe_start)2642 static int get_raid56_logic_offset(u64 physical, int num,
2643 				   struct map_lookup *map, u64 *offset,
2644 				   u64 *stripe_start)
2645 {
2646 	int i;
2647 	int j = 0;
2648 	u64 stripe_nr;
2649 	u64 last_offset;
2650 	u32 stripe_index;
2651 	u32 rot;
2652 
2653 	last_offset = (physical - map->stripes[num].physical) *
2654 		      nr_data_stripes(map);
2655 	if (stripe_start)
2656 		*stripe_start = last_offset;
2657 
2658 	*offset = last_offset;
2659 	for (i = 0; i < nr_data_stripes(map); i++) {
2660 		*offset = last_offset + i * map->stripe_len;
2661 
2662 		stripe_nr = div64_u64(*offset, map->stripe_len);
2663 		stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2664 
2665 		/* Work out the disk rotation on this stripe-set */
2666 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2667 		/* calculate which stripe this data locates */
2668 		rot += i;
2669 		stripe_index = rot % map->num_stripes;
2670 		if (stripe_index == num)
2671 			return 0;
2672 		if (stripe_index < num)
2673 			j++;
2674 	}
2675 	*offset = last_offset + j * map->stripe_len;
2676 	return 1;
2677 }
2678 
scrub_free_parity(struct scrub_parity * sparity)2679 static void scrub_free_parity(struct scrub_parity *sparity)
2680 {
2681 	struct scrub_ctx *sctx = sparity->sctx;
2682 	struct scrub_page *curr, *next;
2683 	int nbits;
2684 
2685 	nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2686 	if (nbits) {
2687 		spin_lock(&sctx->stat_lock);
2688 		sctx->stat.read_errors += nbits;
2689 		sctx->stat.uncorrectable_errors += nbits;
2690 		spin_unlock(&sctx->stat_lock);
2691 	}
2692 
2693 	list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2694 		list_del_init(&curr->list);
2695 		scrub_page_put(curr);
2696 	}
2697 
2698 	kfree(sparity);
2699 }
2700 
scrub_parity_bio_endio_worker(struct btrfs_work * work)2701 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2702 {
2703 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2704 						    work);
2705 	struct scrub_ctx *sctx = sparity->sctx;
2706 
2707 	scrub_free_parity(sparity);
2708 	scrub_pending_bio_dec(sctx);
2709 }
2710 
scrub_parity_bio_endio(struct bio * bio)2711 static void scrub_parity_bio_endio(struct bio *bio)
2712 {
2713 	struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2714 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2715 
2716 	if (bio->bi_status)
2717 		bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2718 			  sparity->nsectors);
2719 
2720 	bio_put(bio);
2721 
2722 	btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2723 			scrub_parity_bio_endio_worker, NULL, NULL);
2724 	btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2725 }
2726 
scrub_parity_check_and_repair(struct scrub_parity * sparity)2727 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2728 {
2729 	struct scrub_ctx *sctx = sparity->sctx;
2730 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2731 	struct bio *bio;
2732 	struct btrfs_raid_bio *rbio;
2733 	struct btrfs_bio *bbio = NULL;
2734 	u64 length;
2735 	int ret;
2736 
2737 	if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2738 			   sparity->nsectors))
2739 		goto out;
2740 
2741 	length = sparity->logic_end - sparity->logic_start;
2742 
2743 	btrfs_bio_counter_inc_blocked(fs_info);
2744 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2745 			       &length, &bbio);
2746 	if (ret || !bbio || !bbio->raid_map)
2747 		goto bbio_out;
2748 
2749 	bio = btrfs_io_bio_alloc(0);
2750 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2751 	bio->bi_private = sparity;
2752 	bio->bi_end_io = scrub_parity_bio_endio;
2753 
2754 	rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2755 					      length, sparity->scrub_dev,
2756 					      sparity->dbitmap,
2757 					      sparity->nsectors);
2758 	if (!rbio)
2759 		goto rbio_out;
2760 
2761 	scrub_pending_bio_inc(sctx);
2762 	raid56_parity_submit_scrub_rbio(rbio);
2763 	return;
2764 
2765 rbio_out:
2766 	bio_put(bio);
2767 bbio_out:
2768 	btrfs_bio_counter_dec(fs_info);
2769 	btrfs_put_bbio(bbio);
2770 	bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2771 		  sparity->nsectors);
2772 	spin_lock(&sctx->stat_lock);
2773 	sctx->stat.malloc_errors++;
2774 	spin_unlock(&sctx->stat_lock);
2775 out:
2776 	scrub_free_parity(sparity);
2777 }
2778 
scrub_calc_parity_bitmap_len(int nsectors)2779 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2780 {
2781 	return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2782 }
2783 
scrub_parity_get(struct scrub_parity * sparity)2784 static void scrub_parity_get(struct scrub_parity *sparity)
2785 {
2786 	refcount_inc(&sparity->refs);
2787 }
2788 
scrub_parity_put(struct scrub_parity * sparity)2789 static void scrub_parity_put(struct scrub_parity *sparity)
2790 {
2791 	if (!refcount_dec_and_test(&sparity->refs))
2792 		return;
2793 
2794 	scrub_parity_check_and_repair(sparity);
2795 }
2796 
scrub_raid56_parity(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * sdev,struct btrfs_path * path,u64 logic_start,u64 logic_end)2797 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2798 						  struct map_lookup *map,
2799 						  struct btrfs_device *sdev,
2800 						  struct btrfs_path *path,
2801 						  u64 logic_start,
2802 						  u64 logic_end)
2803 {
2804 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2805 	struct btrfs_root *root = fs_info->extent_root;
2806 	struct btrfs_root *csum_root = fs_info->csum_root;
2807 	struct btrfs_extent_item *extent;
2808 	struct btrfs_bio *bbio = NULL;
2809 	u64 flags;
2810 	int ret;
2811 	int slot;
2812 	struct extent_buffer *l;
2813 	struct btrfs_key key;
2814 	u64 generation;
2815 	u64 extent_logical;
2816 	u64 extent_physical;
2817 	u64 extent_len;
2818 	u64 mapped_length;
2819 	struct btrfs_device *extent_dev;
2820 	struct scrub_parity *sparity;
2821 	int nsectors;
2822 	int bitmap_len;
2823 	int extent_mirror_num;
2824 	int stop_loop = 0;
2825 
2826 	nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2827 	bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2828 	sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2829 			  GFP_NOFS);
2830 	if (!sparity) {
2831 		spin_lock(&sctx->stat_lock);
2832 		sctx->stat.malloc_errors++;
2833 		spin_unlock(&sctx->stat_lock);
2834 		return -ENOMEM;
2835 	}
2836 
2837 	sparity->stripe_len = map->stripe_len;
2838 	sparity->nsectors = nsectors;
2839 	sparity->sctx = sctx;
2840 	sparity->scrub_dev = sdev;
2841 	sparity->logic_start = logic_start;
2842 	sparity->logic_end = logic_end;
2843 	refcount_set(&sparity->refs, 1);
2844 	INIT_LIST_HEAD(&sparity->spages);
2845 	sparity->dbitmap = sparity->bitmap;
2846 	sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2847 
2848 	ret = 0;
2849 	while (logic_start < logic_end) {
2850 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2851 			key.type = BTRFS_METADATA_ITEM_KEY;
2852 		else
2853 			key.type = BTRFS_EXTENT_ITEM_KEY;
2854 		key.objectid = logic_start;
2855 		key.offset = (u64)-1;
2856 
2857 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2858 		if (ret < 0)
2859 			goto out;
2860 
2861 		if (ret > 0) {
2862 			ret = btrfs_previous_extent_item(root, path, 0);
2863 			if (ret < 0)
2864 				goto out;
2865 			if (ret > 0) {
2866 				btrfs_release_path(path);
2867 				ret = btrfs_search_slot(NULL, root, &key,
2868 							path, 0, 0);
2869 				if (ret < 0)
2870 					goto out;
2871 			}
2872 		}
2873 
2874 		stop_loop = 0;
2875 		while (1) {
2876 			u64 bytes;
2877 
2878 			l = path->nodes[0];
2879 			slot = path->slots[0];
2880 			if (slot >= btrfs_header_nritems(l)) {
2881 				ret = btrfs_next_leaf(root, path);
2882 				if (ret == 0)
2883 					continue;
2884 				if (ret < 0)
2885 					goto out;
2886 
2887 				stop_loop = 1;
2888 				break;
2889 			}
2890 			btrfs_item_key_to_cpu(l, &key, slot);
2891 
2892 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2893 			    key.type != BTRFS_METADATA_ITEM_KEY)
2894 				goto next;
2895 
2896 			if (key.type == BTRFS_METADATA_ITEM_KEY)
2897 				bytes = fs_info->nodesize;
2898 			else
2899 				bytes = key.offset;
2900 
2901 			if (key.objectid + bytes <= logic_start)
2902 				goto next;
2903 
2904 			if (key.objectid >= logic_end) {
2905 				stop_loop = 1;
2906 				break;
2907 			}
2908 
2909 			while (key.objectid >= logic_start + map->stripe_len)
2910 				logic_start += map->stripe_len;
2911 
2912 			extent = btrfs_item_ptr(l, slot,
2913 						struct btrfs_extent_item);
2914 			flags = btrfs_extent_flags(l, extent);
2915 			generation = btrfs_extent_generation(l, extent);
2916 
2917 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2918 			    (key.objectid < logic_start ||
2919 			     key.objectid + bytes >
2920 			     logic_start + map->stripe_len)) {
2921 				btrfs_err(fs_info,
2922 					  "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2923 					  key.objectid, logic_start);
2924 				spin_lock(&sctx->stat_lock);
2925 				sctx->stat.uncorrectable_errors++;
2926 				spin_unlock(&sctx->stat_lock);
2927 				goto next;
2928 			}
2929 again:
2930 			extent_logical = key.objectid;
2931 			extent_len = bytes;
2932 
2933 			if (extent_logical < logic_start) {
2934 				extent_len -= logic_start - extent_logical;
2935 				extent_logical = logic_start;
2936 			}
2937 
2938 			if (extent_logical + extent_len >
2939 			    logic_start + map->stripe_len)
2940 				extent_len = logic_start + map->stripe_len -
2941 					     extent_logical;
2942 
2943 			scrub_parity_mark_sectors_data(sparity, extent_logical,
2944 						       extent_len);
2945 
2946 			mapped_length = extent_len;
2947 			bbio = NULL;
2948 			ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2949 					extent_logical, &mapped_length, &bbio,
2950 					0);
2951 			if (!ret) {
2952 				if (!bbio || mapped_length < extent_len)
2953 					ret = -EIO;
2954 			}
2955 			if (ret) {
2956 				btrfs_put_bbio(bbio);
2957 				goto out;
2958 			}
2959 			extent_physical = bbio->stripes[0].physical;
2960 			extent_mirror_num = bbio->mirror_num;
2961 			extent_dev = bbio->stripes[0].dev;
2962 			btrfs_put_bbio(bbio);
2963 
2964 			ret = btrfs_lookup_csums_range(csum_root,
2965 						extent_logical,
2966 						extent_logical + extent_len - 1,
2967 						&sctx->csum_list, 1);
2968 			if (ret)
2969 				goto out;
2970 
2971 			ret = scrub_extent_for_parity(sparity, extent_logical,
2972 						      extent_len,
2973 						      extent_physical,
2974 						      extent_dev, flags,
2975 						      generation,
2976 						      extent_mirror_num);
2977 
2978 			scrub_free_csums(sctx);
2979 
2980 			if (ret)
2981 				goto out;
2982 
2983 			if (extent_logical + extent_len <
2984 			    key.objectid + bytes) {
2985 				logic_start += map->stripe_len;
2986 
2987 				if (logic_start >= logic_end) {
2988 					stop_loop = 1;
2989 					break;
2990 				}
2991 
2992 				if (logic_start < key.objectid + bytes) {
2993 					cond_resched();
2994 					goto again;
2995 				}
2996 			}
2997 next:
2998 			path->slots[0]++;
2999 		}
3000 
3001 		btrfs_release_path(path);
3002 
3003 		if (stop_loop)
3004 			break;
3005 
3006 		logic_start += map->stripe_len;
3007 	}
3008 out:
3009 	if (ret < 0)
3010 		scrub_parity_mark_sectors_error(sparity, logic_start,
3011 						logic_end - logic_start);
3012 	scrub_parity_put(sparity);
3013 	scrub_submit(sctx);
3014 	mutex_lock(&sctx->wr_lock);
3015 	scrub_wr_submit(sctx);
3016 	mutex_unlock(&sctx->wr_lock);
3017 
3018 	btrfs_release_path(path);
3019 	return ret < 0 ? ret : 0;
3020 }
3021 
scrub_stripe(struct scrub_ctx * sctx,struct map_lookup * map,struct btrfs_device * scrub_dev,int num,u64 base,u64 length,int is_dev_replace)3022 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3023 					   struct map_lookup *map,
3024 					   struct btrfs_device *scrub_dev,
3025 					   int num, u64 base, u64 length,
3026 					   int is_dev_replace)
3027 {
3028 	struct btrfs_path *path, *ppath;
3029 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3030 	struct btrfs_root *root = fs_info->extent_root;
3031 	struct btrfs_root *csum_root = fs_info->csum_root;
3032 	struct btrfs_extent_item *extent;
3033 	struct blk_plug plug;
3034 	u64 flags;
3035 	int ret;
3036 	int slot;
3037 	u64 nstripes;
3038 	struct extent_buffer *l;
3039 	u64 physical;
3040 	u64 logical;
3041 	u64 logic_end;
3042 	u64 physical_end;
3043 	u64 generation;
3044 	int mirror_num;
3045 	struct reada_control *reada1;
3046 	struct reada_control *reada2;
3047 	struct btrfs_key key;
3048 	struct btrfs_key key_end;
3049 	u64 increment = map->stripe_len;
3050 	u64 offset;
3051 	u64 extent_logical;
3052 	u64 extent_physical;
3053 	u64 extent_len;
3054 	u64 stripe_logical;
3055 	u64 stripe_end;
3056 	struct btrfs_device *extent_dev;
3057 	int extent_mirror_num;
3058 	int stop_loop = 0;
3059 
3060 	physical = map->stripes[num].physical;
3061 	offset = 0;
3062 	nstripes = div64_u64(length, map->stripe_len);
3063 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3064 		offset = map->stripe_len * num;
3065 		increment = map->stripe_len * map->num_stripes;
3066 		mirror_num = 1;
3067 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3068 		int factor = map->num_stripes / map->sub_stripes;
3069 		offset = map->stripe_len * (num / map->sub_stripes);
3070 		increment = map->stripe_len * factor;
3071 		mirror_num = num % map->sub_stripes + 1;
3072 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3073 		increment = map->stripe_len;
3074 		mirror_num = num % map->num_stripes + 1;
3075 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3076 		increment = map->stripe_len;
3077 		mirror_num = num % map->num_stripes + 1;
3078 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3079 		get_raid56_logic_offset(physical, num, map, &offset, NULL);
3080 		increment = map->stripe_len * nr_data_stripes(map);
3081 		mirror_num = 1;
3082 	} else {
3083 		increment = map->stripe_len;
3084 		mirror_num = 1;
3085 	}
3086 
3087 	path = btrfs_alloc_path();
3088 	if (!path)
3089 		return -ENOMEM;
3090 
3091 	ppath = btrfs_alloc_path();
3092 	if (!ppath) {
3093 		btrfs_free_path(path);
3094 		return -ENOMEM;
3095 	}
3096 
3097 	/*
3098 	 * work on commit root. The related disk blocks are static as
3099 	 * long as COW is applied. This means, it is save to rewrite
3100 	 * them to repair disk errors without any race conditions
3101 	 */
3102 	path->search_commit_root = 1;
3103 	path->skip_locking = 1;
3104 
3105 	ppath->search_commit_root = 1;
3106 	ppath->skip_locking = 1;
3107 	/*
3108 	 * trigger the readahead for extent tree csum tree and wait for
3109 	 * completion. During readahead, the scrub is officially paused
3110 	 * to not hold off transaction commits
3111 	 */
3112 	logical = base + offset;
3113 	physical_end = physical + nstripes * map->stripe_len;
3114 	if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3115 		get_raid56_logic_offset(physical_end, num,
3116 					map, &logic_end, NULL);
3117 		logic_end += base;
3118 	} else {
3119 		logic_end = logical + increment * nstripes;
3120 	}
3121 	wait_event(sctx->list_wait,
3122 		   atomic_read(&sctx->bios_in_flight) == 0);
3123 	scrub_blocked_if_needed(fs_info);
3124 
3125 	/* FIXME it might be better to start readahead at commit root */
3126 	key.objectid = logical;
3127 	key.type = BTRFS_EXTENT_ITEM_KEY;
3128 	key.offset = (u64)0;
3129 	key_end.objectid = logic_end;
3130 	key_end.type = BTRFS_METADATA_ITEM_KEY;
3131 	key_end.offset = (u64)-1;
3132 	reada1 = btrfs_reada_add(root, &key, &key_end);
3133 
3134 	key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3135 	key.type = BTRFS_EXTENT_CSUM_KEY;
3136 	key.offset = logical;
3137 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3138 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
3139 	key_end.offset = logic_end;
3140 	reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3141 
3142 	if (!IS_ERR(reada1))
3143 		btrfs_reada_wait(reada1);
3144 	if (!IS_ERR(reada2))
3145 		btrfs_reada_wait(reada2);
3146 
3147 
3148 	/*
3149 	 * collect all data csums for the stripe to avoid seeking during
3150 	 * the scrub. This might currently (crc32) end up to be about 1MB
3151 	 */
3152 	blk_start_plug(&plug);
3153 
3154 	/*
3155 	 * now find all extents for each stripe and scrub them
3156 	 */
3157 	ret = 0;
3158 	while (physical < physical_end) {
3159 		/*
3160 		 * canceled?
3161 		 */
3162 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3163 		    atomic_read(&sctx->cancel_req)) {
3164 			ret = -ECANCELED;
3165 			goto out;
3166 		}
3167 		/*
3168 		 * check to see if we have to pause
3169 		 */
3170 		if (atomic_read(&fs_info->scrub_pause_req)) {
3171 			/* push queued extents */
3172 			sctx->flush_all_writes = true;
3173 			scrub_submit(sctx);
3174 			mutex_lock(&sctx->wr_lock);
3175 			scrub_wr_submit(sctx);
3176 			mutex_unlock(&sctx->wr_lock);
3177 			wait_event(sctx->list_wait,
3178 				   atomic_read(&sctx->bios_in_flight) == 0);
3179 			sctx->flush_all_writes = false;
3180 			scrub_blocked_if_needed(fs_info);
3181 		}
3182 
3183 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3184 			ret = get_raid56_logic_offset(physical, num, map,
3185 						      &logical,
3186 						      &stripe_logical);
3187 			logical += base;
3188 			if (ret) {
3189 				/* it is parity strip */
3190 				stripe_logical += base;
3191 				stripe_end = stripe_logical + increment;
3192 				ret = scrub_raid56_parity(sctx, map, scrub_dev,
3193 							  ppath, stripe_logical,
3194 							  stripe_end);
3195 				if (ret)
3196 					goto out;
3197 				goto skip;
3198 			}
3199 		}
3200 
3201 		if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3202 			key.type = BTRFS_METADATA_ITEM_KEY;
3203 		else
3204 			key.type = BTRFS_EXTENT_ITEM_KEY;
3205 		key.objectid = logical;
3206 		key.offset = (u64)-1;
3207 
3208 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3209 		if (ret < 0)
3210 			goto out;
3211 
3212 		if (ret > 0) {
3213 			ret = btrfs_previous_extent_item(root, path, 0);
3214 			if (ret < 0)
3215 				goto out;
3216 			if (ret > 0) {
3217 				/* there's no smaller item, so stick with the
3218 				 * larger one */
3219 				btrfs_release_path(path);
3220 				ret = btrfs_search_slot(NULL, root, &key,
3221 							path, 0, 0);
3222 				if (ret < 0)
3223 					goto out;
3224 			}
3225 		}
3226 
3227 		stop_loop = 0;
3228 		while (1) {
3229 			u64 bytes;
3230 
3231 			l = path->nodes[0];
3232 			slot = path->slots[0];
3233 			if (slot >= btrfs_header_nritems(l)) {
3234 				ret = btrfs_next_leaf(root, path);
3235 				if (ret == 0)
3236 					continue;
3237 				if (ret < 0)
3238 					goto out;
3239 
3240 				stop_loop = 1;
3241 				break;
3242 			}
3243 			btrfs_item_key_to_cpu(l, &key, slot);
3244 
3245 			if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3246 			    key.type != BTRFS_METADATA_ITEM_KEY)
3247 				goto next;
3248 
3249 			if (key.type == BTRFS_METADATA_ITEM_KEY)
3250 				bytes = fs_info->nodesize;
3251 			else
3252 				bytes = key.offset;
3253 
3254 			if (key.objectid + bytes <= logical)
3255 				goto next;
3256 
3257 			if (key.objectid >= logical + map->stripe_len) {
3258 				/* out of this device extent */
3259 				if (key.objectid >= logic_end)
3260 					stop_loop = 1;
3261 				break;
3262 			}
3263 
3264 			extent = btrfs_item_ptr(l, slot,
3265 						struct btrfs_extent_item);
3266 			flags = btrfs_extent_flags(l, extent);
3267 			generation = btrfs_extent_generation(l, extent);
3268 
3269 			if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3270 			    (key.objectid < logical ||
3271 			     key.objectid + bytes >
3272 			     logical + map->stripe_len)) {
3273 				btrfs_err(fs_info,
3274 					   "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3275 				       key.objectid, logical);
3276 				spin_lock(&sctx->stat_lock);
3277 				sctx->stat.uncorrectable_errors++;
3278 				spin_unlock(&sctx->stat_lock);
3279 				goto next;
3280 			}
3281 
3282 again:
3283 			extent_logical = key.objectid;
3284 			extent_len = bytes;
3285 
3286 			/*
3287 			 * trim extent to this stripe
3288 			 */
3289 			if (extent_logical < logical) {
3290 				extent_len -= logical - extent_logical;
3291 				extent_logical = logical;
3292 			}
3293 			if (extent_logical + extent_len >
3294 			    logical + map->stripe_len) {
3295 				extent_len = logical + map->stripe_len -
3296 					     extent_logical;
3297 			}
3298 
3299 			extent_physical = extent_logical - logical + physical;
3300 			extent_dev = scrub_dev;
3301 			extent_mirror_num = mirror_num;
3302 			if (is_dev_replace)
3303 				scrub_remap_extent(fs_info, extent_logical,
3304 						   extent_len, &extent_physical,
3305 						   &extent_dev,
3306 						   &extent_mirror_num);
3307 
3308 			ret = btrfs_lookup_csums_range(csum_root,
3309 						       extent_logical,
3310 						       extent_logical +
3311 						       extent_len - 1,
3312 						       &sctx->csum_list, 1);
3313 			if (ret)
3314 				goto out;
3315 
3316 			ret = scrub_extent(sctx, map, extent_logical, extent_len,
3317 					   extent_physical, extent_dev, flags,
3318 					   generation, extent_mirror_num,
3319 					   extent_logical - logical + physical);
3320 
3321 			scrub_free_csums(sctx);
3322 
3323 			if (ret)
3324 				goto out;
3325 
3326 			if (extent_logical + extent_len <
3327 			    key.objectid + bytes) {
3328 				if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3329 					/*
3330 					 * loop until we find next data stripe
3331 					 * or we have finished all stripes.
3332 					 */
3333 loop:
3334 					physical += map->stripe_len;
3335 					ret = get_raid56_logic_offset(physical,
3336 							num, map, &logical,
3337 							&stripe_logical);
3338 					logical += base;
3339 
3340 					if (ret && physical < physical_end) {
3341 						stripe_logical += base;
3342 						stripe_end = stripe_logical +
3343 								increment;
3344 						ret = scrub_raid56_parity(sctx,
3345 							map, scrub_dev, ppath,
3346 							stripe_logical,
3347 							stripe_end);
3348 						if (ret)
3349 							goto out;
3350 						goto loop;
3351 					}
3352 				} else {
3353 					physical += map->stripe_len;
3354 					logical += increment;
3355 				}
3356 				if (logical < key.objectid + bytes) {
3357 					cond_resched();
3358 					goto again;
3359 				}
3360 
3361 				if (physical >= physical_end) {
3362 					stop_loop = 1;
3363 					break;
3364 				}
3365 			}
3366 next:
3367 			path->slots[0]++;
3368 		}
3369 		btrfs_release_path(path);
3370 skip:
3371 		logical += increment;
3372 		physical += map->stripe_len;
3373 		spin_lock(&sctx->stat_lock);
3374 		if (stop_loop)
3375 			sctx->stat.last_physical = map->stripes[num].physical +
3376 						   length;
3377 		else
3378 			sctx->stat.last_physical = physical;
3379 		spin_unlock(&sctx->stat_lock);
3380 		if (stop_loop)
3381 			break;
3382 	}
3383 out:
3384 	/* push queued extents */
3385 	scrub_submit(sctx);
3386 	mutex_lock(&sctx->wr_lock);
3387 	scrub_wr_submit(sctx);
3388 	mutex_unlock(&sctx->wr_lock);
3389 
3390 	blk_finish_plug(&plug);
3391 	btrfs_free_path(path);
3392 	btrfs_free_path(ppath);
3393 	return ret < 0 ? ret : 0;
3394 }
3395 
scrub_chunk(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 chunk_offset,u64 length,u64 dev_offset,struct btrfs_block_group_cache * cache,int is_dev_replace)3396 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3397 					  struct btrfs_device *scrub_dev,
3398 					  u64 chunk_offset, u64 length,
3399 					  u64 dev_offset,
3400 					  struct btrfs_block_group_cache *cache,
3401 					  int is_dev_replace)
3402 {
3403 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3404 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3405 	struct map_lookup *map;
3406 	struct extent_map *em;
3407 	int i;
3408 	int ret = 0;
3409 
3410 	read_lock(&map_tree->map_tree.lock);
3411 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3412 	read_unlock(&map_tree->map_tree.lock);
3413 
3414 	if (!em) {
3415 		/*
3416 		 * Might have been an unused block group deleted by the cleaner
3417 		 * kthread or relocation.
3418 		 */
3419 		spin_lock(&cache->lock);
3420 		if (!cache->removed)
3421 			ret = -EINVAL;
3422 		spin_unlock(&cache->lock);
3423 
3424 		return ret;
3425 	}
3426 
3427 	map = em->map_lookup;
3428 	if (em->start != chunk_offset)
3429 		goto out;
3430 
3431 	if (em->len < length)
3432 		goto out;
3433 
3434 	for (i = 0; i < map->num_stripes; ++i) {
3435 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3436 		    map->stripes[i].physical == dev_offset) {
3437 			ret = scrub_stripe(sctx, map, scrub_dev, i,
3438 					   chunk_offset, length,
3439 					   is_dev_replace);
3440 			if (ret)
3441 				goto out;
3442 		}
3443 	}
3444 out:
3445 	free_extent_map(em);
3446 
3447 	return ret;
3448 }
3449 
3450 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev,u64 start,u64 end,int is_dev_replace)3451 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3452 			   struct btrfs_device *scrub_dev, u64 start, u64 end,
3453 			   int is_dev_replace)
3454 {
3455 	struct btrfs_dev_extent *dev_extent = NULL;
3456 	struct btrfs_path *path;
3457 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3458 	struct btrfs_root *root = fs_info->dev_root;
3459 	u64 length;
3460 	u64 chunk_offset;
3461 	int ret = 0;
3462 	int ro_set;
3463 	int slot;
3464 	struct extent_buffer *l;
3465 	struct btrfs_key key;
3466 	struct btrfs_key found_key;
3467 	struct btrfs_block_group_cache *cache;
3468 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3469 
3470 	path = btrfs_alloc_path();
3471 	if (!path)
3472 		return -ENOMEM;
3473 
3474 	path->reada = READA_FORWARD;
3475 	path->search_commit_root = 1;
3476 	path->skip_locking = 1;
3477 
3478 	key.objectid = scrub_dev->devid;
3479 	key.offset = 0ull;
3480 	key.type = BTRFS_DEV_EXTENT_KEY;
3481 
3482 	while (1) {
3483 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3484 		if (ret < 0)
3485 			break;
3486 		if (ret > 0) {
3487 			if (path->slots[0] >=
3488 			    btrfs_header_nritems(path->nodes[0])) {
3489 				ret = btrfs_next_leaf(root, path);
3490 				if (ret < 0)
3491 					break;
3492 				if (ret > 0) {
3493 					ret = 0;
3494 					break;
3495 				}
3496 			} else {
3497 				ret = 0;
3498 			}
3499 		}
3500 
3501 		l = path->nodes[0];
3502 		slot = path->slots[0];
3503 
3504 		btrfs_item_key_to_cpu(l, &found_key, slot);
3505 
3506 		if (found_key.objectid != scrub_dev->devid)
3507 			break;
3508 
3509 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3510 			break;
3511 
3512 		if (found_key.offset >= end)
3513 			break;
3514 
3515 		if (found_key.offset < key.offset)
3516 			break;
3517 
3518 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3519 		length = btrfs_dev_extent_length(l, dev_extent);
3520 
3521 		if (found_key.offset + length <= start)
3522 			goto skip;
3523 
3524 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3525 
3526 		/*
3527 		 * get a reference on the corresponding block group to prevent
3528 		 * the chunk from going away while we scrub it
3529 		 */
3530 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3531 
3532 		/* some chunks are removed but not committed to disk yet,
3533 		 * continue scrubbing */
3534 		if (!cache)
3535 			goto skip;
3536 
3537 		/*
3538 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3539 		 * to avoid deadlock caused by:
3540 		 * btrfs_inc_block_group_ro()
3541 		 * -> btrfs_wait_for_commit()
3542 		 * -> btrfs_commit_transaction()
3543 		 * -> btrfs_scrub_pause()
3544 		 */
3545 		scrub_pause_on(fs_info);
3546 		ret = btrfs_inc_block_group_ro(cache);
3547 		if (!ret && is_dev_replace) {
3548 			/*
3549 			 * If we are doing a device replace wait for any tasks
3550 			 * that started dellaloc right before we set the block
3551 			 * group to RO mode, as they might have just allocated
3552 			 * an extent from it or decided they could do a nocow
3553 			 * write. And if any such tasks did that, wait for their
3554 			 * ordered extents to complete and then commit the
3555 			 * current transaction, so that we can later see the new
3556 			 * extent items in the extent tree - the ordered extents
3557 			 * create delayed data references (for cow writes) when
3558 			 * they complete, which will be run and insert the
3559 			 * corresponding extent items into the extent tree when
3560 			 * we commit the transaction they used when running
3561 			 * inode.c:btrfs_finish_ordered_io(). We later use
3562 			 * the commit root of the extent tree to find extents
3563 			 * to copy from the srcdev into the tgtdev, and we don't
3564 			 * want to miss any new extents.
3565 			 */
3566 			btrfs_wait_block_group_reservations(cache);
3567 			btrfs_wait_nocow_writers(cache);
3568 			ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3569 						       cache->key.objectid,
3570 						       cache->key.offset);
3571 			if (ret > 0) {
3572 				struct btrfs_trans_handle *trans;
3573 
3574 				trans = btrfs_join_transaction(root);
3575 				if (IS_ERR(trans))
3576 					ret = PTR_ERR(trans);
3577 				else
3578 					ret = btrfs_commit_transaction(trans);
3579 				if (ret) {
3580 					scrub_pause_off(fs_info);
3581 					btrfs_put_block_group(cache);
3582 					break;
3583 				}
3584 			}
3585 		}
3586 		scrub_pause_off(fs_info);
3587 
3588 		if (ret == 0) {
3589 			ro_set = 1;
3590 		} else if (ret == -ENOSPC) {
3591 			/*
3592 			 * btrfs_inc_block_group_ro return -ENOSPC when it
3593 			 * failed in creating new chunk for metadata.
3594 			 * It is not a problem for scrub/replace, because
3595 			 * metadata are always cowed, and our scrub paused
3596 			 * commit_transactions.
3597 			 */
3598 			ro_set = 0;
3599 		} else {
3600 			btrfs_warn(fs_info,
3601 				   "failed setting block group ro: %d", ret);
3602 			btrfs_put_block_group(cache);
3603 			break;
3604 		}
3605 
3606 		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3607 		dev_replace->cursor_right = found_key.offset + length;
3608 		dev_replace->cursor_left = found_key.offset;
3609 		dev_replace->item_needs_writeback = 1;
3610 		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3611 		ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3612 				  found_key.offset, cache, is_dev_replace);
3613 
3614 		/*
3615 		 * flush, submit all pending read and write bios, afterwards
3616 		 * wait for them.
3617 		 * Note that in the dev replace case, a read request causes
3618 		 * write requests that are submitted in the read completion
3619 		 * worker. Therefore in the current situation, it is required
3620 		 * that all write requests are flushed, so that all read and
3621 		 * write requests are really completed when bios_in_flight
3622 		 * changes to 0.
3623 		 */
3624 		sctx->flush_all_writes = true;
3625 		scrub_submit(sctx);
3626 		mutex_lock(&sctx->wr_lock);
3627 		scrub_wr_submit(sctx);
3628 		mutex_unlock(&sctx->wr_lock);
3629 
3630 		wait_event(sctx->list_wait,
3631 			   atomic_read(&sctx->bios_in_flight) == 0);
3632 
3633 		scrub_pause_on(fs_info);
3634 
3635 		/*
3636 		 * must be called before we decrease @scrub_paused.
3637 		 * make sure we don't block transaction commit while
3638 		 * we are waiting pending workers finished.
3639 		 */
3640 		wait_event(sctx->list_wait,
3641 			   atomic_read(&sctx->workers_pending) == 0);
3642 		sctx->flush_all_writes = false;
3643 
3644 		scrub_pause_off(fs_info);
3645 
3646 		btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3647 		dev_replace->cursor_left = dev_replace->cursor_right;
3648 		dev_replace->item_needs_writeback = 1;
3649 		btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3650 
3651 		if (ro_set)
3652 			btrfs_dec_block_group_ro(cache);
3653 
3654 		/*
3655 		 * We might have prevented the cleaner kthread from deleting
3656 		 * this block group if it was already unused because we raced
3657 		 * and set it to RO mode first. So add it back to the unused
3658 		 * list, otherwise it might not ever be deleted unless a manual
3659 		 * balance is triggered or it becomes used and unused again.
3660 		 */
3661 		spin_lock(&cache->lock);
3662 		if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3663 		    btrfs_block_group_used(&cache->item) == 0) {
3664 			spin_unlock(&cache->lock);
3665 			btrfs_mark_bg_unused(cache);
3666 		} else {
3667 			spin_unlock(&cache->lock);
3668 		}
3669 
3670 		btrfs_put_block_group(cache);
3671 		if (ret)
3672 			break;
3673 		if (is_dev_replace &&
3674 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
3675 			ret = -EIO;
3676 			break;
3677 		}
3678 		if (sctx->stat.malloc_errors > 0) {
3679 			ret = -ENOMEM;
3680 			break;
3681 		}
3682 skip:
3683 		key.offset = found_key.offset + length;
3684 		btrfs_release_path(path);
3685 	}
3686 
3687 	btrfs_free_path(path);
3688 
3689 	return ret;
3690 }
3691 
scrub_supers(struct scrub_ctx * sctx,struct btrfs_device * scrub_dev)3692 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3693 					   struct btrfs_device *scrub_dev)
3694 {
3695 	int	i;
3696 	u64	bytenr;
3697 	u64	gen;
3698 	int	ret;
3699 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3700 
3701 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3702 		return -EIO;
3703 
3704 	/* Seed devices of a new filesystem has their own generation. */
3705 	if (scrub_dev->fs_devices != fs_info->fs_devices)
3706 		gen = scrub_dev->generation;
3707 	else
3708 		gen = fs_info->last_trans_committed;
3709 
3710 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3711 		bytenr = btrfs_sb_offset(i);
3712 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
3713 		    scrub_dev->commit_total_bytes)
3714 			break;
3715 
3716 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3717 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3718 				  NULL, 1, bytenr);
3719 		if (ret)
3720 			return ret;
3721 	}
3722 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3723 
3724 	return 0;
3725 }
3726 
3727 /*
3728  * get a reference count on fs_info->scrub_workers. start worker if necessary
3729  */
scrub_workers_get(struct btrfs_fs_info * fs_info,int is_dev_replace)3730 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3731 						int is_dev_replace)
3732 {
3733 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3734 	int max_active = fs_info->thread_pool_size;
3735 
3736 	if (fs_info->scrub_workers_refcnt == 0) {
3737 		fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3738 				flags, is_dev_replace ? 1 : max_active, 4);
3739 		if (!fs_info->scrub_workers)
3740 			goto fail_scrub_workers;
3741 
3742 		fs_info->scrub_wr_completion_workers =
3743 			btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3744 					      max_active, 2);
3745 		if (!fs_info->scrub_wr_completion_workers)
3746 			goto fail_scrub_wr_completion_workers;
3747 
3748 		fs_info->scrub_parity_workers =
3749 			btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3750 					      max_active, 2);
3751 		if (!fs_info->scrub_parity_workers)
3752 			goto fail_scrub_parity_workers;
3753 	}
3754 	++fs_info->scrub_workers_refcnt;
3755 	return 0;
3756 
3757 fail_scrub_parity_workers:
3758 	btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3759 fail_scrub_wr_completion_workers:
3760 	btrfs_destroy_workqueue(fs_info->scrub_workers);
3761 fail_scrub_workers:
3762 	return -ENOMEM;
3763 }
3764 
scrub_workers_put(struct btrfs_fs_info * fs_info)3765 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3766 {
3767 	if (--fs_info->scrub_workers_refcnt == 0) {
3768 		btrfs_destroy_workqueue(fs_info->scrub_workers);
3769 		btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3770 		btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3771 	}
3772 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
3773 }
3774 
btrfs_scrub_dev(struct btrfs_fs_info * fs_info,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly,int is_dev_replace)3775 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3776 		    u64 end, struct btrfs_scrub_progress *progress,
3777 		    int readonly, int is_dev_replace)
3778 {
3779 	struct scrub_ctx *sctx;
3780 	int ret;
3781 	struct btrfs_device *dev;
3782 
3783 	if (btrfs_fs_closing(fs_info))
3784 		return -EINVAL;
3785 
3786 	if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3787 		/*
3788 		 * in this case scrub is unable to calculate the checksum
3789 		 * the way scrub is implemented. Do not handle this
3790 		 * situation at all because it won't ever happen.
3791 		 */
3792 		btrfs_err(fs_info,
3793 			   "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3794 		       fs_info->nodesize,
3795 		       BTRFS_STRIPE_LEN);
3796 		return -EINVAL;
3797 	}
3798 
3799 	if (fs_info->sectorsize != PAGE_SIZE) {
3800 		/* not supported for data w/o checksums */
3801 		btrfs_err_rl(fs_info,
3802 			   "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3803 		       fs_info->sectorsize, PAGE_SIZE);
3804 		return -EINVAL;
3805 	}
3806 
3807 	if (fs_info->nodesize >
3808 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3809 	    fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3810 		/*
3811 		 * would exhaust the array bounds of pagev member in
3812 		 * struct scrub_block
3813 		 */
3814 		btrfs_err(fs_info,
3815 			  "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3816 		       fs_info->nodesize,
3817 		       SCRUB_MAX_PAGES_PER_BLOCK,
3818 		       fs_info->sectorsize,
3819 		       SCRUB_MAX_PAGES_PER_BLOCK);
3820 		return -EINVAL;
3821 	}
3822 
3823 
3824 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3825 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3826 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3827 		     !is_dev_replace)) {
3828 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3829 		return -ENODEV;
3830 	}
3831 
3832 	if (!is_dev_replace && !readonly &&
3833 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3834 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3835 		btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3836 				rcu_str_deref(dev->name));
3837 		return -EROFS;
3838 	}
3839 
3840 	mutex_lock(&fs_info->scrub_lock);
3841 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3842 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3843 		mutex_unlock(&fs_info->scrub_lock);
3844 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3845 		return -EIO;
3846 	}
3847 
3848 	btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3849 	if (dev->scrub_ctx ||
3850 	    (!is_dev_replace &&
3851 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3852 		btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3853 		mutex_unlock(&fs_info->scrub_lock);
3854 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3855 		return -EINPROGRESS;
3856 	}
3857 	btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3858 
3859 	ret = scrub_workers_get(fs_info, is_dev_replace);
3860 	if (ret) {
3861 		mutex_unlock(&fs_info->scrub_lock);
3862 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863 		return ret;
3864 	}
3865 
3866 	sctx = scrub_setup_ctx(dev, is_dev_replace);
3867 	if (IS_ERR(sctx)) {
3868 		mutex_unlock(&fs_info->scrub_lock);
3869 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3870 		scrub_workers_put(fs_info);
3871 		return PTR_ERR(sctx);
3872 	}
3873 	sctx->readonly = readonly;
3874 	dev->scrub_ctx = sctx;
3875 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3876 
3877 	/*
3878 	 * checking @scrub_pause_req here, we can avoid
3879 	 * race between committing transaction and scrubbing.
3880 	 */
3881 	__scrub_blocked_if_needed(fs_info);
3882 	atomic_inc(&fs_info->scrubs_running);
3883 	mutex_unlock(&fs_info->scrub_lock);
3884 
3885 	if (!is_dev_replace) {
3886 		/*
3887 		 * by holding device list mutex, we can
3888 		 * kick off writing super in log tree sync.
3889 		 */
3890 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
3891 		ret = scrub_supers(sctx, dev);
3892 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3893 	}
3894 
3895 	if (!ret)
3896 		ret = scrub_enumerate_chunks(sctx, dev, start, end,
3897 					     is_dev_replace);
3898 
3899 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3900 	atomic_dec(&fs_info->scrubs_running);
3901 	wake_up(&fs_info->scrub_pause_wait);
3902 
3903 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3904 
3905 	if (progress)
3906 		memcpy(progress, &sctx->stat, sizeof(*progress));
3907 
3908 	mutex_lock(&fs_info->scrub_lock);
3909 	dev->scrub_ctx = NULL;
3910 	scrub_workers_put(fs_info);
3911 	mutex_unlock(&fs_info->scrub_lock);
3912 
3913 	scrub_put_ctx(sctx);
3914 
3915 	return ret;
3916 }
3917 
btrfs_scrub_pause(struct btrfs_fs_info * fs_info)3918 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3919 {
3920 	mutex_lock(&fs_info->scrub_lock);
3921 	atomic_inc(&fs_info->scrub_pause_req);
3922 	while (atomic_read(&fs_info->scrubs_paused) !=
3923 	       atomic_read(&fs_info->scrubs_running)) {
3924 		mutex_unlock(&fs_info->scrub_lock);
3925 		wait_event(fs_info->scrub_pause_wait,
3926 			   atomic_read(&fs_info->scrubs_paused) ==
3927 			   atomic_read(&fs_info->scrubs_running));
3928 		mutex_lock(&fs_info->scrub_lock);
3929 	}
3930 	mutex_unlock(&fs_info->scrub_lock);
3931 }
3932 
btrfs_scrub_continue(struct btrfs_fs_info * fs_info)3933 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3934 {
3935 	atomic_dec(&fs_info->scrub_pause_req);
3936 	wake_up(&fs_info->scrub_pause_wait);
3937 }
3938 
btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)3939 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3940 {
3941 	mutex_lock(&fs_info->scrub_lock);
3942 	if (!atomic_read(&fs_info->scrubs_running)) {
3943 		mutex_unlock(&fs_info->scrub_lock);
3944 		return -ENOTCONN;
3945 	}
3946 
3947 	atomic_inc(&fs_info->scrub_cancel_req);
3948 	while (atomic_read(&fs_info->scrubs_running)) {
3949 		mutex_unlock(&fs_info->scrub_lock);
3950 		wait_event(fs_info->scrub_pause_wait,
3951 			   atomic_read(&fs_info->scrubs_running) == 0);
3952 		mutex_lock(&fs_info->scrub_lock);
3953 	}
3954 	atomic_dec(&fs_info->scrub_cancel_req);
3955 	mutex_unlock(&fs_info->scrub_lock);
3956 
3957 	return 0;
3958 }
3959 
btrfs_scrub_cancel_dev(struct btrfs_fs_info * fs_info,struct btrfs_device * dev)3960 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3961 			   struct btrfs_device *dev)
3962 {
3963 	struct scrub_ctx *sctx;
3964 
3965 	mutex_lock(&fs_info->scrub_lock);
3966 	sctx = dev->scrub_ctx;
3967 	if (!sctx) {
3968 		mutex_unlock(&fs_info->scrub_lock);
3969 		return -ENOTCONN;
3970 	}
3971 	atomic_inc(&sctx->cancel_req);
3972 	while (dev->scrub_ctx) {
3973 		mutex_unlock(&fs_info->scrub_lock);
3974 		wait_event(fs_info->scrub_pause_wait,
3975 			   dev->scrub_ctx == NULL);
3976 		mutex_lock(&fs_info->scrub_lock);
3977 	}
3978 	mutex_unlock(&fs_info->scrub_lock);
3979 
3980 	return 0;
3981 }
3982 
btrfs_scrub_progress(struct btrfs_fs_info * fs_info,u64 devid,struct btrfs_scrub_progress * progress)3983 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3984 			 struct btrfs_scrub_progress *progress)
3985 {
3986 	struct btrfs_device *dev;
3987 	struct scrub_ctx *sctx = NULL;
3988 
3989 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3990 	dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3991 	if (dev)
3992 		sctx = dev->scrub_ctx;
3993 	if (sctx)
3994 		memcpy(progress, &sctx->stat, sizeof(*progress));
3995 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3996 
3997 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3998 }
3999 
scrub_remap_extent(struct btrfs_fs_info * fs_info,u64 extent_logical,u64 extent_len,u64 * extent_physical,struct btrfs_device ** extent_dev,int * extent_mirror_num)4000 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
4001 			       u64 extent_logical, u64 extent_len,
4002 			       u64 *extent_physical,
4003 			       struct btrfs_device **extent_dev,
4004 			       int *extent_mirror_num)
4005 {
4006 	u64 mapped_length;
4007 	struct btrfs_bio *bbio = NULL;
4008 	int ret;
4009 
4010 	mapped_length = extent_len;
4011 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4012 			      &mapped_length, &bbio, 0);
4013 	if (ret || !bbio || mapped_length < extent_len ||
4014 	    !bbio->stripes[0].dev->bdev) {
4015 		btrfs_put_bbio(bbio);
4016 		return;
4017 	}
4018 
4019 	*extent_physical = bbio->stripes[0].physical;
4020 	*extent_mirror_num = bbio->mirror_num;
4021 	*extent_dev = bbio->stripes[0].dev;
4022 	btrfs_put_bbio(bbio);
4023 }
4024