1 /*
2  *  linux/fs/block_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38 
39 struct bdev_inode {
40 	struct block_device bdev;
41 	struct inode vfs_inode;
42 };
43 
44 static const struct address_space_operations def_blk_aops;
45 
BDEV_I(struct inode * inode)46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 	return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50 
I_BDEV(struct inode * inode)51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 	return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56 
bdev_write_inode(struct block_device * bdev)57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 	struct inode *inode = bdev->bd_inode;
60 	int ret;
61 
62 	spin_lock(&inode->i_lock);
63 	while (inode->i_state & I_DIRTY) {
64 		spin_unlock(&inode->i_lock);
65 		ret = write_inode_now(inode, true);
66 		if (ret) {
67 			char name[BDEVNAME_SIZE];
68 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 					    "for block device %s (err=%d).\n",
70 					    bdevname(bdev, name), ret);
71 		}
72 		spin_lock(&inode->i_lock);
73 	}
74 	spin_unlock(&inode->i_lock);
75 }
76 
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)78 void kill_bdev(struct block_device *bdev)
79 {
80 	struct address_space *mapping = bdev->bd_inode->i_mapping;
81 
82 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 		return;
84 
85 	invalidate_bh_lrus();
86 	truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89 
90 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)91 void invalidate_bdev(struct block_device *bdev)
92 {
93 	struct address_space *mapping = bdev->bd_inode->i_mapping;
94 
95 	if (mapping->nrpages) {
96 		invalidate_bh_lrus();
97 		lru_add_drain_all();	/* make sure all lru add caches are flushed */
98 		invalidate_mapping_pages(mapping, 0, -1);
99 	}
100 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
101 	 * But, for the strange corners, lets be cautious
102 	 */
103 	cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106 
set_blocksize(struct block_device * bdev,int size)107 int set_blocksize(struct block_device *bdev, int size)
108 {
109 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
110 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
111 		return -EINVAL;
112 
113 	/* Size cannot be smaller than the size supported by the device */
114 	if (size < bdev_logical_block_size(bdev))
115 		return -EINVAL;
116 
117 	/* Don't change the size if it is same as current */
118 	if (bdev->bd_block_size != size) {
119 		sync_blockdev(bdev);
120 		bdev->bd_block_size = size;
121 		bdev->bd_inode->i_blkbits = blksize_bits(size);
122 		kill_bdev(bdev);
123 	}
124 	return 0;
125 }
126 
127 EXPORT_SYMBOL(set_blocksize);
128 
sb_set_blocksize(struct super_block * sb,int size)129 int sb_set_blocksize(struct super_block *sb, int size)
130 {
131 	if (set_blocksize(sb->s_bdev, size))
132 		return 0;
133 	/* If we get here, we know size is power of two
134 	 * and it's value is between 512 and PAGE_SIZE */
135 	sb->s_blocksize = size;
136 	sb->s_blocksize_bits = blksize_bits(size);
137 	return sb->s_blocksize;
138 }
139 
140 EXPORT_SYMBOL(sb_set_blocksize);
141 
sb_min_blocksize(struct super_block * sb,int size)142 int sb_min_blocksize(struct super_block *sb, int size)
143 {
144 	int minsize = bdev_logical_block_size(sb->s_bdev);
145 	if (size < minsize)
146 		size = minsize;
147 	return sb_set_blocksize(sb, size);
148 }
149 
150 EXPORT_SYMBOL(sb_min_blocksize);
151 
152 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)153 blkdev_get_block(struct inode *inode, sector_t iblock,
154 		struct buffer_head *bh, int create)
155 {
156 	bh->b_bdev = I_BDEV(inode);
157 	bh->b_blocknr = iblock;
158 	set_buffer_mapped(bh);
159 	return 0;
160 }
161 
bdev_file_inode(struct file * file)162 static struct inode *bdev_file_inode(struct file *file)
163 {
164 	return file->f_mapping->host;
165 }
166 
dio_bio_write_op(struct kiocb * iocb)167 static unsigned int dio_bio_write_op(struct kiocb *iocb)
168 {
169 	unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
170 
171 	/* avoid the need for a I/O completion work item */
172 	if (iocb->ki_flags & IOCB_DSYNC)
173 		op |= REQ_FUA;
174 	return op;
175 }
176 
177 #define DIO_INLINE_BIO_VECS 4
178 
blkdev_bio_end_io_simple(struct bio * bio)179 static void blkdev_bio_end_io_simple(struct bio *bio)
180 {
181 	struct task_struct *waiter = bio->bi_private;
182 
183 	WRITE_ONCE(bio->bi_private, NULL);
184 	wake_up_process(waiter);
185 }
186 
187 static ssize_t
__blkdev_direct_IO_simple(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)188 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
189 		int nr_pages)
190 {
191 	struct file *file = iocb->ki_filp;
192 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
193 	struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
194 	loff_t pos = iocb->ki_pos;
195 	bool should_dirty = false;
196 	struct bio bio;
197 	ssize_t ret;
198 	blk_qc_t qc;
199 	int i;
200 
201 	if ((pos | iov_iter_alignment(iter)) &
202 	    (bdev_logical_block_size(bdev) - 1))
203 		return -EINVAL;
204 
205 	if (nr_pages <= DIO_INLINE_BIO_VECS)
206 		vecs = inline_vecs;
207 	else {
208 		vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
209 				     GFP_KERNEL);
210 		if (!vecs)
211 			return -ENOMEM;
212 	}
213 
214 	bio_init(&bio, vecs, nr_pages);
215 	bio_set_dev(&bio, bdev);
216 	bio.bi_iter.bi_sector = pos >> 9;
217 	bio.bi_write_hint = iocb->ki_hint;
218 	bio.bi_private = current;
219 	bio.bi_end_io = blkdev_bio_end_io_simple;
220 	bio.bi_ioprio = iocb->ki_ioprio;
221 
222 	ret = bio_iov_iter_get_pages(&bio, iter);
223 	if (unlikely(ret))
224 		goto out;
225 	ret = bio.bi_iter.bi_size;
226 
227 	if (iov_iter_rw(iter) == READ) {
228 		bio.bi_opf = REQ_OP_READ;
229 		if (iter_is_iovec(iter))
230 			should_dirty = true;
231 	} else {
232 		bio.bi_opf = dio_bio_write_op(iocb);
233 		task_io_account_write(ret);
234 	}
235 
236 	qc = submit_bio(&bio);
237 	for (;;) {
238 		set_current_state(TASK_UNINTERRUPTIBLE);
239 		if (!READ_ONCE(bio.bi_private))
240 			break;
241 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
242 		    !blk_poll(bdev_get_queue(bdev), qc))
243 			io_schedule();
244 	}
245 	__set_current_state(TASK_RUNNING);
246 
247 	bio_for_each_segment_all(bvec, &bio, i) {
248 		if (should_dirty && !PageCompound(bvec->bv_page))
249 			set_page_dirty_lock(bvec->bv_page);
250 		put_page(bvec->bv_page);
251 	}
252 
253 	if (unlikely(bio.bi_status))
254 		ret = blk_status_to_errno(bio.bi_status);
255 
256 out:
257 	if (vecs != inline_vecs)
258 		kfree(vecs);
259 
260 	bio_uninit(&bio);
261 
262 	return ret;
263 }
264 
265 struct blkdev_dio {
266 	union {
267 		struct kiocb		*iocb;
268 		struct task_struct	*waiter;
269 	};
270 	size_t			size;
271 	atomic_t		ref;
272 	bool			multi_bio : 1;
273 	bool			should_dirty : 1;
274 	bool			is_sync : 1;
275 	struct bio		bio;
276 };
277 
278 static struct bio_set blkdev_dio_pool;
279 
blkdev_bio_end_io(struct bio * bio)280 static void blkdev_bio_end_io(struct bio *bio)
281 {
282 	struct blkdev_dio *dio = bio->bi_private;
283 	bool should_dirty = dio->should_dirty;
284 
285 	if (dio->multi_bio && !atomic_dec_and_test(&dio->ref)) {
286 		if (bio->bi_status && !dio->bio.bi_status)
287 			dio->bio.bi_status = bio->bi_status;
288 	} else {
289 		if (!dio->is_sync) {
290 			struct kiocb *iocb = dio->iocb;
291 			ssize_t ret;
292 
293 			if (likely(!dio->bio.bi_status)) {
294 				ret = dio->size;
295 				iocb->ki_pos += ret;
296 			} else {
297 				ret = blk_status_to_errno(dio->bio.bi_status);
298 			}
299 
300 			dio->iocb->ki_complete(iocb, ret, 0);
301 			bio_put(&dio->bio);
302 		} else {
303 			struct task_struct *waiter = dio->waiter;
304 
305 			WRITE_ONCE(dio->waiter, NULL);
306 			wake_up_process(waiter);
307 		}
308 	}
309 
310 	if (should_dirty) {
311 		bio_check_pages_dirty(bio);
312 	} else {
313 		struct bio_vec *bvec;
314 		int i;
315 
316 		bio_for_each_segment_all(bvec, bio, i)
317 			put_page(bvec->bv_page);
318 		bio_put(bio);
319 	}
320 }
321 
322 static ssize_t
__blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)323 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
324 {
325 	struct file *file = iocb->ki_filp;
326 	struct inode *inode = bdev_file_inode(file);
327 	struct block_device *bdev = I_BDEV(inode);
328 	struct blk_plug plug;
329 	struct blkdev_dio *dio;
330 	struct bio *bio;
331 	bool is_read = (iov_iter_rw(iter) == READ), is_sync;
332 	loff_t pos = iocb->ki_pos;
333 	blk_qc_t qc = BLK_QC_T_NONE;
334 	int ret = 0;
335 
336 	if ((pos | iov_iter_alignment(iter)) &
337 	    (bdev_logical_block_size(bdev) - 1))
338 		return -EINVAL;
339 
340 	bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
341 	bio_get(bio); /* extra ref for the completion handler */
342 
343 	dio = container_of(bio, struct blkdev_dio, bio);
344 	dio->is_sync = is_sync = is_sync_kiocb(iocb);
345 	if (dio->is_sync)
346 		dio->waiter = current;
347 	else
348 		dio->iocb = iocb;
349 
350 	dio->size = 0;
351 	dio->multi_bio = false;
352 	dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
353 
354 	blk_start_plug(&plug);
355 	for (;;) {
356 		bio_set_dev(bio, bdev);
357 		bio->bi_iter.bi_sector = pos >> 9;
358 		bio->bi_write_hint = iocb->ki_hint;
359 		bio->bi_private = dio;
360 		bio->bi_end_io = blkdev_bio_end_io;
361 		bio->bi_ioprio = iocb->ki_ioprio;
362 
363 		ret = bio_iov_iter_get_pages(bio, iter);
364 		if (unlikely(ret)) {
365 			bio->bi_status = BLK_STS_IOERR;
366 			bio_endio(bio);
367 			break;
368 		}
369 
370 		if (is_read) {
371 			bio->bi_opf = REQ_OP_READ;
372 			if (dio->should_dirty)
373 				bio_set_pages_dirty(bio);
374 		} else {
375 			bio->bi_opf = dio_bio_write_op(iocb);
376 			task_io_account_write(bio->bi_iter.bi_size);
377 		}
378 
379 		dio->size += bio->bi_iter.bi_size;
380 		pos += bio->bi_iter.bi_size;
381 
382 		nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
383 		if (!nr_pages) {
384 			qc = submit_bio(bio);
385 			break;
386 		}
387 
388 		if (!dio->multi_bio) {
389 			dio->multi_bio = true;
390 			atomic_set(&dio->ref, 2);
391 		} else {
392 			atomic_inc(&dio->ref);
393 		}
394 
395 		submit_bio(bio);
396 		bio = bio_alloc(GFP_KERNEL, nr_pages);
397 	}
398 	blk_finish_plug(&plug);
399 
400 	if (!is_sync)
401 		return -EIOCBQUEUED;
402 
403 	for (;;) {
404 		set_current_state(TASK_UNINTERRUPTIBLE);
405 		if (!READ_ONCE(dio->waiter))
406 			break;
407 
408 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
409 		    !blk_poll(bdev_get_queue(bdev), qc))
410 			io_schedule();
411 	}
412 	__set_current_state(TASK_RUNNING);
413 
414 	if (!ret)
415 		ret = blk_status_to_errno(dio->bio.bi_status);
416 	if (likely(!ret))
417 		ret = dio->size;
418 
419 	bio_put(&dio->bio);
420 	return ret;
421 }
422 
423 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)424 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
425 {
426 	int nr_pages;
427 
428 	nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
429 	if (!nr_pages)
430 		return 0;
431 	if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
432 		return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
433 
434 	return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
435 }
436 
blkdev_init(void)437 static __init int blkdev_init(void)
438 {
439 	return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
440 }
441 module_init(blkdev_init);
442 
__sync_blockdev(struct block_device * bdev,int wait)443 int __sync_blockdev(struct block_device *bdev, int wait)
444 {
445 	if (!bdev)
446 		return 0;
447 	if (!wait)
448 		return filemap_flush(bdev->bd_inode->i_mapping);
449 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
450 }
451 
452 /*
453  * Write out and wait upon all the dirty data associated with a block
454  * device via its mapping.  Does not take the superblock lock.
455  */
sync_blockdev(struct block_device * bdev)456 int sync_blockdev(struct block_device *bdev)
457 {
458 	return __sync_blockdev(bdev, 1);
459 }
460 EXPORT_SYMBOL(sync_blockdev);
461 
462 /*
463  * Write out and wait upon all dirty data associated with this
464  * device.   Filesystem data as well as the underlying block
465  * device.  Takes the superblock lock.
466  */
fsync_bdev(struct block_device * bdev)467 int fsync_bdev(struct block_device *bdev)
468 {
469 	struct super_block *sb = get_super(bdev);
470 	if (sb) {
471 		int res = sync_filesystem(sb);
472 		drop_super(sb);
473 		return res;
474 	}
475 	return sync_blockdev(bdev);
476 }
477 EXPORT_SYMBOL(fsync_bdev);
478 
479 /**
480  * freeze_bdev  --  lock a filesystem and force it into a consistent state
481  * @bdev:	blockdevice to lock
482  *
483  * If a superblock is found on this device, we take the s_umount semaphore
484  * on it to make sure nobody unmounts until the snapshot creation is done.
485  * The reference counter (bd_fsfreeze_count) guarantees that only the last
486  * unfreeze process can unfreeze the frozen filesystem actually when multiple
487  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
488  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
489  * actually.
490  */
freeze_bdev(struct block_device * bdev)491 struct super_block *freeze_bdev(struct block_device *bdev)
492 {
493 	struct super_block *sb;
494 	int error = 0;
495 
496 	mutex_lock(&bdev->bd_fsfreeze_mutex);
497 	if (++bdev->bd_fsfreeze_count > 1) {
498 		/*
499 		 * We don't even need to grab a reference - the first call
500 		 * to freeze_bdev grab an active reference and only the last
501 		 * thaw_bdev drops it.
502 		 */
503 		sb = get_super(bdev);
504 		if (sb)
505 			drop_super(sb);
506 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
507 		return sb;
508 	}
509 
510 	sb = get_active_super(bdev);
511 	if (!sb)
512 		goto out;
513 	if (sb->s_op->freeze_super)
514 		error = sb->s_op->freeze_super(sb);
515 	else
516 		error = freeze_super(sb);
517 	if (error) {
518 		deactivate_super(sb);
519 		bdev->bd_fsfreeze_count--;
520 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
521 		return ERR_PTR(error);
522 	}
523 	deactivate_super(sb);
524  out:
525 	sync_blockdev(bdev);
526 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
527 	return sb;	/* thaw_bdev releases s->s_umount */
528 }
529 EXPORT_SYMBOL(freeze_bdev);
530 
531 /**
532  * thaw_bdev  -- unlock filesystem
533  * @bdev:	blockdevice to unlock
534  * @sb:		associated superblock
535  *
536  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
537  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)538 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
539 {
540 	int error = -EINVAL;
541 
542 	mutex_lock(&bdev->bd_fsfreeze_mutex);
543 	if (!bdev->bd_fsfreeze_count)
544 		goto out;
545 
546 	error = 0;
547 	if (--bdev->bd_fsfreeze_count > 0)
548 		goto out;
549 
550 	if (!sb)
551 		goto out;
552 
553 	if (sb->s_op->thaw_super)
554 		error = sb->s_op->thaw_super(sb);
555 	else
556 		error = thaw_super(sb);
557 	if (error)
558 		bdev->bd_fsfreeze_count++;
559 out:
560 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
561 	return error;
562 }
563 EXPORT_SYMBOL(thaw_bdev);
564 
blkdev_writepage(struct page * page,struct writeback_control * wbc)565 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
566 {
567 	return block_write_full_page(page, blkdev_get_block, wbc);
568 }
569 
blkdev_readpage(struct file * file,struct page * page)570 static int blkdev_readpage(struct file * file, struct page * page)
571 {
572 	return block_read_full_page(page, blkdev_get_block);
573 }
574 
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)575 static int blkdev_readpages(struct file *file, struct address_space *mapping,
576 			struct list_head *pages, unsigned nr_pages)
577 {
578 	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
579 }
580 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)581 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
582 			loff_t pos, unsigned len, unsigned flags,
583 			struct page **pagep, void **fsdata)
584 {
585 	return block_write_begin(mapping, pos, len, flags, pagep,
586 				 blkdev_get_block);
587 }
588 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)589 static int blkdev_write_end(struct file *file, struct address_space *mapping,
590 			loff_t pos, unsigned len, unsigned copied,
591 			struct page *page, void *fsdata)
592 {
593 	int ret;
594 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
595 
596 	unlock_page(page);
597 	put_page(page);
598 
599 	return ret;
600 }
601 
602 /*
603  * private llseek:
604  * for a block special file file_inode(file)->i_size is zero
605  * so we compute the size by hand (just as in block_read/write above)
606  */
block_llseek(struct file * file,loff_t offset,int whence)607 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
608 {
609 	struct inode *bd_inode = bdev_file_inode(file);
610 	loff_t retval;
611 
612 	inode_lock(bd_inode);
613 	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
614 	inode_unlock(bd_inode);
615 	return retval;
616 }
617 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)618 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
619 {
620 	struct inode *bd_inode = bdev_file_inode(filp);
621 	struct block_device *bdev = I_BDEV(bd_inode);
622 	int error;
623 
624 	error = file_write_and_wait_range(filp, start, end);
625 	if (error)
626 		return error;
627 
628 	/*
629 	 * There is no need to serialise calls to blkdev_issue_flush with
630 	 * i_mutex and doing so causes performance issues with concurrent
631 	 * O_SYNC writers to a block device.
632 	 */
633 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
634 	if (error == -EOPNOTSUPP)
635 		error = 0;
636 
637 	return error;
638 }
639 EXPORT_SYMBOL(blkdev_fsync);
640 
641 /**
642  * bdev_read_page() - Start reading a page from a block device
643  * @bdev: The device to read the page from
644  * @sector: The offset on the device to read the page to (need not be aligned)
645  * @page: The page to read
646  *
647  * On entry, the page should be locked.  It will be unlocked when the page
648  * has been read.  If the block driver implements rw_page synchronously,
649  * that will be true on exit from this function, but it need not be.
650  *
651  * Errors returned by this function are usually "soft", eg out of memory, or
652  * queue full; callers should try a different route to read this page rather
653  * than propagate an error back up the stack.
654  *
655  * Return: negative errno if an error occurs, 0 if submission was successful.
656  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)657 int bdev_read_page(struct block_device *bdev, sector_t sector,
658 			struct page *page)
659 {
660 	const struct block_device_operations *ops = bdev->bd_disk->fops;
661 	int result = -EOPNOTSUPP;
662 
663 	if (!ops->rw_page || bdev_get_integrity(bdev))
664 		return result;
665 
666 	result = blk_queue_enter(bdev->bd_queue, 0);
667 	if (result)
668 		return result;
669 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
670 			      REQ_OP_READ);
671 	blk_queue_exit(bdev->bd_queue);
672 	return result;
673 }
674 EXPORT_SYMBOL_GPL(bdev_read_page);
675 
676 /**
677  * bdev_write_page() - Start writing a page to a block device
678  * @bdev: The device to write the page to
679  * @sector: The offset on the device to write the page to (need not be aligned)
680  * @page: The page to write
681  * @wbc: The writeback_control for the write
682  *
683  * On entry, the page should be locked and not currently under writeback.
684  * On exit, if the write started successfully, the page will be unlocked and
685  * under writeback.  If the write failed already (eg the driver failed to
686  * queue the page to the device), the page will still be locked.  If the
687  * caller is a ->writepage implementation, it will need to unlock the page.
688  *
689  * Errors returned by this function are usually "soft", eg out of memory, or
690  * queue full; callers should try a different route to write this page rather
691  * than propagate an error back up the stack.
692  *
693  * Return: negative errno if an error occurs, 0 if submission was successful.
694  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)695 int bdev_write_page(struct block_device *bdev, sector_t sector,
696 			struct page *page, struct writeback_control *wbc)
697 {
698 	int result;
699 	const struct block_device_operations *ops = bdev->bd_disk->fops;
700 
701 	if (!ops->rw_page || bdev_get_integrity(bdev))
702 		return -EOPNOTSUPP;
703 	result = blk_queue_enter(bdev->bd_queue, 0);
704 	if (result)
705 		return result;
706 
707 	set_page_writeback(page);
708 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
709 			      REQ_OP_WRITE);
710 	if (result) {
711 		end_page_writeback(page);
712 	} else {
713 		clean_page_buffers(page);
714 		unlock_page(page);
715 	}
716 	blk_queue_exit(bdev->bd_queue);
717 	return result;
718 }
719 EXPORT_SYMBOL_GPL(bdev_write_page);
720 
721 /*
722  * pseudo-fs
723  */
724 
725 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
726 static struct kmem_cache * bdev_cachep __read_mostly;
727 
bdev_alloc_inode(struct super_block * sb)728 static struct inode *bdev_alloc_inode(struct super_block *sb)
729 {
730 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
731 	if (!ei)
732 		return NULL;
733 	return &ei->vfs_inode;
734 }
735 
bdev_i_callback(struct rcu_head * head)736 static void bdev_i_callback(struct rcu_head *head)
737 {
738 	struct inode *inode = container_of(head, struct inode, i_rcu);
739 	struct bdev_inode *bdi = BDEV_I(inode);
740 
741 	kmem_cache_free(bdev_cachep, bdi);
742 }
743 
bdev_destroy_inode(struct inode * inode)744 static void bdev_destroy_inode(struct inode *inode)
745 {
746 	call_rcu(&inode->i_rcu, bdev_i_callback);
747 }
748 
init_once(void * foo)749 static void init_once(void *foo)
750 {
751 	struct bdev_inode *ei = (struct bdev_inode *) foo;
752 	struct block_device *bdev = &ei->bdev;
753 
754 	memset(bdev, 0, sizeof(*bdev));
755 	mutex_init(&bdev->bd_mutex);
756 	INIT_LIST_HEAD(&bdev->bd_list);
757 #ifdef CONFIG_SYSFS
758 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
759 #endif
760 	bdev->bd_bdi = &noop_backing_dev_info;
761 	inode_init_once(&ei->vfs_inode);
762 	/* Initialize mutex for freeze. */
763 	mutex_init(&bdev->bd_fsfreeze_mutex);
764 }
765 
bdev_evict_inode(struct inode * inode)766 static void bdev_evict_inode(struct inode *inode)
767 {
768 	struct block_device *bdev = &BDEV_I(inode)->bdev;
769 	truncate_inode_pages_final(&inode->i_data);
770 	invalidate_inode_buffers(inode); /* is it needed here? */
771 	clear_inode(inode);
772 	spin_lock(&bdev_lock);
773 	list_del_init(&bdev->bd_list);
774 	spin_unlock(&bdev_lock);
775 	/* Detach inode from wb early as bdi_put() may free bdi->wb */
776 	inode_detach_wb(inode);
777 	if (bdev->bd_bdi != &noop_backing_dev_info) {
778 		bdi_put(bdev->bd_bdi);
779 		bdev->bd_bdi = &noop_backing_dev_info;
780 	}
781 }
782 
783 static const struct super_operations bdev_sops = {
784 	.statfs = simple_statfs,
785 	.alloc_inode = bdev_alloc_inode,
786 	.destroy_inode = bdev_destroy_inode,
787 	.drop_inode = generic_delete_inode,
788 	.evict_inode = bdev_evict_inode,
789 };
790 
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)791 static struct dentry *bd_mount(struct file_system_type *fs_type,
792 	int flags, const char *dev_name, void *data)
793 {
794 	struct dentry *dent;
795 	dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
796 	if (!IS_ERR(dent))
797 		dent->d_sb->s_iflags |= SB_I_CGROUPWB;
798 	return dent;
799 }
800 
801 static struct file_system_type bd_type = {
802 	.name		= "bdev",
803 	.mount		= bd_mount,
804 	.kill_sb	= kill_anon_super,
805 };
806 
807 struct super_block *blockdev_superblock __read_mostly;
808 EXPORT_SYMBOL_GPL(blockdev_superblock);
809 
bdev_cache_init(void)810 void __init bdev_cache_init(void)
811 {
812 	int err;
813 	static struct vfsmount *bd_mnt;
814 
815 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
816 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
817 				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
818 			init_once);
819 	err = register_filesystem(&bd_type);
820 	if (err)
821 		panic("Cannot register bdev pseudo-fs");
822 	bd_mnt = kern_mount(&bd_type);
823 	if (IS_ERR(bd_mnt))
824 		panic("Cannot create bdev pseudo-fs");
825 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
826 }
827 
828 /*
829  * Most likely _very_ bad one - but then it's hardly critical for small
830  * /dev and can be fixed when somebody will need really large one.
831  * Keep in mind that it will be fed through icache hash function too.
832  */
hash(dev_t dev)833 static inline unsigned long hash(dev_t dev)
834 {
835 	return MAJOR(dev)+MINOR(dev);
836 }
837 
bdev_test(struct inode * inode,void * data)838 static int bdev_test(struct inode *inode, void *data)
839 {
840 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
841 }
842 
bdev_set(struct inode * inode,void * data)843 static int bdev_set(struct inode *inode, void *data)
844 {
845 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
846 	return 0;
847 }
848 
849 static LIST_HEAD(all_bdevs);
850 
851 /*
852  * If there is a bdev inode for this device, unhash it so that it gets evicted
853  * as soon as last inode reference is dropped.
854  */
bdev_unhash_inode(dev_t dev)855 void bdev_unhash_inode(dev_t dev)
856 {
857 	struct inode *inode;
858 
859 	inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
860 	if (inode) {
861 		remove_inode_hash(inode);
862 		iput(inode);
863 	}
864 }
865 
bdget(dev_t dev)866 struct block_device *bdget(dev_t dev)
867 {
868 	struct block_device *bdev;
869 	struct inode *inode;
870 
871 	inode = iget5_locked(blockdev_superblock, hash(dev),
872 			bdev_test, bdev_set, &dev);
873 
874 	if (!inode)
875 		return NULL;
876 
877 	bdev = &BDEV_I(inode)->bdev;
878 
879 	if (inode->i_state & I_NEW) {
880 		bdev->bd_contains = NULL;
881 		bdev->bd_super = NULL;
882 		bdev->bd_inode = inode;
883 		bdev->bd_block_size = i_blocksize(inode);
884 		bdev->bd_part_count = 0;
885 		bdev->bd_invalidated = 0;
886 		inode->i_mode = S_IFBLK;
887 		inode->i_rdev = dev;
888 		inode->i_bdev = bdev;
889 		inode->i_data.a_ops = &def_blk_aops;
890 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
891 		spin_lock(&bdev_lock);
892 		list_add(&bdev->bd_list, &all_bdevs);
893 		spin_unlock(&bdev_lock);
894 		unlock_new_inode(inode);
895 	}
896 	return bdev;
897 }
898 
899 EXPORT_SYMBOL(bdget);
900 
901 /**
902  * bdgrab -- Grab a reference to an already referenced block device
903  * @bdev:	Block device to grab a reference to.
904  */
bdgrab(struct block_device * bdev)905 struct block_device *bdgrab(struct block_device *bdev)
906 {
907 	ihold(bdev->bd_inode);
908 	return bdev;
909 }
910 EXPORT_SYMBOL(bdgrab);
911 
nr_blockdev_pages(void)912 long nr_blockdev_pages(void)
913 {
914 	struct block_device *bdev;
915 	long ret = 0;
916 	spin_lock(&bdev_lock);
917 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
918 		ret += bdev->bd_inode->i_mapping->nrpages;
919 	}
920 	spin_unlock(&bdev_lock);
921 	return ret;
922 }
923 
bdput(struct block_device * bdev)924 void bdput(struct block_device *bdev)
925 {
926 	iput(bdev->bd_inode);
927 }
928 
929 EXPORT_SYMBOL(bdput);
930 
bd_acquire(struct inode * inode)931 static struct block_device *bd_acquire(struct inode *inode)
932 {
933 	struct block_device *bdev;
934 
935 	spin_lock(&bdev_lock);
936 	bdev = inode->i_bdev;
937 	if (bdev && !inode_unhashed(bdev->bd_inode)) {
938 		bdgrab(bdev);
939 		spin_unlock(&bdev_lock);
940 		return bdev;
941 	}
942 	spin_unlock(&bdev_lock);
943 
944 	/*
945 	 * i_bdev references block device inode that was already shut down
946 	 * (corresponding device got removed).  Remove the reference and look
947 	 * up block device inode again just in case new device got
948 	 * reestablished under the same device number.
949 	 */
950 	if (bdev)
951 		bd_forget(inode);
952 
953 	bdev = bdget(inode->i_rdev);
954 	if (bdev) {
955 		spin_lock(&bdev_lock);
956 		if (!inode->i_bdev) {
957 			/*
958 			 * We take an additional reference to bd_inode,
959 			 * and it's released in clear_inode() of inode.
960 			 * So, we can access it via ->i_mapping always
961 			 * without igrab().
962 			 */
963 			bdgrab(bdev);
964 			inode->i_bdev = bdev;
965 			inode->i_mapping = bdev->bd_inode->i_mapping;
966 		}
967 		spin_unlock(&bdev_lock);
968 	}
969 	return bdev;
970 }
971 
972 /* Call when you free inode */
973 
bd_forget(struct inode * inode)974 void bd_forget(struct inode *inode)
975 {
976 	struct block_device *bdev = NULL;
977 
978 	spin_lock(&bdev_lock);
979 	if (!sb_is_blkdev_sb(inode->i_sb))
980 		bdev = inode->i_bdev;
981 	inode->i_bdev = NULL;
982 	inode->i_mapping = &inode->i_data;
983 	spin_unlock(&bdev_lock);
984 
985 	if (bdev)
986 		bdput(bdev);
987 }
988 
989 /**
990  * bd_may_claim - test whether a block device can be claimed
991  * @bdev: block device of interest
992  * @whole: whole block device containing @bdev, may equal @bdev
993  * @holder: holder trying to claim @bdev
994  *
995  * Test whether @bdev can be claimed by @holder.
996  *
997  * CONTEXT:
998  * spin_lock(&bdev_lock).
999  *
1000  * RETURNS:
1001  * %true if @bdev can be claimed, %false otherwise.
1002  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)1003 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1004 			 void *holder)
1005 {
1006 	if (bdev->bd_holder == holder)
1007 		return true;	 /* already a holder */
1008 	else if (bdev->bd_holder != NULL)
1009 		return false; 	 /* held by someone else */
1010 	else if (whole == bdev)
1011 		return true;  	 /* is a whole device which isn't held */
1012 
1013 	else if (whole->bd_holder == bd_may_claim)
1014 		return true; 	 /* is a partition of a device that is being partitioned */
1015 	else if (whole->bd_holder != NULL)
1016 		return false;	 /* is a partition of a held device */
1017 	else
1018 		return true;	 /* is a partition of an un-held device */
1019 }
1020 
1021 /**
1022  * bd_prepare_to_claim - prepare to claim a block device
1023  * @bdev: block device of interest
1024  * @whole: the whole device containing @bdev, may equal @bdev
1025  * @holder: holder trying to claim @bdev
1026  *
1027  * Prepare to claim @bdev.  This function fails if @bdev is already
1028  * claimed by another holder and waits if another claiming is in
1029  * progress.  This function doesn't actually claim.  On successful
1030  * return, the caller has ownership of bd_claiming and bd_holder[s].
1031  *
1032  * CONTEXT:
1033  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
1034  * it multiple times.
1035  *
1036  * RETURNS:
1037  * 0 if @bdev can be claimed, -EBUSY otherwise.
1038  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)1039 static int bd_prepare_to_claim(struct block_device *bdev,
1040 			       struct block_device *whole, void *holder)
1041 {
1042 retry:
1043 	/* if someone else claimed, fail */
1044 	if (!bd_may_claim(bdev, whole, holder))
1045 		return -EBUSY;
1046 
1047 	/* if claiming is already in progress, wait for it to finish */
1048 	if (whole->bd_claiming) {
1049 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1050 		DEFINE_WAIT(wait);
1051 
1052 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1053 		spin_unlock(&bdev_lock);
1054 		schedule();
1055 		finish_wait(wq, &wait);
1056 		spin_lock(&bdev_lock);
1057 		goto retry;
1058 	}
1059 
1060 	/* yay, all mine */
1061 	return 0;
1062 }
1063 
bdev_get_gendisk(struct block_device * bdev,int * partno)1064 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1065 {
1066 	struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1067 
1068 	if (!disk)
1069 		return NULL;
1070 	/*
1071 	 * Now that we hold gendisk reference we make sure bdev we looked up is
1072 	 * not stale. If it is, it means device got removed and created before
1073 	 * we looked up gendisk and we fail open in such case. Associating
1074 	 * unhashed bdev with newly created gendisk could lead to two bdevs
1075 	 * (and thus two independent caches) being associated with one device
1076 	 * which is bad.
1077 	 */
1078 	if (inode_unhashed(bdev->bd_inode)) {
1079 		put_disk_and_module(disk);
1080 		return NULL;
1081 	}
1082 	return disk;
1083 }
1084 
1085 /**
1086  * bd_start_claiming - start claiming a block device
1087  * @bdev: block device of interest
1088  * @holder: holder trying to claim @bdev
1089  *
1090  * @bdev is about to be opened exclusively.  Check @bdev can be opened
1091  * exclusively and mark that an exclusive open is in progress.  Each
1092  * successful call to this function must be matched with a call to
1093  * either bd_finish_claiming() or bd_abort_claiming() (which do not
1094  * fail).
1095  *
1096  * This function is used to gain exclusive access to the block device
1097  * without actually causing other exclusive open attempts to fail. It
1098  * should be used when the open sequence itself requires exclusive
1099  * access but may subsequently fail.
1100  *
1101  * CONTEXT:
1102  * Might sleep.
1103  *
1104  * RETURNS:
1105  * Pointer to the block device containing @bdev on success, ERR_PTR()
1106  * value on failure.
1107  */
bd_start_claiming(struct block_device * bdev,void * holder)1108 static struct block_device *bd_start_claiming(struct block_device *bdev,
1109 					      void *holder)
1110 {
1111 	struct gendisk *disk;
1112 	struct block_device *whole;
1113 	int partno, err;
1114 
1115 	might_sleep();
1116 
1117 	/*
1118 	 * @bdev might not have been initialized properly yet, look up
1119 	 * and grab the outer block device the hard way.
1120 	 */
1121 	disk = bdev_get_gendisk(bdev, &partno);
1122 	if (!disk)
1123 		return ERR_PTR(-ENXIO);
1124 
1125 	/*
1126 	 * Normally, @bdev should equal what's returned from bdget_disk()
1127 	 * if partno is 0; however, some drivers (floppy) use multiple
1128 	 * bdev's for the same physical device and @bdev may be one of the
1129 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
1130 	 * tracking is broken for those devices but it has always been that
1131 	 * way.
1132 	 */
1133 	if (partno)
1134 		whole = bdget_disk(disk, 0);
1135 	else
1136 		whole = bdgrab(bdev);
1137 
1138 	put_disk_and_module(disk);
1139 	if (!whole)
1140 		return ERR_PTR(-ENOMEM);
1141 
1142 	/* prepare to claim, if successful, mark claiming in progress */
1143 	spin_lock(&bdev_lock);
1144 
1145 	err = bd_prepare_to_claim(bdev, whole, holder);
1146 	if (err == 0) {
1147 		whole->bd_claiming = holder;
1148 		spin_unlock(&bdev_lock);
1149 		return whole;
1150 	} else {
1151 		spin_unlock(&bdev_lock);
1152 		bdput(whole);
1153 		return ERR_PTR(err);
1154 	}
1155 }
1156 
1157 #ifdef CONFIG_SYSFS
1158 struct bd_holder_disk {
1159 	struct list_head	list;
1160 	struct gendisk		*disk;
1161 	int			refcnt;
1162 };
1163 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)1164 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1165 						  struct gendisk *disk)
1166 {
1167 	struct bd_holder_disk *holder;
1168 
1169 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1170 		if (holder->disk == disk)
1171 			return holder;
1172 	return NULL;
1173 }
1174 
add_symlink(struct kobject * from,struct kobject * to)1175 static int add_symlink(struct kobject *from, struct kobject *to)
1176 {
1177 	return sysfs_create_link(from, to, kobject_name(to));
1178 }
1179 
del_symlink(struct kobject * from,struct kobject * to)1180 static void del_symlink(struct kobject *from, struct kobject *to)
1181 {
1182 	sysfs_remove_link(from, kobject_name(to));
1183 }
1184 
1185 /**
1186  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1187  * @bdev: the claimed slave bdev
1188  * @disk: the holding disk
1189  *
1190  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1191  *
1192  * This functions creates the following sysfs symlinks.
1193  *
1194  * - from "slaves" directory of the holder @disk to the claimed @bdev
1195  * - from "holders" directory of the @bdev to the holder @disk
1196  *
1197  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1198  * passed to bd_link_disk_holder(), then:
1199  *
1200  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1201  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1202  *
1203  * The caller must have claimed @bdev before calling this function and
1204  * ensure that both @bdev and @disk are valid during the creation and
1205  * lifetime of these symlinks.
1206  *
1207  * CONTEXT:
1208  * Might sleep.
1209  *
1210  * RETURNS:
1211  * 0 on success, -errno on failure.
1212  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1213 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1214 {
1215 	struct bd_holder_disk *holder;
1216 	int ret = 0;
1217 
1218 	mutex_lock(&bdev->bd_mutex);
1219 
1220 	WARN_ON_ONCE(!bdev->bd_holder);
1221 
1222 	/* FIXME: remove the following once add_disk() handles errors */
1223 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1224 		goto out_unlock;
1225 
1226 	holder = bd_find_holder_disk(bdev, disk);
1227 	if (holder) {
1228 		holder->refcnt++;
1229 		goto out_unlock;
1230 	}
1231 
1232 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1233 	if (!holder) {
1234 		ret = -ENOMEM;
1235 		goto out_unlock;
1236 	}
1237 
1238 	INIT_LIST_HEAD(&holder->list);
1239 	holder->disk = disk;
1240 	holder->refcnt = 1;
1241 
1242 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1243 	if (ret)
1244 		goto out_free;
1245 
1246 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1247 	if (ret)
1248 		goto out_del;
1249 	/*
1250 	 * bdev could be deleted beneath us which would implicitly destroy
1251 	 * the holder directory.  Hold on to it.
1252 	 */
1253 	kobject_get(bdev->bd_part->holder_dir);
1254 
1255 	list_add(&holder->list, &bdev->bd_holder_disks);
1256 	goto out_unlock;
1257 
1258 out_del:
1259 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1260 out_free:
1261 	kfree(holder);
1262 out_unlock:
1263 	mutex_unlock(&bdev->bd_mutex);
1264 	return ret;
1265 }
1266 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1267 
1268 /**
1269  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1270  * @bdev: the calimed slave bdev
1271  * @disk: the holding disk
1272  *
1273  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1274  *
1275  * CONTEXT:
1276  * Might sleep.
1277  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1278 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1279 {
1280 	struct bd_holder_disk *holder;
1281 
1282 	mutex_lock(&bdev->bd_mutex);
1283 
1284 	holder = bd_find_holder_disk(bdev, disk);
1285 
1286 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1287 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1288 		del_symlink(bdev->bd_part->holder_dir,
1289 			    &disk_to_dev(disk)->kobj);
1290 		kobject_put(bdev->bd_part->holder_dir);
1291 		list_del_init(&holder->list);
1292 		kfree(holder);
1293 	}
1294 
1295 	mutex_unlock(&bdev->bd_mutex);
1296 }
1297 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1298 #endif
1299 
1300 /**
1301  * flush_disk - invalidates all buffer-cache entries on a disk
1302  *
1303  * @bdev:      struct block device to be flushed
1304  * @kill_dirty: flag to guide handling of dirty inodes
1305  *
1306  * Invalidates all buffer-cache entries on a disk. It should be called
1307  * when a disk has been changed -- either by a media change or online
1308  * resize.
1309  */
flush_disk(struct block_device * bdev,bool kill_dirty)1310 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1311 {
1312 	if (__invalidate_device(bdev, kill_dirty)) {
1313 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1314 		       "resized disk %s\n",
1315 		       bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1316 	}
1317 
1318 	if (!bdev->bd_disk)
1319 		return;
1320 	if (disk_part_scan_enabled(bdev->bd_disk))
1321 		bdev->bd_invalidated = 1;
1322 }
1323 
1324 /**
1325  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1326  * @disk: struct gendisk to check
1327  * @bdev: struct bdev to adjust.
1328  * @verbose: if %true log a message about a size change if there is any
1329  *
1330  * This routine checks to see if the bdev size does not match the disk size
1331  * and adjusts it if it differs. When shrinking the bdev size, its all caches
1332  * are freed.
1333  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev,bool verbose)1334 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1335 		bool verbose)
1336 {
1337 	loff_t disk_size, bdev_size;
1338 
1339 	disk_size = (loff_t)get_capacity(disk) << 9;
1340 	bdev_size = i_size_read(bdev->bd_inode);
1341 	if (disk_size != bdev_size) {
1342 		if (verbose) {
1343 			printk(KERN_INFO
1344 			       "%s: detected capacity change from %lld to %lld\n",
1345 			       disk->disk_name, bdev_size, disk_size);
1346 		}
1347 		i_size_write(bdev->bd_inode, disk_size);
1348 		if (bdev_size > disk_size)
1349 			flush_disk(bdev, false);
1350 	}
1351 }
1352 
1353 /**
1354  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1355  * @disk: struct gendisk to be revalidated
1356  *
1357  * This routine is a wrapper for lower-level driver's revalidate_disk
1358  * call-backs.  It is used to do common pre and post operations needed
1359  * for all revalidate_disk operations.
1360  */
revalidate_disk(struct gendisk * disk)1361 int revalidate_disk(struct gendisk *disk)
1362 {
1363 	struct block_device *bdev;
1364 	int ret = 0;
1365 
1366 	if (disk->fops->revalidate_disk)
1367 		ret = disk->fops->revalidate_disk(disk);
1368 	bdev = bdget_disk(disk, 0);
1369 	if (!bdev)
1370 		return ret;
1371 
1372 	mutex_lock(&bdev->bd_mutex);
1373 	check_disk_size_change(disk, bdev, ret == 0);
1374 	bdev->bd_invalidated = 0;
1375 	mutex_unlock(&bdev->bd_mutex);
1376 	bdput(bdev);
1377 	return ret;
1378 }
1379 EXPORT_SYMBOL(revalidate_disk);
1380 
1381 /*
1382  * This routine checks whether a removable media has been changed,
1383  * and invalidates all buffer-cache-entries in that case. This
1384  * is a relatively slow routine, so we have to try to minimize using
1385  * it. Thus it is called only upon a 'mount' or 'open'. This
1386  * is the best way of combining speed and utility, I think.
1387  * People changing diskettes in the middle of an operation deserve
1388  * to lose :-)
1389  */
check_disk_change(struct block_device * bdev)1390 int check_disk_change(struct block_device *bdev)
1391 {
1392 	struct gendisk *disk = bdev->bd_disk;
1393 	const struct block_device_operations *bdops = disk->fops;
1394 	unsigned int events;
1395 
1396 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1397 				   DISK_EVENT_EJECT_REQUEST);
1398 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1399 		return 0;
1400 
1401 	flush_disk(bdev, true);
1402 	if (bdops->revalidate_disk)
1403 		bdops->revalidate_disk(bdev->bd_disk);
1404 	return 1;
1405 }
1406 
1407 EXPORT_SYMBOL(check_disk_change);
1408 
bd_set_size(struct block_device * bdev,loff_t size)1409 void bd_set_size(struct block_device *bdev, loff_t size)
1410 {
1411 	unsigned bsize = bdev_logical_block_size(bdev);
1412 
1413 	inode_lock(bdev->bd_inode);
1414 	i_size_write(bdev->bd_inode, size);
1415 	inode_unlock(bdev->bd_inode);
1416 	while (bsize < PAGE_SIZE) {
1417 		if (size & bsize)
1418 			break;
1419 		bsize <<= 1;
1420 	}
1421 	bdev->bd_block_size = bsize;
1422 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1423 }
1424 EXPORT_SYMBOL(bd_set_size);
1425 
1426 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1427 
1428 /*
1429  * bd_mutex locking:
1430  *
1431  *  mutex_lock(part->bd_mutex)
1432  *    mutex_lock_nested(whole->bd_mutex, 1)
1433  */
1434 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1435 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1436 {
1437 	struct gendisk *disk;
1438 	int ret;
1439 	int partno;
1440 	int perm = 0;
1441 	bool first_open = false;
1442 
1443 	if (mode & FMODE_READ)
1444 		perm |= MAY_READ;
1445 	if (mode & FMODE_WRITE)
1446 		perm |= MAY_WRITE;
1447 	/*
1448 	 * hooks: /n/, see "layering violations".
1449 	 */
1450 	if (!for_part) {
1451 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1452 		if (ret != 0) {
1453 			bdput(bdev);
1454 			return ret;
1455 		}
1456 	}
1457 
1458  restart:
1459 
1460 	ret = -ENXIO;
1461 	disk = bdev_get_gendisk(bdev, &partno);
1462 	if (!disk)
1463 		goto out;
1464 
1465 	disk_block_events(disk);
1466 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1467 	if (!bdev->bd_openers) {
1468 		first_open = true;
1469 		bdev->bd_disk = disk;
1470 		bdev->bd_queue = disk->queue;
1471 		bdev->bd_contains = bdev;
1472 		bdev->bd_partno = partno;
1473 
1474 		if (!partno) {
1475 			ret = -ENXIO;
1476 			bdev->bd_part = disk_get_part(disk, partno);
1477 			if (!bdev->bd_part)
1478 				goto out_clear;
1479 
1480 			ret = 0;
1481 			if (disk->fops->open) {
1482 				ret = disk->fops->open(bdev, mode);
1483 				if (ret == -ERESTARTSYS) {
1484 					/* Lost a race with 'disk' being
1485 					 * deleted, try again.
1486 					 * See md.c
1487 					 */
1488 					disk_put_part(bdev->bd_part);
1489 					bdev->bd_part = NULL;
1490 					bdev->bd_disk = NULL;
1491 					bdev->bd_queue = NULL;
1492 					mutex_unlock(&bdev->bd_mutex);
1493 					disk_unblock_events(disk);
1494 					put_disk_and_module(disk);
1495 					goto restart;
1496 				}
1497 			}
1498 
1499 			if (!ret)
1500 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1501 
1502 			/*
1503 			 * If the device is invalidated, rescan partition
1504 			 * if open succeeded or failed with -ENOMEDIUM.
1505 			 * The latter is necessary to prevent ghost
1506 			 * partitions on a removed medium.
1507 			 */
1508 			if (bdev->bd_invalidated) {
1509 				if (!ret)
1510 					rescan_partitions(disk, bdev);
1511 				else if (ret == -ENOMEDIUM)
1512 					invalidate_partitions(disk, bdev);
1513 			}
1514 
1515 			if (ret)
1516 				goto out_clear;
1517 		} else {
1518 			struct block_device *whole;
1519 			whole = bdget_disk(disk, 0);
1520 			ret = -ENOMEM;
1521 			if (!whole)
1522 				goto out_clear;
1523 			BUG_ON(for_part);
1524 			ret = __blkdev_get(whole, mode, 1);
1525 			if (ret)
1526 				goto out_clear;
1527 			bdev->bd_contains = whole;
1528 			bdev->bd_part = disk_get_part(disk, partno);
1529 			if (!(disk->flags & GENHD_FL_UP) ||
1530 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1531 				ret = -ENXIO;
1532 				goto out_clear;
1533 			}
1534 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1535 		}
1536 
1537 		if (bdev->bd_bdi == &noop_backing_dev_info)
1538 			bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1539 	} else {
1540 		if (bdev->bd_contains == bdev) {
1541 			ret = 0;
1542 			if (bdev->bd_disk->fops->open)
1543 				ret = bdev->bd_disk->fops->open(bdev, mode);
1544 			/* the same as first opener case, read comment there */
1545 			if (bdev->bd_invalidated) {
1546 				if (!ret)
1547 					rescan_partitions(bdev->bd_disk, bdev);
1548 				else if (ret == -ENOMEDIUM)
1549 					invalidate_partitions(bdev->bd_disk, bdev);
1550 			}
1551 			if (ret)
1552 				goto out_unlock_bdev;
1553 		}
1554 	}
1555 	bdev->bd_openers++;
1556 	if (for_part)
1557 		bdev->bd_part_count++;
1558 	mutex_unlock(&bdev->bd_mutex);
1559 	disk_unblock_events(disk);
1560 	/* only one opener holds refs to the module and disk */
1561 	if (!first_open)
1562 		put_disk_and_module(disk);
1563 	return 0;
1564 
1565  out_clear:
1566 	disk_put_part(bdev->bd_part);
1567 	bdev->bd_disk = NULL;
1568 	bdev->bd_part = NULL;
1569 	bdev->bd_queue = NULL;
1570 	if (bdev != bdev->bd_contains)
1571 		__blkdev_put(bdev->bd_contains, mode, 1);
1572 	bdev->bd_contains = NULL;
1573  out_unlock_bdev:
1574 	mutex_unlock(&bdev->bd_mutex);
1575 	disk_unblock_events(disk);
1576 	put_disk_and_module(disk);
1577  out:
1578 	bdput(bdev);
1579 
1580 	return ret;
1581 }
1582 
1583 /**
1584  * blkdev_get - open a block device
1585  * @bdev: block_device to open
1586  * @mode: FMODE_* mask
1587  * @holder: exclusive holder identifier
1588  *
1589  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1590  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1591  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1592  *
1593  * On success, the reference count of @bdev is unchanged.  On failure,
1594  * @bdev is put.
1595  *
1596  * CONTEXT:
1597  * Might sleep.
1598  *
1599  * RETURNS:
1600  * 0 on success, -errno on failure.
1601  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1602 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1603 {
1604 	struct block_device *whole = NULL;
1605 	int res;
1606 
1607 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1608 
1609 	if ((mode & FMODE_EXCL) && holder) {
1610 		whole = bd_start_claiming(bdev, holder);
1611 		if (IS_ERR(whole)) {
1612 			bdput(bdev);
1613 			return PTR_ERR(whole);
1614 		}
1615 	}
1616 
1617 	res = __blkdev_get(bdev, mode, 0);
1618 
1619 	if (whole) {
1620 		struct gendisk *disk = whole->bd_disk;
1621 
1622 		/* finish claiming */
1623 		mutex_lock(&bdev->bd_mutex);
1624 		spin_lock(&bdev_lock);
1625 
1626 		if (!res) {
1627 			BUG_ON(!bd_may_claim(bdev, whole, holder));
1628 			/*
1629 			 * Note that for a whole device bd_holders
1630 			 * will be incremented twice, and bd_holder
1631 			 * will be set to bd_may_claim before being
1632 			 * set to holder
1633 			 */
1634 			whole->bd_holders++;
1635 			whole->bd_holder = bd_may_claim;
1636 			bdev->bd_holders++;
1637 			bdev->bd_holder = holder;
1638 		}
1639 
1640 		/* tell others that we're done */
1641 		BUG_ON(whole->bd_claiming != holder);
1642 		whole->bd_claiming = NULL;
1643 		wake_up_bit(&whole->bd_claiming, 0);
1644 
1645 		spin_unlock(&bdev_lock);
1646 
1647 		/*
1648 		 * Block event polling for write claims if requested.  Any
1649 		 * write holder makes the write_holder state stick until
1650 		 * all are released.  This is good enough and tracking
1651 		 * individual writeable reference is too fragile given the
1652 		 * way @mode is used in blkdev_get/put().
1653 		 */
1654 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1655 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1656 			bdev->bd_write_holder = true;
1657 			disk_block_events(disk);
1658 		}
1659 
1660 		mutex_unlock(&bdev->bd_mutex);
1661 		bdput(whole);
1662 	}
1663 
1664 	return res;
1665 }
1666 EXPORT_SYMBOL(blkdev_get);
1667 
1668 /**
1669  * blkdev_get_by_path - open a block device by name
1670  * @path: path to the block device to open
1671  * @mode: FMODE_* mask
1672  * @holder: exclusive holder identifier
1673  *
1674  * Open the blockdevice described by the device file at @path.  @mode
1675  * and @holder are identical to blkdev_get().
1676  *
1677  * On success, the returned block_device has reference count of one.
1678  *
1679  * CONTEXT:
1680  * Might sleep.
1681  *
1682  * RETURNS:
1683  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1684  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1685 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1686 					void *holder)
1687 {
1688 	struct block_device *bdev;
1689 	int err;
1690 
1691 	bdev = lookup_bdev(path);
1692 	if (IS_ERR(bdev))
1693 		return bdev;
1694 
1695 	err = blkdev_get(bdev, mode, holder);
1696 	if (err)
1697 		return ERR_PTR(err);
1698 
1699 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1700 		blkdev_put(bdev, mode);
1701 		return ERR_PTR(-EACCES);
1702 	}
1703 
1704 	return bdev;
1705 }
1706 EXPORT_SYMBOL(blkdev_get_by_path);
1707 
1708 /**
1709  * blkdev_get_by_dev - open a block device by device number
1710  * @dev: device number of block device to open
1711  * @mode: FMODE_* mask
1712  * @holder: exclusive holder identifier
1713  *
1714  * Open the blockdevice described by device number @dev.  @mode and
1715  * @holder are identical to blkdev_get().
1716  *
1717  * Use it ONLY if you really do not have anything better - i.e. when
1718  * you are behind a truly sucky interface and all you are given is a
1719  * device number.  _Never_ to be used for internal purposes.  If you
1720  * ever need it - reconsider your API.
1721  *
1722  * On success, the returned block_device has reference count of one.
1723  *
1724  * CONTEXT:
1725  * Might sleep.
1726  *
1727  * RETURNS:
1728  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1729  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1730 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1731 {
1732 	struct block_device *bdev;
1733 	int err;
1734 
1735 	bdev = bdget(dev);
1736 	if (!bdev)
1737 		return ERR_PTR(-ENOMEM);
1738 
1739 	err = blkdev_get(bdev, mode, holder);
1740 	if (err)
1741 		return ERR_PTR(err);
1742 
1743 	return bdev;
1744 }
1745 EXPORT_SYMBOL(blkdev_get_by_dev);
1746 
blkdev_open(struct inode * inode,struct file * filp)1747 static int blkdev_open(struct inode * inode, struct file * filp)
1748 {
1749 	struct block_device *bdev;
1750 
1751 	/*
1752 	 * Preserve backwards compatibility and allow large file access
1753 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1754 	 * binary needs it. We might want to drop this workaround
1755 	 * during an unstable branch.
1756 	 */
1757 	filp->f_flags |= O_LARGEFILE;
1758 
1759 	filp->f_mode |= FMODE_NOWAIT;
1760 
1761 	if (filp->f_flags & O_NDELAY)
1762 		filp->f_mode |= FMODE_NDELAY;
1763 	if (filp->f_flags & O_EXCL)
1764 		filp->f_mode |= FMODE_EXCL;
1765 	if ((filp->f_flags & O_ACCMODE) == 3)
1766 		filp->f_mode |= FMODE_WRITE_IOCTL;
1767 
1768 	bdev = bd_acquire(inode);
1769 	if (bdev == NULL)
1770 		return -ENOMEM;
1771 
1772 	filp->f_mapping = bdev->bd_inode->i_mapping;
1773 	filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1774 
1775 	return blkdev_get(bdev, filp->f_mode, filp);
1776 }
1777 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1778 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1779 {
1780 	struct gendisk *disk = bdev->bd_disk;
1781 	struct block_device *victim = NULL;
1782 
1783 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1784 	if (for_part)
1785 		bdev->bd_part_count--;
1786 
1787 	if (!--bdev->bd_openers) {
1788 		WARN_ON_ONCE(bdev->bd_holders);
1789 		sync_blockdev(bdev);
1790 		kill_bdev(bdev);
1791 
1792 		bdev_write_inode(bdev);
1793 	}
1794 	if (bdev->bd_contains == bdev) {
1795 		if (disk->fops->release)
1796 			disk->fops->release(disk, mode);
1797 	}
1798 	if (!bdev->bd_openers) {
1799 		disk_put_part(bdev->bd_part);
1800 		bdev->bd_part = NULL;
1801 		bdev->bd_disk = NULL;
1802 		if (bdev != bdev->bd_contains)
1803 			victim = bdev->bd_contains;
1804 		bdev->bd_contains = NULL;
1805 
1806 		put_disk_and_module(disk);
1807 	}
1808 	mutex_unlock(&bdev->bd_mutex);
1809 	bdput(bdev);
1810 	if (victim)
1811 		__blkdev_put(victim, mode, 1);
1812 }
1813 
blkdev_put(struct block_device * bdev,fmode_t mode)1814 void blkdev_put(struct block_device *bdev, fmode_t mode)
1815 {
1816 	mutex_lock(&bdev->bd_mutex);
1817 
1818 	if (mode & FMODE_EXCL) {
1819 		bool bdev_free;
1820 
1821 		/*
1822 		 * Release a claim on the device.  The holder fields
1823 		 * are protected with bdev_lock.  bd_mutex is to
1824 		 * synchronize disk_holder unlinking.
1825 		 */
1826 		spin_lock(&bdev_lock);
1827 
1828 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1829 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1830 
1831 		/* bd_contains might point to self, check in a separate step */
1832 		if ((bdev_free = !bdev->bd_holders))
1833 			bdev->bd_holder = NULL;
1834 		if (!bdev->bd_contains->bd_holders)
1835 			bdev->bd_contains->bd_holder = NULL;
1836 
1837 		spin_unlock(&bdev_lock);
1838 
1839 		/*
1840 		 * If this was the last claim, remove holder link and
1841 		 * unblock evpoll if it was a write holder.
1842 		 */
1843 		if (bdev_free && bdev->bd_write_holder) {
1844 			disk_unblock_events(bdev->bd_disk);
1845 			bdev->bd_write_holder = false;
1846 		}
1847 	}
1848 
1849 	/*
1850 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1851 	 * event.  This is to ensure detection of media removal commanded
1852 	 * from userland - e.g. eject(1).
1853 	 */
1854 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1855 
1856 	mutex_unlock(&bdev->bd_mutex);
1857 
1858 	__blkdev_put(bdev, mode, 0);
1859 }
1860 EXPORT_SYMBOL(blkdev_put);
1861 
blkdev_close(struct inode * inode,struct file * filp)1862 static int blkdev_close(struct inode * inode, struct file * filp)
1863 {
1864 	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1865 	blkdev_put(bdev, filp->f_mode);
1866 	return 0;
1867 }
1868 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1869 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1870 {
1871 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1872 	fmode_t mode = file->f_mode;
1873 
1874 	/*
1875 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1876 	 * to updated it before every ioctl.
1877 	 */
1878 	if (file->f_flags & O_NDELAY)
1879 		mode |= FMODE_NDELAY;
1880 	else
1881 		mode &= ~FMODE_NDELAY;
1882 
1883 	return blkdev_ioctl(bdev, mode, cmd, arg);
1884 }
1885 
1886 /*
1887  * Write data to the block device.  Only intended for the block device itself
1888  * and the raw driver which basically is a fake block device.
1889  *
1890  * Does not take i_mutex for the write and thus is not for general purpose
1891  * use.
1892  */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1893 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1894 {
1895 	struct file *file = iocb->ki_filp;
1896 	struct inode *bd_inode = bdev_file_inode(file);
1897 	loff_t size = i_size_read(bd_inode);
1898 	struct blk_plug plug;
1899 	ssize_t ret;
1900 
1901 	if (bdev_read_only(I_BDEV(bd_inode)))
1902 		return -EPERM;
1903 
1904 	if (!iov_iter_count(from))
1905 		return 0;
1906 
1907 	if (iocb->ki_pos >= size)
1908 		return -ENOSPC;
1909 
1910 	if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1911 		return -EOPNOTSUPP;
1912 
1913 	iov_iter_truncate(from, size - iocb->ki_pos);
1914 
1915 	blk_start_plug(&plug);
1916 	ret = __generic_file_write_iter(iocb, from);
1917 	if (ret > 0)
1918 		ret = generic_write_sync(iocb, ret);
1919 	blk_finish_plug(&plug);
1920 	return ret;
1921 }
1922 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1923 
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1924 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1925 {
1926 	struct file *file = iocb->ki_filp;
1927 	struct inode *bd_inode = bdev_file_inode(file);
1928 	loff_t size = i_size_read(bd_inode);
1929 	loff_t pos = iocb->ki_pos;
1930 
1931 	if (pos >= size)
1932 		return 0;
1933 
1934 	size -= pos;
1935 	iov_iter_truncate(to, size);
1936 	return generic_file_read_iter(iocb, to);
1937 }
1938 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1939 
1940 /*
1941  * Try to release a page associated with block device when the system
1942  * is under memory pressure.
1943  */
blkdev_releasepage(struct page * page,gfp_t wait)1944 static int blkdev_releasepage(struct page *page, gfp_t wait)
1945 {
1946 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1947 
1948 	if (super && super->s_op->bdev_try_to_free_page)
1949 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1950 
1951 	return try_to_free_buffers(page);
1952 }
1953 
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)1954 static int blkdev_writepages(struct address_space *mapping,
1955 			     struct writeback_control *wbc)
1956 {
1957 	return generic_writepages(mapping, wbc);
1958 }
1959 
1960 static const struct address_space_operations def_blk_aops = {
1961 	.readpage	= blkdev_readpage,
1962 	.readpages	= blkdev_readpages,
1963 	.writepage	= blkdev_writepage,
1964 	.write_begin	= blkdev_write_begin,
1965 	.write_end	= blkdev_write_end,
1966 	.writepages	= blkdev_writepages,
1967 	.releasepage	= blkdev_releasepage,
1968 	.direct_IO	= blkdev_direct_IO,
1969 	.is_dirty_writeback = buffer_check_dirty_writeback,
1970 };
1971 
1972 #define	BLKDEV_FALLOC_FL_SUPPORTED					\
1973 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
1974 		 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1975 
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)1976 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1977 			     loff_t len)
1978 {
1979 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1980 	struct address_space *mapping;
1981 	loff_t end = start + len - 1;
1982 	loff_t isize;
1983 	int error;
1984 
1985 	/* Fail if we don't recognize the flags. */
1986 	if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1987 		return -EOPNOTSUPP;
1988 
1989 	/* Don't go off the end of the device. */
1990 	isize = i_size_read(bdev->bd_inode);
1991 	if (start >= isize)
1992 		return -EINVAL;
1993 	if (end >= isize) {
1994 		if (mode & FALLOC_FL_KEEP_SIZE) {
1995 			len = isize - start;
1996 			end = start + len - 1;
1997 		} else
1998 			return -EINVAL;
1999 	}
2000 
2001 	/*
2002 	 * Don't allow IO that isn't aligned to logical block size.
2003 	 */
2004 	if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2005 		return -EINVAL;
2006 
2007 	/* Invalidate the page cache, including dirty pages. */
2008 	mapping = bdev->bd_inode->i_mapping;
2009 	truncate_inode_pages_range(mapping, start, end);
2010 
2011 	switch (mode) {
2012 	case FALLOC_FL_ZERO_RANGE:
2013 	case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2014 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2015 					    GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2016 		break;
2017 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2018 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2019 					     GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2020 		break;
2021 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2022 		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2023 					     GFP_KERNEL, 0);
2024 		break;
2025 	default:
2026 		return -EOPNOTSUPP;
2027 	}
2028 	if (error)
2029 		return error;
2030 
2031 	/*
2032 	 * Invalidate again; if someone wandered in and dirtied a page,
2033 	 * the caller will be given -EBUSY.  The third argument is
2034 	 * inclusive, so the rounding here is safe.
2035 	 */
2036 	return invalidate_inode_pages2_range(mapping,
2037 					     start >> PAGE_SHIFT,
2038 					     end >> PAGE_SHIFT);
2039 }
2040 
2041 const struct file_operations def_blk_fops = {
2042 	.open		= blkdev_open,
2043 	.release	= blkdev_close,
2044 	.llseek		= block_llseek,
2045 	.read_iter	= blkdev_read_iter,
2046 	.write_iter	= blkdev_write_iter,
2047 	.mmap		= generic_file_mmap,
2048 	.fsync		= blkdev_fsync,
2049 	.unlocked_ioctl	= block_ioctl,
2050 #ifdef CONFIG_COMPAT
2051 	.compat_ioctl	= compat_blkdev_ioctl,
2052 #endif
2053 	.splice_read	= generic_file_splice_read,
2054 	.splice_write	= iter_file_splice_write,
2055 	.fallocate	= blkdev_fallocate,
2056 };
2057 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)2058 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2059 {
2060 	int res;
2061 	mm_segment_t old_fs = get_fs();
2062 	set_fs(KERNEL_DS);
2063 	res = blkdev_ioctl(bdev, 0, cmd, arg);
2064 	set_fs(old_fs);
2065 	return res;
2066 }
2067 
2068 EXPORT_SYMBOL(ioctl_by_bdev);
2069 
2070 /**
2071  * lookup_bdev  - lookup a struct block_device by name
2072  * @pathname:	special file representing the block device
2073  *
2074  * Get a reference to the blockdevice at @pathname in the current
2075  * namespace if possible and return it.  Return ERR_PTR(error)
2076  * otherwise.
2077  */
lookup_bdev(const char * pathname)2078 struct block_device *lookup_bdev(const char *pathname)
2079 {
2080 	struct block_device *bdev;
2081 	struct inode *inode;
2082 	struct path path;
2083 	int error;
2084 
2085 	if (!pathname || !*pathname)
2086 		return ERR_PTR(-EINVAL);
2087 
2088 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2089 	if (error)
2090 		return ERR_PTR(error);
2091 
2092 	inode = d_backing_inode(path.dentry);
2093 	error = -ENOTBLK;
2094 	if (!S_ISBLK(inode->i_mode))
2095 		goto fail;
2096 	error = -EACCES;
2097 	if (!may_open_dev(&path))
2098 		goto fail;
2099 	error = -ENOMEM;
2100 	bdev = bd_acquire(inode);
2101 	if (!bdev)
2102 		goto fail;
2103 out:
2104 	path_put(&path);
2105 	return bdev;
2106 fail:
2107 	bdev = ERR_PTR(error);
2108 	goto out;
2109 }
2110 EXPORT_SYMBOL(lookup_bdev);
2111 
__invalidate_device(struct block_device * bdev,bool kill_dirty)2112 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2113 {
2114 	struct super_block *sb = get_super(bdev);
2115 	int res = 0;
2116 
2117 	if (sb) {
2118 		/*
2119 		 * no need to lock the super, get_super holds the
2120 		 * read mutex so the filesystem cannot go away
2121 		 * under us (->put_super runs with the write lock
2122 		 * hold).
2123 		 */
2124 		shrink_dcache_sb(sb);
2125 		res = invalidate_inodes(sb, kill_dirty);
2126 		drop_super(sb);
2127 	}
2128 	invalidate_bdev(bdev);
2129 	return res;
2130 }
2131 EXPORT_SYMBOL(__invalidate_device);
2132 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)2133 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2134 {
2135 	struct inode *inode, *old_inode = NULL;
2136 
2137 	spin_lock(&blockdev_superblock->s_inode_list_lock);
2138 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2139 		struct address_space *mapping = inode->i_mapping;
2140 		struct block_device *bdev;
2141 
2142 		spin_lock(&inode->i_lock);
2143 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2144 		    mapping->nrpages == 0) {
2145 			spin_unlock(&inode->i_lock);
2146 			continue;
2147 		}
2148 		__iget(inode);
2149 		spin_unlock(&inode->i_lock);
2150 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
2151 		/*
2152 		 * We hold a reference to 'inode' so it couldn't have been
2153 		 * removed from s_inodes list while we dropped the
2154 		 * s_inode_list_lock  We cannot iput the inode now as we can
2155 		 * be holding the last reference and we cannot iput it under
2156 		 * s_inode_list_lock. So we keep the reference and iput it
2157 		 * later.
2158 		 */
2159 		iput(old_inode);
2160 		old_inode = inode;
2161 		bdev = I_BDEV(inode);
2162 
2163 		mutex_lock(&bdev->bd_mutex);
2164 		if (bdev->bd_openers)
2165 			func(bdev, arg);
2166 		mutex_unlock(&bdev->bd_mutex);
2167 
2168 		spin_lock(&blockdev_superblock->s_inode_list_lock);
2169 	}
2170 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
2171 	iput(old_inode);
2172 }
2173