1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/sched/cputime.h>
41 #include <linux/cred.h>
42 #include <linux/dax.h>
43 #include <linux/uaccess.h>
44 #include <asm/param.h>
45 #include <asm/page.h>
46 
47 #ifndef user_long_t
48 #define user_long_t long
49 #endif
50 #ifndef user_siginfo_t
51 #define user_siginfo_t siginfo_t
52 #endif
53 
54 /* That's for binfmt_elf_fdpic to deal with */
55 #ifndef elf_check_fdpic
56 #define elf_check_fdpic(ex) false
57 #endif
58 
59 static int load_elf_binary(struct linux_binprm *bprm);
60 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
61 				int, int, unsigned long);
62 
63 #ifdef CONFIG_USELIB
64 static int load_elf_library(struct file *);
65 #else
66 #define load_elf_library NULL
67 #endif
68 
69 /*
70  * If we don't support core dumping, then supply a NULL so we
71  * don't even try.
72  */
73 #ifdef CONFIG_ELF_CORE
74 static int elf_core_dump(struct coredump_params *cprm);
75 #else
76 #define elf_core_dump	NULL
77 #endif
78 
79 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
80 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
81 #else
82 #define ELF_MIN_ALIGN	PAGE_SIZE
83 #endif
84 
85 #ifndef ELF_CORE_EFLAGS
86 #define ELF_CORE_EFLAGS	0
87 #endif
88 
89 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
90 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
91 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
92 
93 static struct linux_binfmt elf_format = {
94 	.module		= THIS_MODULE,
95 	.load_binary	= load_elf_binary,
96 	.load_shlib	= load_elf_library,
97 	.core_dump	= elf_core_dump,
98 	.min_coredump	= ELF_EXEC_PAGESIZE,
99 };
100 
101 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
102 
set_brk(unsigned long start,unsigned long end,int prot)103 static int set_brk(unsigned long start, unsigned long end, int prot)
104 {
105 	start = ELF_PAGEALIGN(start);
106 	end = ELF_PAGEALIGN(end);
107 	if (end > start) {
108 		/*
109 		 * Map the last of the bss segment.
110 		 * If the header is requesting these pages to be
111 		 * executable, honour that (ppc32 needs this).
112 		 */
113 		int error = vm_brk_flags(start, end - start,
114 				prot & PROT_EXEC ? VM_EXEC : 0);
115 		if (error)
116 			return error;
117 	}
118 	current->mm->start_brk = current->mm->brk = end;
119 	return 0;
120 }
121 
122 /* We need to explicitly zero any fractional pages
123    after the data section (i.e. bss).  This would
124    contain the junk from the file that should not
125    be in memory
126  */
padzero(unsigned long elf_bss)127 static int padzero(unsigned long elf_bss)
128 {
129 	unsigned long nbyte;
130 
131 	nbyte = ELF_PAGEOFFSET(elf_bss);
132 	if (nbyte) {
133 		nbyte = ELF_MIN_ALIGN - nbyte;
134 		if (clear_user((void __user *) elf_bss, nbyte))
135 			return -EFAULT;
136 	}
137 	return 0;
138 }
139 
140 /* Let's use some macros to make this stack manipulation a little clearer */
141 #ifdef CONFIG_STACK_GROWSUP
142 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
143 #define STACK_ROUND(sp, items) \
144 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
145 #define STACK_ALLOC(sp, len) ({ \
146 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
147 	old_sp; })
148 #else
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
150 #define STACK_ROUND(sp, items) \
151 	(((unsigned long) (sp - items)) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
153 #endif
154 
155 #ifndef ELF_BASE_PLATFORM
156 /*
157  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
158  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
159  * will be copied to the user stack in the same manner as AT_PLATFORM.
160  */
161 #define ELF_BASE_PLATFORM NULL
162 #endif
163 
164 static int
create_elf_tables(struct linux_binprm * bprm,struct elfhdr * exec,unsigned long load_addr,unsigned long interp_load_addr)165 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
166 		unsigned long load_addr, unsigned long interp_load_addr)
167 {
168 	unsigned long p = bprm->p;
169 	int argc = bprm->argc;
170 	int envc = bprm->envc;
171 	elf_addr_t __user *sp;
172 	elf_addr_t __user *u_platform;
173 	elf_addr_t __user *u_base_platform;
174 	elf_addr_t __user *u_rand_bytes;
175 	const char *k_platform = ELF_PLATFORM;
176 	const char *k_base_platform = ELF_BASE_PLATFORM;
177 	unsigned char k_rand_bytes[16];
178 	int items;
179 	elf_addr_t *elf_info;
180 	int ei_index = 0;
181 	const struct cred *cred = current_cred();
182 	struct vm_area_struct *vma;
183 
184 	/*
185 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
186 	 * evictions by the processes running on the same package. One
187 	 * thing we can do is to shuffle the initial stack for them.
188 	 */
189 
190 	p = arch_align_stack(p);
191 
192 	/*
193 	 * If this architecture has a platform capability string, copy it
194 	 * to userspace.  In some cases (Sparc), this info is impossible
195 	 * for userspace to get any other way, in others (i386) it is
196 	 * merely difficult.
197 	 */
198 	u_platform = NULL;
199 	if (k_platform) {
200 		size_t len = strlen(k_platform) + 1;
201 
202 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 		if (__copy_to_user(u_platform, k_platform, len))
204 			return -EFAULT;
205 	}
206 
207 	/*
208 	 * If this architecture has a "base" platform capability
209 	 * string, copy it to userspace.
210 	 */
211 	u_base_platform = NULL;
212 	if (k_base_platform) {
213 		size_t len = strlen(k_base_platform) + 1;
214 
215 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
216 		if (__copy_to_user(u_base_platform, k_base_platform, len))
217 			return -EFAULT;
218 	}
219 
220 	/*
221 	 * Generate 16 random bytes for userspace PRNG seeding.
222 	 */
223 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
224 	u_rand_bytes = (elf_addr_t __user *)
225 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
226 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
227 		return -EFAULT;
228 
229 	/* Create the ELF interpreter info */
230 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
231 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
232 #define NEW_AUX_ENT(id, val) \
233 	do { \
234 		elf_info[ei_index++] = id; \
235 		elf_info[ei_index++] = val; \
236 	} while (0)
237 
238 #ifdef ARCH_DLINFO
239 	/*
240 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
241 	 * AUXV.
242 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
243 	 * ARCH_DLINFO changes
244 	 */
245 	ARCH_DLINFO;
246 #endif
247 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
248 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
249 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
250 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
251 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
252 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
253 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
254 	NEW_AUX_ENT(AT_FLAGS, 0);
255 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
256 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
257 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
258 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
259 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
260 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
261 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
262 #ifdef ELF_HWCAP2
263 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
264 #endif
265 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
266 	if (k_platform) {
267 		NEW_AUX_ENT(AT_PLATFORM,
268 			    (elf_addr_t)(unsigned long)u_platform);
269 	}
270 	if (k_base_platform) {
271 		NEW_AUX_ENT(AT_BASE_PLATFORM,
272 			    (elf_addr_t)(unsigned long)u_base_platform);
273 	}
274 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
275 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
276 	}
277 #undef NEW_AUX_ENT
278 	/* AT_NULL is zero; clear the rest too */
279 	memset(&elf_info[ei_index], 0,
280 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
281 
282 	/* And advance past the AT_NULL entry.  */
283 	ei_index += 2;
284 
285 	sp = STACK_ADD(p, ei_index);
286 
287 	items = (argc + 1) + (envc + 1) + 1;
288 	bprm->p = STACK_ROUND(sp, items);
289 
290 	/* Point sp at the lowest address on the stack */
291 #ifdef CONFIG_STACK_GROWSUP
292 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
293 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
294 #else
295 	sp = (elf_addr_t __user *)bprm->p;
296 #endif
297 
298 
299 	/*
300 	 * Grow the stack manually; some architectures have a limit on how
301 	 * far ahead a user-space access may be in order to grow the stack.
302 	 */
303 	vma = find_extend_vma(current->mm, bprm->p);
304 	if (!vma)
305 		return -EFAULT;
306 
307 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
308 	if (__put_user(argc, sp++))
309 		return -EFAULT;
310 
311 	/* Populate list of argv pointers back to argv strings. */
312 	p = current->mm->arg_end = current->mm->arg_start;
313 	while (argc-- > 0) {
314 		size_t len;
315 		if (__put_user((elf_addr_t)p, sp++))
316 			return -EFAULT;
317 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 		if (!len || len > MAX_ARG_STRLEN)
319 			return -EINVAL;
320 		p += len;
321 	}
322 	if (__put_user(0, sp++))
323 		return -EFAULT;
324 	current->mm->arg_end = p;
325 
326 	/* Populate list of envp pointers back to envp strings. */
327 	current->mm->env_end = current->mm->env_start = p;
328 	while (envc-- > 0) {
329 		size_t len;
330 		if (__put_user((elf_addr_t)p, sp++))
331 			return -EFAULT;
332 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
333 		if (!len || len > MAX_ARG_STRLEN)
334 			return -EINVAL;
335 		p += len;
336 	}
337 	if (__put_user(0, sp++))
338 		return -EFAULT;
339 	current->mm->env_end = p;
340 
341 	/* Put the elf_info on the stack in the right place.  */
342 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
343 		return -EFAULT;
344 	return 0;
345 }
346 
347 #ifndef elf_map
348 
elf_map(struct file * filep,unsigned long addr,struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)349 static unsigned long elf_map(struct file *filep, unsigned long addr,
350 		struct elf_phdr *eppnt, int prot, int type,
351 		unsigned long total_size)
352 {
353 	unsigned long map_addr;
354 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
355 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
356 	addr = ELF_PAGESTART(addr);
357 	size = ELF_PAGEALIGN(size);
358 
359 	/* mmap() will return -EINVAL if given a zero size, but a
360 	 * segment with zero filesize is perfectly valid */
361 	if (!size)
362 		return addr;
363 
364 	/*
365 	* total_size is the size of the ELF (interpreter) image.
366 	* The _first_ mmap needs to know the full size, otherwise
367 	* randomization might put this image into an overlapping
368 	* position with the ELF binary image. (since size < total_size)
369 	* So we first map the 'big' image - and unmap the remainder at
370 	* the end. (which unmap is needed for ELF images with holes.)
371 	*/
372 	if (total_size) {
373 		total_size = ELF_PAGEALIGN(total_size);
374 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
375 		if (!BAD_ADDR(map_addr))
376 			vm_munmap(map_addr+size, total_size-size);
377 	} else
378 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
379 
380 	if ((type & MAP_FIXED_NOREPLACE) &&
381 	    PTR_ERR((void *)map_addr) == -EEXIST)
382 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
383 			task_pid_nr(current), current->comm, (void *)addr);
384 
385 	return(map_addr);
386 }
387 
388 #endif /* !elf_map */
389 
total_mapping_size(struct elf_phdr * cmds,int nr)390 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
391 {
392 	int i, first_idx = -1, last_idx = -1;
393 
394 	for (i = 0; i < nr; i++) {
395 		if (cmds[i].p_type == PT_LOAD) {
396 			last_idx = i;
397 			if (first_idx == -1)
398 				first_idx = i;
399 		}
400 	}
401 	if (first_idx == -1)
402 		return 0;
403 
404 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
405 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
406 }
407 
408 /**
409  * load_elf_phdrs() - load ELF program headers
410  * @elf_ex:   ELF header of the binary whose program headers should be loaded
411  * @elf_file: the opened ELF binary file
412  *
413  * Loads ELF program headers from the binary file elf_file, which has the ELF
414  * header pointed to by elf_ex, into a newly allocated array. The caller is
415  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
416  */
load_elf_phdrs(struct elfhdr * elf_ex,struct file * elf_file)417 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
418 				       struct file *elf_file)
419 {
420 	struct elf_phdr *elf_phdata = NULL;
421 	int retval, size, err = -1;
422 	loff_t pos = elf_ex->e_phoff;
423 
424 	/*
425 	 * If the size of this structure has changed, then punt, since
426 	 * we will be doing the wrong thing.
427 	 */
428 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
429 		goto out;
430 
431 	/* Sanity check the number of program headers... */
432 	if (elf_ex->e_phnum < 1 ||
433 		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
434 		goto out;
435 
436 	/* ...and their total size. */
437 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
438 	if (size > ELF_MIN_ALIGN)
439 		goto out;
440 
441 	elf_phdata = kmalloc(size, GFP_KERNEL);
442 	if (!elf_phdata)
443 		goto out;
444 
445 	/* Read in the program headers */
446 	retval = kernel_read(elf_file, elf_phdata, size, &pos);
447 	if (retval != size) {
448 		err = (retval < 0) ? retval : -EIO;
449 		goto out;
450 	}
451 
452 	/* Success! */
453 	err = 0;
454 out:
455 	if (err) {
456 		kfree(elf_phdata);
457 		elf_phdata = NULL;
458 	}
459 	return elf_phdata;
460 }
461 
462 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
463 
464 /**
465  * struct arch_elf_state - arch-specific ELF loading state
466  *
467  * This structure is used to preserve architecture specific data during
468  * the loading of an ELF file, throughout the checking of architecture
469  * specific ELF headers & through to the point where the ELF load is
470  * known to be proceeding (ie. SET_PERSONALITY).
471  *
472  * This implementation is a dummy for architectures which require no
473  * specific state.
474  */
475 struct arch_elf_state {
476 };
477 
478 #define INIT_ARCH_ELF_STATE {}
479 
480 /**
481  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
482  * @ehdr:	The main ELF header
483  * @phdr:	The program header to check
484  * @elf:	The open ELF file
485  * @is_interp:	True if the phdr is from the interpreter of the ELF being
486  *		loaded, else false.
487  * @state:	Architecture-specific state preserved throughout the process
488  *		of loading the ELF.
489  *
490  * Inspects the program header phdr to validate its correctness and/or
491  * suitability for the system. Called once per ELF program header in the
492  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
493  * interpreter.
494  *
495  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
496  *         with that return code.
497  */
arch_elf_pt_proc(struct elfhdr * ehdr,struct elf_phdr * phdr,struct file * elf,bool is_interp,struct arch_elf_state * state)498 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
499 				   struct elf_phdr *phdr,
500 				   struct file *elf, bool is_interp,
501 				   struct arch_elf_state *state)
502 {
503 	/* Dummy implementation, always proceed */
504 	return 0;
505 }
506 
507 /**
508  * arch_check_elf() - check an ELF executable
509  * @ehdr:	The main ELF header
510  * @has_interp:	True if the ELF has an interpreter, else false.
511  * @interp_ehdr: The interpreter's ELF header
512  * @state:	Architecture-specific state preserved throughout the process
513  *		of loading the ELF.
514  *
515  * Provides a final opportunity for architecture code to reject the loading
516  * of the ELF & cause an exec syscall to return an error. This is called after
517  * all program headers to be checked by arch_elf_pt_proc have been.
518  *
519  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
520  *         with that return code.
521  */
arch_check_elf(struct elfhdr * ehdr,bool has_interp,struct elfhdr * interp_ehdr,struct arch_elf_state * state)522 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
523 				 struct elfhdr *interp_ehdr,
524 				 struct arch_elf_state *state)
525 {
526 	/* Dummy implementation, always proceed */
527 	return 0;
528 }
529 
530 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
531 
532 /* This is much more generalized than the library routine read function,
533    so we keep this separate.  Technically the library read function
534    is only provided so that we can read a.out libraries that have
535    an ELF header */
536 
load_elf_interp(struct elfhdr * interp_elf_ex,struct file * interpreter,unsigned long * interp_map_addr,unsigned long no_base,struct elf_phdr * interp_elf_phdata)537 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
538 		struct file *interpreter, unsigned long *interp_map_addr,
539 		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
540 {
541 	struct elf_phdr *eppnt;
542 	unsigned long load_addr = 0;
543 	int load_addr_set = 0;
544 	unsigned long last_bss = 0, elf_bss = 0;
545 	int bss_prot = 0;
546 	unsigned long error = ~0UL;
547 	unsigned long total_size;
548 	int i;
549 
550 	/* First of all, some simple consistency checks */
551 	if (interp_elf_ex->e_type != ET_EXEC &&
552 	    interp_elf_ex->e_type != ET_DYN)
553 		goto out;
554 	if (!elf_check_arch(interp_elf_ex) ||
555 	    elf_check_fdpic(interp_elf_ex))
556 		goto out;
557 	if (!interpreter->f_op->mmap)
558 		goto out;
559 
560 	total_size = total_mapping_size(interp_elf_phdata,
561 					interp_elf_ex->e_phnum);
562 	if (!total_size) {
563 		error = -EINVAL;
564 		goto out;
565 	}
566 
567 	eppnt = interp_elf_phdata;
568 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
569 		if (eppnt->p_type == PT_LOAD) {
570 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
571 			int elf_prot = 0;
572 			unsigned long vaddr = 0;
573 			unsigned long k, map_addr;
574 
575 			if (eppnt->p_flags & PF_R)
576 		    		elf_prot = PROT_READ;
577 			if (eppnt->p_flags & PF_W)
578 				elf_prot |= PROT_WRITE;
579 			if (eppnt->p_flags & PF_X)
580 				elf_prot |= PROT_EXEC;
581 			vaddr = eppnt->p_vaddr;
582 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
583 				elf_type |= MAP_FIXED_NOREPLACE;
584 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
585 				load_addr = -vaddr;
586 
587 			map_addr = elf_map(interpreter, load_addr + vaddr,
588 					eppnt, elf_prot, elf_type, total_size);
589 			total_size = 0;
590 			if (!*interp_map_addr)
591 				*interp_map_addr = map_addr;
592 			error = map_addr;
593 			if (BAD_ADDR(map_addr))
594 				goto out;
595 
596 			if (!load_addr_set &&
597 			    interp_elf_ex->e_type == ET_DYN) {
598 				load_addr = map_addr - ELF_PAGESTART(vaddr);
599 				load_addr_set = 1;
600 			}
601 
602 			/*
603 			 * Check to see if the section's size will overflow the
604 			 * allowed task size. Note that p_filesz must always be
605 			 * <= p_memsize so it's only necessary to check p_memsz.
606 			 */
607 			k = load_addr + eppnt->p_vaddr;
608 			if (BAD_ADDR(k) ||
609 			    eppnt->p_filesz > eppnt->p_memsz ||
610 			    eppnt->p_memsz > TASK_SIZE ||
611 			    TASK_SIZE - eppnt->p_memsz < k) {
612 				error = -ENOMEM;
613 				goto out;
614 			}
615 
616 			/*
617 			 * Find the end of the file mapping for this phdr, and
618 			 * keep track of the largest address we see for this.
619 			 */
620 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
621 			if (k > elf_bss)
622 				elf_bss = k;
623 
624 			/*
625 			 * Do the same thing for the memory mapping - between
626 			 * elf_bss and last_bss is the bss section.
627 			 */
628 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
629 			if (k > last_bss) {
630 				last_bss = k;
631 				bss_prot = elf_prot;
632 			}
633 		}
634 	}
635 
636 	/*
637 	 * Now fill out the bss section: first pad the last page from
638 	 * the file up to the page boundary, and zero it from elf_bss
639 	 * up to the end of the page.
640 	 */
641 	if (padzero(elf_bss)) {
642 		error = -EFAULT;
643 		goto out;
644 	}
645 	/*
646 	 * Next, align both the file and mem bss up to the page size,
647 	 * since this is where elf_bss was just zeroed up to, and where
648 	 * last_bss will end after the vm_brk_flags() below.
649 	 */
650 	elf_bss = ELF_PAGEALIGN(elf_bss);
651 	last_bss = ELF_PAGEALIGN(last_bss);
652 	/* Finally, if there is still more bss to allocate, do it. */
653 	if (last_bss > elf_bss) {
654 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
655 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
656 		if (error)
657 			goto out;
658 	}
659 
660 	error = load_addr;
661 out:
662 	return error;
663 }
664 
665 /*
666  * These are the functions used to load ELF style executables and shared
667  * libraries.  There is no binary dependent code anywhere else.
668  */
669 
670 #ifndef STACK_RND_MASK
671 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
672 #endif
673 
randomize_stack_top(unsigned long stack_top)674 static unsigned long randomize_stack_top(unsigned long stack_top)
675 {
676 	unsigned long random_variable = 0;
677 
678 	if (current->flags & PF_RANDOMIZE) {
679 		random_variable = get_random_long();
680 		random_variable &= STACK_RND_MASK;
681 		random_variable <<= PAGE_SHIFT;
682 	}
683 #ifdef CONFIG_STACK_GROWSUP
684 	return PAGE_ALIGN(stack_top) + random_variable;
685 #else
686 	return PAGE_ALIGN(stack_top) - random_variable;
687 #endif
688 }
689 
load_elf_binary(struct linux_binprm * bprm)690 static int load_elf_binary(struct linux_binprm *bprm)
691 {
692 	struct file *interpreter = NULL; /* to shut gcc up */
693  	unsigned long load_addr = 0, load_bias = 0;
694 	int load_addr_set = 0;
695 	char * elf_interpreter = NULL;
696 	unsigned long error;
697 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
698 	unsigned long elf_bss, elf_brk;
699 	int bss_prot = 0;
700 	int retval, i;
701 	unsigned long elf_entry;
702 	unsigned long interp_load_addr = 0;
703 	unsigned long start_code, end_code, start_data, end_data;
704 	unsigned long reloc_func_desc __maybe_unused = 0;
705 	int executable_stack = EXSTACK_DEFAULT;
706 	struct pt_regs *regs = current_pt_regs();
707 	struct {
708 		struct elfhdr elf_ex;
709 		struct elfhdr interp_elf_ex;
710 	} *loc;
711 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
712 	loff_t pos;
713 
714 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
715 	if (!loc) {
716 		retval = -ENOMEM;
717 		goto out_ret;
718 	}
719 
720 	/* Get the exec-header */
721 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
722 
723 	retval = -ENOEXEC;
724 	/* First of all, some simple consistency checks */
725 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
726 		goto out;
727 
728 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
729 		goto out;
730 	if (!elf_check_arch(&loc->elf_ex))
731 		goto out;
732 	if (elf_check_fdpic(&loc->elf_ex))
733 		goto out;
734 	if (!bprm->file->f_op->mmap)
735 		goto out;
736 
737 	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
738 	if (!elf_phdata)
739 		goto out;
740 
741 	elf_ppnt = elf_phdata;
742 	elf_bss = 0;
743 	elf_brk = 0;
744 
745 	start_code = ~0UL;
746 	end_code = 0;
747 	start_data = 0;
748 	end_data = 0;
749 
750 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
751 		if (elf_ppnt->p_type == PT_INTERP) {
752 			/* This is the program interpreter used for
753 			 * shared libraries - for now assume that this
754 			 * is an a.out format binary
755 			 */
756 			retval = -ENOEXEC;
757 			if (elf_ppnt->p_filesz > PATH_MAX ||
758 			    elf_ppnt->p_filesz < 2)
759 				goto out_free_ph;
760 
761 			retval = -ENOMEM;
762 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
763 						  GFP_KERNEL);
764 			if (!elf_interpreter)
765 				goto out_free_ph;
766 
767 			pos = elf_ppnt->p_offset;
768 			retval = kernel_read(bprm->file, elf_interpreter,
769 					     elf_ppnt->p_filesz, &pos);
770 			if (retval != elf_ppnt->p_filesz) {
771 				if (retval >= 0)
772 					retval = -EIO;
773 				goto out_free_interp;
774 			}
775 			/* make sure path is NULL terminated */
776 			retval = -ENOEXEC;
777 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
778 				goto out_free_interp;
779 
780 			interpreter = open_exec(elf_interpreter);
781 			retval = PTR_ERR(interpreter);
782 			if (IS_ERR(interpreter))
783 				goto out_free_interp;
784 
785 			/*
786 			 * If the binary is not readable then enforce
787 			 * mm->dumpable = 0 regardless of the interpreter's
788 			 * permissions.
789 			 */
790 			would_dump(bprm, interpreter);
791 
792 			/* Get the exec headers */
793 			pos = 0;
794 			retval = kernel_read(interpreter, &loc->interp_elf_ex,
795 					     sizeof(loc->interp_elf_ex), &pos);
796 			if (retval != sizeof(loc->interp_elf_ex)) {
797 				if (retval >= 0)
798 					retval = -EIO;
799 				goto out_free_dentry;
800 			}
801 
802 			break;
803 		}
804 		elf_ppnt++;
805 	}
806 
807 	elf_ppnt = elf_phdata;
808 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
809 		switch (elf_ppnt->p_type) {
810 		case PT_GNU_STACK:
811 			if (elf_ppnt->p_flags & PF_X)
812 				executable_stack = EXSTACK_ENABLE_X;
813 			else
814 				executable_stack = EXSTACK_DISABLE_X;
815 			break;
816 
817 		case PT_LOPROC ... PT_HIPROC:
818 			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
819 						  bprm->file, false,
820 						  &arch_state);
821 			if (retval)
822 				goto out_free_dentry;
823 			break;
824 		}
825 
826 	/* Some simple consistency checks for the interpreter */
827 	if (elf_interpreter) {
828 		retval = -ELIBBAD;
829 		/* Not an ELF interpreter */
830 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
831 			goto out_free_dentry;
832 		/* Verify the interpreter has a valid arch */
833 		if (!elf_check_arch(&loc->interp_elf_ex) ||
834 		    elf_check_fdpic(&loc->interp_elf_ex))
835 			goto out_free_dentry;
836 
837 		/* Load the interpreter program headers */
838 		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
839 						   interpreter);
840 		if (!interp_elf_phdata)
841 			goto out_free_dentry;
842 
843 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
844 		elf_ppnt = interp_elf_phdata;
845 		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
846 			switch (elf_ppnt->p_type) {
847 			case PT_LOPROC ... PT_HIPROC:
848 				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
849 							  elf_ppnt, interpreter,
850 							  true, &arch_state);
851 				if (retval)
852 					goto out_free_dentry;
853 				break;
854 			}
855 	}
856 
857 	/*
858 	 * Allow arch code to reject the ELF at this point, whilst it's
859 	 * still possible to return an error to the code that invoked
860 	 * the exec syscall.
861 	 */
862 	retval = arch_check_elf(&loc->elf_ex,
863 				!!interpreter, &loc->interp_elf_ex,
864 				&arch_state);
865 	if (retval)
866 		goto out_free_dentry;
867 
868 	/* Flush all traces of the currently running executable */
869 	retval = flush_old_exec(bprm);
870 	if (retval)
871 		goto out_free_dentry;
872 
873 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
874 	   may depend on the personality.  */
875 	SET_PERSONALITY2(loc->elf_ex, &arch_state);
876 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
877 		current->personality |= READ_IMPLIES_EXEC;
878 
879 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
880 		current->flags |= PF_RANDOMIZE;
881 
882 	setup_new_exec(bprm);
883 	install_exec_creds(bprm);
884 
885 	/* Do this so that we can load the interpreter, if need be.  We will
886 	   change some of these later */
887 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
888 				 executable_stack);
889 	if (retval < 0)
890 		goto out_free_dentry;
891 
892 	current->mm->start_stack = bprm->p;
893 
894 	/* Now we do a little grungy work by mmapping the ELF image into
895 	   the correct location in memory. */
896 	for(i = 0, elf_ppnt = elf_phdata;
897 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
898 		int elf_prot = 0, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
899 		unsigned long k, vaddr;
900 		unsigned long total_size = 0;
901 
902 		if (elf_ppnt->p_type != PT_LOAD)
903 			continue;
904 
905 		if (unlikely (elf_brk > elf_bss)) {
906 			unsigned long nbyte;
907 
908 			/* There was a PT_LOAD segment with p_memsz > p_filesz
909 			   before this one. Map anonymous pages, if needed,
910 			   and clear the area.  */
911 			retval = set_brk(elf_bss + load_bias,
912 					 elf_brk + load_bias,
913 					 bss_prot);
914 			if (retval)
915 				goto out_free_dentry;
916 			nbyte = ELF_PAGEOFFSET(elf_bss);
917 			if (nbyte) {
918 				nbyte = ELF_MIN_ALIGN - nbyte;
919 				if (nbyte > elf_brk - elf_bss)
920 					nbyte = elf_brk - elf_bss;
921 				if (clear_user((void __user *)elf_bss +
922 							load_bias, nbyte)) {
923 					/*
924 					 * This bss-zeroing can fail if the ELF
925 					 * file specifies odd protections. So
926 					 * we don't check the return value
927 					 */
928 				}
929 			}
930 
931 			/*
932 			 * Some binaries have overlapping elf segments and then
933 			 * we have to forcefully map over an existing mapping
934 			 * e.g. over this newly established brk mapping.
935 			 */
936 			elf_fixed = MAP_FIXED;
937 		}
938 
939 		if (elf_ppnt->p_flags & PF_R)
940 			elf_prot |= PROT_READ;
941 		if (elf_ppnt->p_flags & PF_W)
942 			elf_prot |= PROT_WRITE;
943 		if (elf_ppnt->p_flags & PF_X)
944 			elf_prot |= PROT_EXEC;
945 
946 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
947 
948 		vaddr = elf_ppnt->p_vaddr;
949 		/*
950 		 * If we are loading ET_EXEC or we have already performed
951 		 * the ET_DYN load_addr calculations, proceed normally.
952 		 */
953 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
954 			elf_flags |= elf_fixed;
955 		} else if (loc->elf_ex.e_type == ET_DYN) {
956 			/*
957 			 * This logic is run once for the first LOAD Program
958 			 * Header for ET_DYN binaries to calculate the
959 			 * randomization (load_bias) for all the LOAD
960 			 * Program Headers, and to calculate the entire
961 			 * size of the ELF mapping (total_size). (Note that
962 			 * load_addr_set is set to true later once the
963 			 * initial mapping is performed.)
964 			 *
965 			 * There are effectively two types of ET_DYN
966 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
967 			 * and loaders (ET_DYN without INTERP, since they
968 			 * _are_ the ELF interpreter). The loaders must
969 			 * be loaded away from programs since the program
970 			 * may otherwise collide with the loader (especially
971 			 * for ET_EXEC which does not have a randomized
972 			 * position). For example to handle invocations of
973 			 * "./ld.so someprog" to test out a new version of
974 			 * the loader, the subsequent program that the
975 			 * loader loads must avoid the loader itself, so
976 			 * they cannot share the same load range. Sufficient
977 			 * room for the brk must be allocated with the
978 			 * loader as well, since brk must be available with
979 			 * the loader.
980 			 *
981 			 * Therefore, programs are loaded offset from
982 			 * ELF_ET_DYN_BASE and loaders are loaded into the
983 			 * independently randomized mmap region (0 load_bias
984 			 * without MAP_FIXED).
985 			 */
986 			if (elf_interpreter) {
987 				load_bias = ELF_ET_DYN_BASE;
988 				if (current->flags & PF_RANDOMIZE)
989 					load_bias += arch_mmap_rnd();
990 				elf_flags |= elf_fixed;
991 			} else
992 				load_bias = 0;
993 
994 			/*
995 			 * Since load_bias is used for all subsequent loading
996 			 * calculations, we must lower it by the first vaddr
997 			 * so that the remaining calculations based on the
998 			 * ELF vaddrs will be correctly offset. The result
999 			 * is then page aligned.
1000 			 */
1001 			load_bias = ELF_PAGESTART(load_bias - vaddr);
1002 
1003 			total_size = total_mapping_size(elf_phdata,
1004 							loc->elf_ex.e_phnum);
1005 			if (!total_size) {
1006 				retval = -EINVAL;
1007 				goto out_free_dentry;
1008 			}
1009 		}
1010 
1011 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1012 				elf_prot, elf_flags, total_size);
1013 		if (BAD_ADDR(error)) {
1014 			retval = IS_ERR((void *)error) ?
1015 				PTR_ERR((void*)error) : -EINVAL;
1016 			goto out_free_dentry;
1017 		}
1018 
1019 		if (!load_addr_set) {
1020 			load_addr_set = 1;
1021 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1022 			if (loc->elf_ex.e_type == ET_DYN) {
1023 				load_bias += error -
1024 				             ELF_PAGESTART(load_bias + vaddr);
1025 				load_addr += load_bias;
1026 				reloc_func_desc = load_bias;
1027 			}
1028 		}
1029 		k = elf_ppnt->p_vaddr;
1030 		if (k < start_code)
1031 			start_code = k;
1032 		if (start_data < k)
1033 			start_data = k;
1034 
1035 		/*
1036 		 * Check to see if the section's size will overflow the
1037 		 * allowed task size. Note that p_filesz must always be
1038 		 * <= p_memsz so it is only necessary to check p_memsz.
1039 		 */
1040 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1041 		    elf_ppnt->p_memsz > TASK_SIZE ||
1042 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1043 			/* set_brk can never work. Avoid overflows. */
1044 			retval = -EINVAL;
1045 			goto out_free_dentry;
1046 		}
1047 
1048 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1049 
1050 		if (k > elf_bss)
1051 			elf_bss = k;
1052 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1053 			end_code = k;
1054 		if (end_data < k)
1055 			end_data = k;
1056 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1057 		if (k > elf_brk) {
1058 			bss_prot = elf_prot;
1059 			elf_brk = k;
1060 		}
1061 	}
1062 
1063 	loc->elf_ex.e_entry += load_bias;
1064 	elf_bss += load_bias;
1065 	elf_brk += load_bias;
1066 	start_code += load_bias;
1067 	end_code += load_bias;
1068 	start_data += load_bias;
1069 	end_data += load_bias;
1070 
1071 	/* Calling set_brk effectively mmaps the pages that we need
1072 	 * for the bss and break sections.  We must do this before
1073 	 * mapping in the interpreter, to make sure it doesn't wind
1074 	 * up getting placed where the bss needs to go.
1075 	 */
1076 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1077 	if (retval)
1078 		goto out_free_dentry;
1079 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1080 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1081 		goto out_free_dentry;
1082 	}
1083 
1084 	if (elf_interpreter) {
1085 		unsigned long interp_map_addr = 0;
1086 
1087 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1088 					    interpreter,
1089 					    &interp_map_addr,
1090 					    load_bias, interp_elf_phdata);
1091 		if (!IS_ERR((void *)elf_entry)) {
1092 			/*
1093 			 * load_elf_interp() returns relocation
1094 			 * adjustment
1095 			 */
1096 			interp_load_addr = elf_entry;
1097 			elf_entry += loc->interp_elf_ex.e_entry;
1098 		}
1099 		if (BAD_ADDR(elf_entry)) {
1100 			retval = IS_ERR((void *)elf_entry) ?
1101 					(int)elf_entry : -EINVAL;
1102 			goto out_free_dentry;
1103 		}
1104 		reloc_func_desc = interp_load_addr;
1105 
1106 		allow_write_access(interpreter);
1107 		fput(interpreter);
1108 		kfree(elf_interpreter);
1109 	} else {
1110 		elf_entry = loc->elf_ex.e_entry;
1111 		if (BAD_ADDR(elf_entry)) {
1112 			retval = -EINVAL;
1113 			goto out_free_dentry;
1114 		}
1115 	}
1116 
1117 	kfree(interp_elf_phdata);
1118 	kfree(elf_phdata);
1119 
1120 	set_binfmt(&elf_format);
1121 
1122 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1123 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1124 	if (retval < 0)
1125 		goto out;
1126 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1127 
1128 	retval = create_elf_tables(bprm, &loc->elf_ex,
1129 			  load_addr, interp_load_addr);
1130 	if (retval < 0)
1131 		goto out;
1132 	/* N.B. passed_fileno might not be initialized? */
1133 	current->mm->end_code = end_code;
1134 	current->mm->start_code = start_code;
1135 	current->mm->start_data = start_data;
1136 	current->mm->end_data = end_data;
1137 	current->mm->start_stack = bprm->p;
1138 
1139 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1140 		current->mm->brk = current->mm->start_brk =
1141 			arch_randomize_brk(current->mm);
1142 #ifdef compat_brk_randomized
1143 		current->brk_randomized = 1;
1144 #endif
1145 	}
1146 
1147 	if (current->personality & MMAP_PAGE_ZERO) {
1148 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1149 		   and some applications "depend" upon this behavior.
1150 		   Since we do not have the power to recompile these, we
1151 		   emulate the SVr4 behavior. Sigh. */
1152 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1153 				MAP_FIXED | MAP_PRIVATE, 0);
1154 	}
1155 
1156 #ifdef ELF_PLAT_INIT
1157 	/*
1158 	 * The ABI may specify that certain registers be set up in special
1159 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1160 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1161 	 * that the e_entry field is the address of the function descriptor
1162 	 * for the startup routine, rather than the address of the startup
1163 	 * routine itself.  This macro performs whatever initialization to
1164 	 * the regs structure is required as well as any relocations to the
1165 	 * function descriptor entries when executing dynamically links apps.
1166 	 */
1167 	ELF_PLAT_INIT(regs, reloc_func_desc);
1168 #endif
1169 
1170 	finalize_exec(bprm);
1171 	start_thread(regs, elf_entry, bprm->p);
1172 	retval = 0;
1173 out:
1174 	kfree(loc);
1175 out_ret:
1176 	return retval;
1177 
1178 	/* error cleanup */
1179 out_free_dentry:
1180 	kfree(interp_elf_phdata);
1181 	allow_write_access(interpreter);
1182 	if (interpreter)
1183 		fput(interpreter);
1184 out_free_interp:
1185 	kfree(elf_interpreter);
1186 out_free_ph:
1187 	kfree(elf_phdata);
1188 	goto out;
1189 }
1190 
1191 #ifdef CONFIG_USELIB
1192 /* This is really simpleminded and specialized - we are loading an
1193    a.out library that is given an ELF header. */
load_elf_library(struct file * file)1194 static int load_elf_library(struct file *file)
1195 {
1196 	struct elf_phdr *elf_phdata;
1197 	struct elf_phdr *eppnt;
1198 	unsigned long elf_bss, bss, len;
1199 	int retval, error, i, j;
1200 	struct elfhdr elf_ex;
1201 	loff_t pos = 0;
1202 
1203 	error = -ENOEXEC;
1204 	retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1205 	if (retval != sizeof(elf_ex))
1206 		goto out;
1207 
1208 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1209 		goto out;
1210 
1211 	/* First of all, some simple consistency checks */
1212 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1213 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1214 		goto out;
1215 	if (elf_check_fdpic(&elf_ex))
1216 		goto out;
1217 
1218 	/* Now read in all of the header information */
1219 
1220 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1221 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1222 
1223 	error = -ENOMEM;
1224 	elf_phdata = kmalloc(j, GFP_KERNEL);
1225 	if (!elf_phdata)
1226 		goto out;
1227 
1228 	eppnt = elf_phdata;
1229 	error = -ENOEXEC;
1230 	pos =  elf_ex.e_phoff;
1231 	retval = kernel_read(file, eppnt, j, &pos);
1232 	if (retval != j)
1233 		goto out_free_ph;
1234 
1235 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1236 		if ((eppnt + i)->p_type == PT_LOAD)
1237 			j++;
1238 	if (j != 1)
1239 		goto out_free_ph;
1240 
1241 	while (eppnt->p_type != PT_LOAD)
1242 		eppnt++;
1243 
1244 	/* Now use mmap to map the library into memory. */
1245 	error = vm_mmap(file,
1246 			ELF_PAGESTART(eppnt->p_vaddr),
1247 			(eppnt->p_filesz +
1248 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1249 			PROT_READ | PROT_WRITE | PROT_EXEC,
1250 			MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1251 			(eppnt->p_offset -
1252 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1253 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1254 		goto out_free_ph;
1255 
1256 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1257 	if (padzero(elf_bss)) {
1258 		error = -EFAULT;
1259 		goto out_free_ph;
1260 	}
1261 
1262 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1263 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1264 	if (bss > len) {
1265 		error = vm_brk(len, bss - len);
1266 		if (error)
1267 			goto out_free_ph;
1268 	}
1269 	error = 0;
1270 
1271 out_free_ph:
1272 	kfree(elf_phdata);
1273 out:
1274 	return error;
1275 }
1276 #endif /* #ifdef CONFIG_USELIB */
1277 
1278 #ifdef CONFIG_ELF_CORE
1279 /*
1280  * ELF core dumper
1281  *
1282  * Modelled on fs/exec.c:aout_core_dump()
1283  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1284  */
1285 
1286 /*
1287  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1288  * that are useful for post-mortem analysis are included in every core dump.
1289  * In that way we ensure that the core dump is fully interpretable later
1290  * without matching up the same kernel and hardware config to see what PC values
1291  * meant. These special mappings include - vDSO, vsyscall, and other
1292  * architecture specific mappings
1293  */
always_dump_vma(struct vm_area_struct * vma)1294 static bool always_dump_vma(struct vm_area_struct *vma)
1295 {
1296 	/* Any vsyscall mappings? */
1297 	if (vma == get_gate_vma(vma->vm_mm))
1298 		return true;
1299 
1300 	/*
1301 	 * Assume that all vmas with a .name op should always be dumped.
1302 	 * If this changes, a new vm_ops field can easily be added.
1303 	 */
1304 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1305 		return true;
1306 
1307 	/*
1308 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1309 	 * such as vDSO sections.
1310 	 */
1311 	if (arch_vma_name(vma))
1312 		return true;
1313 
1314 	return false;
1315 }
1316 
1317 /*
1318  * Decide what to dump of a segment, part, all or none.
1319  */
vma_dump_size(struct vm_area_struct * vma,unsigned long mm_flags)1320 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1321 				   unsigned long mm_flags)
1322 {
1323 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1324 
1325 	/* always dump the vdso and vsyscall sections */
1326 	if (always_dump_vma(vma))
1327 		goto whole;
1328 
1329 	if (vma->vm_flags & VM_DONTDUMP)
1330 		return 0;
1331 
1332 	/* support for DAX */
1333 	if (vma_is_dax(vma)) {
1334 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1335 			goto whole;
1336 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1337 			goto whole;
1338 		return 0;
1339 	}
1340 
1341 	/* Hugetlb memory check */
1342 	if (vma->vm_flags & VM_HUGETLB) {
1343 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1344 			goto whole;
1345 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1346 			goto whole;
1347 		return 0;
1348 	}
1349 
1350 	/* Do not dump I/O mapped devices or special mappings */
1351 	if (vma->vm_flags & VM_IO)
1352 		return 0;
1353 
1354 	/* By default, dump shared memory if mapped from an anonymous file. */
1355 	if (vma->vm_flags & VM_SHARED) {
1356 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1357 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1358 			goto whole;
1359 		return 0;
1360 	}
1361 
1362 	/* Dump segments that have been written to.  */
1363 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1364 		goto whole;
1365 	if (vma->vm_file == NULL)
1366 		return 0;
1367 
1368 	if (FILTER(MAPPED_PRIVATE))
1369 		goto whole;
1370 
1371 	/*
1372 	 * If this looks like the beginning of a DSO or executable mapping,
1373 	 * check for an ELF header.  If we find one, dump the first page to
1374 	 * aid in determining what was mapped here.
1375 	 */
1376 	if (FILTER(ELF_HEADERS) &&
1377 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1378 		u32 __user *header = (u32 __user *) vma->vm_start;
1379 		u32 word;
1380 		mm_segment_t fs = get_fs();
1381 		/*
1382 		 * Doing it this way gets the constant folded by GCC.
1383 		 */
1384 		union {
1385 			u32 cmp;
1386 			char elfmag[SELFMAG];
1387 		} magic;
1388 		BUILD_BUG_ON(SELFMAG != sizeof word);
1389 		magic.elfmag[EI_MAG0] = ELFMAG0;
1390 		magic.elfmag[EI_MAG1] = ELFMAG1;
1391 		magic.elfmag[EI_MAG2] = ELFMAG2;
1392 		magic.elfmag[EI_MAG3] = ELFMAG3;
1393 		/*
1394 		 * Switch to the user "segment" for get_user(),
1395 		 * then put back what elf_core_dump() had in place.
1396 		 */
1397 		set_fs(USER_DS);
1398 		if (unlikely(get_user(word, header)))
1399 			word = 0;
1400 		set_fs(fs);
1401 		if (word == magic.cmp)
1402 			return PAGE_SIZE;
1403 	}
1404 
1405 #undef	FILTER
1406 
1407 	return 0;
1408 
1409 whole:
1410 	return vma->vm_end - vma->vm_start;
1411 }
1412 
1413 /* An ELF note in memory */
1414 struct memelfnote
1415 {
1416 	const char *name;
1417 	int type;
1418 	unsigned int datasz;
1419 	void *data;
1420 };
1421 
notesize(struct memelfnote * en)1422 static int notesize(struct memelfnote *en)
1423 {
1424 	int sz;
1425 
1426 	sz = sizeof(struct elf_note);
1427 	sz += roundup(strlen(en->name) + 1, 4);
1428 	sz += roundup(en->datasz, 4);
1429 
1430 	return sz;
1431 }
1432 
writenote(struct memelfnote * men,struct coredump_params * cprm)1433 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1434 {
1435 	struct elf_note en;
1436 	en.n_namesz = strlen(men->name) + 1;
1437 	en.n_descsz = men->datasz;
1438 	en.n_type = men->type;
1439 
1440 	return dump_emit(cprm, &en, sizeof(en)) &&
1441 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1442 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1443 }
1444 
fill_elf_header(struct elfhdr * elf,int segs,u16 machine,u32 flags)1445 static void fill_elf_header(struct elfhdr *elf, int segs,
1446 			    u16 machine, u32 flags)
1447 {
1448 	memset(elf, 0, sizeof(*elf));
1449 
1450 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1451 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1452 	elf->e_ident[EI_DATA] = ELF_DATA;
1453 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1454 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1455 
1456 	elf->e_type = ET_CORE;
1457 	elf->e_machine = machine;
1458 	elf->e_version = EV_CURRENT;
1459 	elf->e_phoff = sizeof(struct elfhdr);
1460 	elf->e_flags = flags;
1461 	elf->e_ehsize = sizeof(struct elfhdr);
1462 	elf->e_phentsize = sizeof(struct elf_phdr);
1463 	elf->e_phnum = segs;
1464 
1465 	return;
1466 }
1467 
fill_elf_note_phdr(struct elf_phdr * phdr,int sz,loff_t offset)1468 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1469 {
1470 	phdr->p_type = PT_NOTE;
1471 	phdr->p_offset = offset;
1472 	phdr->p_vaddr = 0;
1473 	phdr->p_paddr = 0;
1474 	phdr->p_filesz = sz;
1475 	phdr->p_memsz = 0;
1476 	phdr->p_flags = 0;
1477 	phdr->p_align = 0;
1478 	return;
1479 }
1480 
fill_note(struct memelfnote * note,const char * name,int type,unsigned int sz,void * data)1481 static void fill_note(struct memelfnote *note, const char *name, int type,
1482 		unsigned int sz, void *data)
1483 {
1484 	note->name = name;
1485 	note->type = type;
1486 	note->datasz = sz;
1487 	note->data = data;
1488 	return;
1489 }
1490 
1491 /*
1492  * fill up all the fields in prstatus from the given task struct, except
1493  * registers which need to be filled up separately.
1494  */
fill_prstatus(struct elf_prstatus * prstatus,struct task_struct * p,long signr)1495 static void fill_prstatus(struct elf_prstatus *prstatus,
1496 		struct task_struct *p, long signr)
1497 {
1498 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1499 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1500 	prstatus->pr_sighold = p->blocked.sig[0];
1501 	rcu_read_lock();
1502 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1503 	rcu_read_unlock();
1504 	prstatus->pr_pid = task_pid_vnr(p);
1505 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1506 	prstatus->pr_sid = task_session_vnr(p);
1507 	if (thread_group_leader(p)) {
1508 		struct task_cputime cputime;
1509 
1510 		/*
1511 		 * This is the record for the group leader.  It shows the
1512 		 * group-wide total, not its individual thread total.
1513 		 */
1514 		thread_group_cputime(p, &cputime);
1515 		prstatus->pr_utime = ns_to_timeval(cputime.utime);
1516 		prstatus->pr_stime = ns_to_timeval(cputime.stime);
1517 	} else {
1518 		u64 utime, stime;
1519 
1520 		task_cputime(p, &utime, &stime);
1521 		prstatus->pr_utime = ns_to_timeval(utime);
1522 		prstatus->pr_stime = ns_to_timeval(stime);
1523 	}
1524 
1525 	prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1526 	prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1527 }
1528 
fill_psinfo(struct elf_prpsinfo * psinfo,struct task_struct * p,struct mm_struct * mm)1529 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1530 		       struct mm_struct *mm)
1531 {
1532 	const struct cred *cred;
1533 	unsigned int i, len;
1534 
1535 	/* first copy the parameters from user space */
1536 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1537 
1538 	len = mm->arg_end - mm->arg_start;
1539 	if (len >= ELF_PRARGSZ)
1540 		len = ELF_PRARGSZ-1;
1541 	if (copy_from_user(&psinfo->pr_psargs,
1542 		           (const char __user *)mm->arg_start, len))
1543 		return -EFAULT;
1544 	for(i = 0; i < len; i++)
1545 		if (psinfo->pr_psargs[i] == 0)
1546 			psinfo->pr_psargs[i] = ' ';
1547 	psinfo->pr_psargs[len] = 0;
1548 
1549 	rcu_read_lock();
1550 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1551 	rcu_read_unlock();
1552 	psinfo->pr_pid = task_pid_vnr(p);
1553 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1554 	psinfo->pr_sid = task_session_vnr(p);
1555 
1556 	i = p->state ? ffz(~p->state) + 1 : 0;
1557 	psinfo->pr_state = i;
1558 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1559 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1560 	psinfo->pr_nice = task_nice(p);
1561 	psinfo->pr_flag = p->flags;
1562 	rcu_read_lock();
1563 	cred = __task_cred(p);
1564 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1565 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1566 	rcu_read_unlock();
1567 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1568 
1569 	return 0;
1570 }
1571 
fill_auxv_note(struct memelfnote * note,struct mm_struct * mm)1572 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1573 {
1574 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1575 	int i = 0;
1576 	do
1577 		i += 2;
1578 	while (auxv[i - 2] != AT_NULL);
1579 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1580 }
1581 
fill_siginfo_note(struct memelfnote * note,user_siginfo_t * csigdata,const siginfo_t * siginfo)1582 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1583 		const siginfo_t *siginfo)
1584 {
1585 	mm_segment_t old_fs = get_fs();
1586 	set_fs(KERNEL_DS);
1587 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1588 	set_fs(old_fs);
1589 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1590 }
1591 
1592 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1593 /*
1594  * Format of NT_FILE note:
1595  *
1596  * long count     -- how many files are mapped
1597  * long page_size -- units for file_ofs
1598  * array of [COUNT] elements of
1599  *   long start
1600  *   long end
1601  *   long file_ofs
1602  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1603  */
fill_files_note(struct memelfnote * note)1604 static int fill_files_note(struct memelfnote *note)
1605 {
1606 	struct vm_area_struct *vma;
1607 	unsigned count, size, names_ofs, remaining, n;
1608 	user_long_t *data;
1609 	user_long_t *start_end_ofs;
1610 	char *name_base, *name_curpos;
1611 
1612 	/* *Estimated* file count and total data size needed */
1613 	count = current->mm->map_count;
1614 	if (count > UINT_MAX / 64)
1615 		return -EINVAL;
1616 	size = count * 64;
1617 
1618 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1619  alloc:
1620 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1621 		return -EINVAL;
1622 	size = round_up(size, PAGE_SIZE);
1623 	data = kvmalloc(size, GFP_KERNEL);
1624 	if (ZERO_OR_NULL_PTR(data))
1625 		return -ENOMEM;
1626 
1627 	start_end_ofs = data + 2;
1628 	name_base = name_curpos = ((char *)data) + names_ofs;
1629 	remaining = size - names_ofs;
1630 	count = 0;
1631 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1632 		struct file *file;
1633 		const char *filename;
1634 
1635 		file = vma->vm_file;
1636 		if (!file)
1637 			continue;
1638 		filename = file_path(file, name_curpos, remaining);
1639 		if (IS_ERR(filename)) {
1640 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1641 				kvfree(data);
1642 				size = size * 5 / 4;
1643 				goto alloc;
1644 			}
1645 			continue;
1646 		}
1647 
1648 		/* file_path() fills at the end, move name down */
1649 		/* n = strlen(filename) + 1: */
1650 		n = (name_curpos + remaining) - filename;
1651 		remaining = filename - name_curpos;
1652 		memmove(name_curpos, filename, n);
1653 		name_curpos += n;
1654 
1655 		*start_end_ofs++ = vma->vm_start;
1656 		*start_end_ofs++ = vma->vm_end;
1657 		*start_end_ofs++ = vma->vm_pgoff;
1658 		count++;
1659 	}
1660 
1661 	/* Now we know exact count of files, can store it */
1662 	data[0] = count;
1663 	data[1] = PAGE_SIZE;
1664 	/*
1665 	 * Count usually is less than current->mm->map_count,
1666 	 * we need to move filenames down.
1667 	 */
1668 	n = current->mm->map_count - count;
1669 	if (n != 0) {
1670 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1671 		memmove(name_base - shift_bytes, name_base,
1672 			name_curpos - name_base);
1673 		name_curpos -= shift_bytes;
1674 	}
1675 
1676 	size = name_curpos - (char *)data;
1677 	fill_note(note, "CORE", NT_FILE, size, data);
1678 	return 0;
1679 }
1680 
1681 #ifdef CORE_DUMP_USE_REGSET
1682 #include <linux/regset.h>
1683 
1684 struct elf_thread_core_info {
1685 	struct elf_thread_core_info *next;
1686 	struct task_struct *task;
1687 	struct elf_prstatus prstatus;
1688 	struct memelfnote notes[0];
1689 };
1690 
1691 struct elf_note_info {
1692 	struct elf_thread_core_info *thread;
1693 	struct memelfnote psinfo;
1694 	struct memelfnote signote;
1695 	struct memelfnote auxv;
1696 	struct memelfnote files;
1697 	user_siginfo_t csigdata;
1698 	size_t size;
1699 	int thread_notes;
1700 };
1701 
1702 /*
1703  * When a regset has a writeback hook, we call it on each thread before
1704  * dumping user memory.  On register window machines, this makes sure the
1705  * user memory backing the register data is up to date before we read it.
1706  */
do_thread_regset_writeback(struct task_struct * task,const struct user_regset * regset)1707 static void do_thread_regset_writeback(struct task_struct *task,
1708 				       const struct user_regset *regset)
1709 {
1710 	if (regset->writeback)
1711 		regset->writeback(task, regset, 1);
1712 }
1713 
1714 #ifndef PRSTATUS_SIZE
1715 #define PRSTATUS_SIZE(S, R) sizeof(S)
1716 #endif
1717 
1718 #ifndef SET_PR_FPVALID
1719 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1720 #endif
1721 
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,size_t * total)1722 static int fill_thread_core_info(struct elf_thread_core_info *t,
1723 				 const struct user_regset_view *view,
1724 				 long signr, size_t *total)
1725 {
1726 	unsigned int i;
1727 	unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1728 
1729 	/*
1730 	 * NT_PRSTATUS is the one special case, because the regset data
1731 	 * goes into the pr_reg field inside the note contents, rather
1732 	 * than being the whole note contents.  We fill the reset in here.
1733 	 * We assume that regset 0 is NT_PRSTATUS.
1734 	 */
1735 	fill_prstatus(&t->prstatus, t->task, signr);
1736 	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1737 				    &t->prstatus.pr_reg, NULL);
1738 
1739 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1740 		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1741 	*total += notesize(&t->notes[0]);
1742 
1743 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1744 
1745 	/*
1746 	 * Each other regset might generate a note too.  For each regset
1747 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1748 	 * all zero and we'll know to skip writing it later.
1749 	 */
1750 	for (i = 1; i < view->n; ++i) {
1751 		const struct user_regset *regset = &view->regsets[i];
1752 		do_thread_regset_writeback(t->task, regset);
1753 		if (regset->core_note_type && regset->get &&
1754 		    (!regset->active || regset->active(t->task, regset) > 0)) {
1755 			int ret;
1756 			size_t size = regset_size(t->task, regset);
1757 			void *data = kmalloc(size, GFP_KERNEL);
1758 			if (unlikely(!data))
1759 				return 0;
1760 			ret = regset->get(t->task, regset,
1761 					  0, size, data, NULL);
1762 			if (unlikely(ret))
1763 				kfree(data);
1764 			else {
1765 				if (regset->core_note_type != NT_PRFPREG)
1766 					fill_note(&t->notes[i], "LINUX",
1767 						  regset->core_note_type,
1768 						  size, data);
1769 				else {
1770 					SET_PR_FPVALID(&t->prstatus,
1771 							1, regset0_size);
1772 					fill_note(&t->notes[i], "CORE",
1773 						  NT_PRFPREG, size, data);
1774 				}
1775 				*total += notesize(&t->notes[i]);
1776 			}
1777 		}
1778 	}
1779 
1780 	return 1;
1781 }
1782 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)1783 static int fill_note_info(struct elfhdr *elf, int phdrs,
1784 			  struct elf_note_info *info,
1785 			  const siginfo_t *siginfo, struct pt_regs *regs)
1786 {
1787 	struct task_struct *dump_task = current;
1788 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1789 	struct elf_thread_core_info *t;
1790 	struct elf_prpsinfo *psinfo;
1791 	struct core_thread *ct;
1792 	unsigned int i;
1793 
1794 	info->size = 0;
1795 	info->thread = NULL;
1796 
1797 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1798 	if (psinfo == NULL) {
1799 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1800 		return 0;
1801 	}
1802 
1803 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1804 
1805 	/*
1806 	 * Figure out how many notes we're going to need for each thread.
1807 	 */
1808 	info->thread_notes = 0;
1809 	for (i = 0; i < view->n; ++i)
1810 		if (view->regsets[i].core_note_type != 0)
1811 			++info->thread_notes;
1812 
1813 	/*
1814 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1815 	 * since it is our one special case.
1816 	 */
1817 	if (unlikely(info->thread_notes == 0) ||
1818 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1819 		WARN_ON(1);
1820 		return 0;
1821 	}
1822 
1823 	/*
1824 	 * Initialize the ELF file header.
1825 	 */
1826 	fill_elf_header(elf, phdrs,
1827 			view->e_machine, view->e_flags);
1828 
1829 	/*
1830 	 * Allocate a structure for each thread.
1831 	 */
1832 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1833 		t = kzalloc(offsetof(struct elf_thread_core_info,
1834 				     notes[info->thread_notes]),
1835 			    GFP_KERNEL);
1836 		if (unlikely(!t))
1837 			return 0;
1838 
1839 		t->task = ct->task;
1840 		if (ct->task == dump_task || !info->thread) {
1841 			t->next = info->thread;
1842 			info->thread = t;
1843 		} else {
1844 			/*
1845 			 * Make sure to keep the original task at
1846 			 * the head of the list.
1847 			 */
1848 			t->next = info->thread->next;
1849 			info->thread->next = t;
1850 		}
1851 	}
1852 
1853 	/*
1854 	 * Now fill in each thread's information.
1855 	 */
1856 	for (t = info->thread; t != NULL; t = t->next)
1857 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1858 			return 0;
1859 
1860 	/*
1861 	 * Fill in the two process-wide notes.
1862 	 */
1863 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1864 	info->size += notesize(&info->psinfo);
1865 
1866 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1867 	info->size += notesize(&info->signote);
1868 
1869 	fill_auxv_note(&info->auxv, current->mm);
1870 	info->size += notesize(&info->auxv);
1871 
1872 	if (fill_files_note(&info->files) == 0)
1873 		info->size += notesize(&info->files);
1874 
1875 	return 1;
1876 }
1877 
get_note_info_size(struct elf_note_info * info)1878 static size_t get_note_info_size(struct elf_note_info *info)
1879 {
1880 	return info->size;
1881 }
1882 
1883 /*
1884  * Write all the notes for each thread.  When writing the first thread, the
1885  * process-wide notes are interleaved after the first thread-specific note.
1886  */
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)1887 static int write_note_info(struct elf_note_info *info,
1888 			   struct coredump_params *cprm)
1889 {
1890 	bool first = true;
1891 	struct elf_thread_core_info *t = info->thread;
1892 
1893 	do {
1894 		int i;
1895 
1896 		if (!writenote(&t->notes[0], cprm))
1897 			return 0;
1898 
1899 		if (first && !writenote(&info->psinfo, cprm))
1900 			return 0;
1901 		if (first && !writenote(&info->signote, cprm))
1902 			return 0;
1903 		if (first && !writenote(&info->auxv, cprm))
1904 			return 0;
1905 		if (first && info->files.data &&
1906 				!writenote(&info->files, cprm))
1907 			return 0;
1908 
1909 		for (i = 1; i < info->thread_notes; ++i)
1910 			if (t->notes[i].data &&
1911 			    !writenote(&t->notes[i], cprm))
1912 				return 0;
1913 
1914 		first = false;
1915 		t = t->next;
1916 	} while (t);
1917 
1918 	return 1;
1919 }
1920 
free_note_info(struct elf_note_info * info)1921 static void free_note_info(struct elf_note_info *info)
1922 {
1923 	struct elf_thread_core_info *threads = info->thread;
1924 	while (threads) {
1925 		unsigned int i;
1926 		struct elf_thread_core_info *t = threads;
1927 		threads = t->next;
1928 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1929 		for (i = 1; i < info->thread_notes; ++i)
1930 			kfree(t->notes[i].data);
1931 		kfree(t);
1932 	}
1933 	kfree(info->psinfo.data);
1934 	kvfree(info->files.data);
1935 }
1936 
1937 #else
1938 
1939 /* Here is the structure in which status of each thread is captured. */
1940 struct elf_thread_status
1941 {
1942 	struct list_head list;
1943 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1944 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1945 	struct task_struct *thread;
1946 #ifdef ELF_CORE_COPY_XFPREGS
1947 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1948 #endif
1949 	struct memelfnote notes[3];
1950 	int num_notes;
1951 };
1952 
1953 /*
1954  * In order to add the specific thread information for the elf file format,
1955  * we need to keep a linked list of every threads pr_status and then create
1956  * a single section for them in the final core file.
1957  */
elf_dump_thread_status(long signr,struct elf_thread_status * t)1958 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1959 {
1960 	int sz = 0;
1961 	struct task_struct *p = t->thread;
1962 	t->num_notes = 0;
1963 
1964 	fill_prstatus(&t->prstatus, p, signr);
1965 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1966 
1967 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1968 		  &(t->prstatus));
1969 	t->num_notes++;
1970 	sz += notesize(&t->notes[0]);
1971 
1972 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1973 								&t->fpu))) {
1974 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1975 			  &(t->fpu));
1976 		t->num_notes++;
1977 		sz += notesize(&t->notes[1]);
1978 	}
1979 
1980 #ifdef ELF_CORE_COPY_XFPREGS
1981 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1982 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1983 			  sizeof(t->xfpu), &t->xfpu);
1984 		t->num_notes++;
1985 		sz += notesize(&t->notes[2]);
1986 	}
1987 #endif
1988 	return sz;
1989 }
1990 
1991 struct elf_note_info {
1992 	struct memelfnote *notes;
1993 	struct memelfnote *notes_files;
1994 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
1995 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
1996 	struct list_head thread_list;
1997 	elf_fpregset_t *fpu;
1998 #ifdef ELF_CORE_COPY_XFPREGS
1999 	elf_fpxregset_t *xfpu;
2000 #endif
2001 	user_siginfo_t csigdata;
2002 	int thread_status_size;
2003 	int numnote;
2004 };
2005 
elf_note_info_init(struct elf_note_info * info)2006 static int elf_note_info_init(struct elf_note_info *info)
2007 {
2008 	memset(info, 0, sizeof(*info));
2009 	INIT_LIST_HEAD(&info->thread_list);
2010 
2011 	/* Allocate space for ELF notes */
2012 	info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2013 	if (!info->notes)
2014 		return 0;
2015 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2016 	if (!info->psinfo)
2017 		return 0;
2018 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2019 	if (!info->prstatus)
2020 		return 0;
2021 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2022 	if (!info->fpu)
2023 		return 0;
2024 #ifdef ELF_CORE_COPY_XFPREGS
2025 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2026 	if (!info->xfpu)
2027 		return 0;
2028 #endif
2029 	return 1;
2030 }
2031 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)2032 static int fill_note_info(struct elfhdr *elf, int phdrs,
2033 			  struct elf_note_info *info,
2034 			  const siginfo_t *siginfo, struct pt_regs *regs)
2035 {
2036 	struct list_head *t;
2037 	struct core_thread *ct;
2038 	struct elf_thread_status *ets;
2039 
2040 	if (!elf_note_info_init(info))
2041 		return 0;
2042 
2043 	for (ct = current->mm->core_state->dumper.next;
2044 					ct; ct = ct->next) {
2045 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2046 		if (!ets)
2047 			return 0;
2048 
2049 		ets->thread = ct->task;
2050 		list_add(&ets->list, &info->thread_list);
2051 	}
2052 
2053 	list_for_each(t, &info->thread_list) {
2054 		int sz;
2055 
2056 		ets = list_entry(t, struct elf_thread_status, list);
2057 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2058 		info->thread_status_size += sz;
2059 	}
2060 	/* now collect the dump for the current */
2061 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2062 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2063 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2064 
2065 	/* Set up header */
2066 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2067 
2068 	/*
2069 	 * Set up the notes in similar form to SVR4 core dumps made
2070 	 * with info from their /proc.
2071 	 */
2072 
2073 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2074 		  sizeof(*info->prstatus), info->prstatus);
2075 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2076 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2077 		  sizeof(*info->psinfo), info->psinfo);
2078 
2079 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2080 	fill_auxv_note(info->notes + 3, current->mm);
2081 	info->numnote = 4;
2082 
2083 	if (fill_files_note(info->notes + info->numnote) == 0) {
2084 		info->notes_files = info->notes + info->numnote;
2085 		info->numnote++;
2086 	}
2087 
2088 	/* Try to dump the FPU. */
2089 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2090 							       info->fpu);
2091 	if (info->prstatus->pr_fpvalid)
2092 		fill_note(info->notes + info->numnote++,
2093 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2094 #ifdef ELF_CORE_COPY_XFPREGS
2095 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2096 		fill_note(info->notes + info->numnote++,
2097 			  "LINUX", ELF_CORE_XFPREG_TYPE,
2098 			  sizeof(*info->xfpu), info->xfpu);
2099 #endif
2100 
2101 	return 1;
2102 }
2103 
get_note_info_size(struct elf_note_info * info)2104 static size_t get_note_info_size(struct elf_note_info *info)
2105 {
2106 	int sz = 0;
2107 	int i;
2108 
2109 	for (i = 0; i < info->numnote; i++)
2110 		sz += notesize(info->notes + i);
2111 
2112 	sz += info->thread_status_size;
2113 
2114 	return sz;
2115 }
2116 
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)2117 static int write_note_info(struct elf_note_info *info,
2118 			   struct coredump_params *cprm)
2119 {
2120 	int i;
2121 	struct list_head *t;
2122 
2123 	for (i = 0; i < info->numnote; i++)
2124 		if (!writenote(info->notes + i, cprm))
2125 			return 0;
2126 
2127 	/* write out the thread status notes section */
2128 	list_for_each(t, &info->thread_list) {
2129 		struct elf_thread_status *tmp =
2130 				list_entry(t, struct elf_thread_status, list);
2131 
2132 		for (i = 0; i < tmp->num_notes; i++)
2133 			if (!writenote(&tmp->notes[i], cprm))
2134 				return 0;
2135 	}
2136 
2137 	return 1;
2138 }
2139 
free_note_info(struct elf_note_info * info)2140 static void free_note_info(struct elf_note_info *info)
2141 {
2142 	while (!list_empty(&info->thread_list)) {
2143 		struct list_head *tmp = info->thread_list.next;
2144 		list_del(tmp);
2145 		kfree(list_entry(tmp, struct elf_thread_status, list));
2146 	}
2147 
2148 	/* Free data possibly allocated by fill_files_note(): */
2149 	if (info->notes_files)
2150 		kvfree(info->notes_files->data);
2151 
2152 	kfree(info->prstatus);
2153 	kfree(info->psinfo);
2154 	kfree(info->notes);
2155 	kfree(info->fpu);
2156 #ifdef ELF_CORE_COPY_XFPREGS
2157 	kfree(info->xfpu);
2158 #endif
2159 }
2160 
2161 #endif
2162 
first_vma(struct task_struct * tsk,struct vm_area_struct * gate_vma)2163 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2164 					struct vm_area_struct *gate_vma)
2165 {
2166 	struct vm_area_struct *ret = tsk->mm->mmap;
2167 
2168 	if (ret)
2169 		return ret;
2170 	return gate_vma;
2171 }
2172 /*
2173  * Helper function for iterating across a vma list.  It ensures that the caller
2174  * will visit `gate_vma' prior to terminating the search.
2175  */
next_vma(struct vm_area_struct * this_vma,struct vm_area_struct * gate_vma)2176 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2177 					struct vm_area_struct *gate_vma)
2178 {
2179 	struct vm_area_struct *ret;
2180 
2181 	ret = this_vma->vm_next;
2182 	if (ret)
2183 		return ret;
2184 	if (this_vma == gate_vma)
2185 		return NULL;
2186 	return gate_vma;
2187 }
2188 
fill_extnum_info(struct elfhdr * elf,struct elf_shdr * shdr4extnum,elf_addr_t e_shoff,int segs)2189 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2190 			     elf_addr_t e_shoff, int segs)
2191 {
2192 	elf->e_shoff = e_shoff;
2193 	elf->e_shentsize = sizeof(*shdr4extnum);
2194 	elf->e_shnum = 1;
2195 	elf->e_shstrndx = SHN_UNDEF;
2196 
2197 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2198 
2199 	shdr4extnum->sh_type = SHT_NULL;
2200 	shdr4extnum->sh_size = elf->e_shnum;
2201 	shdr4extnum->sh_link = elf->e_shstrndx;
2202 	shdr4extnum->sh_info = segs;
2203 }
2204 
2205 /*
2206  * Actual dumper
2207  *
2208  * This is a two-pass process; first we find the offsets of the bits,
2209  * and then they are actually written out.  If we run out of core limit
2210  * we just truncate.
2211  */
elf_core_dump(struct coredump_params * cprm)2212 static int elf_core_dump(struct coredump_params *cprm)
2213 {
2214 	int has_dumped = 0;
2215 	mm_segment_t fs;
2216 	int segs, i;
2217 	size_t vma_data_size = 0;
2218 	struct vm_area_struct *vma, *gate_vma;
2219 	struct elfhdr *elf = NULL;
2220 	loff_t offset = 0, dataoff;
2221 	struct elf_note_info info = { };
2222 	struct elf_phdr *phdr4note = NULL;
2223 	struct elf_shdr *shdr4extnum = NULL;
2224 	Elf_Half e_phnum;
2225 	elf_addr_t e_shoff;
2226 	elf_addr_t *vma_filesz = NULL;
2227 
2228 	/*
2229 	 * We no longer stop all VM operations.
2230 	 *
2231 	 * This is because those proceses that could possibly change map_count
2232 	 * or the mmap / vma pages are now blocked in do_exit on current
2233 	 * finishing this core dump.
2234 	 *
2235 	 * Only ptrace can touch these memory addresses, but it doesn't change
2236 	 * the map_count or the pages allocated. So no possibility of crashing
2237 	 * exists while dumping the mm->vm_next areas to the core file.
2238 	 */
2239 
2240 	/* alloc memory for large data structures: too large to be on stack */
2241 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2242 	if (!elf)
2243 		goto out;
2244 	/*
2245 	 * The number of segs are recored into ELF header as 16bit value.
2246 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2247 	 */
2248 	segs = current->mm->map_count;
2249 	segs += elf_core_extra_phdrs();
2250 
2251 	gate_vma = get_gate_vma(current->mm);
2252 	if (gate_vma != NULL)
2253 		segs++;
2254 
2255 	/* for notes section */
2256 	segs++;
2257 
2258 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2259 	 * this, kernel supports extended numbering. Have a look at
2260 	 * include/linux/elf.h for further information. */
2261 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2262 
2263 	/*
2264 	 * Collect all the non-memory information about the process for the
2265 	 * notes.  This also sets up the file header.
2266 	 */
2267 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2268 		goto cleanup;
2269 
2270 	has_dumped = 1;
2271 
2272 	fs = get_fs();
2273 	set_fs(KERNEL_DS);
2274 
2275 	offset += sizeof(*elf);				/* Elf header */
2276 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2277 
2278 	/* Write notes phdr entry */
2279 	{
2280 		size_t sz = get_note_info_size(&info);
2281 
2282 		sz += elf_coredump_extra_notes_size();
2283 
2284 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2285 		if (!phdr4note)
2286 			goto end_coredump;
2287 
2288 		fill_elf_note_phdr(phdr4note, sz, offset);
2289 		offset += sz;
2290 	}
2291 
2292 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2293 
2294 	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2295 		goto end_coredump;
2296 	vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2297 			      GFP_KERNEL);
2298 	if (ZERO_OR_NULL_PTR(vma_filesz))
2299 		goto end_coredump;
2300 
2301 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2302 			vma = next_vma(vma, gate_vma)) {
2303 		unsigned long dump_size;
2304 
2305 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2306 		vma_filesz[i++] = dump_size;
2307 		vma_data_size += dump_size;
2308 	}
2309 
2310 	offset += vma_data_size;
2311 	offset += elf_core_extra_data_size();
2312 	e_shoff = offset;
2313 
2314 	if (e_phnum == PN_XNUM) {
2315 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2316 		if (!shdr4extnum)
2317 			goto end_coredump;
2318 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2319 	}
2320 
2321 	offset = dataoff;
2322 
2323 	if (!dump_emit(cprm, elf, sizeof(*elf)))
2324 		goto end_coredump;
2325 
2326 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2327 		goto end_coredump;
2328 
2329 	/* Write program headers for segments dump */
2330 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2331 			vma = next_vma(vma, gate_vma)) {
2332 		struct elf_phdr phdr;
2333 
2334 		phdr.p_type = PT_LOAD;
2335 		phdr.p_offset = offset;
2336 		phdr.p_vaddr = vma->vm_start;
2337 		phdr.p_paddr = 0;
2338 		phdr.p_filesz = vma_filesz[i++];
2339 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2340 		offset += phdr.p_filesz;
2341 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2342 		if (vma->vm_flags & VM_WRITE)
2343 			phdr.p_flags |= PF_W;
2344 		if (vma->vm_flags & VM_EXEC)
2345 			phdr.p_flags |= PF_X;
2346 		phdr.p_align = ELF_EXEC_PAGESIZE;
2347 
2348 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2349 			goto end_coredump;
2350 	}
2351 
2352 	if (!elf_core_write_extra_phdrs(cprm, offset))
2353 		goto end_coredump;
2354 
2355  	/* write out the notes section */
2356 	if (!write_note_info(&info, cprm))
2357 		goto end_coredump;
2358 
2359 	if (elf_coredump_extra_notes_write(cprm))
2360 		goto end_coredump;
2361 
2362 	/* Align to page */
2363 	if (!dump_skip(cprm, dataoff - cprm->pos))
2364 		goto end_coredump;
2365 
2366 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2367 			vma = next_vma(vma, gate_vma)) {
2368 		unsigned long addr;
2369 		unsigned long end;
2370 
2371 		end = vma->vm_start + vma_filesz[i++];
2372 
2373 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2374 			struct page *page;
2375 			int stop;
2376 
2377 			page = get_dump_page(addr);
2378 			if (page) {
2379 				void *kaddr = kmap(page);
2380 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2381 				kunmap(page);
2382 				put_page(page);
2383 			} else
2384 				stop = !dump_skip(cprm, PAGE_SIZE);
2385 			if (stop)
2386 				goto end_coredump;
2387 		}
2388 	}
2389 	dump_truncate(cprm);
2390 
2391 	if (!elf_core_write_extra_data(cprm))
2392 		goto end_coredump;
2393 
2394 	if (e_phnum == PN_XNUM) {
2395 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2396 			goto end_coredump;
2397 	}
2398 
2399 end_coredump:
2400 	set_fs(fs);
2401 
2402 cleanup:
2403 	free_note_info(&info);
2404 	kfree(shdr4extnum);
2405 	kvfree(vma_filesz);
2406 	kfree(phdr4note);
2407 	kfree(elf);
2408 out:
2409 	return has_dumped;
2410 }
2411 
2412 #endif		/* CONFIG_ELF_CORE */
2413 
init_elf_binfmt(void)2414 static int __init init_elf_binfmt(void)
2415 {
2416 	register_binfmt(&elf_format);
2417 	return 0;
2418 }
2419 
exit_elf_binfmt(void)2420 static void __exit exit_elf_binfmt(void)
2421 {
2422 	/* Remove the COFF and ELF loaders. */
2423 	unregister_binfmt(&elf_format);
2424 }
2425 
2426 core_initcall(init_elf_binfmt);
2427 module_exit(exit_elf_binfmt);
2428 MODULE_LICENSE("GPL");
2429