1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45 
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[0];
70 }; /* 128 bytes + ring size */
71 
72 #define AIO_RING_PAGES	8
73 
74 struct kioctx_table {
75 	struct rcu_head		rcu;
76 	unsigned		nr;
77 	struct kioctx __rcu	*table[];
78 };
79 
80 struct kioctx_cpu {
81 	unsigned		reqs_available;
82 };
83 
84 struct ctx_rq_wait {
85 	struct completion comp;
86 	atomic_t count;
87 };
88 
89 struct kioctx {
90 	struct percpu_ref	users;
91 	atomic_t		dead;
92 
93 	struct percpu_ref	reqs;
94 
95 	unsigned long		user_id;
96 
97 	struct __percpu kioctx_cpu *cpu;
98 
99 	/*
100 	 * For percpu reqs_available, number of slots we move to/from global
101 	 * counter at a time:
102 	 */
103 	unsigned		req_batch;
104 	/*
105 	 * This is what userspace passed to io_setup(), it's not used for
106 	 * anything but counting against the global max_reqs quota.
107 	 *
108 	 * The real limit is nr_events - 1, which will be larger (see
109 	 * aio_setup_ring())
110 	 */
111 	unsigned		max_reqs;
112 
113 	/* Size of ringbuffer, in units of struct io_event */
114 	unsigned		nr_events;
115 
116 	unsigned long		mmap_base;
117 	unsigned long		mmap_size;
118 
119 	struct page		**ring_pages;
120 	long			nr_pages;
121 
122 	struct rcu_work		free_rwork;	/* see free_ioctx() */
123 
124 	/*
125 	 * signals when all in-flight requests are done
126 	 */
127 	struct ctx_rq_wait	*rq_wait;
128 
129 	struct {
130 		/*
131 		 * This counts the number of available slots in the ringbuffer,
132 		 * so we avoid overflowing it: it's decremented (if positive)
133 		 * when allocating a kiocb and incremented when the resulting
134 		 * io_event is pulled off the ringbuffer.
135 		 *
136 		 * We batch accesses to it with a percpu version.
137 		 */
138 		atomic_t	reqs_available;
139 	} ____cacheline_aligned_in_smp;
140 
141 	struct {
142 		spinlock_t	ctx_lock;
143 		struct list_head active_reqs;	/* used for cancellation */
144 	} ____cacheline_aligned_in_smp;
145 
146 	struct {
147 		struct mutex	ring_lock;
148 		wait_queue_head_t wait;
149 	} ____cacheline_aligned_in_smp;
150 
151 	struct {
152 		unsigned	tail;
153 		unsigned	completed_events;
154 		spinlock_t	completion_lock;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct page		*internal_pages[AIO_RING_PAGES];
158 	struct file		*aio_ring_file;
159 
160 	unsigned		id;
161 };
162 
163 struct fsync_iocb {
164 	struct work_struct	work;
165 	struct file		*file;
166 	bool			datasync;
167 };
168 
169 struct poll_iocb {
170 	struct file		*file;
171 	struct wait_queue_head	*head;
172 	__poll_t		events;
173 	bool			woken;
174 	bool			cancelled;
175 	struct wait_queue_entry	wait;
176 	struct work_struct	work;
177 };
178 
179 struct aio_kiocb {
180 	union {
181 		struct kiocb		rw;
182 		struct fsync_iocb	fsync;
183 		struct poll_iocb	poll;
184 	};
185 
186 	struct kioctx		*ki_ctx;
187 	kiocb_cancel_fn		*ki_cancel;
188 
189 	struct iocb __user	*ki_user_iocb;	/* user's aiocb */
190 	__u64			ki_user_data;	/* user's data for completion */
191 
192 	struct list_head	ki_list;	/* the aio core uses this
193 						 * for cancellation */
194 	refcount_t		ki_refcnt;
195 
196 	/*
197 	 * If the aio_resfd field of the userspace iocb is not zero,
198 	 * this is the underlying eventfd context to deliver events to.
199 	 */
200 	struct eventfd_ctx	*ki_eventfd;
201 };
202 
203 /*------ sysctl variables----*/
204 static DEFINE_SPINLOCK(aio_nr_lock);
205 unsigned long aio_nr;		/* current system wide number of aio requests */
206 unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
207 /*----end sysctl variables---*/
208 
209 static struct kmem_cache	*kiocb_cachep;
210 static struct kmem_cache	*kioctx_cachep;
211 
212 static struct vfsmount *aio_mnt;
213 
214 static const struct file_operations aio_ring_fops;
215 static const struct address_space_operations aio_ctx_aops;
216 
aio_private_file(struct kioctx * ctx,loff_t nr_pages)217 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
218 {
219 	struct file *file;
220 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
221 	if (IS_ERR(inode))
222 		return ERR_CAST(inode);
223 
224 	inode->i_mapping->a_ops = &aio_ctx_aops;
225 	inode->i_mapping->private_data = ctx;
226 	inode->i_size = PAGE_SIZE * nr_pages;
227 
228 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
229 				O_RDWR, &aio_ring_fops);
230 	if (IS_ERR(file))
231 		iput(inode);
232 	return file;
233 }
234 
aio_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)235 static struct dentry *aio_mount(struct file_system_type *fs_type,
236 				int flags, const char *dev_name, void *data)
237 {
238 	struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, NULL,
239 					   AIO_RING_MAGIC);
240 
241 	if (!IS_ERR(root))
242 		root->d_sb->s_iflags |= SB_I_NOEXEC;
243 	return root;
244 }
245 
246 /* aio_setup
247  *	Creates the slab caches used by the aio routines, panic on
248  *	failure as this is done early during the boot sequence.
249  */
aio_setup(void)250 static int __init aio_setup(void)
251 {
252 	static struct file_system_type aio_fs = {
253 		.name		= "aio",
254 		.mount		= aio_mount,
255 		.kill_sb	= kill_anon_super,
256 	};
257 	aio_mnt = kern_mount(&aio_fs);
258 	if (IS_ERR(aio_mnt))
259 		panic("Failed to create aio fs mount.");
260 
261 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
262 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
263 	return 0;
264 }
265 __initcall(aio_setup);
266 
put_aio_ring_file(struct kioctx * ctx)267 static void put_aio_ring_file(struct kioctx *ctx)
268 {
269 	struct file *aio_ring_file = ctx->aio_ring_file;
270 	struct address_space *i_mapping;
271 
272 	if (aio_ring_file) {
273 		truncate_setsize(file_inode(aio_ring_file), 0);
274 
275 		/* Prevent further access to the kioctx from migratepages */
276 		i_mapping = aio_ring_file->f_mapping;
277 		spin_lock(&i_mapping->private_lock);
278 		i_mapping->private_data = NULL;
279 		ctx->aio_ring_file = NULL;
280 		spin_unlock(&i_mapping->private_lock);
281 
282 		fput(aio_ring_file);
283 	}
284 }
285 
aio_free_ring(struct kioctx * ctx)286 static void aio_free_ring(struct kioctx *ctx)
287 {
288 	int i;
289 
290 	/* Disconnect the kiotx from the ring file.  This prevents future
291 	 * accesses to the kioctx from page migration.
292 	 */
293 	put_aio_ring_file(ctx);
294 
295 	for (i = 0; i < ctx->nr_pages; i++) {
296 		struct page *page;
297 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
298 				page_count(ctx->ring_pages[i]));
299 		page = ctx->ring_pages[i];
300 		if (!page)
301 			continue;
302 		ctx->ring_pages[i] = NULL;
303 		put_page(page);
304 	}
305 
306 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
307 		kfree(ctx->ring_pages);
308 		ctx->ring_pages = NULL;
309 	}
310 }
311 
aio_ring_mremap(struct vm_area_struct * vma)312 static int aio_ring_mremap(struct vm_area_struct *vma)
313 {
314 	struct file *file = vma->vm_file;
315 	struct mm_struct *mm = vma->vm_mm;
316 	struct kioctx_table *table;
317 	int i, res = -EINVAL;
318 
319 	spin_lock(&mm->ioctx_lock);
320 	rcu_read_lock();
321 	table = rcu_dereference(mm->ioctx_table);
322 	for (i = 0; i < table->nr; i++) {
323 		struct kioctx *ctx;
324 
325 		ctx = rcu_dereference(table->table[i]);
326 		if (ctx && ctx->aio_ring_file == file) {
327 			if (!atomic_read(&ctx->dead)) {
328 				ctx->user_id = ctx->mmap_base = vma->vm_start;
329 				res = 0;
330 			}
331 			break;
332 		}
333 	}
334 
335 	rcu_read_unlock();
336 	spin_unlock(&mm->ioctx_lock);
337 	return res;
338 }
339 
340 static const struct vm_operations_struct aio_ring_vm_ops = {
341 	.mremap		= aio_ring_mremap,
342 #if IS_ENABLED(CONFIG_MMU)
343 	.fault		= filemap_fault,
344 	.map_pages	= filemap_map_pages,
345 	.page_mkwrite	= filemap_page_mkwrite,
346 #endif
347 };
348 
aio_ring_mmap(struct file * file,struct vm_area_struct * vma)349 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
350 {
351 	vma->vm_flags |= VM_DONTEXPAND;
352 	vma->vm_ops = &aio_ring_vm_ops;
353 	return 0;
354 }
355 
356 static const struct file_operations aio_ring_fops = {
357 	.mmap = aio_ring_mmap,
358 };
359 
360 #if IS_ENABLED(CONFIG_MIGRATION)
aio_migratepage(struct address_space * mapping,struct page * new,struct page * old,enum migrate_mode mode)361 static int aio_migratepage(struct address_space *mapping, struct page *new,
362 			struct page *old, enum migrate_mode mode)
363 {
364 	struct kioctx *ctx;
365 	unsigned long flags;
366 	pgoff_t idx;
367 	int rc;
368 
369 	/*
370 	 * We cannot support the _NO_COPY case here, because copy needs to
371 	 * happen under the ctx->completion_lock. That does not work with the
372 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
373 	 */
374 	if (mode == MIGRATE_SYNC_NO_COPY)
375 		return -EINVAL;
376 
377 	rc = 0;
378 
379 	/* mapping->private_lock here protects against the kioctx teardown.  */
380 	spin_lock(&mapping->private_lock);
381 	ctx = mapping->private_data;
382 	if (!ctx) {
383 		rc = -EINVAL;
384 		goto out;
385 	}
386 
387 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
388 	 * to the ring's head, and prevents page migration from mucking in
389 	 * a partially initialized kiotx.
390 	 */
391 	if (!mutex_trylock(&ctx->ring_lock)) {
392 		rc = -EAGAIN;
393 		goto out;
394 	}
395 
396 	idx = old->index;
397 	if (idx < (pgoff_t)ctx->nr_pages) {
398 		/* Make sure the old page hasn't already been changed */
399 		if (ctx->ring_pages[idx] != old)
400 			rc = -EAGAIN;
401 	} else
402 		rc = -EINVAL;
403 
404 	if (rc != 0)
405 		goto out_unlock;
406 
407 	/* Writeback must be complete */
408 	BUG_ON(PageWriteback(old));
409 	get_page(new);
410 
411 	rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
412 	if (rc != MIGRATEPAGE_SUCCESS) {
413 		put_page(new);
414 		goto out_unlock;
415 	}
416 
417 	/* Take completion_lock to prevent other writes to the ring buffer
418 	 * while the old page is copied to the new.  This prevents new
419 	 * events from being lost.
420 	 */
421 	spin_lock_irqsave(&ctx->completion_lock, flags);
422 	migrate_page_copy(new, old);
423 	BUG_ON(ctx->ring_pages[idx] != old);
424 	ctx->ring_pages[idx] = new;
425 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
426 
427 	/* The old page is no longer accessible. */
428 	put_page(old);
429 
430 out_unlock:
431 	mutex_unlock(&ctx->ring_lock);
432 out:
433 	spin_unlock(&mapping->private_lock);
434 	return rc;
435 }
436 #endif
437 
438 static const struct address_space_operations aio_ctx_aops = {
439 	.set_page_dirty = __set_page_dirty_no_writeback,
440 #if IS_ENABLED(CONFIG_MIGRATION)
441 	.migratepage	= aio_migratepage,
442 #endif
443 };
444 
aio_setup_ring(struct kioctx * ctx,unsigned int nr_events)445 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
446 {
447 	struct aio_ring *ring;
448 	struct mm_struct *mm = current->mm;
449 	unsigned long size, unused;
450 	int nr_pages;
451 	int i;
452 	struct file *file;
453 
454 	/* Compensate for the ring buffer's head/tail overlap entry */
455 	nr_events += 2;	/* 1 is required, 2 for good luck */
456 
457 	size = sizeof(struct aio_ring);
458 	size += sizeof(struct io_event) * nr_events;
459 
460 	nr_pages = PFN_UP(size);
461 	if (nr_pages < 0)
462 		return -EINVAL;
463 
464 	file = aio_private_file(ctx, nr_pages);
465 	if (IS_ERR(file)) {
466 		ctx->aio_ring_file = NULL;
467 		return -ENOMEM;
468 	}
469 
470 	ctx->aio_ring_file = file;
471 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
472 			/ sizeof(struct io_event);
473 
474 	ctx->ring_pages = ctx->internal_pages;
475 	if (nr_pages > AIO_RING_PAGES) {
476 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
477 					  GFP_KERNEL);
478 		if (!ctx->ring_pages) {
479 			put_aio_ring_file(ctx);
480 			return -ENOMEM;
481 		}
482 	}
483 
484 	for (i = 0; i < nr_pages; i++) {
485 		struct page *page;
486 		page = find_or_create_page(file->f_mapping,
487 					   i, GFP_HIGHUSER | __GFP_ZERO);
488 		if (!page)
489 			break;
490 		pr_debug("pid(%d) page[%d]->count=%d\n",
491 			 current->pid, i, page_count(page));
492 		SetPageUptodate(page);
493 		unlock_page(page);
494 
495 		ctx->ring_pages[i] = page;
496 	}
497 	ctx->nr_pages = i;
498 
499 	if (unlikely(i != nr_pages)) {
500 		aio_free_ring(ctx);
501 		return -ENOMEM;
502 	}
503 
504 	ctx->mmap_size = nr_pages * PAGE_SIZE;
505 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
506 
507 	if (down_write_killable(&mm->mmap_sem)) {
508 		ctx->mmap_size = 0;
509 		aio_free_ring(ctx);
510 		return -EINTR;
511 	}
512 
513 	ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
514 				       PROT_READ | PROT_WRITE,
515 				       MAP_SHARED, 0, &unused, NULL);
516 	up_write(&mm->mmap_sem);
517 	if (IS_ERR((void *)ctx->mmap_base)) {
518 		ctx->mmap_size = 0;
519 		aio_free_ring(ctx);
520 		return -ENOMEM;
521 	}
522 
523 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
524 
525 	ctx->user_id = ctx->mmap_base;
526 	ctx->nr_events = nr_events; /* trusted copy */
527 
528 	ring = kmap_atomic(ctx->ring_pages[0]);
529 	ring->nr = nr_events;	/* user copy */
530 	ring->id = ~0U;
531 	ring->head = ring->tail = 0;
532 	ring->magic = AIO_RING_MAGIC;
533 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
534 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
535 	ring->header_length = sizeof(struct aio_ring);
536 	kunmap_atomic(ring);
537 	flush_dcache_page(ctx->ring_pages[0]);
538 
539 	return 0;
540 }
541 
542 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
543 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
544 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
545 
kiocb_set_cancel_fn(struct kiocb * iocb,kiocb_cancel_fn * cancel)546 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
547 {
548 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
549 	struct kioctx *ctx = req->ki_ctx;
550 	unsigned long flags;
551 
552 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
553 		return;
554 
555 	spin_lock_irqsave(&ctx->ctx_lock, flags);
556 	list_add_tail(&req->ki_list, &ctx->active_reqs);
557 	req->ki_cancel = cancel;
558 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
559 }
560 EXPORT_SYMBOL(kiocb_set_cancel_fn);
561 
562 /*
563  * free_ioctx() should be RCU delayed to synchronize against the RCU
564  * protected lookup_ioctx() and also needs process context to call
565  * aio_free_ring().  Use rcu_work.
566  */
free_ioctx(struct work_struct * work)567 static void free_ioctx(struct work_struct *work)
568 {
569 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
570 					  free_rwork);
571 	pr_debug("freeing %p\n", ctx);
572 
573 	aio_free_ring(ctx);
574 	free_percpu(ctx->cpu);
575 	percpu_ref_exit(&ctx->reqs);
576 	percpu_ref_exit(&ctx->users);
577 	kmem_cache_free(kioctx_cachep, ctx);
578 }
579 
free_ioctx_reqs(struct percpu_ref * ref)580 static void free_ioctx_reqs(struct percpu_ref *ref)
581 {
582 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
583 
584 	/* At this point we know that there are no any in-flight requests */
585 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
586 		complete(&ctx->rq_wait->comp);
587 
588 	/* Synchronize against RCU protected table->table[] dereferences */
589 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
590 	queue_rcu_work(system_wq, &ctx->free_rwork);
591 }
592 
593 /*
594  * When this function runs, the kioctx has been removed from the "hash table"
595  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
596  * now it's safe to cancel any that need to be.
597  */
free_ioctx_users(struct percpu_ref * ref)598 static void free_ioctx_users(struct percpu_ref *ref)
599 {
600 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
601 	struct aio_kiocb *req;
602 
603 	spin_lock_irq(&ctx->ctx_lock);
604 
605 	while (!list_empty(&ctx->active_reqs)) {
606 		req = list_first_entry(&ctx->active_reqs,
607 				       struct aio_kiocb, ki_list);
608 		req->ki_cancel(&req->rw);
609 		list_del_init(&req->ki_list);
610 	}
611 
612 	spin_unlock_irq(&ctx->ctx_lock);
613 
614 	percpu_ref_kill(&ctx->reqs);
615 	percpu_ref_put(&ctx->reqs);
616 }
617 
ioctx_add_table(struct kioctx * ctx,struct mm_struct * mm)618 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
619 {
620 	unsigned i, new_nr;
621 	struct kioctx_table *table, *old;
622 	struct aio_ring *ring;
623 
624 	spin_lock(&mm->ioctx_lock);
625 	table = rcu_dereference_raw(mm->ioctx_table);
626 
627 	while (1) {
628 		if (table)
629 			for (i = 0; i < table->nr; i++)
630 				if (!rcu_access_pointer(table->table[i])) {
631 					ctx->id = i;
632 					rcu_assign_pointer(table->table[i], ctx);
633 					spin_unlock(&mm->ioctx_lock);
634 
635 					/* While kioctx setup is in progress,
636 					 * we are protected from page migration
637 					 * changes ring_pages by ->ring_lock.
638 					 */
639 					ring = kmap_atomic(ctx->ring_pages[0]);
640 					ring->id = ctx->id;
641 					kunmap_atomic(ring);
642 					return 0;
643 				}
644 
645 		new_nr = (table ? table->nr : 1) * 4;
646 		spin_unlock(&mm->ioctx_lock);
647 
648 		table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
649 				new_nr, GFP_KERNEL);
650 		if (!table)
651 			return -ENOMEM;
652 
653 		table->nr = new_nr;
654 
655 		spin_lock(&mm->ioctx_lock);
656 		old = rcu_dereference_raw(mm->ioctx_table);
657 
658 		if (!old) {
659 			rcu_assign_pointer(mm->ioctx_table, table);
660 		} else if (table->nr > old->nr) {
661 			memcpy(table->table, old->table,
662 			       old->nr * sizeof(struct kioctx *));
663 
664 			rcu_assign_pointer(mm->ioctx_table, table);
665 			kfree_rcu(old, rcu);
666 		} else {
667 			kfree(table);
668 			table = old;
669 		}
670 	}
671 }
672 
aio_nr_sub(unsigned nr)673 static void aio_nr_sub(unsigned nr)
674 {
675 	spin_lock(&aio_nr_lock);
676 	if (WARN_ON(aio_nr - nr > aio_nr))
677 		aio_nr = 0;
678 	else
679 		aio_nr -= nr;
680 	spin_unlock(&aio_nr_lock);
681 }
682 
683 /* ioctx_alloc
684  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
685  */
ioctx_alloc(unsigned nr_events)686 static struct kioctx *ioctx_alloc(unsigned nr_events)
687 {
688 	struct mm_struct *mm = current->mm;
689 	struct kioctx *ctx;
690 	int err = -ENOMEM;
691 
692 	/*
693 	 * Store the original nr_events -- what userspace passed to io_setup(),
694 	 * for counting against the global limit -- before it changes.
695 	 */
696 	unsigned int max_reqs = nr_events;
697 
698 	/*
699 	 * We keep track of the number of available ringbuffer slots, to prevent
700 	 * overflow (reqs_available), and we also use percpu counters for this.
701 	 *
702 	 * So since up to half the slots might be on other cpu's percpu counters
703 	 * and unavailable, double nr_events so userspace sees what they
704 	 * expected: additionally, we move req_batch slots to/from percpu
705 	 * counters at a time, so make sure that isn't 0:
706 	 */
707 	nr_events = max(nr_events, num_possible_cpus() * 4);
708 	nr_events *= 2;
709 
710 	/* Prevent overflows */
711 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
712 		pr_debug("ENOMEM: nr_events too high\n");
713 		return ERR_PTR(-EINVAL);
714 	}
715 
716 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
717 		return ERR_PTR(-EAGAIN);
718 
719 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
720 	if (!ctx)
721 		return ERR_PTR(-ENOMEM);
722 
723 	ctx->max_reqs = max_reqs;
724 
725 	spin_lock_init(&ctx->ctx_lock);
726 	spin_lock_init(&ctx->completion_lock);
727 	mutex_init(&ctx->ring_lock);
728 	/* Protect against page migration throughout kiotx setup by keeping
729 	 * the ring_lock mutex held until setup is complete. */
730 	mutex_lock(&ctx->ring_lock);
731 	init_waitqueue_head(&ctx->wait);
732 
733 	INIT_LIST_HEAD(&ctx->active_reqs);
734 
735 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
736 		goto err;
737 
738 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
739 		goto err;
740 
741 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
742 	if (!ctx->cpu)
743 		goto err;
744 
745 	err = aio_setup_ring(ctx, nr_events);
746 	if (err < 0)
747 		goto err;
748 
749 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
750 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
751 	if (ctx->req_batch < 1)
752 		ctx->req_batch = 1;
753 
754 	/* limit the number of system wide aios */
755 	spin_lock(&aio_nr_lock);
756 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
757 	    aio_nr + ctx->max_reqs < aio_nr) {
758 		spin_unlock(&aio_nr_lock);
759 		err = -EAGAIN;
760 		goto err_ctx;
761 	}
762 	aio_nr += ctx->max_reqs;
763 	spin_unlock(&aio_nr_lock);
764 
765 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
766 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
767 
768 	err = ioctx_add_table(ctx, mm);
769 	if (err)
770 		goto err_cleanup;
771 
772 	/* Release the ring_lock mutex now that all setup is complete. */
773 	mutex_unlock(&ctx->ring_lock);
774 
775 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
776 		 ctx, ctx->user_id, mm, ctx->nr_events);
777 	return ctx;
778 
779 err_cleanup:
780 	aio_nr_sub(ctx->max_reqs);
781 err_ctx:
782 	atomic_set(&ctx->dead, 1);
783 	if (ctx->mmap_size)
784 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
785 	aio_free_ring(ctx);
786 err:
787 	mutex_unlock(&ctx->ring_lock);
788 	free_percpu(ctx->cpu);
789 	percpu_ref_exit(&ctx->reqs);
790 	percpu_ref_exit(&ctx->users);
791 	kmem_cache_free(kioctx_cachep, ctx);
792 	pr_debug("error allocating ioctx %d\n", err);
793 	return ERR_PTR(err);
794 }
795 
796 /* kill_ioctx
797  *	Cancels all outstanding aio requests on an aio context.  Used
798  *	when the processes owning a context have all exited to encourage
799  *	the rapid destruction of the kioctx.
800  */
kill_ioctx(struct mm_struct * mm,struct kioctx * ctx,struct ctx_rq_wait * wait)801 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
802 		      struct ctx_rq_wait *wait)
803 {
804 	struct kioctx_table *table;
805 
806 	spin_lock(&mm->ioctx_lock);
807 	if (atomic_xchg(&ctx->dead, 1)) {
808 		spin_unlock(&mm->ioctx_lock);
809 		return -EINVAL;
810 	}
811 
812 	table = rcu_dereference_raw(mm->ioctx_table);
813 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
814 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
815 	spin_unlock(&mm->ioctx_lock);
816 
817 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
818 	wake_up_all(&ctx->wait);
819 
820 	/*
821 	 * It'd be more correct to do this in free_ioctx(), after all
822 	 * the outstanding kiocbs have finished - but by then io_destroy
823 	 * has already returned, so io_setup() could potentially return
824 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
825 	 *  could tell).
826 	 */
827 	aio_nr_sub(ctx->max_reqs);
828 
829 	if (ctx->mmap_size)
830 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
831 
832 	ctx->rq_wait = wait;
833 	percpu_ref_kill(&ctx->users);
834 	return 0;
835 }
836 
837 /*
838  * exit_aio: called when the last user of mm goes away.  At this point, there is
839  * no way for any new requests to be submited or any of the io_* syscalls to be
840  * called on the context.
841  *
842  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
843  * them.
844  */
exit_aio(struct mm_struct * mm)845 void exit_aio(struct mm_struct *mm)
846 {
847 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
848 	struct ctx_rq_wait wait;
849 	int i, skipped;
850 
851 	if (!table)
852 		return;
853 
854 	atomic_set(&wait.count, table->nr);
855 	init_completion(&wait.comp);
856 
857 	skipped = 0;
858 	for (i = 0; i < table->nr; ++i) {
859 		struct kioctx *ctx =
860 			rcu_dereference_protected(table->table[i], true);
861 
862 		if (!ctx) {
863 			skipped++;
864 			continue;
865 		}
866 
867 		/*
868 		 * We don't need to bother with munmap() here - exit_mmap(mm)
869 		 * is coming and it'll unmap everything. And we simply can't,
870 		 * this is not necessarily our ->mm.
871 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
872 		 * that it needs to unmap the area, just set it to 0.
873 		 */
874 		ctx->mmap_size = 0;
875 		kill_ioctx(mm, ctx, &wait);
876 	}
877 
878 	if (!atomic_sub_and_test(skipped, &wait.count)) {
879 		/* Wait until all IO for the context are done. */
880 		wait_for_completion(&wait.comp);
881 	}
882 
883 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
884 	kfree(table);
885 }
886 
put_reqs_available(struct kioctx * ctx,unsigned nr)887 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
888 {
889 	struct kioctx_cpu *kcpu;
890 	unsigned long flags;
891 
892 	local_irq_save(flags);
893 	kcpu = this_cpu_ptr(ctx->cpu);
894 	kcpu->reqs_available += nr;
895 
896 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
897 		kcpu->reqs_available -= ctx->req_batch;
898 		atomic_add(ctx->req_batch, &ctx->reqs_available);
899 	}
900 
901 	local_irq_restore(flags);
902 }
903 
get_reqs_available(struct kioctx * ctx)904 static bool get_reqs_available(struct kioctx *ctx)
905 {
906 	struct kioctx_cpu *kcpu;
907 	bool ret = false;
908 	unsigned long flags;
909 
910 	local_irq_save(flags);
911 	kcpu = this_cpu_ptr(ctx->cpu);
912 	if (!kcpu->reqs_available) {
913 		int old, avail = atomic_read(&ctx->reqs_available);
914 
915 		do {
916 			if (avail < ctx->req_batch)
917 				goto out;
918 
919 			old = avail;
920 			avail = atomic_cmpxchg(&ctx->reqs_available,
921 					       avail, avail - ctx->req_batch);
922 		} while (avail != old);
923 
924 		kcpu->reqs_available += ctx->req_batch;
925 	}
926 
927 	ret = true;
928 	kcpu->reqs_available--;
929 out:
930 	local_irq_restore(flags);
931 	return ret;
932 }
933 
934 /* refill_reqs_available
935  *	Updates the reqs_available reference counts used for tracking the
936  *	number of free slots in the completion ring.  This can be called
937  *	from aio_complete() (to optimistically update reqs_available) or
938  *	from aio_get_req() (the we're out of events case).  It must be
939  *	called holding ctx->completion_lock.
940  */
refill_reqs_available(struct kioctx * ctx,unsigned head,unsigned tail)941 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
942                                   unsigned tail)
943 {
944 	unsigned events_in_ring, completed;
945 
946 	/* Clamp head since userland can write to it. */
947 	head %= ctx->nr_events;
948 	if (head <= tail)
949 		events_in_ring = tail - head;
950 	else
951 		events_in_ring = ctx->nr_events - (head - tail);
952 
953 	completed = ctx->completed_events;
954 	if (events_in_ring < completed)
955 		completed -= events_in_ring;
956 	else
957 		completed = 0;
958 
959 	if (!completed)
960 		return;
961 
962 	ctx->completed_events -= completed;
963 	put_reqs_available(ctx, completed);
964 }
965 
966 /* user_refill_reqs_available
967  *	Called to refill reqs_available when aio_get_req() encounters an
968  *	out of space in the completion ring.
969  */
user_refill_reqs_available(struct kioctx * ctx)970 static void user_refill_reqs_available(struct kioctx *ctx)
971 {
972 	spin_lock_irq(&ctx->completion_lock);
973 	if (ctx->completed_events) {
974 		struct aio_ring *ring;
975 		unsigned head;
976 
977 		/* Access of ring->head may race with aio_read_events_ring()
978 		 * here, but that's okay since whether we read the old version
979 		 * or the new version, and either will be valid.  The important
980 		 * part is that head cannot pass tail since we prevent
981 		 * aio_complete() from updating tail by holding
982 		 * ctx->completion_lock.  Even if head is invalid, the check
983 		 * against ctx->completed_events below will make sure we do the
984 		 * safe/right thing.
985 		 */
986 		ring = kmap_atomic(ctx->ring_pages[0]);
987 		head = ring->head;
988 		kunmap_atomic(ring);
989 
990 		refill_reqs_available(ctx, head, ctx->tail);
991 	}
992 
993 	spin_unlock_irq(&ctx->completion_lock);
994 }
995 
996 /* aio_get_req
997  *	Allocate a slot for an aio request.
998  * Returns NULL if no requests are free.
999  */
aio_get_req(struct kioctx * ctx)1000 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1001 {
1002 	struct aio_kiocb *req;
1003 
1004 	if (!get_reqs_available(ctx)) {
1005 		user_refill_reqs_available(ctx);
1006 		if (!get_reqs_available(ctx))
1007 			return NULL;
1008 	}
1009 
1010 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1011 	if (unlikely(!req))
1012 		goto out_put;
1013 
1014 	percpu_ref_get(&ctx->reqs);
1015 	INIT_LIST_HEAD(&req->ki_list);
1016 	refcount_set(&req->ki_refcnt, 0);
1017 	req->ki_ctx = ctx;
1018 	return req;
1019 out_put:
1020 	put_reqs_available(ctx, 1);
1021 	return NULL;
1022 }
1023 
lookup_ioctx(unsigned long ctx_id)1024 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1025 {
1026 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1027 	struct mm_struct *mm = current->mm;
1028 	struct kioctx *ctx, *ret = NULL;
1029 	struct kioctx_table *table;
1030 	unsigned id;
1031 
1032 	if (get_user(id, &ring->id))
1033 		return NULL;
1034 
1035 	rcu_read_lock();
1036 	table = rcu_dereference(mm->ioctx_table);
1037 
1038 	if (!table || id >= table->nr)
1039 		goto out;
1040 
1041 	ctx = rcu_dereference(table->table[id]);
1042 	if (ctx && ctx->user_id == ctx_id) {
1043 		if (percpu_ref_tryget_live(&ctx->users))
1044 			ret = ctx;
1045 	}
1046 out:
1047 	rcu_read_unlock();
1048 	return ret;
1049 }
1050 
iocb_put(struct aio_kiocb * iocb)1051 static inline void iocb_put(struct aio_kiocb *iocb)
1052 {
1053 	if (refcount_read(&iocb->ki_refcnt) == 0 ||
1054 	    refcount_dec_and_test(&iocb->ki_refcnt)) {
1055 		percpu_ref_put(&iocb->ki_ctx->reqs);
1056 		kmem_cache_free(kiocb_cachep, iocb);
1057 	}
1058 }
1059 
1060 /* aio_complete
1061  *	Called when the io request on the given iocb is complete.
1062  */
aio_complete(struct aio_kiocb * iocb,long res,long res2)1063 static void aio_complete(struct aio_kiocb *iocb, long res, long res2)
1064 {
1065 	struct kioctx	*ctx = iocb->ki_ctx;
1066 	struct aio_ring	*ring;
1067 	struct io_event	*ev_page, *event;
1068 	unsigned tail, pos, head;
1069 	unsigned long	flags;
1070 
1071 	/*
1072 	 * Add a completion event to the ring buffer. Must be done holding
1073 	 * ctx->completion_lock to prevent other code from messing with the tail
1074 	 * pointer since we might be called from irq context.
1075 	 */
1076 	spin_lock_irqsave(&ctx->completion_lock, flags);
1077 
1078 	tail = ctx->tail;
1079 	pos = tail + AIO_EVENTS_OFFSET;
1080 
1081 	if (++tail >= ctx->nr_events)
1082 		tail = 0;
1083 
1084 	ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1085 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1086 
1087 	event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1088 	event->data = iocb->ki_user_data;
1089 	event->res = res;
1090 	event->res2 = res2;
1091 
1092 	kunmap_atomic(ev_page);
1093 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1094 
1095 	pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1096 		 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1097 		 res, res2);
1098 
1099 	/* after flagging the request as done, we
1100 	 * must never even look at it again
1101 	 */
1102 	smp_wmb();	/* make event visible before updating tail */
1103 
1104 	ctx->tail = tail;
1105 
1106 	ring = kmap_atomic(ctx->ring_pages[0]);
1107 	head = ring->head;
1108 	ring->tail = tail;
1109 	kunmap_atomic(ring);
1110 	flush_dcache_page(ctx->ring_pages[0]);
1111 
1112 	ctx->completed_events++;
1113 	if (ctx->completed_events > 1)
1114 		refill_reqs_available(ctx, head, tail);
1115 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1116 
1117 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1118 
1119 	/*
1120 	 * Check if the user asked us to deliver the result through an
1121 	 * eventfd. The eventfd_signal() function is safe to be called
1122 	 * from IRQ context.
1123 	 */
1124 	if (iocb->ki_eventfd) {
1125 		eventfd_signal(iocb->ki_eventfd, 1);
1126 		eventfd_ctx_put(iocb->ki_eventfd);
1127 	}
1128 
1129 	/*
1130 	 * We have to order our ring_info tail store above and test
1131 	 * of the wait list below outside the wait lock.  This is
1132 	 * like in wake_up_bit() where clearing a bit has to be
1133 	 * ordered with the unlocked test.
1134 	 */
1135 	smp_mb();
1136 
1137 	if (waitqueue_active(&ctx->wait))
1138 		wake_up(&ctx->wait);
1139 	iocb_put(iocb);
1140 }
1141 
1142 /* aio_read_events_ring
1143  *	Pull an event off of the ioctx's event ring.  Returns the number of
1144  *	events fetched
1145  */
aio_read_events_ring(struct kioctx * ctx,struct io_event __user * event,long nr)1146 static long aio_read_events_ring(struct kioctx *ctx,
1147 				 struct io_event __user *event, long nr)
1148 {
1149 	struct aio_ring *ring;
1150 	unsigned head, tail, pos;
1151 	long ret = 0;
1152 	int copy_ret;
1153 
1154 	/*
1155 	 * The mutex can block and wake us up and that will cause
1156 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1157 	 * and repeat. This should be rare enough that it doesn't cause
1158 	 * peformance issues. See the comment in read_events() for more detail.
1159 	 */
1160 	sched_annotate_sleep();
1161 	mutex_lock(&ctx->ring_lock);
1162 
1163 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1164 	ring = kmap_atomic(ctx->ring_pages[0]);
1165 	head = ring->head;
1166 	tail = ring->tail;
1167 	kunmap_atomic(ring);
1168 
1169 	/*
1170 	 * Ensure that once we've read the current tail pointer, that
1171 	 * we also see the events that were stored up to the tail.
1172 	 */
1173 	smp_rmb();
1174 
1175 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1176 
1177 	if (head == tail)
1178 		goto out;
1179 
1180 	head %= ctx->nr_events;
1181 	tail %= ctx->nr_events;
1182 
1183 	while (ret < nr) {
1184 		long avail;
1185 		struct io_event *ev;
1186 		struct page *page;
1187 
1188 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1189 		if (head == tail)
1190 			break;
1191 
1192 		pos = head + AIO_EVENTS_OFFSET;
1193 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1194 		pos %= AIO_EVENTS_PER_PAGE;
1195 
1196 		avail = min(avail, nr - ret);
1197 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1198 
1199 		ev = kmap(page);
1200 		copy_ret = copy_to_user(event + ret, ev + pos,
1201 					sizeof(*ev) * avail);
1202 		kunmap(page);
1203 
1204 		if (unlikely(copy_ret)) {
1205 			ret = -EFAULT;
1206 			goto out;
1207 		}
1208 
1209 		ret += avail;
1210 		head += avail;
1211 		head %= ctx->nr_events;
1212 	}
1213 
1214 	ring = kmap_atomic(ctx->ring_pages[0]);
1215 	ring->head = head;
1216 	kunmap_atomic(ring);
1217 	flush_dcache_page(ctx->ring_pages[0]);
1218 
1219 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1220 out:
1221 	mutex_unlock(&ctx->ring_lock);
1222 
1223 	return ret;
1224 }
1225 
aio_read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,long * i)1226 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1227 			    struct io_event __user *event, long *i)
1228 {
1229 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1230 
1231 	if (ret > 0)
1232 		*i += ret;
1233 
1234 	if (unlikely(atomic_read(&ctx->dead)))
1235 		ret = -EINVAL;
1236 
1237 	if (!*i)
1238 		*i = ret;
1239 
1240 	return ret < 0 || *i >= min_nr;
1241 }
1242 
read_events(struct kioctx * ctx,long min_nr,long nr,struct io_event __user * event,ktime_t until)1243 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1244 			struct io_event __user *event,
1245 			ktime_t until)
1246 {
1247 	long ret = 0;
1248 
1249 	/*
1250 	 * Note that aio_read_events() is being called as the conditional - i.e.
1251 	 * we're calling it after prepare_to_wait() has set task state to
1252 	 * TASK_INTERRUPTIBLE.
1253 	 *
1254 	 * But aio_read_events() can block, and if it blocks it's going to flip
1255 	 * the task state back to TASK_RUNNING.
1256 	 *
1257 	 * This should be ok, provided it doesn't flip the state back to
1258 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1259 	 * will only happen if the mutex_lock() call blocks, and we then find
1260 	 * the ringbuffer empty. So in practice we should be ok, but it's
1261 	 * something to be aware of when touching this code.
1262 	 */
1263 	if (until == 0)
1264 		aio_read_events(ctx, min_nr, nr, event, &ret);
1265 	else
1266 		wait_event_interruptible_hrtimeout(ctx->wait,
1267 				aio_read_events(ctx, min_nr, nr, event, &ret),
1268 				until);
1269 	return ret;
1270 }
1271 
1272 /* sys_io_setup:
1273  *	Create an aio_context capable of receiving at least nr_events.
1274  *	ctxp must not point to an aio_context that already exists, and
1275  *	must be initialized to 0 prior to the call.  On successful
1276  *	creation of the aio_context, *ctxp is filled in with the resulting
1277  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1278  *	if the specified nr_events exceeds internal limits.  May fail
1279  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1280  *	of available events.  May fail with -ENOMEM if insufficient kernel
1281  *	resources are available.  May fail with -EFAULT if an invalid
1282  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1283  *	implemented.
1284  */
SYSCALL_DEFINE2(io_setup,unsigned,nr_events,aio_context_t __user *,ctxp)1285 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1286 {
1287 	struct kioctx *ioctx = NULL;
1288 	unsigned long ctx;
1289 	long ret;
1290 
1291 	ret = get_user(ctx, ctxp);
1292 	if (unlikely(ret))
1293 		goto out;
1294 
1295 	ret = -EINVAL;
1296 	if (unlikely(ctx || nr_events == 0)) {
1297 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1298 		         ctx, nr_events);
1299 		goto out;
1300 	}
1301 
1302 	ioctx = ioctx_alloc(nr_events);
1303 	ret = PTR_ERR(ioctx);
1304 	if (!IS_ERR(ioctx)) {
1305 		ret = put_user(ioctx->user_id, ctxp);
1306 		if (ret)
1307 			kill_ioctx(current->mm, ioctx, NULL);
1308 		percpu_ref_put(&ioctx->users);
1309 	}
1310 
1311 out:
1312 	return ret;
1313 }
1314 
1315 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE2(io_setup,unsigned,nr_events,u32 __user *,ctx32p)1316 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1317 {
1318 	struct kioctx *ioctx = NULL;
1319 	unsigned long ctx;
1320 	long ret;
1321 
1322 	ret = get_user(ctx, ctx32p);
1323 	if (unlikely(ret))
1324 		goto out;
1325 
1326 	ret = -EINVAL;
1327 	if (unlikely(ctx || nr_events == 0)) {
1328 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1329 		         ctx, nr_events);
1330 		goto out;
1331 	}
1332 
1333 	ioctx = ioctx_alloc(nr_events);
1334 	ret = PTR_ERR(ioctx);
1335 	if (!IS_ERR(ioctx)) {
1336 		/* truncating is ok because it's a user address */
1337 		ret = put_user((u32)ioctx->user_id, ctx32p);
1338 		if (ret)
1339 			kill_ioctx(current->mm, ioctx, NULL);
1340 		percpu_ref_put(&ioctx->users);
1341 	}
1342 
1343 out:
1344 	return ret;
1345 }
1346 #endif
1347 
1348 /* sys_io_destroy:
1349  *	Destroy the aio_context specified.  May cancel any outstanding
1350  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1351  *	implemented.  May fail with -EINVAL if the context pointed to
1352  *	is invalid.
1353  */
SYSCALL_DEFINE1(io_destroy,aio_context_t,ctx)1354 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1355 {
1356 	struct kioctx *ioctx = lookup_ioctx(ctx);
1357 	if (likely(NULL != ioctx)) {
1358 		struct ctx_rq_wait wait;
1359 		int ret;
1360 
1361 		init_completion(&wait.comp);
1362 		atomic_set(&wait.count, 1);
1363 
1364 		/* Pass requests_done to kill_ioctx() where it can be set
1365 		 * in a thread-safe way. If we try to set it here then we have
1366 		 * a race condition if two io_destroy() called simultaneously.
1367 		 */
1368 		ret = kill_ioctx(current->mm, ioctx, &wait);
1369 		percpu_ref_put(&ioctx->users);
1370 
1371 		/* Wait until all IO for the context are done. Otherwise kernel
1372 		 * keep using user-space buffers even if user thinks the context
1373 		 * is destroyed.
1374 		 */
1375 		if (!ret)
1376 			wait_for_completion(&wait.comp);
1377 
1378 		return ret;
1379 	}
1380 	pr_debug("EINVAL: invalid context id\n");
1381 	return -EINVAL;
1382 }
1383 
aio_remove_iocb(struct aio_kiocb * iocb)1384 static void aio_remove_iocb(struct aio_kiocb *iocb)
1385 {
1386 	struct kioctx *ctx = iocb->ki_ctx;
1387 	unsigned long flags;
1388 
1389 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1390 	list_del(&iocb->ki_list);
1391 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1392 }
1393 
aio_complete_rw(struct kiocb * kiocb,long res,long res2)1394 static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1395 {
1396 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1397 
1398 	if (!list_empty_careful(&iocb->ki_list))
1399 		aio_remove_iocb(iocb);
1400 
1401 	if (kiocb->ki_flags & IOCB_WRITE) {
1402 		struct inode *inode = file_inode(kiocb->ki_filp);
1403 
1404 		/*
1405 		 * Tell lockdep we inherited freeze protection from submission
1406 		 * thread.
1407 		 */
1408 		if (S_ISREG(inode->i_mode))
1409 			__sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1410 		file_end_write(kiocb->ki_filp);
1411 	}
1412 
1413 	fput(kiocb->ki_filp);
1414 	aio_complete(iocb, res, res2);
1415 }
1416 
aio_prep_rw(struct kiocb * req,struct iocb * iocb)1417 static int aio_prep_rw(struct kiocb *req, struct iocb *iocb)
1418 {
1419 	int ret;
1420 
1421 	req->ki_filp = fget(iocb->aio_fildes);
1422 	if (unlikely(!req->ki_filp))
1423 		return -EBADF;
1424 	req->ki_complete = aio_complete_rw;
1425 	req->ki_pos = iocb->aio_offset;
1426 	req->ki_flags = iocb_flags(req->ki_filp);
1427 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1428 		req->ki_flags |= IOCB_EVENTFD;
1429 	req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
1430 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1431 		/*
1432 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1433 		 * aio_reqprio is interpreted as an I/O scheduling
1434 		 * class and priority.
1435 		 */
1436 		ret = ioprio_check_cap(iocb->aio_reqprio);
1437 		if (ret) {
1438 			pr_debug("aio ioprio check cap error: %d\n", ret);
1439 			return ret;
1440 		}
1441 
1442 		req->ki_ioprio = iocb->aio_reqprio;
1443 	} else
1444 		req->ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1445 
1446 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1447 	if (unlikely(ret))
1448 		fput(req->ki_filp);
1449 	return ret;
1450 }
1451 
aio_setup_rw(int rw,struct iocb * iocb,struct iovec ** iovec,bool vectored,bool compat,struct iov_iter * iter)1452 static int aio_setup_rw(int rw, struct iocb *iocb, struct iovec **iovec,
1453 		bool vectored, bool compat, struct iov_iter *iter)
1454 {
1455 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1456 	size_t len = iocb->aio_nbytes;
1457 
1458 	if (!vectored) {
1459 		ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1460 		*iovec = NULL;
1461 		return ret;
1462 	}
1463 #ifdef CONFIG_COMPAT
1464 	if (compat)
1465 		return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1466 				iter);
1467 #endif
1468 	return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
1469 }
1470 
aio_rw_done(struct kiocb * req,ssize_t ret)1471 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1472 {
1473 	switch (ret) {
1474 	case -EIOCBQUEUED:
1475 		break;
1476 	case -ERESTARTSYS:
1477 	case -ERESTARTNOINTR:
1478 	case -ERESTARTNOHAND:
1479 	case -ERESTART_RESTARTBLOCK:
1480 		/*
1481 		 * There's no easy way to restart the syscall since other AIO's
1482 		 * may be already running. Just fail this IO with EINTR.
1483 		 */
1484 		ret = -EINTR;
1485 		/*FALLTHRU*/
1486 	default:
1487 		aio_complete_rw(req, ret, 0);
1488 	}
1489 }
1490 
aio_read(struct kiocb * req,struct iocb * iocb,bool vectored,bool compat)1491 static ssize_t aio_read(struct kiocb *req, struct iocb *iocb, bool vectored,
1492 		bool compat)
1493 {
1494 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1495 	struct iov_iter iter;
1496 	struct file *file;
1497 	ssize_t ret;
1498 
1499 	ret = aio_prep_rw(req, iocb);
1500 	if (ret)
1501 		return ret;
1502 	file = req->ki_filp;
1503 
1504 	ret = -EBADF;
1505 	if (unlikely(!(file->f_mode & FMODE_READ)))
1506 		goto out_fput;
1507 	ret = -EINVAL;
1508 	if (unlikely(!file->f_op->read_iter))
1509 		goto out_fput;
1510 
1511 	ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
1512 	if (ret)
1513 		goto out_fput;
1514 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1515 	if (!ret)
1516 		aio_rw_done(req, call_read_iter(file, req, &iter));
1517 	kfree(iovec);
1518 out_fput:
1519 	if (unlikely(ret))
1520 		fput(file);
1521 	return ret;
1522 }
1523 
aio_write(struct kiocb * req,struct iocb * iocb,bool vectored,bool compat)1524 static ssize_t aio_write(struct kiocb *req, struct iocb *iocb, bool vectored,
1525 		bool compat)
1526 {
1527 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1528 	struct iov_iter iter;
1529 	struct file *file;
1530 	ssize_t ret;
1531 
1532 	ret = aio_prep_rw(req, iocb);
1533 	if (ret)
1534 		return ret;
1535 	file = req->ki_filp;
1536 
1537 	ret = -EBADF;
1538 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1539 		goto out_fput;
1540 	ret = -EINVAL;
1541 	if (unlikely(!file->f_op->write_iter))
1542 		goto out_fput;
1543 
1544 	ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
1545 	if (ret)
1546 		goto out_fput;
1547 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1548 	if (!ret) {
1549 		/*
1550 		 * Open-code file_start_write here to grab freeze protection,
1551 		 * which will be released by another thread in
1552 		 * aio_complete_rw().  Fool lockdep by telling it the lock got
1553 		 * released so that it doesn't complain about the held lock when
1554 		 * we return to userspace.
1555 		 */
1556 		if (S_ISREG(file_inode(file)->i_mode)) {
1557 			__sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
1558 			__sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
1559 		}
1560 		req->ki_flags |= IOCB_WRITE;
1561 		aio_rw_done(req, call_write_iter(file, req, &iter));
1562 	}
1563 	kfree(iovec);
1564 out_fput:
1565 	if (unlikely(ret))
1566 		fput(file);
1567 	return ret;
1568 }
1569 
aio_fsync_work(struct work_struct * work)1570 static void aio_fsync_work(struct work_struct *work)
1571 {
1572 	struct fsync_iocb *req = container_of(work, struct fsync_iocb, work);
1573 	int ret;
1574 
1575 	ret = vfs_fsync(req->file, req->datasync);
1576 	fput(req->file);
1577 	aio_complete(container_of(req, struct aio_kiocb, fsync), ret, 0);
1578 }
1579 
aio_fsync(struct fsync_iocb * req,struct iocb * iocb,bool datasync)1580 static int aio_fsync(struct fsync_iocb *req, struct iocb *iocb, bool datasync)
1581 {
1582 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1583 			iocb->aio_rw_flags))
1584 		return -EINVAL;
1585 
1586 	req->file = fget(iocb->aio_fildes);
1587 	if (unlikely(!req->file))
1588 		return -EBADF;
1589 	if (unlikely(!req->file->f_op->fsync)) {
1590 		fput(req->file);
1591 		return -EINVAL;
1592 	}
1593 
1594 	req->datasync = datasync;
1595 	INIT_WORK(&req->work, aio_fsync_work);
1596 	schedule_work(&req->work);
1597 	return 0;
1598 }
1599 
aio_poll_complete(struct aio_kiocb * iocb,__poll_t mask)1600 static inline void aio_poll_complete(struct aio_kiocb *iocb, __poll_t mask)
1601 {
1602 	struct file *file = iocb->poll.file;
1603 
1604 	aio_complete(iocb, mangle_poll(mask), 0);
1605 	fput(file);
1606 }
1607 
aio_poll_complete_work(struct work_struct * work)1608 static void aio_poll_complete_work(struct work_struct *work)
1609 {
1610 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1611 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1612 	struct poll_table_struct pt = { ._key = req->events };
1613 	struct kioctx *ctx = iocb->ki_ctx;
1614 	__poll_t mask = 0;
1615 
1616 	if (!READ_ONCE(req->cancelled))
1617 		mask = vfs_poll(req->file, &pt) & req->events;
1618 
1619 	/*
1620 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1621 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1622 	 * synchronize with them.  In the cancellation case the list_del_init
1623 	 * itself is not actually needed, but harmless so we keep it in to
1624 	 * avoid further branches in the fast path.
1625 	 */
1626 	spin_lock_irq(&ctx->ctx_lock);
1627 	if (!mask && !READ_ONCE(req->cancelled)) {
1628 		add_wait_queue(req->head, &req->wait);
1629 		spin_unlock_irq(&ctx->ctx_lock);
1630 		return;
1631 	}
1632 	list_del_init(&iocb->ki_list);
1633 	spin_unlock_irq(&ctx->ctx_lock);
1634 
1635 	aio_poll_complete(iocb, mask);
1636 }
1637 
1638 /* assumes we are called with irqs disabled */
aio_poll_cancel(struct kiocb * iocb)1639 static int aio_poll_cancel(struct kiocb *iocb)
1640 {
1641 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1642 	struct poll_iocb *req = &aiocb->poll;
1643 
1644 	spin_lock(&req->head->lock);
1645 	WRITE_ONCE(req->cancelled, true);
1646 	if (!list_empty(&req->wait.entry)) {
1647 		list_del_init(&req->wait.entry);
1648 		schedule_work(&aiocb->poll.work);
1649 	}
1650 	spin_unlock(&req->head->lock);
1651 
1652 	return 0;
1653 }
1654 
aio_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)1655 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1656 		void *key)
1657 {
1658 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1659 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1660 	__poll_t mask = key_to_poll(key);
1661 
1662 	req->woken = true;
1663 
1664 	/* for instances that support it check for an event match first: */
1665 	if (mask) {
1666 		if (!(mask & req->events))
1667 			return 0;
1668 
1669 		/* try to complete the iocb inline if we can: */
1670 		if (spin_trylock(&iocb->ki_ctx->ctx_lock)) {
1671 			list_del(&iocb->ki_list);
1672 			spin_unlock(&iocb->ki_ctx->ctx_lock);
1673 
1674 			list_del_init(&req->wait.entry);
1675 			aio_poll_complete(iocb, mask);
1676 			return 1;
1677 		}
1678 	}
1679 
1680 	list_del_init(&req->wait.entry);
1681 	schedule_work(&req->work);
1682 	return 1;
1683 }
1684 
1685 struct aio_poll_table {
1686 	struct poll_table_struct	pt;
1687 	struct aio_kiocb		*iocb;
1688 	int				error;
1689 };
1690 
1691 static void
aio_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)1692 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1693 		struct poll_table_struct *p)
1694 {
1695 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1696 
1697 	/* multiple wait queues per file are not supported */
1698 	if (unlikely(pt->iocb->poll.head)) {
1699 		pt->error = -EINVAL;
1700 		return;
1701 	}
1702 
1703 	pt->error = 0;
1704 	pt->iocb->poll.head = head;
1705 	add_wait_queue(head, &pt->iocb->poll.wait);
1706 }
1707 
aio_poll(struct aio_kiocb * aiocb,struct iocb * iocb)1708 static ssize_t aio_poll(struct aio_kiocb *aiocb, struct iocb *iocb)
1709 {
1710 	struct kioctx *ctx = aiocb->ki_ctx;
1711 	struct poll_iocb *req = &aiocb->poll;
1712 	struct aio_poll_table apt;
1713 	__poll_t mask;
1714 
1715 	/* reject any unknown events outside the normal event mask. */
1716 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1717 		return -EINVAL;
1718 	/* reject fields that are not defined for poll */
1719 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1720 		return -EINVAL;
1721 
1722 	INIT_WORK(&req->work, aio_poll_complete_work);
1723 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1724 	req->file = fget(iocb->aio_fildes);
1725 	if (unlikely(!req->file))
1726 		return -EBADF;
1727 
1728 	apt.pt._qproc = aio_poll_queue_proc;
1729 	apt.pt._key = req->events;
1730 	apt.iocb = aiocb;
1731 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1732 
1733 	/* initialized the list so that we can do list_empty checks */
1734 	INIT_LIST_HEAD(&req->wait.entry);
1735 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1736 
1737 	/* one for removal from waitqueue, one for this function */
1738 	refcount_set(&aiocb->ki_refcnt, 2);
1739 
1740 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1741 	if (unlikely(!req->head)) {
1742 		/* we did not manage to set up a waitqueue, done */
1743 		goto out;
1744 	}
1745 
1746 	spin_lock_irq(&ctx->ctx_lock);
1747 	spin_lock(&req->head->lock);
1748 	if (req->woken) {
1749 		/* wake_up context handles the rest */
1750 		mask = 0;
1751 		apt.error = 0;
1752 	} else if (mask || apt.error) {
1753 		/* if we get an error or a mask we are done */
1754 		WARN_ON_ONCE(list_empty(&req->wait.entry));
1755 		list_del_init(&req->wait.entry);
1756 	} else {
1757 		/* actually waiting for an event */
1758 		list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1759 		aiocb->ki_cancel = aio_poll_cancel;
1760 	}
1761 	spin_unlock(&req->head->lock);
1762 	spin_unlock_irq(&ctx->ctx_lock);
1763 
1764 out:
1765 	if (unlikely(apt.error)) {
1766 		fput(req->file);
1767 		return apt.error;
1768 	}
1769 
1770 	if (mask)
1771 		aio_poll_complete(aiocb, mask);
1772 	iocb_put(aiocb);
1773 	return 0;
1774 }
1775 
io_submit_one(struct kioctx * ctx,struct iocb __user * user_iocb,bool compat)1776 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1777 			 bool compat)
1778 {
1779 	struct aio_kiocb *req;
1780 	struct iocb iocb;
1781 	ssize_t ret;
1782 
1783 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1784 		return -EFAULT;
1785 
1786 	/* enforce forwards compatibility on users */
1787 	if (unlikely(iocb.aio_reserved2)) {
1788 		pr_debug("EINVAL: reserve field set\n");
1789 		return -EINVAL;
1790 	}
1791 
1792 	/* prevent overflows */
1793 	if (unlikely(
1794 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1795 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1796 	    ((ssize_t)iocb.aio_nbytes < 0)
1797 	   )) {
1798 		pr_debug("EINVAL: overflow check\n");
1799 		return -EINVAL;
1800 	}
1801 
1802 	req = aio_get_req(ctx);
1803 	if (unlikely(!req))
1804 		return -EAGAIN;
1805 
1806 	if (iocb.aio_flags & IOCB_FLAG_RESFD) {
1807 		/*
1808 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1809 		 * instance of the file* now. The file descriptor must be
1810 		 * an eventfd() fd, and will be signaled for each completed
1811 		 * event using the eventfd_signal() function.
1812 		 */
1813 		req->ki_eventfd = eventfd_ctx_fdget((int) iocb.aio_resfd);
1814 		if (IS_ERR(req->ki_eventfd)) {
1815 			ret = PTR_ERR(req->ki_eventfd);
1816 			req->ki_eventfd = NULL;
1817 			goto out_put_req;
1818 		}
1819 	}
1820 
1821 	ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1822 	if (unlikely(ret)) {
1823 		pr_debug("EFAULT: aio_key\n");
1824 		goto out_put_req;
1825 	}
1826 
1827 	req->ki_user_iocb = user_iocb;
1828 	req->ki_user_data = iocb.aio_data;
1829 
1830 	switch (iocb.aio_lio_opcode) {
1831 	case IOCB_CMD_PREAD:
1832 		ret = aio_read(&req->rw, &iocb, false, compat);
1833 		break;
1834 	case IOCB_CMD_PWRITE:
1835 		ret = aio_write(&req->rw, &iocb, false, compat);
1836 		break;
1837 	case IOCB_CMD_PREADV:
1838 		ret = aio_read(&req->rw, &iocb, true, compat);
1839 		break;
1840 	case IOCB_CMD_PWRITEV:
1841 		ret = aio_write(&req->rw, &iocb, true, compat);
1842 		break;
1843 	case IOCB_CMD_FSYNC:
1844 		ret = aio_fsync(&req->fsync, &iocb, false);
1845 		break;
1846 	case IOCB_CMD_FDSYNC:
1847 		ret = aio_fsync(&req->fsync, &iocb, true);
1848 		break;
1849 	case IOCB_CMD_POLL:
1850 		ret = aio_poll(req, &iocb);
1851 		break;
1852 	default:
1853 		pr_debug("invalid aio operation %d\n", iocb.aio_lio_opcode);
1854 		ret = -EINVAL;
1855 		break;
1856 	}
1857 
1858 	/*
1859 	 * If ret is 0, we'd either done aio_complete() ourselves or have
1860 	 * arranged for that to be done asynchronously.  Anything non-zero
1861 	 * means that we need to destroy req ourselves.
1862 	 */
1863 	if (ret)
1864 		goto out_put_req;
1865 	return 0;
1866 out_put_req:
1867 	put_reqs_available(ctx, 1);
1868 	percpu_ref_put(&ctx->reqs);
1869 	if (req->ki_eventfd)
1870 		eventfd_ctx_put(req->ki_eventfd);
1871 	kmem_cache_free(kiocb_cachep, req);
1872 	return ret;
1873 }
1874 
1875 /* sys_io_submit:
1876  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1877  *	the number of iocbs queued.  May return -EINVAL if the aio_context
1878  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
1879  *	*iocbpp[0] is not properly initialized, if the operation specified
1880  *	is invalid for the file descriptor in the iocb.  May fail with
1881  *	-EFAULT if any of the data structures point to invalid data.  May
1882  *	fail with -EBADF if the file descriptor specified in the first
1883  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
1884  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1885  *	fail with -ENOSYS if not implemented.
1886  */
SYSCALL_DEFINE3(io_submit,aio_context_t,ctx_id,long,nr,struct iocb __user * __user *,iocbpp)1887 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1888 		struct iocb __user * __user *, iocbpp)
1889 {
1890 	struct kioctx *ctx;
1891 	long ret = 0;
1892 	int i = 0;
1893 	struct blk_plug plug;
1894 
1895 	if (unlikely(nr < 0))
1896 		return -EINVAL;
1897 
1898 	ctx = lookup_ioctx(ctx_id);
1899 	if (unlikely(!ctx)) {
1900 		pr_debug("EINVAL: invalid context id\n");
1901 		return -EINVAL;
1902 	}
1903 
1904 	if (nr > ctx->nr_events)
1905 		nr = ctx->nr_events;
1906 
1907 	blk_start_plug(&plug);
1908 	for (i = 0; i < nr; i++) {
1909 		struct iocb __user *user_iocb;
1910 
1911 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1912 			ret = -EFAULT;
1913 			break;
1914 		}
1915 
1916 		ret = io_submit_one(ctx, user_iocb, false);
1917 		if (ret)
1918 			break;
1919 	}
1920 	blk_finish_plug(&plug);
1921 
1922 	percpu_ref_put(&ctx->users);
1923 	return i ? i : ret;
1924 }
1925 
1926 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(io_submit,compat_aio_context_t,ctx_id,int,nr,compat_uptr_t __user *,iocbpp)1927 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
1928 		       int, nr, compat_uptr_t __user *, iocbpp)
1929 {
1930 	struct kioctx *ctx;
1931 	long ret = 0;
1932 	int i = 0;
1933 	struct blk_plug plug;
1934 
1935 	if (unlikely(nr < 0))
1936 		return -EINVAL;
1937 
1938 	ctx = lookup_ioctx(ctx_id);
1939 	if (unlikely(!ctx)) {
1940 		pr_debug("EINVAL: invalid context id\n");
1941 		return -EINVAL;
1942 	}
1943 
1944 	if (nr > ctx->nr_events)
1945 		nr = ctx->nr_events;
1946 
1947 	blk_start_plug(&plug);
1948 	for (i = 0; i < nr; i++) {
1949 		compat_uptr_t user_iocb;
1950 
1951 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
1952 			ret = -EFAULT;
1953 			break;
1954 		}
1955 
1956 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1957 		if (ret)
1958 			break;
1959 	}
1960 	blk_finish_plug(&plug);
1961 
1962 	percpu_ref_put(&ctx->users);
1963 	return i ? i : ret;
1964 }
1965 #endif
1966 
1967 /* lookup_kiocb
1968  *	Finds a given iocb for cancellation.
1969  */
1970 static struct aio_kiocb *
lookup_kiocb(struct kioctx * ctx,struct iocb __user * iocb)1971 lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb)
1972 {
1973 	struct aio_kiocb *kiocb;
1974 
1975 	assert_spin_locked(&ctx->ctx_lock);
1976 
1977 	/* TODO: use a hash or array, this sucks. */
1978 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1979 		if (kiocb->ki_user_iocb == iocb)
1980 			return kiocb;
1981 	}
1982 	return NULL;
1983 }
1984 
1985 /* sys_io_cancel:
1986  *	Attempts to cancel an iocb previously passed to io_submit.  If
1987  *	the operation is successfully cancelled, the resulting event is
1988  *	copied into the memory pointed to by result without being placed
1989  *	into the completion queue and 0 is returned.  May fail with
1990  *	-EFAULT if any of the data structures pointed to are invalid.
1991  *	May fail with -EINVAL if aio_context specified by ctx_id is
1992  *	invalid.  May fail with -EAGAIN if the iocb specified was not
1993  *	cancelled.  Will fail with -ENOSYS if not implemented.
1994  */
SYSCALL_DEFINE3(io_cancel,aio_context_t,ctx_id,struct iocb __user *,iocb,struct io_event __user *,result)1995 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1996 		struct io_event __user *, result)
1997 {
1998 	struct kioctx *ctx;
1999 	struct aio_kiocb *kiocb;
2000 	int ret = -EINVAL;
2001 	u32 key;
2002 
2003 	if (unlikely(get_user(key, &iocb->aio_key)))
2004 		return -EFAULT;
2005 	if (unlikely(key != KIOCB_KEY))
2006 		return -EINVAL;
2007 
2008 	ctx = lookup_ioctx(ctx_id);
2009 	if (unlikely(!ctx))
2010 		return -EINVAL;
2011 
2012 	spin_lock_irq(&ctx->ctx_lock);
2013 	kiocb = lookup_kiocb(ctx, iocb);
2014 	if (kiocb) {
2015 		ret = kiocb->ki_cancel(&kiocb->rw);
2016 		list_del_init(&kiocb->ki_list);
2017 	}
2018 	spin_unlock_irq(&ctx->ctx_lock);
2019 
2020 	if (!ret) {
2021 		/*
2022 		 * The result argument is no longer used - the io_event is
2023 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2024 		 * cancellation is progress:
2025 		 */
2026 		ret = -EINPROGRESS;
2027 	}
2028 
2029 	percpu_ref_put(&ctx->users);
2030 
2031 	return ret;
2032 }
2033 
do_io_getevents(aio_context_t ctx_id,long min_nr,long nr,struct io_event __user * events,struct timespec64 * ts)2034 static long do_io_getevents(aio_context_t ctx_id,
2035 		long min_nr,
2036 		long nr,
2037 		struct io_event __user *events,
2038 		struct timespec64 *ts)
2039 {
2040 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2041 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2042 	long ret = -EINVAL;
2043 
2044 	if (likely(ioctx)) {
2045 		if (likely(min_nr <= nr && min_nr >= 0))
2046 			ret = read_events(ioctx, min_nr, nr, events, until);
2047 		percpu_ref_put(&ioctx->users);
2048 	}
2049 
2050 	return ret;
2051 }
2052 
2053 /* io_getevents:
2054  *	Attempts to read at least min_nr events and up to nr events from
2055  *	the completion queue for the aio_context specified by ctx_id. If
2056  *	it succeeds, the number of read events is returned. May fail with
2057  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2058  *	out of range, if timeout is out of range.  May fail with -EFAULT
2059  *	if any of the memory specified is invalid.  May return 0 or
2060  *	< min_nr if the timeout specified by timeout has elapsed
2061  *	before sufficient events are available, where timeout == NULL
2062  *	specifies an infinite timeout. Note that the timeout pointed to by
2063  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2064  */
SYSCALL_DEFINE5(io_getevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout)2065 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2066 		long, min_nr,
2067 		long, nr,
2068 		struct io_event __user *, events,
2069 		struct timespec __user *, timeout)
2070 {
2071 	struct timespec64	ts;
2072 	int			ret;
2073 
2074 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2075 		return -EFAULT;
2076 
2077 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2078 	if (!ret && signal_pending(current))
2079 		ret = -EINTR;
2080 	return ret;
2081 }
2082 
2083 struct __aio_sigset {
2084 	const sigset_t __user	*sigmask;
2085 	size_t		sigsetsize;
2086 };
2087 
SYSCALL_DEFINE6(io_pgetevents,aio_context_t,ctx_id,long,min_nr,long,nr,struct io_event __user *,events,struct timespec __user *,timeout,const struct __aio_sigset __user *,usig)2088 SYSCALL_DEFINE6(io_pgetevents,
2089 		aio_context_t, ctx_id,
2090 		long, min_nr,
2091 		long, nr,
2092 		struct io_event __user *, events,
2093 		struct timespec __user *, timeout,
2094 		const struct __aio_sigset __user *, usig)
2095 {
2096 	struct __aio_sigset	ksig = { NULL, };
2097 	sigset_t		ksigmask, sigsaved;
2098 	struct timespec64	ts;
2099 	int ret;
2100 
2101 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2102 		return -EFAULT;
2103 
2104 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2105 		return -EFAULT;
2106 
2107 	if (ksig.sigmask) {
2108 		if (ksig.sigsetsize != sizeof(sigset_t))
2109 			return -EINVAL;
2110 		if (copy_from_user(&ksigmask, ksig.sigmask, sizeof(ksigmask)))
2111 			return -EFAULT;
2112 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2113 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2114 	}
2115 
2116 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2117 	if (signal_pending(current)) {
2118 		if (ksig.sigmask) {
2119 			current->saved_sigmask = sigsaved;
2120 			set_restore_sigmask();
2121 		}
2122 
2123 		if (!ret)
2124 			ret = -ERESTARTNOHAND;
2125 	} else {
2126 		if (ksig.sigmask)
2127 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2128 	}
2129 
2130 	return ret;
2131 }
2132 
2133 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE5(io_getevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct compat_timespec __user *,timeout)2134 COMPAT_SYSCALL_DEFINE5(io_getevents, compat_aio_context_t, ctx_id,
2135 		       compat_long_t, min_nr,
2136 		       compat_long_t, nr,
2137 		       struct io_event __user *, events,
2138 		       struct compat_timespec __user *, timeout)
2139 {
2140 	struct timespec64 t;
2141 	int ret;
2142 
2143 	if (timeout && compat_get_timespec64(&t, timeout))
2144 		return -EFAULT;
2145 
2146 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2147 	if (!ret && signal_pending(current))
2148 		ret = -EINTR;
2149 	return ret;
2150 }
2151 
2152 
2153 struct __compat_aio_sigset {
2154 	compat_sigset_t __user	*sigmask;
2155 	compat_size_t		sigsetsize;
2156 };
2157 
COMPAT_SYSCALL_DEFINE6(io_pgetevents,compat_aio_context_t,ctx_id,compat_long_t,min_nr,compat_long_t,nr,struct io_event __user *,events,struct compat_timespec __user *,timeout,const struct __compat_aio_sigset __user *,usig)2158 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2159 		compat_aio_context_t, ctx_id,
2160 		compat_long_t, min_nr,
2161 		compat_long_t, nr,
2162 		struct io_event __user *, events,
2163 		struct compat_timespec __user *, timeout,
2164 		const struct __compat_aio_sigset __user *, usig)
2165 {
2166 	struct __compat_aio_sigset ksig = { NULL, };
2167 	sigset_t ksigmask, sigsaved;
2168 	struct timespec64 t;
2169 	int ret;
2170 
2171 	if (timeout && compat_get_timespec64(&t, timeout))
2172 		return -EFAULT;
2173 
2174 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2175 		return -EFAULT;
2176 
2177 	if (ksig.sigmask) {
2178 		if (ksig.sigsetsize != sizeof(compat_sigset_t))
2179 			return -EINVAL;
2180 		if (get_compat_sigset(&ksigmask, ksig.sigmask))
2181 			return -EFAULT;
2182 		sigdelsetmask(&ksigmask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2183 		sigprocmask(SIG_SETMASK, &ksigmask, &sigsaved);
2184 	}
2185 
2186 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2187 	if (signal_pending(current)) {
2188 		if (ksig.sigmask) {
2189 			current->saved_sigmask = sigsaved;
2190 			set_restore_sigmask();
2191 		}
2192 		if (!ret)
2193 			ret = -ERESTARTNOHAND;
2194 	} else {
2195 		if (ksig.sigmask)
2196 			sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2197 	}
2198 
2199 	return ret;
2200 }
2201 #endif
2202