1 // SPDX-License-Identifier: GPL-2.0+
2 /* Faraday FOTG210 EHCI-like driver
3  *
4  * Copyright (c) 2013 Faraday Technology Corporation
5  *
6  * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
7  *	   Feng-Hsin Chiang <john453@faraday-tech.com>
8  *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
9  *
10  * Most of code borrowed from the Linux-3.7 EHCI driver
11  */
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/dmapool.h>
15 #include <linux/kernel.h>
16 #include <linux/delay.h>
17 #include <linux/ioport.h>
18 #include <linux/sched.h>
19 #include <linux/vmalloc.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/hrtimer.h>
23 #include <linux/list.h>
24 #include <linux/interrupt.h>
25 #include <linux/usb.h>
26 #include <linux/usb/hcd.h>
27 #include <linux/moduleparam.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/debugfs.h>
30 #include <linux/slab.h>
31 #include <linux/uaccess.h>
32 #include <linux/platform_device.h>
33 #include <linux/io.h>
34 
35 #include <asm/byteorder.h>
36 #include <asm/irq.h>
37 #include <asm/unaligned.h>
38 
39 #define DRIVER_AUTHOR "Yuan-Hsin Chen"
40 #define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
41 static const char hcd_name[] = "fotg210_hcd";
42 
43 #undef FOTG210_URB_TRACE
44 #define FOTG210_STATS
45 
46 /* magic numbers that can affect system performance */
47 #define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
48 #define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
49 #define FOTG210_TUNE_RL_TT	0
50 #define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
51 #define FOTG210_TUNE_MULT_TT	1
52 
53 /* Some drivers think it's safe to schedule isochronous transfers more than 256
54  * ms into the future (partly as a result of an old bug in the scheduling
55  * code).  In an attempt to avoid trouble, we will use a minimum scheduling
56  * length of 512 frames instead of 256.
57  */
58 #define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
59 
60 /* Initial IRQ latency:  faster than hw default */
61 static int log2_irq_thresh; /* 0 to 6 */
62 module_param(log2_irq_thresh, int, S_IRUGO);
63 MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
64 
65 /* initial park setting:  slower than hw default */
66 static unsigned park;
67 module_param(park, uint, S_IRUGO);
68 MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
69 
70 /* for link power management(LPM) feature */
71 static unsigned int hird;
72 module_param(hird, int, S_IRUGO);
73 MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
74 
75 #define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
76 
77 #include "fotg210.h"
78 
79 #define fotg210_dbg(fotg210, fmt, args...) \
80 	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
81 #define fotg210_err(fotg210, fmt, args...) \
82 	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
83 #define fotg210_info(fotg210, fmt, args...) \
84 	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
85 #define fotg210_warn(fotg210, fmt, args...) \
86 	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
87 
88 /* check the values in the HCSPARAMS register (host controller _Structural_
89  * parameters) see EHCI spec, Table 2-4 for each value
90  */
dbg_hcs_params(struct fotg210_hcd * fotg210,char * label)91 static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
92 {
93 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
94 
95 	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
96 			HCS_N_PORTS(params));
97 }
98 
99 /* check the values in the HCCPARAMS register (host controller _Capability_
100  * parameters) see EHCI Spec, Table 2-5 for each value
101  */
dbg_hcc_params(struct fotg210_hcd * fotg210,char * label)102 static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
103 {
104 	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
105 
106 	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
107 			params,
108 			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
109 			HCC_CANPARK(params) ? " park" : "");
110 }
111 
112 static void __maybe_unused
dbg_qtd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)113 dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
114 {
115 	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
116 			hc32_to_cpup(fotg210, &qtd->hw_next),
117 			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
118 			hc32_to_cpup(fotg210, &qtd->hw_token),
119 			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
120 	if (qtd->hw_buf[1])
121 		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
122 				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
123 				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
124 				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
125 				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
126 }
127 
128 static void __maybe_unused
dbg_qh(const char * label,struct fotg210_hcd * fotg210,struct fotg210_qh * qh)129 dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
130 {
131 	struct fotg210_qh_hw *hw = qh->hw;
132 
133 	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
134 			hw->hw_next, hw->hw_info1, hw->hw_info2,
135 			hw->hw_current);
136 
137 	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
138 }
139 
140 static void __maybe_unused
dbg_itd(const char * label,struct fotg210_hcd * fotg210,struct fotg210_itd * itd)141 dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
142 {
143 	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
144 			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
145 			itd->urb);
146 
147 	fotg210_dbg(fotg210,
148 			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
149 			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
150 			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
151 			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
152 			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
153 			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
154 			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
155 			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
156 			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
157 
158 	fotg210_dbg(fotg210,
159 			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
160 			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
161 			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
162 			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
163 			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
164 			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
165 			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
166 			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
167 
168 	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
169 			itd->index[0], itd->index[1], itd->index[2],
170 			itd->index[3], itd->index[4], itd->index[5],
171 			itd->index[6], itd->index[7]);
172 }
173 
174 static int __maybe_unused
dbg_status_buf(char * buf,unsigned len,const char * label,u32 status)175 dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
176 {
177 	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
178 			label, label[0] ? " " : "", status,
179 			(status & STS_ASS) ? " Async" : "",
180 			(status & STS_PSS) ? " Periodic" : "",
181 			(status & STS_RECL) ? " Recl" : "",
182 			(status & STS_HALT) ? " Halt" : "",
183 			(status & STS_IAA) ? " IAA" : "",
184 			(status & STS_FATAL) ? " FATAL" : "",
185 			(status & STS_FLR) ? " FLR" : "",
186 			(status & STS_PCD) ? " PCD" : "",
187 			(status & STS_ERR) ? " ERR" : "",
188 			(status & STS_INT) ? " INT" : "");
189 }
190 
191 static int __maybe_unused
dbg_intr_buf(char * buf,unsigned len,const char * label,u32 enable)192 dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
193 {
194 	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
195 			label, label[0] ? " " : "", enable,
196 			(enable & STS_IAA) ? " IAA" : "",
197 			(enable & STS_FATAL) ? " FATAL" : "",
198 			(enable & STS_FLR) ? " FLR" : "",
199 			(enable & STS_PCD) ? " PCD" : "",
200 			(enable & STS_ERR) ? " ERR" : "",
201 			(enable & STS_INT) ? " INT" : "");
202 }
203 
204 static const char *const fls_strings[] = { "1024", "512", "256", "??" };
205 
dbg_command_buf(char * buf,unsigned len,const char * label,u32 command)206 static int dbg_command_buf(char *buf, unsigned len, const char *label,
207 		u32 command)
208 {
209 	return scnprintf(buf, len,
210 			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
211 			label, label[0] ? " " : "", command,
212 			(command & CMD_PARK) ? " park" : "(park)",
213 			CMD_PARK_CNT(command),
214 			(command >> 16) & 0x3f,
215 			(command & CMD_IAAD) ? " IAAD" : "",
216 			(command & CMD_ASE) ? " Async" : "",
217 			(command & CMD_PSE) ? " Periodic" : "",
218 			fls_strings[(command >> 2) & 0x3],
219 			(command & CMD_RESET) ? " Reset" : "",
220 			(command & CMD_RUN) ? "RUN" : "HALT");
221 }
222 
dbg_port_buf(char * buf,unsigned len,const char * label,int port,u32 status)223 static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
224 		u32 status)
225 {
226 	char *sig;
227 
228 	/* signaling state */
229 	switch (status & (3 << 10)) {
230 	case 0 << 10:
231 		sig = "se0";
232 		break;
233 	case 1 << 10:
234 		sig = "k";
235 		break; /* low speed */
236 	case 2 << 10:
237 		sig = "j";
238 		break;
239 	default:
240 		sig = "?";
241 		break;
242 	}
243 
244 	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
245 			label, label[0] ? " " : "", port, status,
246 			status >> 25, /*device address */
247 			sig,
248 			(status & PORT_RESET) ? " RESET" : "",
249 			(status & PORT_SUSPEND) ? " SUSPEND" : "",
250 			(status & PORT_RESUME) ? " RESUME" : "",
251 			(status & PORT_PEC) ? " PEC" : "",
252 			(status & PORT_PE) ? " PE" : "",
253 			(status & PORT_CSC) ? " CSC" : "",
254 			(status & PORT_CONNECT) ? " CONNECT" : "");
255 
256 	return buf;
257 }
258 
259 /* functions have the "wrong" filename when they're output... */
260 #define dbg_status(fotg210, label, status) {			\
261 	char _buf[80];						\
262 	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
263 	fotg210_dbg(fotg210, "%s\n", _buf);			\
264 }
265 
266 #define dbg_cmd(fotg210, label, command) {			\
267 	char _buf[80];						\
268 	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
269 	fotg210_dbg(fotg210, "%s\n", _buf);			\
270 }
271 
272 #define dbg_port(fotg210, label, port, status) {			       \
273 	char _buf[80];							       \
274 	fotg210_dbg(fotg210, "%s\n",					       \
275 			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
276 }
277 
278 /* troubleshooting help: expose state in debugfs */
279 static int debug_async_open(struct inode *, struct file *);
280 static int debug_periodic_open(struct inode *, struct file *);
281 static int debug_registers_open(struct inode *, struct file *);
282 static int debug_async_open(struct inode *, struct file *);
283 
284 static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
285 static int debug_close(struct inode *, struct file *);
286 
287 static const struct file_operations debug_async_fops = {
288 	.owner		= THIS_MODULE,
289 	.open		= debug_async_open,
290 	.read		= debug_output,
291 	.release	= debug_close,
292 	.llseek		= default_llseek,
293 };
294 static const struct file_operations debug_periodic_fops = {
295 	.owner		= THIS_MODULE,
296 	.open		= debug_periodic_open,
297 	.read		= debug_output,
298 	.release	= debug_close,
299 	.llseek		= default_llseek,
300 };
301 static const struct file_operations debug_registers_fops = {
302 	.owner		= THIS_MODULE,
303 	.open		= debug_registers_open,
304 	.read		= debug_output,
305 	.release	= debug_close,
306 	.llseek		= default_llseek,
307 };
308 
309 static struct dentry *fotg210_debug_root;
310 
311 struct debug_buffer {
312 	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
313 	struct usb_bus *bus;
314 	struct mutex mutex;	/* protect filling of buffer */
315 	size_t count;		/* number of characters filled into buffer */
316 	char *output_buf;
317 	size_t alloc_size;
318 };
319 
speed_char(u32 scratch)320 static inline char speed_char(u32 scratch)
321 {
322 	switch (scratch & (3 << 12)) {
323 	case QH_FULL_SPEED:
324 		return 'f';
325 
326 	case QH_LOW_SPEED:
327 		return 'l';
328 
329 	case QH_HIGH_SPEED:
330 		return 'h';
331 
332 	default:
333 		return '?';
334 	}
335 }
336 
token_mark(struct fotg210_hcd * fotg210,__hc32 token)337 static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
338 {
339 	__u32 v = hc32_to_cpu(fotg210, token);
340 
341 	if (v & QTD_STS_ACTIVE)
342 		return '*';
343 	if (v & QTD_STS_HALT)
344 		return '-';
345 	if (!IS_SHORT_READ(v))
346 		return ' ';
347 	/* tries to advance through hw_alt_next */
348 	return '/';
349 }
350 
qh_lines(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,char ** nextp,unsigned * sizep)351 static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
352 		char **nextp, unsigned *sizep)
353 {
354 	u32 scratch;
355 	u32 hw_curr;
356 	struct fotg210_qtd *td;
357 	unsigned temp;
358 	unsigned size = *sizep;
359 	char *next = *nextp;
360 	char mark;
361 	__le32 list_end = FOTG210_LIST_END(fotg210);
362 	struct fotg210_qh_hw *hw = qh->hw;
363 
364 	if (hw->hw_qtd_next == list_end) /* NEC does this */
365 		mark = '@';
366 	else
367 		mark = token_mark(fotg210, hw->hw_token);
368 	if (mark == '/') { /* qh_alt_next controls qh advance? */
369 		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
370 		    fotg210->async->hw->hw_alt_next)
371 			mark = '#'; /* blocked */
372 		else if (hw->hw_alt_next == list_end)
373 			mark = '.'; /* use hw_qtd_next */
374 		/* else alt_next points to some other qtd */
375 	}
376 	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
377 	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
378 	temp = scnprintf(next, size,
379 			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
380 			qh, scratch & 0x007f,
381 			speed_char(scratch),
382 			(scratch >> 8) & 0x000f,
383 			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
384 			hc32_to_cpup(fotg210, &hw->hw_token), mark,
385 			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
386 				? "data1" : "data0",
387 			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
388 	size -= temp;
389 	next += temp;
390 
391 	/* hc may be modifying the list as we read it ... */
392 	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
393 		scratch = hc32_to_cpup(fotg210, &td->hw_token);
394 		mark = ' ';
395 		if (hw_curr == td->qtd_dma)
396 			mark = '*';
397 		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
398 			mark = '+';
399 		else if (QTD_LENGTH(scratch)) {
400 			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
401 				mark = '#';
402 			else if (td->hw_alt_next != list_end)
403 				mark = '/';
404 		}
405 		temp = snprintf(next, size,
406 				"\n\t%p%c%s len=%d %08x urb %p",
407 				td, mark, ({ char *tmp;
408 				 switch ((scratch>>8)&0x03) {
409 				 case 0:
410 					tmp = "out";
411 					break;
412 				 case 1:
413 					tmp = "in";
414 					break;
415 				 case 2:
416 					tmp = "setup";
417 					break;
418 				 default:
419 					tmp = "?";
420 					break;
421 				 } tmp; }),
422 				(scratch >> 16) & 0x7fff,
423 				scratch,
424 				td->urb);
425 		if (size < temp)
426 			temp = size;
427 		size -= temp;
428 		next += temp;
429 		if (temp == size)
430 			goto done;
431 	}
432 
433 	temp = snprintf(next, size, "\n");
434 	if (size < temp)
435 		temp = size;
436 
437 	size -= temp;
438 	next += temp;
439 
440 done:
441 	*sizep = size;
442 	*nextp = next;
443 }
444 
fill_async_buffer(struct debug_buffer * buf)445 static ssize_t fill_async_buffer(struct debug_buffer *buf)
446 {
447 	struct usb_hcd *hcd;
448 	struct fotg210_hcd *fotg210;
449 	unsigned long flags;
450 	unsigned temp, size;
451 	char *next;
452 	struct fotg210_qh *qh;
453 
454 	hcd = bus_to_hcd(buf->bus);
455 	fotg210 = hcd_to_fotg210(hcd);
456 	next = buf->output_buf;
457 	size = buf->alloc_size;
458 
459 	*next = 0;
460 
461 	/* dumps a snapshot of the async schedule.
462 	 * usually empty except for long-term bulk reads, or head.
463 	 * one QH per line, and TDs we know about
464 	 */
465 	spin_lock_irqsave(&fotg210->lock, flags);
466 	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
467 			qh = qh->qh_next.qh)
468 		qh_lines(fotg210, qh, &next, &size);
469 	if (fotg210->async_unlink && size > 0) {
470 		temp = scnprintf(next, size, "\nunlink =\n");
471 		size -= temp;
472 		next += temp;
473 
474 		for (qh = fotg210->async_unlink; size > 0 && qh;
475 				qh = qh->unlink_next)
476 			qh_lines(fotg210, qh, &next, &size);
477 	}
478 	spin_unlock_irqrestore(&fotg210->lock, flags);
479 
480 	return strlen(buf->output_buf);
481 }
482 
483 /* count tds, get ep direction */
output_buf_tds_dir(char * buf,struct fotg210_hcd * fotg210,struct fotg210_qh_hw * hw,struct fotg210_qh * qh,unsigned size)484 static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
485 		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
486 {
487 	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
488 	struct fotg210_qtd *qtd;
489 	char *type = "";
490 	unsigned temp = 0;
491 
492 	/* count tds, get ep direction */
493 	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
494 		temp++;
495 		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
496 		case 0:
497 			type = "out";
498 			continue;
499 		case 1:
500 			type = "in";
501 			continue;
502 		}
503 	}
504 
505 	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
506 			speed_char(scratch), scratch & 0x007f,
507 			(scratch >> 8) & 0x000f, type, qh->usecs,
508 			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
509 }
510 
511 #define DBG_SCHED_LIMIT 64
fill_periodic_buffer(struct debug_buffer * buf)512 static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
513 {
514 	struct usb_hcd *hcd;
515 	struct fotg210_hcd *fotg210;
516 	unsigned long flags;
517 	union fotg210_shadow p, *seen;
518 	unsigned temp, size, seen_count;
519 	char *next;
520 	unsigned i;
521 	__hc32 tag;
522 
523 	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
524 	if (!seen)
525 		return 0;
526 
527 	seen_count = 0;
528 
529 	hcd = bus_to_hcd(buf->bus);
530 	fotg210 = hcd_to_fotg210(hcd);
531 	next = buf->output_buf;
532 	size = buf->alloc_size;
533 
534 	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
535 	size -= temp;
536 	next += temp;
537 
538 	/* dump a snapshot of the periodic schedule.
539 	 * iso changes, interrupt usually doesn't.
540 	 */
541 	spin_lock_irqsave(&fotg210->lock, flags);
542 	for (i = 0; i < fotg210->periodic_size; i++) {
543 		p = fotg210->pshadow[i];
544 		if (likely(!p.ptr))
545 			continue;
546 
547 		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
548 
549 		temp = scnprintf(next, size, "%4d: ", i);
550 		size -= temp;
551 		next += temp;
552 
553 		do {
554 			struct fotg210_qh_hw *hw;
555 
556 			switch (hc32_to_cpu(fotg210, tag)) {
557 			case Q_TYPE_QH:
558 				hw = p.qh->hw;
559 				temp = scnprintf(next, size, " qh%d-%04x/%p",
560 						p.qh->period,
561 						hc32_to_cpup(fotg210,
562 							&hw->hw_info2)
563 							/* uframe masks */
564 							& (QH_CMASK | QH_SMASK),
565 						p.qh);
566 				size -= temp;
567 				next += temp;
568 				/* don't repeat what follows this qh */
569 				for (temp = 0; temp < seen_count; temp++) {
570 					if (seen[temp].ptr != p.ptr)
571 						continue;
572 					if (p.qh->qh_next.ptr) {
573 						temp = scnprintf(next, size,
574 								" ...");
575 						size -= temp;
576 						next += temp;
577 					}
578 					break;
579 				}
580 				/* show more info the first time around */
581 				if (temp == seen_count) {
582 					temp = output_buf_tds_dir(next,
583 							fotg210, hw,
584 							p.qh, size);
585 
586 					if (seen_count < DBG_SCHED_LIMIT)
587 						seen[seen_count++].qh = p.qh;
588 				} else
589 					temp = 0;
590 				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
591 				p = p.qh->qh_next;
592 				break;
593 			case Q_TYPE_FSTN:
594 				temp = scnprintf(next, size,
595 						" fstn-%8x/%p",
596 						p.fstn->hw_prev, p.fstn);
597 				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
598 				p = p.fstn->fstn_next;
599 				break;
600 			case Q_TYPE_ITD:
601 				temp = scnprintf(next, size,
602 						" itd/%p", p.itd);
603 				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
604 				p = p.itd->itd_next;
605 				break;
606 			}
607 			size -= temp;
608 			next += temp;
609 		} while (p.ptr);
610 
611 		temp = scnprintf(next, size, "\n");
612 		size -= temp;
613 		next += temp;
614 	}
615 	spin_unlock_irqrestore(&fotg210->lock, flags);
616 	kfree(seen);
617 
618 	return buf->alloc_size - size;
619 }
620 #undef DBG_SCHED_LIMIT
621 
rh_state_string(struct fotg210_hcd * fotg210)622 static const char *rh_state_string(struct fotg210_hcd *fotg210)
623 {
624 	switch (fotg210->rh_state) {
625 	case FOTG210_RH_HALTED:
626 		return "halted";
627 	case FOTG210_RH_SUSPENDED:
628 		return "suspended";
629 	case FOTG210_RH_RUNNING:
630 		return "running";
631 	case FOTG210_RH_STOPPING:
632 		return "stopping";
633 	}
634 	return "?";
635 }
636 
fill_registers_buffer(struct debug_buffer * buf)637 static ssize_t fill_registers_buffer(struct debug_buffer *buf)
638 {
639 	struct usb_hcd *hcd;
640 	struct fotg210_hcd *fotg210;
641 	unsigned long flags;
642 	unsigned temp, size, i;
643 	char *next, scratch[80];
644 	static const char fmt[] = "%*s\n";
645 	static const char label[] = "";
646 
647 	hcd = bus_to_hcd(buf->bus);
648 	fotg210 = hcd_to_fotg210(hcd);
649 	next = buf->output_buf;
650 	size = buf->alloc_size;
651 
652 	spin_lock_irqsave(&fotg210->lock, flags);
653 
654 	if (!HCD_HW_ACCESSIBLE(hcd)) {
655 		size = scnprintf(next, size,
656 				"bus %s, device %s\n"
657 				"%s\n"
658 				"SUSPENDED(no register access)\n",
659 				hcd->self.controller->bus->name,
660 				dev_name(hcd->self.controller),
661 				hcd->product_desc);
662 		goto done;
663 	}
664 
665 	/* Capability Registers */
666 	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
667 			&fotg210->caps->hc_capbase));
668 	temp = scnprintf(next, size,
669 			"bus %s, device %s\n"
670 			"%s\n"
671 			"EHCI %x.%02x, rh state %s\n",
672 			hcd->self.controller->bus->name,
673 			dev_name(hcd->self.controller),
674 			hcd->product_desc,
675 			i >> 8, i & 0x0ff, rh_state_string(fotg210));
676 	size -= temp;
677 	next += temp;
678 
679 	/* FIXME interpret both types of params */
680 	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
681 	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
682 	size -= temp;
683 	next += temp;
684 
685 	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
686 	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
687 	size -= temp;
688 	next += temp;
689 
690 	/* Operational Registers */
691 	temp = dbg_status_buf(scratch, sizeof(scratch), label,
692 			fotg210_readl(fotg210, &fotg210->regs->status));
693 	temp = scnprintf(next, size, fmt, temp, scratch);
694 	size -= temp;
695 	next += temp;
696 
697 	temp = dbg_command_buf(scratch, sizeof(scratch), label,
698 			fotg210_readl(fotg210, &fotg210->regs->command));
699 	temp = scnprintf(next, size, fmt, temp, scratch);
700 	size -= temp;
701 	next += temp;
702 
703 	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
704 			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
705 	temp = scnprintf(next, size, fmt, temp, scratch);
706 	size -= temp;
707 	next += temp;
708 
709 	temp = scnprintf(next, size, "uframe %04x\n",
710 			fotg210_read_frame_index(fotg210));
711 	size -= temp;
712 	next += temp;
713 
714 	if (fotg210->async_unlink) {
715 		temp = scnprintf(next, size, "async unlink qh %p\n",
716 				fotg210->async_unlink);
717 		size -= temp;
718 		next += temp;
719 	}
720 
721 #ifdef FOTG210_STATS
722 	temp = scnprintf(next, size,
723 			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
724 			fotg210->stats.normal, fotg210->stats.error,
725 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
726 	size -= temp;
727 	next += temp;
728 
729 	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
730 			fotg210->stats.complete, fotg210->stats.unlink);
731 	size -= temp;
732 	next += temp;
733 #endif
734 
735 done:
736 	spin_unlock_irqrestore(&fotg210->lock, flags);
737 
738 	return buf->alloc_size - size;
739 }
740 
741 static struct debug_buffer
alloc_buffer(struct usb_bus * bus,ssize_t (* fill_func)(struct debug_buffer *))742 *alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
743 {
744 	struct debug_buffer *buf;
745 
746 	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
747 
748 	if (buf) {
749 		buf->bus = bus;
750 		buf->fill_func = fill_func;
751 		mutex_init(&buf->mutex);
752 		buf->alloc_size = PAGE_SIZE;
753 	}
754 
755 	return buf;
756 }
757 
fill_buffer(struct debug_buffer * buf)758 static int fill_buffer(struct debug_buffer *buf)
759 {
760 	int ret = 0;
761 
762 	if (!buf->output_buf)
763 		buf->output_buf = vmalloc(buf->alloc_size);
764 
765 	if (!buf->output_buf) {
766 		ret = -ENOMEM;
767 		goto out;
768 	}
769 
770 	ret = buf->fill_func(buf);
771 
772 	if (ret >= 0) {
773 		buf->count = ret;
774 		ret = 0;
775 	}
776 
777 out:
778 	return ret;
779 }
780 
debug_output(struct file * file,char __user * user_buf,size_t len,loff_t * offset)781 static ssize_t debug_output(struct file *file, char __user *user_buf,
782 		size_t len, loff_t *offset)
783 {
784 	struct debug_buffer *buf = file->private_data;
785 	int ret = 0;
786 
787 	mutex_lock(&buf->mutex);
788 	if (buf->count == 0) {
789 		ret = fill_buffer(buf);
790 		if (ret != 0) {
791 			mutex_unlock(&buf->mutex);
792 			goto out;
793 		}
794 	}
795 	mutex_unlock(&buf->mutex);
796 
797 	ret = simple_read_from_buffer(user_buf, len, offset,
798 			buf->output_buf, buf->count);
799 
800 out:
801 	return ret;
802 
803 }
804 
debug_close(struct inode * inode,struct file * file)805 static int debug_close(struct inode *inode, struct file *file)
806 {
807 	struct debug_buffer *buf = file->private_data;
808 
809 	if (buf) {
810 		vfree(buf->output_buf);
811 		kfree(buf);
812 	}
813 
814 	return 0;
815 }
debug_async_open(struct inode * inode,struct file * file)816 static int debug_async_open(struct inode *inode, struct file *file)
817 {
818 	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
819 
820 	return file->private_data ? 0 : -ENOMEM;
821 }
822 
debug_periodic_open(struct inode * inode,struct file * file)823 static int debug_periodic_open(struct inode *inode, struct file *file)
824 {
825 	struct debug_buffer *buf;
826 
827 	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
828 	if (!buf)
829 		return -ENOMEM;
830 
831 	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
832 	file->private_data = buf;
833 	return 0;
834 }
835 
debug_registers_open(struct inode * inode,struct file * file)836 static int debug_registers_open(struct inode *inode, struct file *file)
837 {
838 	file->private_data = alloc_buffer(inode->i_private,
839 			fill_registers_buffer);
840 
841 	return file->private_data ? 0 : -ENOMEM;
842 }
843 
create_debug_files(struct fotg210_hcd * fotg210)844 static inline void create_debug_files(struct fotg210_hcd *fotg210)
845 {
846 	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
847 	struct dentry *root;
848 
849 	root = debugfs_create_dir(bus->bus_name, fotg210_debug_root);
850 	fotg210->debug_dir = root;
851 
852 	debugfs_create_file("async", S_IRUGO, root, bus, &debug_async_fops);
853 	debugfs_create_file("periodic", S_IRUGO, root, bus,
854 			    &debug_periodic_fops);
855 	debugfs_create_file("registers", S_IRUGO, root, bus,
856 			    &debug_registers_fops);
857 }
858 
remove_debug_files(struct fotg210_hcd * fotg210)859 static inline void remove_debug_files(struct fotg210_hcd *fotg210)
860 {
861 	debugfs_remove_recursive(fotg210->debug_dir);
862 }
863 
864 /* handshake - spin reading hc until handshake completes or fails
865  * @ptr: address of hc register to be read
866  * @mask: bits to look at in result of read
867  * @done: value of those bits when handshake succeeds
868  * @usec: timeout in microseconds
869  *
870  * Returns negative errno, or zero on success
871  *
872  * Success happens when the "mask" bits have the specified value (hardware
873  * handshake done).  There are two failure modes:  "usec" have passed (major
874  * hardware flakeout), or the register reads as all-ones (hardware removed).
875  *
876  * That last failure should_only happen in cases like physical cardbus eject
877  * before driver shutdown. But it also seems to be caused by bugs in cardbus
878  * bridge shutdown:  shutting down the bridge before the devices using it.
879  */
handshake(struct fotg210_hcd * fotg210,void __iomem * ptr,u32 mask,u32 done,int usec)880 static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
881 		u32 mask, u32 done, int usec)
882 {
883 	u32 result;
884 
885 	do {
886 		result = fotg210_readl(fotg210, ptr);
887 		if (result == ~(u32)0)		/* card removed */
888 			return -ENODEV;
889 		result &= mask;
890 		if (result == done)
891 			return 0;
892 		udelay(1);
893 		usec--;
894 	} while (usec > 0);
895 	return -ETIMEDOUT;
896 }
897 
898 /* Force HC to halt state from unknown (EHCI spec section 2.3).
899  * Must be called with interrupts enabled and the lock not held.
900  */
fotg210_halt(struct fotg210_hcd * fotg210)901 static int fotg210_halt(struct fotg210_hcd *fotg210)
902 {
903 	u32 temp;
904 
905 	spin_lock_irq(&fotg210->lock);
906 
907 	/* disable any irqs left enabled by previous code */
908 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
909 
910 	/*
911 	 * This routine gets called during probe before fotg210->command
912 	 * has been initialized, so we can't rely on its value.
913 	 */
914 	fotg210->command &= ~CMD_RUN;
915 	temp = fotg210_readl(fotg210, &fotg210->regs->command);
916 	temp &= ~(CMD_RUN | CMD_IAAD);
917 	fotg210_writel(fotg210, temp, &fotg210->regs->command);
918 
919 	spin_unlock_irq(&fotg210->lock);
920 	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
921 
922 	return handshake(fotg210, &fotg210->regs->status,
923 			STS_HALT, STS_HALT, 16 * 125);
924 }
925 
926 /* Reset a non-running (STS_HALT == 1) controller.
927  * Must be called with interrupts enabled and the lock not held.
928  */
fotg210_reset(struct fotg210_hcd * fotg210)929 static int fotg210_reset(struct fotg210_hcd *fotg210)
930 {
931 	int retval;
932 	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
933 
934 	/* If the EHCI debug controller is active, special care must be
935 	 * taken before and after a host controller reset
936 	 */
937 	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
938 		fotg210->debug = NULL;
939 
940 	command |= CMD_RESET;
941 	dbg_cmd(fotg210, "reset", command);
942 	fotg210_writel(fotg210, command, &fotg210->regs->command);
943 	fotg210->rh_state = FOTG210_RH_HALTED;
944 	fotg210->next_statechange = jiffies;
945 	retval = handshake(fotg210, &fotg210->regs->command,
946 			CMD_RESET, 0, 250 * 1000);
947 
948 	if (retval)
949 		return retval;
950 
951 	if (fotg210->debug)
952 		dbgp_external_startup(fotg210_to_hcd(fotg210));
953 
954 	fotg210->port_c_suspend = fotg210->suspended_ports =
955 			fotg210->resuming_ports = 0;
956 	return retval;
957 }
958 
959 /* Idle the controller (turn off the schedules).
960  * Must be called with interrupts enabled and the lock not held.
961  */
fotg210_quiesce(struct fotg210_hcd * fotg210)962 static void fotg210_quiesce(struct fotg210_hcd *fotg210)
963 {
964 	u32 temp;
965 
966 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
967 		return;
968 
969 	/* wait for any schedule enables/disables to take effect */
970 	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
971 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
972 			16 * 125);
973 
974 	/* then disable anything that's still active */
975 	spin_lock_irq(&fotg210->lock);
976 	fotg210->command &= ~(CMD_ASE | CMD_PSE);
977 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
978 	spin_unlock_irq(&fotg210->lock);
979 
980 	/* hardware can take 16 microframes to turn off ... */
981 	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
982 			16 * 125);
983 }
984 
985 static void end_unlink_async(struct fotg210_hcd *fotg210);
986 static void unlink_empty_async(struct fotg210_hcd *fotg210);
987 static void fotg210_work(struct fotg210_hcd *fotg210);
988 static void start_unlink_intr(struct fotg210_hcd *fotg210,
989 			      struct fotg210_qh *qh);
990 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
991 
992 /* Set a bit in the USBCMD register */
fotg210_set_command_bit(struct fotg210_hcd * fotg210,u32 bit)993 static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
994 {
995 	fotg210->command |= bit;
996 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
997 
998 	/* unblock posted write */
999 	fotg210_readl(fotg210, &fotg210->regs->command);
1000 }
1001 
1002 /* Clear a bit in the USBCMD register */
fotg210_clear_command_bit(struct fotg210_hcd * fotg210,u32 bit)1003 static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1004 {
1005 	fotg210->command &= ~bit;
1006 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1007 
1008 	/* unblock posted write */
1009 	fotg210_readl(fotg210, &fotg210->regs->command);
1010 }
1011 
1012 /* EHCI timer support...  Now using hrtimers.
1013  *
1014  * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1015  * the timer routine runs, it checks each possible event; events that are
1016  * currently enabled and whose expiration time has passed get handled.
1017  * The set of enabled events is stored as a collection of bitflags in
1018  * fotg210->enabled_hrtimer_events, and they are numbered in order of
1019  * increasing delay values (ranging between 1 ms and 100 ms).
1020  *
1021  * Rather than implementing a sorted list or tree of all pending events,
1022  * we keep track only of the lowest-numbered pending event, in
1023  * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1024  * expiration time is set to the timeout value for this event.
1025  *
1026  * As a result, events might not get handled right away; the actual delay
1027  * could be anywhere up to twice the requested delay.  This doesn't
1028  * matter, because none of the events are especially time-critical.  The
1029  * ones that matter most all have a delay of 1 ms, so they will be
1030  * handled after 2 ms at most, which is okay.  In addition to this, we
1031  * allow for an expiration range of 1 ms.
1032  */
1033 
1034 /* Delay lengths for the hrtimer event types.
1035  * Keep this list sorted by delay length, in the same order as
1036  * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1037  */
1038 static unsigned event_delays_ns[] = {
1039 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1040 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1041 	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1042 	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1043 	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1044 	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1045 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1046 	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1047 	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1048 	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1049 };
1050 
1051 /* Enable a pending hrtimer event */
fotg210_enable_event(struct fotg210_hcd * fotg210,unsigned event,bool resched)1052 static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1053 		bool resched)
1054 {
1055 	ktime_t *timeout = &fotg210->hr_timeouts[event];
1056 
1057 	if (resched)
1058 		*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1059 	fotg210->enabled_hrtimer_events |= (1 << event);
1060 
1061 	/* Track only the lowest-numbered pending event */
1062 	if (event < fotg210->next_hrtimer_event) {
1063 		fotg210->next_hrtimer_event = event;
1064 		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1065 				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1066 	}
1067 }
1068 
1069 
1070 /* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
fotg210_poll_ASS(struct fotg210_hcd * fotg210)1071 static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1072 {
1073 	unsigned actual, want;
1074 
1075 	/* Don't enable anything if the controller isn't running (e.g., died) */
1076 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1077 		return;
1078 
1079 	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1080 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1081 
1082 	if (want != actual) {
1083 
1084 		/* Poll again later, but give up after about 20 ms */
1085 		if (fotg210->ASS_poll_count++ < 20) {
1086 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1087 					true);
1088 			return;
1089 		}
1090 		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1091 				want, actual);
1092 	}
1093 	fotg210->ASS_poll_count = 0;
1094 
1095 	/* The status is up-to-date; restart or stop the schedule as needed */
1096 	if (want == 0) {	/* Stopped */
1097 		if (fotg210->async_count > 0)
1098 			fotg210_set_command_bit(fotg210, CMD_ASE);
1099 
1100 	} else {		/* Running */
1101 		if (fotg210->async_count == 0) {
1102 
1103 			/* Turn off the schedule after a while */
1104 			fotg210_enable_event(fotg210,
1105 					FOTG210_HRTIMER_DISABLE_ASYNC,
1106 					true);
1107 		}
1108 	}
1109 }
1110 
1111 /* Turn off the async schedule after a brief delay */
fotg210_disable_ASE(struct fotg210_hcd * fotg210)1112 static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1113 {
1114 	fotg210_clear_command_bit(fotg210, CMD_ASE);
1115 }
1116 
1117 
1118 /* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
fotg210_poll_PSS(struct fotg210_hcd * fotg210)1119 static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1120 {
1121 	unsigned actual, want;
1122 
1123 	/* Don't do anything if the controller isn't running (e.g., died) */
1124 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1125 		return;
1126 
1127 	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1128 	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1129 
1130 	if (want != actual) {
1131 
1132 		/* Poll again later, but give up after about 20 ms */
1133 		if (fotg210->PSS_poll_count++ < 20) {
1134 			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1135 					true);
1136 			return;
1137 		}
1138 		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1139 				want, actual);
1140 	}
1141 	fotg210->PSS_poll_count = 0;
1142 
1143 	/* The status is up-to-date; restart or stop the schedule as needed */
1144 	if (want == 0) {	/* Stopped */
1145 		if (fotg210->periodic_count > 0)
1146 			fotg210_set_command_bit(fotg210, CMD_PSE);
1147 
1148 	} else {		/* Running */
1149 		if (fotg210->periodic_count == 0) {
1150 
1151 			/* Turn off the schedule after a while */
1152 			fotg210_enable_event(fotg210,
1153 					FOTG210_HRTIMER_DISABLE_PERIODIC,
1154 					true);
1155 		}
1156 	}
1157 }
1158 
1159 /* Turn off the periodic schedule after a brief delay */
fotg210_disable_PSE(struct fotg210_hcd * fotg210)1160 static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1161 {
1162 	fotg210_clear_command_bit(fotg210, CMD_PSE);
1163 }
1164 
1165 
1166 /* Poll the STS_HALT status bit; see when a dead controller stops */
fotg210_handle_controller_death(struct fotg210_hcd * fotg210)1167 static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1168 {
1169 	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1170 
1171 		/* Give up after a few milliseconds */
1172 		if (fotg210->died_poll_count++ < 5) {
1173 			/* Try again later */
1174 			fotg210_enable_event(fotg210,
1175 					FOTG210_HRTIMER_POLL_DEAD, true);
1176 			return;
1177 		}
1178 		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1179 	}
1180 
1181 	/* Clean up the mess */
1182 	fotg210->rh_state = FOTG210_RH_HALTED;
1183 	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1184 	fotg210_work(fotg210);
1185 	end_unlink_async(fotg210);
1186 
1187 	/* Not in process context, so don't try to reset the controller */
1188 }
1189 
1190 
1191 /* Handle unlinked interrupt QHs once they are gone from the hardware */
fotg210_handle_intr_unlinks(struct fotg210_hcd * fotg210)1192 static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1193 {
1194 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1195 
1196 	/*
1197 	 * Process all the QHs on the intr_unlink list that were added
1198 	 * before the current unlink cycle began.  The list is in
1199 	 * temporal order, so stop when we reach the first entry in the
1200 	 * current cycle.  But if the root hub isn't running then
1201 	 * process all the QHs on the list.
1202 	 */
1203 	fotg210->intr_unlinking = true;
1204 	while (fotg210->intr_unlink) {
1205 		struct fotg210_qh *qh = fotg210->intr_unlink;
1206 
1207 		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1208 			break;
1209 		fotg210->intr_unlink = qh->unlink_next;
1210 		qh->unlink_next = NULL;
1211 		end_unlink_intr(fotg210, qh);
1212 	}
1213 
1214 	/* Handle remaining entries later */
1215 	if (fotg210->intr_unlink) {
1216 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1217 				true);
1218 		++fotg210->intr_unlink_cycle;
1219 	}
1220 	fotg210->intr_unlinking = false;
1221 }
1222 
1223 
1224 /* Start another free-iTDs/siTDs cycle */
start_free_itds(struct fotg210_hcd * fotg210)1225 static void start_free_itds(struct fotg210_hcd *fotg210)
1226 {
1227 	if (!(fotg210->enabled_hrtimer_events &
1228 			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1229 		fotg210->last_itd_to_free = list_entry(
1230 				fotg210->cached_itd_list.prev,
1231 				struct fotg210_itd, itd_list);
1232 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1233 	}
1234 }
1235 
1236 /* Wait for controller to stop using old iTDs and siTDs */
end_free_itds(struct fotg210_hcd * fotg210)1237 static void end_free_itds(struct fotg210_hcd *fotg210)
1238 {
1239 	struct fotg210_itd *itd, *n;
1240 
1241 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1242 		fotg210->last_itd_to_free = NULL;
1243 
1244 	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1245 		list_del(&itd->itd_list);
1246 		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1247 		if (itd == fotg210->last_itd_to_free)
1248 			break;
1249 	}
1250 
1251 	if (!list_empty(&fotg210->cached_itd_list))
1252 		start_free_itds(fotg210);
1253 }
1254 
1255 
1256 /* Handle lost (or very late) IAA interrupts */
fotg210_iaa_watchdog(struct fotg210_hcd * fotg210)1257 static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1258 {
1259 	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1260 		return;
1261 
1262 	/*
1263 	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1264 	 * So we need this watchdog, but must protect it against both
1265 	 * (a) SMP races against real IAA firing and retriggering, and
1266 	 * (b) clean HC shutdown, when IAA watchdog was pending.
1267 	 */
1268 	if (fotg210->async_iaa) {
1269 		u32 cmd, status;
1270 
1271 		/* If we get here, IAA is *REALLY* late.  It's barely
1272 		 * conceivable that the system is so busy that CMD_IAAD
1273 		 * is still legitimately set, so let's be sure it's
1274 		 * clear before we read STS_IAA.  (The HC should clear
1275 		 * CMD_IAAD when it sets STS_IAA.)
1276 		 */
1277 		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1278 
1279 		/*
1280 		 * If IAA is set here it either legitimately triggered
1281 		 * after the watchdog timer expired (_way_ late, so we'll
1282 		 * still count it as lost) ... or a silicon erratum:
1283 		 * - VIA seems to set IAA without triggering the IRQ;
1284 		 * - IAAD potentially cleared without setting IAA.
1285 		 */
1286 		status = fotg210_readl(fotg210, &fotg210->regs->status);
1287 		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1288 			COUNT(fotg210->stats.lost_iaa);
1289 			fotg210_writel(fotg210, STS_IAA,
1290 					&fotg210->regs->status);
1291 		}
1292 
1293 		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1294 				status, cmd);
1295 		end_unlink_async(fotg210);
1296 	}
1297 }
1298 
1299 
1300 /* Enable the I/O watchdog, if appropriate */
turn_on_io_watchdog(struct fotg210_hcd * fotg210)1301 static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1302 {
1303 	/* Not needed if the controller isn't running or it's already enabled */
1304 	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1305 			(fotg210->enabled_hrtimer_events &
1306 			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1307 		return;
1308 
1309 	/*
1310 	 * Isochronous transfers always need the watchdog.
1311 	 * For other sorts we use it only if the flag is set.
1312 	 */
1313 	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1314 			fotg210->async_count + fotg210->intr_count > 0))
1315 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1316 				true);
1317 }
1318 
1319 
1320 /* Handler functions for the hrtimer event types.
1321  * Keep this array in the same order as the event types indexed by
1322  * enum fotg210_hrtimer_event in fotg210.h.
1323  */
1324 static void (*event_handlers[])(struct fotg210_hcd *) = {
1325 	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1326 	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1327 	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1328 	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1329 	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1330 	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1331 	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1332 	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1333 	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1334 	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1335 };
1336 
fotg210_hrtimer_func(struct hrtimer * t)1337 static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1338 {
1339 	struct fotg210_hcd *fotg210 =
1340 			container_of(t, struct fotg210_hcd, hrtimer);
1341 	ktime_t now;
1342 	unsigned long events;
1343 	unsigned long flags;
1344 	unsigned e;
1345 
1346 	spin_lock_irqsave(&fotg210->lock, flags);
1347 
1348 	events = fotg210->enabled_hrtimer_events;
1349 	fotg210->enabled_hrtimer_events = 0;
1350 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1351 
1352 	/*
1353 	 * Check each pending event.  If its time has expired, handle
1354 	 * the event; otherwise re-enable it.
1355 	 */
1356 	now = ktime_get();
1357 	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1358 		if (ktime_compare(now, fotg210->hr_timeouts[e]) >= 0)
1359 			event_handlers[e](fotg210);
1360 		else
1361 			fotg210_enable_event(fotg210, e, false);
1362 	}
1363 
1364 	spin_unlock_irqrestore(&fotg210->lock, flags);
1365 	return HRTIMER_NORESTART;
1366 }
1367 
1368 #define fotg210_bus_suspend NULL
1369 #define fotg210_bus_resume NULL
1370 
check_reset_complete(struct fotg210_hcd * fotg210,int index,u32 __iomem * status_reg,int port_status)1371 static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1372 		u32 __iomem *status_reg, int port_status)
1373 {
1374 	if (!(port_status & PORT_CONNECT))
1375 		return port_status;
1376 
1377 	/* if reset finished and it's still not enabled -- handoff */
1378 	if (!(port_status & PORT_PE))
1379 		/* with integrated TT, there's nobody to hand it to! */
1380 		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1381 				index + 1);
1382 	else
1383 		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1384 				index + 1);
1385 
1386 	return port_status;
1387 }
1388 
1389 
1390 /* build "status change" packet (one or two bytes) from HC registers */
1391 
fotg210_hub_status_data(struct usb_hcd * hcd,char * buf)1392 static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1393 {
1394 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1395 	u32 temp, status;
1396 	u32 mask;
1397 	int retval = 1;
1398 	unsigned long flags;
1399 
1400 	/* init status to no-changes */
1401 	buf[0] = 0;
1402 
1403 	/* Inform the core about resumes-in-progress by returning
1404 	 * a non-zero value even if there are no status changes.
1405 	 */
1406 	status = fotg210->resuming_ports;
1407 
1408 	mask = PORT_CSC | PORT_PEC;
1409 	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1410 
1411 	/* no hub change reports (bit 0) for now (power, ...) */
1412 
1413 	/* port N changes (bit N)? */
1414 	spin_lock_irqsave(&fotg210->lock, flags);
1415 
1416 	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1417 
1418 	/*
1419 	 * Return status information even for ports with OWNER set.
1420 	 * Otherwise hub_wq wouldn't see the disconnect event when a
1421 	 * high-speed device is switched over to the companion
1422 	 * controller by the user.
1423 	 */
1424 
1425 	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1426 			(fotg210->reset_done[0] &&
1427 			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1428 		buf[0] |= 1 << 1;
1429 		status = STS_PCD;
1430 	}
1431 	/* FIXME autosuspend idle root hubs */
1432 	spin_unlock_irqrestore(&fotg210->lock, flags);
1433 	return status ? retval : 0;
1434 }
1435 
fotg210_hub_descriptor(struct fotg210_hcd * fotg210,struct usb_hub_descriptor * desc)1436 static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1437 		struct usb_hub_descriptor *desc)
1438 {
1439 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1440 	u16 temp;
1441 
1442 	desc->bDescriptorType = USB_DT_HUB;
1443 	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1444 	desc->bHubContrCurrent = 0;
1445 
1446 	desc->bNbrPorts = ports;
1447 	temp = 1 + (ports / 8);
1448 	desc->bDescLength = 7 + 2 * temp;
1449 
1450 	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1451 	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1452 	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1453 
1454 	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1455 	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1456 	desc->wHubCharacteristics = cpu_to_le16(temp);
1457 }
1458 
fotg210_hub_control(struct usb_hcd * hcd,u16 typeReq,u16 wValue,u16 wIndex,char * buf,u16 wLength)1459 static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1460 		u16 wIndex, char *buf, u16 wLength)
1461 {
1462 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1463 	int ports = HCS_N_PORTS(fotg210->hcs_params);
1464 	u32 __iomem *status_reg = &fotg210->regs->port_status;
1465 	u32 temp, temp1, status;
1466 	unsigned long flags;
1467 	int retval = 0;
1468 	unsigned selector;
1469 
1470 	/*
1471 	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1472 	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1473 	 * (track current state ourselves) ... blink for diagnostics,
1474 	 * power, "this is the one", etc.  EHCI spec supports this.
1475 	 */
1476 
1477 	spin_lock_irqsave(&fotg210->lock, flags);
1478 	switch (typeReq) {
1479 	case ClearHubFeature:
1480 		switch (wValue) {
1481 		case C_HUB_LOCAL_POWER:
1482 		case C_HUB_OVER_CURRENT:
1483 			/* no hub-wide feature/status flags */
1484 			break;
1485 		default:
1486 			goto error;
1487 		}
1488 		break;
1489 	case ClearPortFeature:
1490 		if (!wIndex || wIndex > ports)
1491 			goto error;
1492 		wIndex--;
1493 		temp = fotg210_readl(fotg210, status_reg);
1494 		temp &= ~PORT_RWC_BITS;
1495 
1496 		/*
1497 		 * Even if OWNER is set, so the port is owned by the
1498 		 * companion controller, hub_wq needs to be able to clear
1499 		 * the port-change status bits (especially
1500 		 * USB_PORT_STAT_C_CONNECTION).
1501 		 */
1502 
1503 		switch (wValue) {
1504 		case USB_PORT_FEAT_ENABLE:
1505 			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1506 			break;
1507 		case USB_PORT_FEAT_C_ENABLE:
1508 			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1509 			break;
1510 		case USB_PORT_FEAT_SUSPEND:
1511 			if (temp & PORT_RESET)
1512 				goto error;
1513 			if (!(temp & PORT_SUSPEND))
1514 				break;
1515 			if ((temp & PORT_PE) == 0)
1516 				goto error;
1517 
1518 			/* resume signaling for 20 msec */
1519 			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1520 			fotg210->reset_done[wIndex] = jiffies
1521 					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1522 			break;
1523 		case USB_PORT_FEAT_C_SUSPEND:
1524 			clear_bit(wIndex, &fotg210->port_c_suspend);
1525 			break;
1526 		case USB_PORT_FEAT_C_CONNECTION:
1527 			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1528 			break;
1529 		case USB_PORT_FEAT_C_OVER_CURRENT:
1530 			fotg210_writel(fotg210, temp | OTGISR_OVC,
1531 					&fotg210->regs->otgisr);
1532 			break;
1533 		case USB_PORT_FEAT_C_RESET:
1534 			/* GetPortStatus clears reset */
1535 			break;
1536 		default:
1537 			goto error;
1538 		}
1539 		fotg210_readl(fotg210, &fotg210->regs->command);
1540 		break;
1541 	case GetHubDescriptor:
1542 		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1543 				buf);
1544 		break;
1545 	case GetHubStatus:
1546 		/* no hub-wide feature/status flags */
1547 		memset(buf, 0, 4);
1548 		/*cpu_to_le32s ((u32 *) buf); */
1549 		break;
1550 	case GetPortStatus:
1551 		if (!wIndex || wIndex > ports)
1552 			goto error;
1553 		wIndex--;
1554 		status = 0;
1555 		temp = fotg210_readl(fotg210, status_reg);
1556 
1557 		/* wPortChange bits */
1558 		if (temp & PORT_CSC)
1559 			status |= USB_PORT_STAT_C_CONNECTION << 16;
1560 		if (temp & PORT_PEC)
1561 			status |= USB_PORT_STAT_C_ENABLE << 16;
1562 
1563 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1564 		if (temp1 & OTGISR_OVC)
1565 			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1566 
1567 		/* whoever resumes must GetPortStatus to complete it!! */
1568 		if (temp & PORT_RESUME) {
1569 
1570 			/* Remote Wakeup received? */
1571 			if (!fotg210->reset_done[wIndex]) {
1572 				/* resume signaling for 20 msec */
1573 				fotg210->reset_done[wIndex] = jiffies
1574 						+ msecs_to_jiffies(20);
1575 				/* check the port again */
1576 				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1577 						fotg210->reset_done[wIndex]);
1578 			}
1579 
1580 			/* resume completed? */
1581 			else if (time_after_eq(jiffies,
1582 					fotg210->reset_done[wIndex])) {
1583 				clear_bit(wIndex, &fotg210->suspended_ports);
1584 				set_bit(wIndex, &fotg210->port_c_suspend);
1585 				fotg210->reset_done[wIndex] = 0;
1586 
1587 				/* stop resume signaling */
1588 				temp = fotg210_readl(fotg210, status_reg);
1589 				fotg210_writel(fotg210, temp &
1590 						~(PORT_RWC_BITS | PORT_RESUME),
1591 						status_reg);
1592 				clear_bit(wIndex, &fotg210->resuming_ports);
1593 				retval = handshake(fotg210, status_reg,
1594 						PORT_RESUME, 0, 2000);/* 2ms */
1595 				if (retval != 0) {
1596 					fotg210_err(fotg210,
1597 							"port %d resume error %d\n",
1598 							wIndex + 1, retval);
1599 					goto error;
1600 				}
1601 				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1602 			}
1603 		}
1604 
1605 		/* whoever resets must GetPortStatus to complete it!! */
1606 		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1607 				fotg210->reset_done[wIndex])) {
1608 			status |= USB_PORT_STAT_C_RESET << 16;
1609 			fotg210->reset_done[wIndex] = 0;
1610 			clear_bit(wIndex, &fotg210->resuming_ports);
1611 
1612 			/* force reset to complete */
1613 			fotg210_writel(fotg210,
1614 					temp & ~(PORT_RWC_BITS | PORT_RESET),
1615 					status_reg);
1616 			/* REVISIT:  some hardware needs 550+ usec to clear
1617 			 * this bit; seems too long to spin routinely...
1618 			 */
1619 			retval = handshake(fotg210, status_reg,
1620 					PORT_RESET, 0, 1000);
1621 			if (retval != 0) {
1622 				fotg210_err(fotg210, "port %d reset error %d\n",
1623 						wIndex + 1, retval);
1624 				goto error;
1625 			}
1626 
1627 			/* see what we found out */
1628 			temp = check_reset_complete(fotg210, wIndex, status_reg,
1629 					fotg210_readl(fotg210, status_reg));
1630 		}
1631 
1632 		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1633 			fotg210->reset_done[wIndex] = 0;
1634 			clear_bit(wIndex, &fotg210->resuming_ports);
1635 		}
1636 
1637 		/* transfer dedicated ports to the companion hc */
1638 		if ((temp & PORT_CONNECT) &&
1639 				test_bit(wIndex, &fotg210->companion_ports)) {
1640 			temp &= ~PORT_RWC_BITS;
1641 			fotg210_writel(fotg210, temp, status_reg);
1642 			fotg210_dbg(fotg210, "port %d --> companion\n",
1643 					wIndex + 1);
1644 			temp = fotg210_readl(fotg210, status_reg);
1645 		}
1646 
1647 		/*
1648 		 * Even if OWNER is set, there's no harm letting hub_wq
1649 		 * see the wPortStatus values (they should all be 0 except
1650 		 * for PORT_POWER anyway).
1651 		 */
1652 
1653 		if (temp & PORT_CONNECT) {
1654 			status |= USB_PORT_STAT_CONNECTION;
1655 			status |= fotg210_port_speed(fotg210, temp);
1656 		}
1657 		if (temp & PORT_PE)
1658 			status |= USB_PORT_STAT_ENABLE;
1659 
1660 		/* maybe the port was unsuspended without our knowledge */
1661 		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1662 			status |= USB_PORT_STAT_SUSPEND;
1663 		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1664 			clear_bit(wIndex, &fotg210->suspended_ports);
1665 			clear_bit(wIndex, &fotg210->resuming_ports);
1666 			fotg210->reset_done[wIndex] = 0;
1667 			if (temp & PORT_PE)
1668 				set_bit(wIndex, &fotg210->port_c_suspend);
1669 		}
1670 
1671 		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1672 		if (temp1 & OTGISR_OVC)
1673 			status |= USB_PORT_STAT_OVERCURRENT;
1674 		if (temp & PORT_RESET)
1675 			status |= USB_PORT_STAT_RESET;
1676 		if (test_bit(wIndex, &fotg210->port_c_suspend))
1677 			status |= USB_PORT_STAT_C_SUSPEND << 16;
1678 
1679 		if (status & ~0xffff)	/* only if wPortChange is interesting */
1680 			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1681 		put_unaligned_le32(status, buf);
1682 		break;
1683 	case SetHubFeature:
1684 		switch (wValue) {
1685 		case C_HUB_LOCAL_POWER:
1686 		case C_HUB_OVER_CURRENT:
1687 			/* no hub-wide feature/status flags */
1688 			break;
1689 		default:
1690 			goto error;
1691 		}
1692 		break;
1693 	case SetPortFeature:
1694 		selector = wIndex >> 8;
1695 		wIndex &= 0xff;
1696 
1697 		if (!wIndex || wIndex > ports)
1698 			goto error;
1699 		wIndex--;
1700 		temp = fotg210_readl(fotg210, status_reg);
1701 		temp &= ~PORT_RWC_BITS;
1702 		switch (wValue) {
1703 		case USB_PORT_FEAT_SUSPEND:
1704 			if ((temp & PORT_PE) == 0
1705 					|| (temp & PORT_RESET) != 0)
1706 				goto error;
1707 
1708 			/* After above check the port must be connected.
1709 			 * Set appropriate bit thus could put phy into low power
1710 			 * mode if we have hostpc feature
1711 			 */
1712 			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1713 					status_reg);
1714 			set_bit(wIndex, &fotg210->suspended_ports);
1715 			break;
1716 		case USB_PORT_FEAT_RESET:
1717 			if (temp & PORT_RESUME)
1718 				goto error;
1719 			/* line status bits may report this as low speed,
1720 			 * which can be fine if this root hub has a
1721 			 * transaction translator built in.
1722 			 */
1723 			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1724 			temp |= PORT_RESET;
1725 			temp &= ~PORT_PE;
1726 
1727 			/*
1728 			 * caller must wait, then call GetPortStatus
1729 			 * usb 2.0 spec says 50 ms resets on root
1730 			 */
1731 			fotg210->reset_done[wIndex] = jiffies
1732 					+ msecs_to_jiffies(50);
1733 			fotg210_writel(fotg210, temp, status_reg);
1734 			break;
1735 
1736 		/* For downstream facing ports (these):  one hub port is put
1737 		 * into test mode according to USB2 11.24.2.13, then the hub
1738 		 * must be reset (which for root hub now means rmmod+modprobe,
1739 		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1740 		 * about the EHCI-specific stuff.
1741 		 */
1742 		case USB_PORT_FEAT_TEST:
1743 			if (!selector || selector > 5)
1744 				goto error;
1745 			spin_unlock_irqrestore(&fotg210->lock, flags);
1746 			fotg210_quiesce(fotg210);
1747 			spin_lock_irqsave(&fotg210->lock, flags);
1748 
1749 			/* Put all enabled ports into suspend */
1750 			temp = fotg210_readl(fotg210, status_reg) &
1751 				~PORT_RWC_BITS;
1752 			if (temp & PORT_PE)
1753 				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1754 						status_reg);
1755 
1756 			spin_unlock_irqrestore(&fotg210->lock, flags);
1757 			fotg210_halt(fotg210);
1758 			spin_lock_irqsave(&fotg210->lock, flags);
1759 
1760 			temp = fotg210_readl(fotg210, status_reg);
1761 			temp |= selector << 16;
1762 			fotg210_writel(fotg210, temp, status_reg);
1763 			break;
1764 
1765 		default:
1766 			goto error;
1767 		}
1768 		fotg210_readl(fotg210, &fotg210->regs->command);
1769 		break;
1770 
1771 	default:
1772 error:
1773 		/* "stall" on error */
1774 		retval = -EPIPE;
1775 	}
1776 	spin_unlock_irqrestore(&fotg210->lock, flags);
1777 	return retval;
1778 }
1779 
fotg210_relinquish_port(struct usb_hcd * hcd,int portnum)1780 static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1781 		int portnum)
1782 {
1783 	return;
1784 }
1785 
fotg210_port_handed_over(struct usb_hcd * hcd,int portnum)1786 static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1787 		int portnum)
1788 {
1789 	return 0;
1790 }
1791 
1792 /* There's basically three types of memory:
1793  *	- data used only by the HCD ... kmalloc is fine
1794  *	- async and periodic schedules, shared by HC and HCD ... these
1795  *	  need to use dma_pool or dma_alloc_coherent
1796  *	- driver buffers, read/written by HC ... single shot DMA mapped
1797  *
1798  * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1799  * No memory seen by this driver is pageable.
1800  */
1801 
1802 /* Allocate the key transfer structures from the previously allocated pool */
fotg210_qtd_init(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t dma)1803 static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1804 		struct fotg210_qtd *qtd, dma_addr_t dma)
1805 {
1806 	memset(qtd, 0, sizeof(*qtd));
1807 	qtd->qtd_dma = dma;
1808 	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1809 	qtd->hw_next = FOTG210_LIST_END(fotg210);
1810 	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1811 	INIT_LIST_HEAD(&qtd->qtd_list);
1812 }
1813 
fotg210_qtd_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1814 static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1815 		gfp_t flags)
1816 {
1817 	struct fotg210_qtd *qtd;
1818 	dma_addr_t dma;
1819 
1820 	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1821 	if (qtd != NULL)
1822 		fotg210_qtd_init(fotg210, qtd, dma);
1823 
1824 	return qtd;
1825 }
1826 
fotg210_qtd_free(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd)1827 static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1828 		struct fotg210_qtd *qtd)
1829 {
1830 	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1831 }
1832 
1833 
qh_destroy(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)1834 static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1835 {
1836 	/* clean qtds first, and know this is not linked */
1837 	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1838 		fotg210_dbg(fotg210, "unused qh not empty!\n");
1839 		BUG();
1840 	}
1841 	if (qh->dummy)
1842 		fotg210_qtd_free(fotg210, qh->dummy);
1843 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1844 	kfree(qh);
1845 }
1846 
fotg210_qh_alloc(struct fotg210_hcd * fotg210,gfp_t flags)1847 static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1848 		gfp_t flags)
1849 {
1850 	struct fotg210_qh *qh;
1851 	dma_addr_t dma;
1852 
1853 	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1854 	if (!qh)
1855 		goto done;
1856 	qh->hw = dma_pool_zalloc(fotg210->qh_pool, flags, &dma);
1857 	if (!qh->hw)
1858 		goto fail;
1859 	qh->qh_dma = dma;
1860 	INIT_LIST_HEAD(&qh->qtd_list);
1861 
1862 	/* dummy td enables safe urb queuing */
1863 	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1864 	if (qh->dummy == NULL) {
1865 		fotg210_dbg(fotg210, "no dummy td\n");
1866 		goto fail1;
1867 	}
1868 done:
1869 	return qh;
1870 fail1:
1871 	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1872 fail:
1873 	kfree(qh);
1874 	return NULL;
1875 }
1876 
1877 /* The queue heads and transfer descriptors are managed from pools tied
1878  * to each of the "per device" structures.
1879  * This is the initialisation and cleanup code.
1880  */
1881 
fotg210_mem_cleanup(struct fotg210_hcd * fotg210)1882 static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1883 {
1884 	if (fotg210->async)
1885 		qh_destroy(fotg210, fotg210->async);
1886 	fotg210->async = NULL;
1887 
1888 	if (fotg210->dummy)
1889 		qh_destroy(fotg210, fotg210->dummy);
1890 	fotg210->dummy = NULL;
1891 
1892 	/* DMA consistent memory and pools */
1893 	dma_pool_destroy(fotg210->qtd_pool);
1894 	fotg210->qtd_pool = NULL;
1895 
1896 	dma_pool_destroy(fotg210->qh_pool);
1897 	fotg210->qh_pool = NULL;
1898 
1899 	dma_pool_destroy(fotg210->itd_pool);
1900 	fotg210->itd_pool = NULL;
1901 
1902 	if (fotg210->periodic)
1903 		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1904 				fotg210->periodic_size * sizeof(u32),
1905 				fotg210->periodic, fotg210->periodic_dma);
1906 	fotg210->periodic = NULL;
1907 
1908 	/* shadow periodic table */
1909 	kfree(fotg210->pshadow);
1910 	fotg210->pshadow = NULL;
1911 }
1912 
1913 /* remember to add cleanup code (above) if you add anything here */
fotg210_mem_init(struct fotg210_hcd * fotg210,gfp_t flags)1914 static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1915 {
1916 	int i;
1917 
1918 	/* QTDs for control/bulk/intr transfers */
1919 	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1920 			fotg210_to_hcd(fotg210)->self.controller,
1921 			sizeof(struct fotg210_qtd),
1922 			32 /* byte alignment (for hw parts) */,
1923 			4096 /* can't cross 4K */);
1924 	if (!fotg210->qtd_pool)
1925 		goto fail;
1926 
1927 	/* QHs for control/bulk/intr transfers */
1928 	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1929 			fotg210_to_hcd(fotg210)->self.controller,
1930 			sizeof(struct fotg210_qh_hw),
1931 			32 /* byte alignment (for hw parts) */,
1932 			4096 /* can't cross 4K */);
1933 	if (!fotg210->qh_pool)
1934 		goto fail;
1935 
1936 	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1937 	if (!fotg210->async)
1938 		goto fail;
1939 
1940 	/* ITD for high speed ISO transfers */
1941 	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1942 			fotg210_to_hcd(fotg210)->self.controller,
1943 			sizeof(struct fotg210_itd),
1944 			64 /* byte alignment (for hw parts) */,
1945 			4096 /* can't cross 4K */);
1946 	if (!fotg210->itd_pool)
1947 		goto fail;
1948 
1949 	/* Hardware periodic table */
1950 	fotg210->periodic = (__le32 *)
1951 		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1952 				fotg210->periodic_size * sizeof(__le32),
1953 				&fotg210->periodic_dma, 0);
1954 	if (fotg210->periodic == NULL)
1955 		goto fail;
1956 
1957 	for (i = 0; i < fotg210->periodic_size; i++)
1958 		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1959 
1960 	/* software shadow of hardware table */
1961 	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1962 			flags);
1963 	if (fotg210->pshadow != NULL)
1964 		return 0;
1965 
1966 fail:
1967 	fotg210_dbg(fotg210, "couldn't init memory\n");
1968 	fotg210_mem_cleanup(fotg210);
1969 	return -ENOMEM;
1970 }
1971 /* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1972  *
1973  * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
1974  * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
1975  * buffers needed for the larger number).  We use one QH per endpoint, queue
1976  * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
1977  *
1978  * ISO traffic uses "ISO TD" (itd) records, and (along with
1979  * interrupts) needs careful scheduling.  Performance improvements can be
1980  * an ongoing challenge.  That's in "ehci-sched.c".
1981  *
1982  * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
1983  * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
1984  * (b) special fields in qh entries or (c) split iso entries.  TTs will
1985  * buffer low/full speed data so the host collects it at high speed.
1986  */
1987 
1988 /* fill a qtd, returning how much of the buffer we were able to queue up */
qtd_fill(struct fotg210_hcd * fotg210,struct fotg210_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)1989 static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
1990 		dma_addr_t buf, size_t len, int token, int maxpacket)
1991 {
1992 	int i, count;
1993 	u64 addr = buf;
1994 
1995 	/* one buffer entry per 4K ... first might be short or unaligned */
1996 	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
1997 	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
1998 	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
1999 	if (likely(len < count))		/* ... iff needed */
2000 		count = len;
2001 	else {
2002 		buf +=  0x1000;
2003 		buf &= ~0x0fff;
2004 
2005 		/* per-qtd limit: from 16K to 20K (best alignment) */
2006 		for (i = 1; count < len && i < 5; i++) {
2007 			addr = buf;
2008 			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2009 			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2010 					(u32)(addr >> 32));
2011 			buf += 0x1000;
2012 			if ((count + 0x1000) < len)
2013 				count += 0x1000;
2014 			else
2015 				count = len;
2016 		}
2017 
2018 		/* short packets may only terminate transfers */
2019 		if (count != len)
2020 			count -= (count % maxpacket);
2021 	}
2022 	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2023 	qtd->length = count;
2024 
2025 	return count;
2026 }
2027 
qh_update(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct fotg210_qtd * qtd)2028 static inline void qh_update(struct fotg210_hcd *fotg210,
2029 		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2030 {
2031 	struct fotg210_qh_hw *hw = qh->hw;
2032 
2033 	/* writes to an active overlay are unsafe */
2034 	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2035 
2036 	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2037 	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2038 
2039 	/* Except for control endpoints, we make hardware maintain data
2040 	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2041 	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2042 	 * ever clear it.
2043 	 */
2044 	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2045 		unsigned is_out, epnum;
2046 
2047 		is_out = qh->is_out;
2048 		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2049 		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2050 			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2051 			usb_settoggle(qh->dev, epnum, is_out, 1);
2052 		}
2053 	}
2054 
2055 	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2056 }
2057 
2058 /* if it weren't for a common silicon quirk (writing the dummy into the qh
2059  * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2060  * recovery (including urb dequeue) would need software changes to a QH...
2061  */
qh_refresh(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2062 static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2063 {
2064 	struct fotg210_qtd *qtd;
2065 
2066 	if (list_empty(&qh->qtd_list))
2067 		qtd = qh->dummy;
2068 	else {
2069 		qtd = list_entry(qh->qtd_list.next,
2070 				struct fotg210_qtd, qtd_list);
2071 		/*
2072 		 * first qtd may already be partially processed.
2073 		 * If we come here during unlink, the QH overlay region
2074 		 * might have reference to the just unlinked qtd. The
2075 		 * qtd is updated in qh_completions(). Update the QH
2076 		 * overlay here.
2077 		 */
2078 		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2079 			qh->hw->hw_qtd_next = qtd->hw_next;
2080 			qtd = NULL;
2081 		}
2082 	}
2083 
2084 	if (qtd)
2085 		qh_update(fotg210, qh, qtd);
2086 }
2087 
2088 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2089 
fotg210_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)2090 static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2091 		struct usb_host_endpoint *ep)
2092 {
2093 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2094 	struct fotg210_qh *qh = ep->hcpriv;
2095 	unsigned long flags;
2096 
2097 	spin_lock_irqsave(&fotg210->lock, flags);
2098 	qh->clearing_tt = 0;
2099 	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2100 			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2101 		qh_link_async(fotg210, qh);
2102 	spin_unlock_irqrestore(&fotg210->lock, flags);
2103 }
2104 
fotg210_clear_tt_buffer(struct fotg210_hcd * fotg210,struct fotg210_qh * qh,struct urb * urb,u32 token)2105 static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2106 		struct fotg210_qh *qh, struct urb *urb, u32 token)
2107 {
2108 
2109 	/* If an async split transaction gets an error or is unlinked,
2110 	 * the TT buffer may be left in an indeterminate state.  We
2111 	 * have to clear the TT buffer.
2112 	 *
2113 	 * Note: this routine is never called for Isochronous transfers.
2114 	 */
2115 	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2116 		struct usb_device *tt = urb->dev->tt->hub;
2117 
2118 		dev_dbg(&tt->dev,
2119 				"clear tt buffer port %d, a%d ep%d t%08x\n",
2120 				urb->dev->ttport, urb->dev->devnum,
2121 				usb_pipeendpoint(urb->pipe), token);
2122 
2123 		if (urb->dev->tt->hub !=
2124 				fotg210_to_hcd(fotg210)->self.root_hub) {
2125 			if (usb_hub_clear_tt_buffer(urb) == 0)
2126 				qh->clearing_tt = 1;
2127 		}
2128 	}
2129 }
2130 
qtd_copy_status(struct fotg210_hcd * fotg210,struct urb * urb,size_t length,u32 token)2131 static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2132 		size_t length, u32 token)
2133 {
2134 	int status = -EINPROGRESS;
2135 
2136 	/* count IN/OUT bytes, not SETUP (even short packets) */
2137 	if (likely(QTD_PID(token) != 2))
2138 		urb->actual_length += length - QTD_LENGTH(token);
2139 
2140 	/* don't modify error codes */
2141 	if (unlikely(urb->unlinked))
2142 		return status;
2143 
2144 	/* force cleanup after short read; not always an error */
2145 	if (unlikely(IS_SHORT_READ(token)))
2146 		status = -EREMOTEIO;
2147 
2148 	/* serious "can't proceed" faults reported by the hardware */
2149 	if (token & QTD_STS_HALT) {
2150 		if (token & QTD_STS_BABBLE) {
2151 			/* FIXME "must" disable babbling device's port too */
2152 			status = -EOVERFLOW;
2153 		/* CERR nonzero + halt --> stall */
2154 		} else if (QTD_CERR(token)) {
2155 			status = -EPIPE;
2156 
2157 		/* In theory, more than one of the following bits can be set
2158 		 * since they are sticky and the transaction is retried.
2159 		 * Which to test first is rather arbitrary.
2160 		 */
2161 		} else if (token & QTD_STS_MMF) {
2162 			/* fs/ls interrupt xfer missed the complete-split */
2163 			status = -EPROTO;
2164 		} else if (token & QTD_STS_DBE) {
2165 			status = (QTD_PID(token) == 1) /* IN ? */
2166 				? -ENOSR  /* hc couldn't read data */
2167 				: -ECOMM; /* hc couldn't write data */
2168 		} else if (token & QTD_STS_XACT) {
2169 			/* timeout, bad CRC, wrong PID, etc */
2170 			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2171 					urb->dev->devpath,
2172 					usb_pipeendpoint(urb->pipe),
2173 					usb_pipein(urb->pipe) ? "in" : "out");
2174 			status = -EPROTO;
2175 		} else {	/* unknown */
2176 			status = -EPROTO;
2177 		}
2178 
2179 		fotg210_dbg(fotg210,
2180 				"dev%d ep%d%s qtd token %08x --> status %d\n",
2181 				usb_pipedevice(urb->pipe),
2182 				usb_pipeendpoint(urb->pipe),
2183 				usb_pipein(urb->pipe) ? "in" : "out",
2184 				token, status);
2185 	}
2186 
2187 	return status;
2188 }
2189 
fotg210_urb_done(struct fotg210_hcd * fotg210,struct urb * urb,int status)2190 static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2191 		int status)
2192 __releases(fotg210->lock)
2193 __acquires(fotg210->lock)
2194 {
2195 	if (likely(urb->hcpriv != NULL)) {
2196 		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2197 
2198 		/* S-mask in a QH means it's an interrupt urb */
2199 		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2200 
2201 			/* ... update hc-wide periodic stats (for usbfs) */
2202 			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2203 		}
2204 	}
2205 
2206 	if (unlikely(urb->unlinked)) {
2207 		COUNT(fotg210->stats.unlink);
2208 	} else {
2209 		/* report non-error and short read status as zero */
2210 		if (status == -EINPROGRESS || status == -EREMOTEIO)
2211 			status = 0;
2212 		COUNT(fotg210->stats.complete);
2213 	}
2214 
2215 #ifdef FOTG210_URB_TRACE
2216 	fotg210_dbg(fotg210,
2217 			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2218 			__func__, urb->dev->devpath, urb,
2219 			usb_pipeendpoint(urb->pipe),
2220 			usb_pipein(urb->pipe) ? "in" : "out",
2221 			status,
2222 			urb->actual_length, urb->transfer_buffer_length);
2223 #endif
2224 
2225 	/* complete() can reenter this HCD */
2226 	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2227 	spin_unlock(&fotg210->lock);
2228 	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2229 	spin_lock(&fotg210->lock);
2230 }
2231 
2232 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2233 
2234 /* Process and free completed qtds for a qh, returning URBs to drivers.
2235  * Chases up to qh->hw_current.  Returns number of completions called,
2236  * indicating how much "real" work we did.
2237  */
qh_completions(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2238 static unsigned qh_completions(struct fotg210_hcd *fotg210,
2239 		struct fotg210_qh *qh)
2240 {
2241 	struct fotg210_qtd *last, *end = qh->dummy;
2242 	struct fotg210_qtd *qtd, *tmp;
2243 	int last_status;
2244 	int stopped;
2245 	unsigned count = 0;
2246 	u8 state;
2247 	struct fotg210_qh_hw *hw = qh->hw;
2248 
2249 	if (unlikely(list_empty(&qh->qtd_list)))
2250 		return count;
2251 
2252 	/* completions (or tasks on other cpus) must never clobber HALT
2253 	 * till we've gone through and cleaned everything up, even when
2254 	 * they add urbs to this qh's queue or mark them for unlinking.
2255 	 *
2256 	 * NOTE:  unlinking expects to be done in queue order.
2257 	 *
2258 	 * It's a bug for qh->qh_state to be anything other than
2259 	 * QH_STATE_IDLE, unless our caller is scan_async() or
2260 	 * scan_intr().
2261 	 */
2262 	state = qh->qh_state;
2263 	qh->qh_state = QH_STATE_COMPLETING;
2264 	stopped = (state == QH_STATE_IDLE);
2265 
2266 rescan:
2267 	last = NULL;
2268 	last_status = -EINPROGRESS;
2269 	qh->needs_rescan = 0;
2270 
2271 	/* remove de-activated QTDs from front of queue.
2272 	 * after faults (including short reads), cleanup this urb
2273 	 * then let the queue advance.
2274 	 * if queue is stopped, handles unlinks.
2275 	 */
2276 	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2277 		struct urb *urb;
2278 		u32 token = 0;
2279 
2280 		urb = qtd->urb;
2281 
2282 		/* clean up any state from previous QTD ...*/
2283 		if (last) {
2284 			if (likely(last->urb != urb)) {
2285 				fotg210_urb_done(fotg210, last->urb,
2286 						last_status);
2287 				count++;
2288 				last_status = -EINPROGRESS;
2289 			}
2290 			fotg210_qtd_free(fotg210, last);
2291 			last = NULL;
2292 		}
2293 
2294 		/* ignore urbs submitted during completions we reported */
2295 		if (qtd == end)
2296 			break;
2297 
2298 		/* hardware copies qtd out of qh overlay */
2299 		rmb();
2300 		token = hc32_to_cpu(fotg210, qtd->hw_token);
2301 
2302 		/* always clean up qtds the hc de-activated */
2303 retry_xacterr:
2304 		if ((token & QTD_STS_ACTIVE) == 0) {
2305 
2306 			/* Report Data Buffer Error: non-fatal but useful */
2307 			if (token & QTD_STS_DBE)
2308 				fotg210_dbg(fotg210,
2309 					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2310 					urb, usb_endpoint_num(&urb->ep->desc),
2311 					usb_endpoint_dir_in(&urb->ep->desc)
2312 						? "in" : "out",
2313 					urb->transfer_buffer_length, qtd, qh);
2314 
2315 			/* on STALL, error, and short reads this urb must
2316 			 * complete and all its qtds must be recycled.
2317 			 */
2318 			if ((token & QTD_STS_HALT) != 0) {
2319 
2320 				/* retry transaction errors until we
2321 				 * reach the software xacterr limit
2322 				 */
2323 				if ((token & QTD_STS_XACT) &&
2324 						QTD_CERR(token) == 0 &&
2325 						++qh->xacterrs < QH_XACTERR_MAX &&
2326 						!urb->unlinked) {
2327 					fotg210_dbg(fotg210,
2328 						"detected XactErr len %zu/%zu retry %d\n",
2329 						qtd->length - QTD_LENGTH(token),
2330 						qtd->length,
2331 						qh->xacterrs);
2332 
2333 					/* reset the token in the qtd and the
2334 					 * qh overlay (which still contains
2335 					 * the qtd) so that we pick up from
2336 					 * where we left off
2337 					 */
2338 					token &= ~QTD_STS_HALT;
2339 					token |= QTD_STS_ACTIVE |
2340 						 (FOTG210_TUNE_CERR << 10);
2341 					qtd->hw_token = cpu_to_hc32(fotg210,
2342 							token);
2343 					wmb();
2344 					hw->hw_token = cpu_to_hc32(fotg210,
2345 							token);
2346 					goto retry_xacterr;
2347 				}
2348 				stopped = 1;
2349 
2350 			/* magic dummy for some short reads; qh won't advance.
2351 			 * that silicon quirk can kick in with this dummy too.
2352 			 *
2353 			 * other short reads won't stop the queue, including
2354 			 * control transfers (status stage handles that) or
2355 			 * most other single-qtd reads ... the queue stops if
2356 			 * URB_SHORT_NOT_OK was set so the driver submitting
2357 			 * the urbs could clean it up.
2358 			 */
2359 			} else if (IS_SHORT_READ(token) &&
2360 					!(qtd->hw_alt_next &
2361 					FOTG210_LIST_END(fotg210))) {
2362 				stopped = 1;
2363 			}
2364 
2365 		/* stop scanning when we reach qtds the hc is using */
2366 		} else if (likely(!stopped
2367 				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2368 			break;
2369 
2370 		/* scan the whole queue for unlinks whenever it stops */
2371 		} else {
2372 			stopped = 1;
2373 
2374 			/* cancel everything if we halt, suspend, etc */
2375 			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2376 				last_status = -ESHUTDOWN;
2377 
2378 			/* this qtd is active; skip it unless a previous qtd
2379 			 * for its urb faulted, or its urb was canceled.
2380 			 */
2381 			else if (last_status == -EINPROGRESS && !urb->unlinked)
2382 				continue;
2383 
2384 			/* qh unlinked; token in overlay may be most current */
2385 			if (state == QH_STATE_IDLE &&
2386 					cpu_to_hc32(fotg210, qtd->qtd_dma)
2387 					== hw->hw_current) {
2388 				token = hc32_to_cpu(fotg210, hw->hw_token);
2389 
2390 				/* An unlink may leave an incomplete
2391 				 * async transaction in the TT buffer.
2392 				 * We have to clear it.
2393 				 */
2394 				fotg210_clear_tt_buffer(fotg210, qh, urb,
2395 						token);
2396 			}
2397 		}
2398 
2399 		/* unless we already know the urb's status, collect qtd status
2400 		 * and update count of bytes transferred.  in common short read
2401 		 * cases with only one data qtd (including control transfers),
2402 		 * queue processing won't halt.  but with two or more qtds (for
2403 		 * example, with a 32 KB transfer), when the first qtd gets a
2404 		 * short read the second must be removed by hand.
2405 		 */
2406 		if (last_status == -EINPROGRESS) {
2407 			last_status = qtd_copy_status(fotg210, urb,
2408 					qtd->length, token);
2409 			if (last_status == -EREMOTEIO &&
2410 					(qtd->hw_alt_next &
2411 					FOTG210_LIST_END(fotg210)))
2412 				last_status = -EINPROGRESS;
2413 
2414 			/* As part of low/full-speed endpoint-halt processing
2415 			 * we must clear the TT buffer (11.17.5).
2416 			 */
2417 			if (unlikely(last_status != -EINPROGRESS &&
2418 					last_status != -EREMOTEIO)) {
2419 				/* The TT's in some hubs malfunction when they
2420 				 * receive this request following a STALL (they
2421 				 * stop sending isochronous packets).  Since a
2422 				 * STALL can't leave the TT buffer in a busy
2423 				 * state (if you believe Figures 11-48 - 11-51
2424 				 * in the USB 2.0 spec), we won't clear the TT
2425 				 * buffer in this case.  Strictly speaking this
2426 				 * is a violation of the spec.
2427 				 */
2428 				if (last_status != -EPIPE)
2429 					fotg210_clear_tt_buffer(fotg210, qh,
2430 							urb, token);
2431 			}
2432 		}
2433 
2434 		/* if we're removing something not at the queue head,
2435 		 * patch the hardware queue pointer.
2436 		 */
2437 		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2438 			last = list_entry(qtd->qtd_list.prev,
2439 					struct fotg210_qtd, qtd_list);
2440 			last->hw_next = qtd->hw_next;
2441 		}
2442 
2443 		/* remove qtd; it's recycled after possible urb completion */
2444 		list_del(&qtd->qtd_list);
2445 		last = qtd;
2446 
2447 		/* reinit the xacterr counter for the next qtd */
2448 		qh->xacterrs = 0;
2449 	}
2450 
2451 	/* last urb's completion might still need calling */
2452 	if (likely(last != NULL)) {
2453 		fotg210_urb_done(fotg210, last->urb, last_status);
2454 		count++;
2455 		fotg210_qtd_free(fotg210, last);
2456 	}
2457 
2458 	/* Do we need to rescan for URBs dequeued during a giveback? */
2459 	if (unlikely(qh->needs_rescan)) {
2460 		/* If the QH is already unlinked, do the rescan now. */
2461 		if (state == QH_STATE_IDLE)
2462 			goto rescan;
2463 
2464 		/* Otherwise we have to wait until the QH is fully unlinked.
2465 		 * Our caller will start an unlink if qh->needs_rescan is
2466 		 * set.  But if an unlink has already started, nothing needs
2467 		 * to be done.
2468 		 */
2469 		if (state != QH_STATE_LINKED)
2470 			qh->needs_rescan = 0;
2471 	}
2472 
2473 	/* restore original state; caller must unlink or relink */
2474 	qh->qh_state = state;
2475 
2476 	/* be sure the hardware's done with the qh before refreshing
2477 	 * it after fault cleanup, or recovering from silicon wrongly
2478 	 * overlaying the dummy qtd (which reduces DMA chatter).
2479 	 */
2480 	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2481 		switch (state) {
2482 		case QH_STATE_IDLE:
2483 			qh_refresh(fotg210, qh);
2484 			break;
2485 		case QH_STATE_LINKED:
2486 			/* We won't refresh a QH that's linked (after the HC
2487 			 * stopped the queue).  That avoids a race:
2488 			 *  - HC reads first part of QH;
2489 			 *  - CPU updates that first part and the token;
2490 			 *  - HC reads rest of that QH, including token
2491 			 * Result:  HC gets an inconsistent image, and then
2492 			 * DMAs to/from the wrong memory (corrupting it).
2493 			 *
2494 			 * That should be rare for interrupt transfers,
2495 			 * except maybe high bandwidth ...
2496 			 */
2497 
2498 			/* Tell the caller to start an unlink */
2499 			qh->needs_rescan = 1;
2500 			break;
2501 		/* otherwise, unlink already started */
2502 		}
2503 	}
2504 
2505 	return count;
2506 }
2507 
2508 /* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2509 #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2510 /* ... and packet size, for any kind of endpoint descriptor */
2511 #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2512 
2513 /* reverse of qh_urb_transaction:  free a list of TDs.
2514  * used for cleanup after errors, before HC sees an URB's TDs.
2515  */
qtd_list_free(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head)2516 static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2517 		struct list_head *head)
2518 {
2519 	struct fotg210_qtd *qtd, *temp;
2520 
2521 	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2522 		list_del(&qtd->qtd_list);
2523 		fotg210_qtd_free(fotg210, qtd);
2524 	}
2525 }
2526 
2527 /* create a list of filled qtds for this URB; won't link into qh.
2528  */
qh_urb_transaction(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * head,gfp_t flags)2529 static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2530 		struct urb *urb, struct list_head *head, gfp_t flags)
2531 {
2532 	struct fotg210_qtd *qtd, *qtd_prev;
2533 	dma_addr_t buf;
2534 	int len, this_sg_len, maxpacket;
2535 	int is_input;
2536 	u32 token;
2537 	int i;
2538 	struct scatterlist *sg;
2539 
2540 	/*
2541 	 * URBs map to sequences of QTDs:  one logical transaction
2542 	 */
2543 	qtd = fotg210_qtd_alloc(fotg210, flags);
2544 	if (unlikely(!qtd))
2545 		return NULL;
2546 	list_add_tail(&qtd->qtd_list, head);
2547 	qtd->urb = urb;
2548 
2549 	token = QTD_STS_ACTIVE;
2550 	token |= (FOTG210_TUNE_CERR << 10);
2551 	/* for split transactions, SplitXState initialized to zero */
2552 
2553 	len = urb->transfer_buffer_length;
2554 	is_input = usb_pipein(urb->pipe);
2555 	if (usb_pipecontrol(urb->pipe)) {
2556 		/* SETUP pid */
2557 		qtd_fill(fotg210, qtd, urb->setup_dma,
2558 				sizeof(struct usb_ctrlrequest),
2559 				token | (2 /* "setup" */ << 8), 8);
2560 
2561 		/* ... and always at least one more pid */
2562 		token ^= QTD_TOGGLE;
2563 		qtd_prev = qtd;
2564 		qtd = fotg210_qtd_alloc(fotg210, flags);
2565 		if (unlikely(!qtd))
2566 			goto cleanup;
2567 		qtd->urb = urb;
2568 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2569 		list_add_tail(&qtd->qtd_list, head);
2570 
2571 		/* for zero length DATA stages, STATUS is always IN */
2572 		if (len == 0)
2573 			token |= (1 /* "in" */ << 8);
2574 	}
2575 
2576 	/*
2577 	 * data transfer stage:  buffer setup
2578 	 */
2579 	i = urb->num_mapped_sgs;
2580 	if (len > 0 && i > 0) {
2581 		sg = urb->sg;
2582 		buf = sg_dma_address(sg);
2583 
2584 		/* urb->transfer_buffer_length may be smaller than the
2585 		 * size of the scatterlist (or vice versa)
2586 		 */
2587 		this_sg_len = min_t(int, sg_dma_len(sg), len);
2588 	} else {
2589 		sg = NULL;
2590 		buf = urb->transfer_dma;
2591 		this_sg_len = len;
2592 	}
2593 
2594 	if (is_input)
2595 		token |= (1 /* "in" */ << 8);
2596 	/* else it's already initted to "out" pid (0 << 8) */
2597 
2598 	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2599 
2600 	/*
2601 	 * buffer gets wrapped in one or more qtds;
2602 	 * last one may be "short" (including zero len)
2603 	 * and may serve as a control status ack
2604 	 */
2605 	for (;;) {
2606 		int this_qtd_len;
2607 
2608 		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2609 				maxpacket);
2610 		this_sg_len -= this_qtd_len;
2611 		len -= this_qtd_len;
2612 		buf += this_qtd_len;
2613 
2614 		/*
2615 		 * short reads advance to a "magic" dummy instead of the next
2616 		 * qtd ... that forces the queue to stop, for manual cleanup.
2617 		 * (this will usually be overridden later.)
2618 		 */
2619 		if (is_input)
2620 			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2621 
2622 		/* qh makes control packets use qtd toggle; maybe switch it */
2623 		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2624 			token ^= QTD_TOGGLE;
2625 
2626 		if (likely(this_sg_len <= 0)) {
2627 			if (--i <= 0 || len <= 0)
2628 				break;
2629 			sg = sg_next(sg);
2630 			buf = sg_dma_address(sg);
2631 			this_sg_len = min_t(int, sg_dma_len(sg), len);
2632 		}
2633 
2634 		qtd_prev = qtd;
2635 		qtd = fotg210_qtd_alloc(fotg210, flags);
2636 		if (unlikely(!qtd))
2637 			goto cleanup;
2638 		qtd->urb = urb;
2639 		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2640 		list_add_tail(&qtd->qtd_list, head);
2641 	}
2642 
2643 	/*
2644 	 * unless the caller requires manual cleanup after short reads,
2645 	 * have the alt_next mechanism keep the queue running after the
2646 	 * last data qtd (the only one, for control and most other cases).
2647 	 */
2648 	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2649 			usb_pipecontrol(urb->pipe)))
2650 		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2651 
2652 	/*
2653 	 * control requests may need a terminating data "status" ack;
2654 	 * other OUT ones may need a terminating short packet
2655 	 * (zero length).
2656 	 */
2657 	if (likely(urb->transfer_buffer_length != 0)) {
2658 		int one_more = 0;
2659 
2660 		if (usb_pipecontrol(urb->pipe)) {
2661 			one_more = 1;
2662 			token ^= 0x0100;	/* "in" <--> "out"  */
2663 			token |= QTD_TOGGLE;	/* force DATA1 */
2664 		} else if (usb_pipeout(urb->pipe)
2665 				&& (urb->transfer_flags & URB_ZERO_PACKET)
2666 				&& !(urb->transfer_buffer_length % maxpacket)) {
2667 			one_more = 1;
2668 		}
2669 		if (one_more) {
2670 			qtd_prev = qtd;
2671 			qtd = fotg210_qtd_alloc(fotg210, flags);
2672 			if (unlikely(!qtd))
2673 				goto cleanup;
2674 			qtd->urb = urb;
2675 			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2676 			list_add_tail(&qtd->qtd_list, head);
2677 
2678 			/* never any data in such packets */
2679 			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2680 		}
2681 	}
2682 
2683 	/* by default, enable interrupt on urb completion */
2684 	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2685 		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2686 	return head;
2687 
2688 cleanup:
2689 	qtd_list_free(fotg210, urb, head);
2690 	return NULL;
2691 }
2692 
2693 /* Would be best to create all qh's from config descriptors,
2694  * when each interface/altsetting is established.  Unlink
2695  * any previous qh and cancel its urbs first; endpoints are
2696  * implicitly reset then (data toggle too).
2697  * That'd mean updating how usbcore talks to HCDs. (2.7?)
2698 */
2699 
2700 
2701 /* Each QH holds a qtd list; a QH is used for everything except iso.
2702  *
2703  * For interrupt urbs, the scheduler must set the microframe scheduling
2704  * mask(s) each time the QH gets scheduled.  For highspeed, that's
2705  * just one microframe in the s-mask.  For split interrupt transactions
2706  * there are additional complications: c-mask, maybe FSTNs.
2707  */
qh_make(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t flags)2708 static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2709 		gfp_t flags)
2710 {
2711 	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2712 	u32 info1 = 0, info2 = 0;
2713 	int is_input, type;
2714 	int maxp = 0;
2715 	struct usb_tt *tt = urb->dev->tt;
2716 	struct fotg210_qh_hw *hw;
2717 
2718 	if (!qh)
2719 		return qh;
2720 
2721 	/*
2722 	 * init endpoint/device data for this QH
2723 	 */
2724 	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2725 	info1 |= usb_pipedevice(urb->pipe) << 0;
2726 
2727 	is_input = usb_pipein(urb->pipe);
2728 	type = usb_pipetype(urb->pipe);
2729 	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2730 
2731 	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2732 	 * acts like up to 3KB, but is built from smaller packets.
2733 	 */
2734 	if (max_packet(maxp) > 1024) {
2735 		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2736 				max_packet(maxp));
2737 		goto done;
2738 	}
2739 
2740 	/* Compute interrupt scheduling parameters just once, and save.
2741 	 * - allowing for high bandwidth, how many nsec/uframe are used?
2742 	 * - split transactions need a second CSPLIT uframe; same question
2743 	 * - splits also need a schedule gap (for full/low speed I/O)
2744 	 * - qh has a polling interval
2745 	 *
2746 	 * For control/bulk requests, the HC or TT handles these.
2747 	 */
2748 	if (type == PIPE_INTERRUPT) {
2749 		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2750 				is_input, 0,
2751 				hb_mult(maxp) * max_packet(maxp)));
2752 		qh->start = NO_FRAME;
2753 
2754 		if (urb->dev->speed == USB_SPEED_HIGH) {
2755 			qh->c_usecs = 0;
2756 			qh->gap_uf = 0;
2757 
2758 			qh->period = urb->interval >> 3;
2759 			if (qh->period == 0 && urb->interval != 1) {
2760 				/* NOTE interval 2 or 4 uframes could work.
2761 				 * But interval 1 scheduling is simpler, and
2762 				 * includes high bandwidth.
2763 				 */
2764 				urb->interval = 1;
2765 			} else if (qh->period > fotg210->periodic_size) {
2766 				qh->period = fotg210->periodic_size;
2767 				urb->interval = qh->period << 3;
2768 			}
2769 		} else {
2770 			int think_time;
2771 
2772 			/* gap is f(FS/LS transfer times) */
2773 			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2774 					is_input, 0, maxp) / (125 * 1000);
2775 
2776 			/* FIXME this just approximates SPLIT/CSPLIT times */
2777 			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2778 				qh->c_usecs = qh->usecs + HS_USECS(0);
2779 				qh->usecs = HS_USECS(1);
2780 			} else {		/* SPLIT+DATA, gap, CSPLIT */
2781 				qh->usecs += HS_USECS(1);
2782 				qh->c_usecs = HS_USECS(0);
2783 			}
2784 
2785 			think_time = tt ? tt->think_time : 0;
2786 			qh->tt_usecs = NS_TO_US(think_time +
2787 					usb_calc_bus_time(urb->dev->speed,
2788 					is_input, 0, max_packet(maxp)));
2789 			qh->period = urb->interval;
2790 			if (qh->period > fotg210->periodic_size) {
2791 				qh->period = fotg210->periodic_size;
2792 				urb->interval = qh->period;
2793 			}
2794 		}
2795 	}
2796 
2797 	/* support for tt scheduling, and access to toggles */
2798 	qh->dev = urb->dev;
2799 
2800 	/* using TT? */
2801 	switch (urb->dev->speed) {
2802 	case USB_SPEED_LOW:
2803 		info1 |= QH_LOW_SPEED;
2804 		/* FALL THROUGH */
2805 
2806 	case USB_SPEED_FULL:
2807 		/* EPS 0 means "full" */
2808 		if (type != PIPE_INTERRUPT)
2809 			info1 |= (FOTG210_TUNE_RL_TT << 28);
2810 		if (type == PIPE_CONTROL) {
2811 			info1 |= QH_CONTROL_EP;		/* for TT */
2812 			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2813 		}
2814 		info1 |= maxp << 16;
2815 
2816 		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2817 
2818 		/* Some Freescale processors have an erratum in which the
2819 		 * port number in the queue head was 0..N-1 instead of 1..N.
2820 		 */
2821 		if (fotg210_has_fsl_portno_bug(fotg210))
2822 			info2 |= (urb->dev->ttport-1) << 23;
2823 		else
2824 			info2 |= urb->dev->ttport << 23;
2825 
2826 		/* set the address of the TT; for TDI's integrated
2827 		 * root hub tt, leave it zeroed.
2828 		 */
2829 		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2830 			info2 |= tt->hub->devnum << 16;
2831 
2832 		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2833 
2834 		break;
2835 
2836 	case USB_SPEED_HIGH:		/* no TT involved */
2837 		info1 |= QH_HIGH_SPEED;
2838 		if (type == PIPE_CONTROL) {
2839 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2840 			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2841 			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2842 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2843 		} else if (type == PIPE_BULK) {
2844 			info1 |= (FOTG210_TUNE_RL_HS << 28);
2845 			/* The USB spec says that high speed bulk endpoints
2846 			 * always use 512 byte maxpacket.  But some device
2847 			 * vendors decided to ignore that, and MSFT is happy
2848 			 * to help them do so.  So now people expect to use
2849 			 * such nonconformant devices with Linux too; sigh.
2850 			 */
2851 			info1 |= max_packet(maxp) << 16;
2852 			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2853 		} else {		/* PIPE_INTERRUPT */
2854 			info1 |= max_packet(maxp) << 16;
2855 			info2 |= hb_mult(maxp) << 30;
2856 		}
2857 		break;
2858 	default:
2859 		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2860 				urb->dev->speed);
2861 done:
2862 		qh_destroy(fotg210, qh);
2863 		return NULL;
2864 	}
2865 
2866 	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2867 
2868 	/* init as live, toggle clear, advance to dummy */
2869 	qh->qh_state = QH_STATE_IDLE;
2870 	hw = qh->hw;
2871 	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2872 	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2873 	qh->is_out = !is_input;
2874 	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2875 	qh_refresh(fotg210, qh);
2876 	return qh;
2877 }
2878 
enable_async(struct fotg210_hcd * fotg210)2879 static void enable_async(struct fotg210_hcd *fotg210)
2880 {
2881 	if (fotg210->async_count++)
2882 		return;
2883 
2884 	/* Stop waiting to turn off the async schedule */
2885 	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2886 
2887 	/* Don't start the schedule until ASS is 0 */
2888 	fotg210_poll_ASS(fotg210);
2889 	turn_on_io_watchdog(fotg210);
2890 }
2891 
disable_async(struct fotg210_hcd * fotg210)2892 static void disable_async(struct fotg210_hcd *fotg210)
2893 {
2894 	if (--fotg210->async_count)
2895 		return;
2896 
2897 	/* The async schedule and async_unlink list are supposed to be empty */
2898 	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2899 
2900 	/* Don't turn off the schedule until ASS is 1 */
2901 	fotg210_poll_ASS(fotg210);
2902 }
2903 
2904 /* move qh (and its qtds) onto async queue; maybe enable queue.  */
2905 
qh_link_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)2906 static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2907 {
2908 	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2909 	struct fotg210_qh *head;
2910 
2911 	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2912 	if (unlikely(qh->clearing_tt))
2913 		return;
2914 
2915 	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2916 
2917 	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2918 	qh_refresh(fotg210, qh);
2919 
2920 	/* splice right after start */
2921 	head = fotg210->async;
2922 	qh->qh_next = head->qh_next;
2923 	qh->hw->hw_next = head->hw->hw_next;
2924 	wmb();
2925 
2926 	head->qh_next.qh = qh;
2927 	head->hw->hw_next = dma;
2928 
2929 	qh->xacterrs = 0;
2930 	qh->qh_state = QH_STATE_LINKED;
2931 	/* qtd completions reported later by interrupt */
2932 
2933 	enable_async(fotg210);
2934 }
2935 
2936 /* For control/bulk/interrupt, return QH with these TDs appended.
2937  * Allocates and initializes the QH if necessary.
2938  * Returns null if it can't allocate a QH it needs to.
2939  * If the QH has TDs (urbs) already, that's great.
2940  */
qh_append_tds(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)2941 static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2942 		struct urb *urb, struct list_head *qtd_list,
2943 		int epnum, void **ptr)
2944 {
2945 	struct fotg210_qh *qh = NULL;
2946 	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2947 
2948 	qh = (struct fotg210_qh *) *ptr;
2949 	if (unlikely(qh == NULL)) {
2950 		/* can't sleep here, we have fotg210->lock... */
2951 		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2952 		*ptr = qh;
2953 	}
2954 	if (likely(qh != NULL)) {
2955 		struct fotg210_qtd *qtd;
2956 
2957 		if (unlikely(list_empty(qtd_list)))
2958 			qtd = NULL;
2959 		else
2960 			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2961 					qtd_list);
2962 
2963 		/* control qh may need patching ... */
2964 		if (unlikely(epnum == 0)) {
2965 			/* usb_reset_device() briefly reverts to address 0 */
2966 			if (usb_pipedevice(urb->pipe) == 0)
2967 				qh->hw->hw_info1 &= ~qh_addr_mask;
2968 		}
2969 
2970 		/* just one way to queue requests: swap with the dummy qtd.
2971 		 * only hc or qh_refresh() ever modify the overlay.
2972 		 */
2973 		if (likely(qtd != NULL)) {
2974 			struct fotg210_qtd *dummy;
2975 			dma_addr_t dma;
2976 			__hc32 token;
2977 
2978 			/* to avoid racing the HC, use the dummy td instead of
2979 			 * the first td of our list (becomes new dummy).  both
2980 			 * tds stay deactivated until we're done, when the
2981 			 * HC is allowed to fetch the old dummy (4.10.2).
2982 			 */
2983 			token = qtd->hw_token;
2984 			qtd->hw_token = HALT_BIT(fotg210);
2985 
2986 			dummy = qh->dummy;
2987 
2988 			dma = dummy->qtd_dma;
2989 			*dummy = *qtd;
2990 			dummy->qtd_dma = dma;
2991 
2992 			list_del(&qtd->qtd_list);
2993 			list_add(&dummy->qtd_list, qtd_list);
2994 			list_splice_tail(qtd_list, &qh->qtd_list);
2995 
2996 			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
2997 			qh->dummy = qtd;
2998 
2999 			/* hc must see the new dummy at list end */
3000 			dma = qtd->qtd_dma;
3001 			qtd = list_entry(qh->qtd_list.prev,
3002 					struct fotg210_qtd, qtd_list);
3003 			qtd->hw_next = QTD_NEXT(fotg210, dma);
3004 
3005 			/* let the hc process these next qtds */
3006 			wmb();
3007 			dummy->hw_token = token;
3008 
3009 			urb->hcpriv = qh;
3010 		}
3011 	}
3012 	return qh;
3013 }
3014 
submit_async(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3015 static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3016 		struct list_head *qtd_list, gfp_t mem_flags)
3017 {
3018 	int epnum;
3019 	unsigned long flags;
3020 	struct fotg210_qh *qh = NULL;
3021 	int rc;
3022 
3023 	epnum = urb->ep->desc.bEndpointAddress;
3024 
3025 #ifdef FOTG210_URB_TRACE
3026 	{
3027 		struct fotg210_qtd *qtd;
3028 
3029 		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3030 		fotg210_dbg(fotg210,
3031 				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3032 				__func__, urb->dev->devpath, urb,
3033 				epnum & 0x0f, (epnum & USB_DIR_IN)
3034 					? "in" : "out",
3035 				urb->transfer_buffer_length,
3036 				qtd, urb->ep->hcpriv);
3037 	}
3038 #endif
3039 
3040 	spin_lock_irqsave(&fotg210->lock, flags);
3041 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3042 		rc = -ESHUTDOWN;
3043 		goto done;
3044 	}
3045 	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3046 	if (unlikely(rc))
3047 		goto done;
3048 
3049 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3050 	if (unlikely(qh == NULL)) {
3051 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3052 		rc = -ENOMEM;
3053 		goto done;
3054 	}
3055 
3056 	/* Control/bulk operations through TTs don't need scheduling,
3057 	 * the HC and TT handle it when the TT has a buffer ready.
3058 	 */
3059 	if (likely(qh->qh_state == QH_STATE_IDLE))
3060 		qh_link_async(fotg210, qh);
3061 done:
3062 	spin_unlock_irqrestore(&fotg210->lock, flags);
3063 	if (unlikely(qh == NULL))
3064 		qtd_list_free(fotg210, urb, qtd_list);
3065 	return rc;
3066 }
3067 
single_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3068 static void single_unlink_async(struct fotg210_hcd *fotg210,
3069 		struct fotg210_qh *qh)
3070 {
3071 	struct fotg210_qh *prev;
3072 
3073 	/* Add to the end of the list of QHs waiting for the next IAAD */
3074 	qh->qh_state = QH_STATE_UNLINK;
3075 	if (fotg210->async_unlink)
3076 		fotg210->async_unlink_last->unlink_next = qh;
3077 	else
3078 		fotg210->async_unlink = qh;
3079 	fotg210->async_unlink_last = qh;
3080 
3081 	/* Unlink it from the schedule */
3082 	prev = fotg210->async;
3083 	while (prev->qh_next.qh != qh)
3084 		prev = prev->qh_next.qh;
3085 
3086 	prev->hw->hw_next = qh->hw->hw_next;
3087 	prev->qh_next = qh->qh_next;
3088 	if (fotg210->qh_scan_next == qh)
3089 		fotg210->qh_scan_next = qh->qh_next.qh;
3090 }
3091 
start_iaa_cycle(struct fotg210_hcd * fotg210,bool nested)3092 static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3093 {
3094 	/*
3095 	 * Do nothing if an IAA cycle is already running or
3096 	 * if one will be started shortly.
3097 	 */
3098 	if (fotg210->async_iaa || fotg210->async_unlinking)
3099 		return;
3100 
3101 	/* Do all the waiting QHs at once */
3102 	fotg210->async_iaa = fotg210->async_unlink;
3103 	fotg210->async_unlink = NULL;
3104 
3105 	/* If the controller isn't running, we don't have to wait for it */
3106 	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3107 		if (!nested)		/* Avoid recursion */
3108 			end_unlink_async(fotg210);
3109 
3110 	/* Otherwise start a new IAA cycle */
3111 	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3112 		/* Make sure the unlinks are all visible to the hardware */
3113 		wmb();
3114 
3115 		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3116 				&fotg210->regs->command);
3117 		fotg210_readl(fotg210, &fotg210->regs->command);
3118 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3119 				true);
3120 	}
3121 }
3122 
3123 /* the async qh for the qtds being unlinked are now gone from the HC */
3124 
end_unlink_async(struct fotg210_hcd * fotg210)3125 static void end_unlink_async(struct fotg210_hcd *fotg210)
3126 {
3127 	struct fotg210_qh *qh;
3128 
3129 	/* Process the idle QHs */
3130 restart:
3131 	fotg210->async_unlinking = true;
3132 	while (fotg210->async_iaa) {
3133 		qh = fotg210->async_iaa;
3134 		fotg210->async_iaa = qh->unlink_next;
3135 		qh->unlink_next = NULL;
3136 
3137 		qh->qh_state = QH_STATE_IDLE;
3138 		qh->qh_next.qh = NULL;
3139 
3140 		qh_completions(fotg210, qh);
3141 		if (!list_empty(&qh->qtd_list) &&
3142 				fotg210->rh_state == FOTG210_RH_RUNNING)
3143 			qh_link_async(fotg210, qh);
3144 		disable_async(fotg210);
3145 	}
3146 	fotg210->async_unlinking = false;
3147 
3148 	/* Start a new IAA cycle if any QHs are waiting for it */
3149 	if (fotg210->async_unlink) {
3150 		start_iaa_cycle(fotg210, true);
3151 		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3152 			goto restart;
3153 	}
3154 }
3155 
unlink_empty_async(struct fotg210_hcd * fotg210)3156 static void unlink_empty_async(struct fotg210_hcd *fotg210)
3157 {
3158 	struct fotg210_qh *qh, *next;
3159 	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3160 	bool check_unlinks_later = false;
3161 
3162 	/* Unlink all the async QHs that have been empty for a timer cycle */
3163 	next = fotg210->async->qh_next.qh;
3164 	while (next) {
3165 		qh = next;
3166 		next = qh->qh_next.qh;
3167 
3168 		if (list_empty(&qh->qtd_list) &&
3169 				qh->qh_state == QH_STATE_LINKED) {
3170 			if (!stopped && qh->unlink_cycle ==
3171 					fotg210->async_unlink_cycle)
3172 				check_unlinks_later = true;
3173 			else
3174 				single_unlink_async(fotg210, qh);
3175 		}
3176 	}
3177 
3178 	/* Start a new IAA cycle if any QHs are waiting for it */
3179 	if (fotg210->async_unlink)
3180 		start_iaa_cycle(fotg210, false);
3181 
3182 	/* QHs that haven't been empty for long enough will be handled later */
3183 	if (check_unlinks_later) {
3184 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3185 				true);
3186 		++fotg210->async_unlink_cycle;
3187 	}
3188 }
3189 
3190 /* makes sure the async qh will become idle */
3191 /* caller must own fotg210->lock */
3192 
start_unlink_async(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3193 static void start_unlink_async(struct fotg210_hcd *fotg210,
3194 		struct fotg210_qh *qh)
3195 {
3196 	/*
3197 	 * If the QH isn't linked then there's nothing we can do
3198 	 * unless we were called during a giveback, in which case
3199 	 * qh_completions() has to deal with it.
3200 	 */
3201 	if (qh->qh_state != QH_STATE_LINKED) {
3202 		if (qh->qh_state == QH_STATE_COMPLETING)
3203 			qh->needs_rescan = 1;
3204 		return;
3205 	}
3206 
3207 	single_unlink_async(fotg210, qh);
3208 	start_iaa_cycle(fotg210, false);
3209 }
3210 
scan_async(struct fotg210_hcd * fotg210)3211 static void scan_async(struct fotg210_hcd *fotg210)
3212 {
3213 	struct fotg210_qh *qh;
3214 	bool check_unlinks_later = false;
3215 
3216 	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3217 	while (fotg210->qh_scan_next) {
3218 		qh = fotg210->qh_scan_next;
3219 		fotg210->qh_scan_next = qh->qh_next.qh;
3220 rescan:
3221 		/* clean any finished work for this qh */
3222 		if (!list_empty(&qh->qtd_list)) {
3223 			int temp;
3224 
3225 			/*
3226 			 * Unlinks could happen here; completion reporting
3227 			 * drops the lock.  That's why fotg210->qh_scan_next
3228 			 * always holds the next qh to scan; if the next qh
3229 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3230 			 * in single_unlink_async().
3231 			 */
3232 			temp = qh_completions(fotg210, qh);
3233 			if (qh->needs_rescan) {
3234 				start_unlink_async(fotg210, qh);
3235 			} else if (list_empty(&qh->qtd_list)
3236 					&& qh->qh_state == QH_STATE_LINKED) {
3237 				qh->unlink_cycle = fotg210->async_unlink_cycle;
3238 				check_unlinks_later = true;
3239 			} else if (temp != 0)
3240 				goto rescan;
3241 		}
3242 	}
3243 
3244 	/*
3245 	 * Unlink empty entries, reducing DMA usage as well
3246 	 * as HCD schedule-scanning costs.  Delay for any qh
3247 	 * we just scanned, there's a not-unusual case that it
3248 	 * doesn't stay idle for long.
3249 	 */
3250 	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3251 			!(fotg210->enabled_hrtimer_events &
3252 			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3253 		fotg210_enable_event(fotg210,
3254 				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3255 		++fotg210->async_unlink_cycle;
3256 	}
3257 }
3258 /* EHCI scheduled transaction support:  interrupt, iso, split iso
3259  * These are called "periodic" transactions in the EHCI spec.
3260  *
3261  * Note that for interrupt transfers, the QH/QTD manipulation is shared
3262  * with the "asynchronous" transaction support (control/bulk transfers).
3263  * The only real difference is in how interrupt transfers are scheduled.
3264  *
3265  * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3266  * It keeps track of every ITD (or SITD) that's linked, and holds enough
3267  * pre-calculated schedule data to make appending to the queue be quick.
3268  */
3269 static int fotg210_get_frame(struct usb_hcd *hcd);
3270 
3271 /* periodic_next_shadow - return "next" pointer on shadow list
3272  * @periodic: host pointer to qh/itd
3273  * @tag: hardware tag for type of this record
3274  */
periodic_next_shadow(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3275 static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3276 		union fotg210_shadow *periodic, __hc32 tag)
3277 {
3278 	switch (hc32_to_cpu(fotg210, tag)) {
3279 	case Q_TYPE_QH:
3280 		return &periodic->qh->qh_next;
3281 	case Q_TYPE_FSTN:
3282 		return &periodic->fstn->fstn_next;
3283 	default:
3284 		return &periodic->itd->itd_next;
3285 	}
3286 }
3287 
shadow_next_periodic(struct fotg210_hcd * fotg210,union fotg210_shadow * periodic,__hc32 tag)3288 static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3289 		union fotg210_shadow *periodic, __hc32 tag)
3290 {
3291 	switch (hc32_to_cpu(fotg210, tag)) {
3292 	/* our fotg210_shadow.qh is actually software part */
3293 	case Q_TYPE_QH:
3294 		return &periodic->qh->hw->hw_next;
3295 	/* others are hw parts */
3296 	default:
3297 		return periodic->hw_next;
3298 	}
3299 }
3300 
3301 /* caller must hold fotg210->lock */
periodic_unlink(struct fotg210_hcd * fotg210,unsigned frame,void * ptr)3302 static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3303 		void *ptr)
3304 {
3305 	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3306 	__hc32 *hw_p = &fotg210->periodic[frame];
3307 	union fotg210_shadow here = *prev_p;
3308 
3309 	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3310 	while (here.ptr && here.ptr != ptr) {
3311 		prev_p = periodic_next_shadow(fotg210, prev_p,
3312 				Q_NEXT_TYPE(fotg210, *hw_p));
3313 		hw_p = shadow_next_periodic(fotg210, &here,
3314 				Q_NEXT_TYPE(fotg210, *hw_p));
3315 		here = *prev_p;
3316 	}
3317 	/* an interrupt entry (at list end) could have been shared */
3318 	if (!here.ptr)
3319 		return;
3320 
3321 	/* update shadow and hardware lists ... the old "next" pointers
3322 	 * from ptr may still be in use, the caller updates them.
3323 	 */
3324 	*prev_p = *periodic_next_shadow(fotg210, &here,
3325 			Q_NEXT_TYPE(fotg210, *hw_p));
3326 
3327 	*hw_p = *shadow_next_periodic(fotg210, &here,
3328 			Q_NEXT_TYPE(fotg210, *hw_p));
3329 }
3330 
3331 /* how many of the uframe's 125 usecs are allocated? */
periodic_usecs(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe)3332 static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3333 		unsigned frame, unsigned uframe)
3334 {
3335 	__hc32 *hw_p = &fotg210->periodic[frame];
3336 	union fotg210_shadow *q = &fotg210->pshadow[frame];
3337 	unsigned usecs = 0;
3338 	struct fotg210_qh_hw *hw;
3339 
3340 	while (q->ptr) {
3341 		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3342 		case Q_TYPE_QH:
3343 			hw = q->qh->hw;
3344 			/* is it in the S-mask? */
3345 			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3346 				usecs += q->qh->usecs;
3347 			/* ... or C-mask? */
3348 			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3349 					1 << (8 + uframe)))
3350 				usecs += q->qh->c_usecs;
3351 			hw_p = &hw->hw_next;
3352 			q = &q->qh->qh_next;
3353 			break;
3354 		/* case Q_TYPE_FSTN: */
3355 		default:
3356 			/* for "save place" FSTNs, count the relevant INTR
3357 			 * bandwidth from the previous frame
3358 			 */
3359 			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3360 				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3361 
3362 			hw_p = &q->fstn->hw_next;
3363 			q = &q->fstn->fstn_next;
3364 			break;
3365 		case Q_TYPE_ITD:
3366 			if (q->itd->hw_transaction[uframe])
3367 				usecs += q->itd->stream->usecs;
3368 			hw_p = &q->itd->hw_next;
3369 			q = &q->itd->itd_next;
3370 			break;
3371 		}
3372 	}
3373 	if (usecs > fotg210->uframe_periodic_max)
3374 		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3375 				frame * 8 + uframe, usecs);
3376 	return usecs;
3377 }
3378 
same_tt(struct usb_device * dev1,struct usb_device * dev2)3379 static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3380 {
3381 	if (!dev1->tt || !dev2->tt)
3382 		return 0;
3383 	if (dev1->tt != dev2->tt)
3384 		return 0;
3385 	if (dev1->tt->multi)
3386 		return dev1->ttport == dev2->ttport;
3387 	else
3388 		return 1;
3389 }
3390 
3391 /* return true iff the device's transaction translator is available
3392  * for a periodic transfer starting at the specified frame, using
3393  * all the uframes in the mask.
3394  */
tt_no_collision(struct fotg210_hcd * fotg210,unsigned period,struct usb_device * dev,unsigned frame,u32 uf_mask)3395 static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3396 		struct usb_device *dev, unsigned frame, u32 uf_mask)
3397 {
3398 	if (period == 0)	/* error */
3399 		return 0;
3400 
3401 	/* note bandwidth wastage:  split never follows csplit
3402 	 * (different dev or endpoint) until the next uframe.
3403 	 * calling convention doesn't make that distinction.
3404 	 */
3405 	for (; frame < fotg210->periodic_size; frame += period) {
3406 		union fotg210_shadow here;
3407 		__hc32 type;
3408 		struct fotg210_qh_hw *hw;
3409 
3410 		here = fotg210->pshadow[frame];
3411 		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3412 		while (here.ptr) {
3413 			switch (hc32_to_cpu(fotg210, type)) {
3414 			case Q_TYPE_ITD:
3415 				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3416 				here = here.itd->itd_next;
3417 				continue;
3418 			case Q_TYPE_QH:
3419 				hw = here.qh->hw;
3420 				if (same_tt(dev, here.qh->dev)) {
3421 					u32 mask;
3422 
3423 					mask = hc32_to_cpu(fotg210,
3424 							hw->hw_info2);
3425 					/* "knows" no gap is needed */
3426 					mask |= mask >> 8;
3427 					if (mask & uf_mask)
3428 						break;
3429 				}
3430 				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3431 				here = here.qh->qh_next;
3432 				continue;
3433 			/* case Q_TYPE_FSTN: */
3434 			default:
3435 				fotg210_dbg(fotg210,
3436 						"periodic frame %d bogus type %d\n",
3437 						frame, type);
3438 			}
3439 
3440 			/* collision or error */
3441 			return 0;
3442 		}
3443 	}
3444 
3445 	/* no collision */
3446 	return 1;
3447 }
3448 
enable_periodic(struct fotg210_hcd * fotg210)3449 static void enable_periodic(struct fotg210_hcd *fotg210)
3450 {
3451 	if (fotg210->periodic_count++)
3452 		return;
3453 
3454 	/* Stop waiting to turn off the periodic schedule */
3455 	fotg210->enabled_hrtimer_events &=
3456 		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3457 
3458 	/* Don't start the schedule until PSS is 0 */
3459 	fotg210_poll_PSS(fotg210);
3460 	turn_on_io_watchdog(fotg210);
3461 }
3462 
disable_periodic(struct fotg210_hcd * fotg210)3463 static void disable_periodic(struct fotg210_hcd *fotg210)
3464 {
3465 	if (--fotg210->periodic_count)
3466 		return;
3467 
3468 	/* Don't turn off the schedule until PSS is 1 */
3469 	fotg210_poll_PSS(fotg210);
3470 }
3471 
3472 /* periodic schedule slots have iso tds (normal or split) first, then a
3473  * sparse tree for active interrupt transfers.
3474  *
3475  * this just links in a qh; caller guarantees uframe masks are set right.
3476  * no FSTN support (yet; fotg210 0.96+)
3477  */
qh_link_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3478 static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3479 {
3480 	unsigned i;
3481 	unsigned period = qh->period;
3482 
3483 	dev_dbg(&qh->dev->dev,
3484 			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3485 			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3486 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3487 			qh->c_usecs);
3488 
3489 	/* high bandwidth, or otherwise every microframe */
3490 	if (period == 0)
3491 		period = 1;
3492 
3493 	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3494 		union fotg210_shadow *prev = &fotg210->pshadow[i];
3495 		__hc32 *hw_p = &fotg210->periodic[i];
3496 		union fotg210_shadow here = *prev;
3497 		__hc32 type = 0;
3498 
3499 		/* skip the iso nodes at list head */
3500 		while (here.ptr) {
3501 			type = Q_NEXT_TYPE(fotg210, *hw_p);
3502 			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3503 				break;
3504 			prev = periodic_next_shadow(fotg210, prev, type);
3505 			hw_p = shadow_next_periodic(fotg210, &here, type);
3506 			here = *prev;
3507 		}
3508 
3509 		/* sorting each branch by period (slow-->fast)
3510 		 * enables sharing interior tree nodes
3511 		 */
3512 		while (here.ptr && qh != here.qh) {
3513 			if (qh->period > here.qh->period)
3514 				break;
3515 			prev = &here.qh->qh_next;
3516 			hw_p = &here.qh->hw->hw_next;
3517 			here = *prev;
3518 		}
3519 		/* link in this qh, unless some earlier pass did that */
3520 		if (qh != here.qh) {
3521 			qh->qh_next = here;
3522 			if (here.qh)
3523 				qh->hw->hw_next = *hw_p;
3524 			wmb();
3525 			prev->qh = qh;
3526 			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3527 		}
3528 	}
3529 	qh->qh_state = QH_STATE_LINKED;
3530 	qh->xacterrs = 0;
3531 
3532 	/* update per-qh bandwidth for usbfs */
3533 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3534 		? ((qh->usecs + qh->c_usecs) / qh->period)
3535 		: (qh->usecs * 8);
3536 
3537 	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3538 
3539 	/* maybe enable periodic schedule processing */
3540 	++fotg210->intr_count;
3541 	enable_periodic(fotg210);
3542 }
3543 
qh_unlink_periodic(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3544 static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3545 		struct fotg210_qh *qh)
3546 {
3547 	unsigned i;
3548 	unsigned period;
3549 
3550 	/*
3551 	 * If qh is for a low/full-speed device, simply unlinking it
3552 	 * could interfere with an ongoing split transaction.  To unlink
3553 	 * it safely would require setting the QH_INACTIVATE bit and
3554 	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3555 	 *
3556 	 * We won't bother with any of this.  Instead, we assume that the
3557 	 * only reason for unlinking an interrupt QH while the current URB
3558 	 * is still active is to dequeue all the URBs (flush the whole
3559 	 * endpoint queue).
3560 	 *
3561 	 * If rebalancing the periodic schedule is ever implemented, this
3562 	 * approach will no longer be valid.
3563 	 */
3564 
3565 	/* high bandwidth, or otherwise part of every microframe */
3566 	period = qh->period;
3567 	if (!period)
3568 		period = 1;
3569 
3570 	for (i = qh->start; i < fotg210->periodic_size; i += period)
3571 		periodic_unlink(fotg210, i, qh);
3572 
3573 	/* update per-qh bandwidth for usbfs */
3574 	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3575 		? ((qh->usecs + qh->c_usecs) / qh->period)
3576 		: (qh->usecs * 8);
3577 
3578 	dev_dbg(&qh->dev->dev,
3579 			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3580 			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3581 			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3582 			qh->c_usecs);
3583 
3584 	/* qh->qh_next still "live" to HC */
3585 	qh->qh_state = QH_STATE_UNLINK;
3586 	qh->qh_next.ptr = NULL;
3587 
3588 	if (fotg210->qh_scan_next == qh)
3589 		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3590 				struct fotg210_qh, intr_node);
3591 	list_del(&qh->intr_node);
3592 }
3593 
start_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3594 static void start_unlink_intr(struct fotg210_hcd *fotg210,
3595 		struct fotg210_qh *qh)
3596 {
3597 	/* If the QH isn't linked then there's nothing we can do
3598 	 * unless we were called during a giveback, in which case
3599 	 * qh_completions() has to deal with it.
3600 	 */
3601 	if (qh->qh_state != QH_STATE_LINKED) {
3602 		if (qh->qh_state == QH_STATE_COMPLETING)
3603 			qh->needs_rescan = 1;
3604 		return;
3605 	}
3606 
3607 	qh_unlink_periodic(fotg210, qh);
3608 
3609 	/* Make sure the unlinks are visible before starting the timer */
3610 	wmb();
3611 
3612 	/*
3613 	 * The EHCI spec doesn't say how long it takes the controller to
3614 	 * stop accessing an unlinked interrupt QH.  The timer delay is
3615 	 * 9 uframes; presumably that will be long enough.
3616 	 */
3617 	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3618 
3619 	/* New entries go at the end of the intr_unlink list */
3620 	if (fotg210->intr_unlink)
3621 		fotg210->intr_unlink_last->unlink_next = qh;
3622 	else
3623 		fotg210->intr_unlink = qh;
3624 	fotg210->intr_unlink_last = qh;
3625 
3626 	if (fotg210->intr_unlinking)
3627 		;	/* Avoid recursive calls */
3628 	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3629 		fotg210_handle_intr_unlinks(fotg210);
3630 	else if (fotg210->intr_unlink == qh) {
3631 		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3632 				true);
3633 		++fotg210->intr_unlink_cycle;
3634 	}
3635 }
3636 
end_unlink_intr(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3637 static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3638 {
3639 	struct fotg210_qh_hw *hw = qh->hw;
3640 	int rc;
3641 
3642 	qh->qh_state = QH_STATE_IDLE;
3643 	hw->hw_next = FOTG210_LIST_END(fotg210);
3644 
3645 	qh_completions(fotg210, qh);
3646 
3647 	/* reschedule QH iff another request is queued */
3648 	if (!list_empty(&qh->qtd_list) &&
3649 			fotg210->rh_state == FOTG210_RH_RUNNING) {
3650 		rc = qh_schedule(fotg210, qh);
3651 
3652 		/* An error here likely indicates handshake failure
3653 		 * or no space left in the schedule.  Neither fault
3654 		 * should happen often ...
3655 		 *
3656 		 * FIXME kill the now-dysfunctional queued urbs
3657 		 */
3658 		if (rc != 0)
3659 			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3660 					qh, rc);
3661 	}
3662 
3663 	/* maybe turn off periodic schedule */
3664 	--fotg210->intr_count;
3665 	disable_periodic(fotg210);
3666 }
3667 
check_period(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,unsigned period,unsigned usecs)3668 static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3669 		unsigned uframe, unsigned period, unsigned usecs)
3670 {
3671 	int claimed;
3672 
3673 	/* complete split running into next frame?
3674 	 * given FSTN support, we could sometimes check...
3675 	 */
3676 	if (uframe >= 8)
3677 		return 0;
3678 
3679 	/* convert "usecs we need" to "max already claimed" */
3680 	usecs = fotg210->uframe_periodic_max - usecs;
3681 
3682 	/* we "know" 2 and 4 uframe intervals were rejected; so
3683 	 * for period 0, check _every_ microframe in the schedule.
3684 	 */
3685 	if (unlikely(period == 0)) {
3686 		do {
3687 			for (uframe = 0; uframe < 7; uframe++) {
3688 				claimed = periodic_usecs(fotg210, frame,
3689 						uframe);
3690 				if (claimed > usecs)
3691 					return 0;
3692 			}
3693 		} while ((frame += 1) < fotg210->periodic_size);
3694 
3695 	/* just check the specified uframe, at that period */
3696 	} else {
3697 		do {
3698 			claimed = periodic_usecs(fotg210, frame, uframe);
3699 			if (claimed > usecs)
3700 				return 0;
3701 		} while ((frame += period) < fotg210->periodic_size);
3702 	}
3703 
3704 	/* success! */
3705 	return 1;
3706 }
3707 
check_intr_schedule(struct fotg210_hcd * fotg210,unsigned frame,unsigned uframe,const struct fotg210_qh * qh,__hc32 * c_maskp)3708 static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3709 		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3710 {
3711 	int retval = -ENOSPC;
3712 	u8 mask = 0;
3713 
3714 	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3715 		goto done;
3716 
3717 	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3718 		goto done;
3719 	if (!qh->c_usecs) {
3720 		retval = 0;
3721 		*c_maskp = 0;
3722 		goto done;
3723 	}
3724 
3725 	/* Make sure this tt's buffer is also available for CSPLITs.
3726 	 * We pessimize a bit; probably the typical full speed case
3727 	 * doesn't need the second CSPLIT.
3728 	 *
3729 	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3730 	 * one smart pass...
3731 	 */
3732 	mask = 0x03 << (uframe + qh->gap_uf);
3733 	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3734 
3735 	mask |= 1 << uframe;
3736 	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3737 		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3738 				qh->period, qh->c_usecs))
3739 			goto done;
3740 		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3741 				qh->period, qh->c_usecs))
3742 			goto done;
3743 		retval = 0;
3744 	}
3745 done:
3746 	return retval;
3747 }
3748 
3749 /* "first fit" scheduling policy used the first time through,
3750  * or when the previous schedule slot can't be re-used.
3751  */
qh_schedule(struct fotg210_hcd * fotg210,struct fotg210_qh * qh)3752 static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3753 {
3754 	int status;
3755 	unsigned uframe;
3756 	__hc32 c_mask;
3757 	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3758 	struct fotg210_qh_hw *hw = qh->hw;
3759 
3760 	qh_refresh(fotg210, qh);
3761 	hw->hw_next = FOTG210_LIST_END(fotg210);
3762 	frame = qh->start;
3763 
3764 	/* reuse the previous schedule slots, if we can */
3765 	if (frame < qh->period) {
3766 		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3767 		status = check_intr_schedule(fotg210, frame, --uframe,
3768 				qh, &c_mask);
3769 	} else {
3770 		uframe = 0;
3771 		c_mask = 0;
3772 		status = -ENOSPC;
3773 	}
3774 
3775 	/* else scan the schedule to find a group of slots such that all
3776 	 * uframes have enough periodic bandwidth available.
3777 	 */
3778 	if (status) {
3779 		/* "normal" case, uframing flexible except with splits */
3780 		if (qh->period) {
3781 			int i;
3782 
3783 			for (i = qh->period; status && i > 0; --i) {
3784 				frame = ++fotg210->random_frame % qh->period;
3785 				for (uframe = 0; uframe < 8; uframe++) {
3786 					status = check_intr_schedule(fotg210,
3787 							frame, uframe, qh,
3788 							&c_mask);
3789 					if (status == 0)
3790 						break;
3791 				}
3792 			}
3793 
3794 		/* qh->period == 0 means every uframe */
3795 		} else {
3796 			frame = 0;
3797 			status = check_intr_schedule(fotg210, 0, 0, qh,
3798 					&c_mask);
3799 		}
3800 		if (status)
3801 			goto done;
3802 		qh->start = frame;
3803 
3804 		/* reset S-frame and (maybe) C-frame masks */
3805 		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3806 		hw->hw_info2 |= qh->period
3807 			? cpu_to_hc32(fotg210, 1 << uframe)
3808 			: cpu_to_hc32(fotg210, QH_SMASK);
3809 		hw->hw_info2 |= c_mask;
3810 	} else
3811 		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3812 
3813 	/* stuff into the periodic schedule */
3814 	qh_link_periodic(fotg210, qh);
3815 done:
3816 	return status;
3817 }
3818 
intr_submit(struct fotg210_hcd * fotg210,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)3819 static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3820 		struct list_head *qtd_list, gfp_t mem_flags)
3821 {
3822 	unsigned epnum;
3823 	unsigned long flags;
3824 	struct fotg210_qh *qh;
3825 	int status;
3826 	struct list_head empty;
3827 
3828 	/* get endpoint and transfer/schedule data */
3829 	epnum = urb->ep->desc.bEndpointAddress;
3830 
3831 	spin_lock_irqsave(&fotg210->lock, flags);
3832 
3833 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3834 		status = -ESHUTDOWN;
3835 		goto done_not_linked;
3836 	}
3837 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3838 	if (unlikely(status))
3839 		goto done_not_linked;
3840 
3841 	/* get qh and force any scheduling errors */
3842 	INIT_LIST_HEAD(&empty);
3843 	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3844 	if (qh == NULL) {
3845 		status = -ENOMEM;
3846 		goto done;
3847 	}
3848 	if (qh->qh_state == QH_STATE_IDLE) {
3849 		status = qh_schedule(fotg210, qh);
3850 		if (status)
3851 			goto done;
3852 	}
3853 
3854 	/* then queue the urb's tds to the qh */
3855 	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3856 	BUG_ON(qh == NULL);
3857 
3858 	/* ... update usbfs periodic stats */
3859 	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3860 
3861 done:
3862 	if (unlikely(status))
3863 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3864 done_not_linked:
3865 	spin_unlock_irqrestore(&fotg210->lock, flags);
3866 	if (status)
3867 		qtd_list_free(fotg210, urb, qtd_list);
3868 
3869 	return status;
3870 }
3871 
scan_intr(struct fotg210_hcd * fotg210)3872 static void scan_intr(struct fotg210_hcd *fotg210)
3873 {
3874 	struct fotg210_qh *qh;
3875 
3876 	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3877 			&fotg210->intr_qh_list, intr_node) {
3878 rescan:
3879 		/* clean any finished work for this qh */
3880 		if (!list_empty(&qh->qtd_list)) {
3881 			int temp;
3882 
3883 			/*
3884 			 * Unlinks could happen here; completion reporting
3885 			 * drops the lock.  That's why fotg210->qh_scan_next
3886 			 * always holds the next qh to scan; if the next qh
3887 			 * gets unlinked then fotg210->qh_scan_next is adjusted
3888 			 * in qh_unlink_periodic().
3889 			 */
3890 			temp = qh_completions(fotg210, qh);
3891 			if (unlikely(qh->needs_rescan ||
3892 					(list_empty(&qh->qtd_list) &&
3893 					qh->qh_state == QH_STATE_LINKED)))
3894 				start_unlink_intr(fotg210, qh);
3895 			else if (temp != 0)
3896 				goto rescan;
3897 		}
3898 	}
3899 }
3900 
3901 /* fotg210_iso_stream ops work with both ITD and SITD */
3902 
iso_stream_alloc(gfp_t mem_flags)3903 static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3904 {
3905 	struct fotg210_iso_stream *stream;
3906 
3907 	stream = kzalloc(sizeof(*stream), mem_flags);
3908 	if (likely(stream != NULL)) {
3909 		INIT_LIST_HEAD(&stream->td_list);
3910 		INIT_LIST_HEAD(&stream->free_list);
3911 		stream->next_uframe = -1;
3912 	}
3913 	return stream;
3914 }
3915 
iso_stream_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct usb_device * dev,int pipe,unsigned interval)3916 static void iso_stream_init(struct fotg210_hcd *fotg210,
3917 		struct fotg210_iso_stream *stream, struct usb_device *dev,
3918 		int pipe, unsigned interval)
3919 {
3920 	u32 buf1;
3921 	unsigned epnum, maxp;
3922 	int is_input;
3923 	long bandwidth;
3924 	unsigned multi;
3925 
3926 	/*
3927 	 * this might be a "high bandwidth" highspeed endpoint,
3928 	 * as encoded in the ep descriptor's wMaxPacket field
3929 	 */
3930 	epnum = usb_pipeendpoint(pipe);
3931 	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3932 	maxp = usb_maxpacket(dev, pipe, !is_input);
3933 	if (is_input)
3934 		buf1 = (1 << 11);
3935 	else
3936 		buf1 = 0;
3937 
3938 	maxp = max_packet(maxp);
3939 	multi = hb_mult(maxp);
3940 	buf1 |= maxp;
3941 	maxp *= multi;
3942 
3943 	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3944 	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3945 	stream->buf2 = cpu_to_hc32(fotg210, multi);
3946 
3947 	/* usbfs wants to report the average usecs per frame tied up
3948 	 * when transfers on this endpoint are scheduled ...
3949 	 */
3950 	if (dev->speed == USB_SPEED_FULL) {
3951 		interval <<= 3;
3952 		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3953 				is_input, 1, maxp));
3954 		stream->usecs /= 8;
3955 	} else {
3956 		stream->highspeed = 1;
3957 		stream->usecs = HS_USECS_ISO(maxp);
3958 	}
3959 	bandwidth = stream->usecs * 8;
3960 	bandwidth /= interval;
3961 
3962 	stream->bandwidth = bandwidth;
3963 	stream->udev = dev;
3964 	stream->bEndpointAddress = is_input | epnum;
3965 	stream->interval = interval;
3966 	stream->maxp = maxp;
3967 }
3968 
iso_stream_find(struct fotg210_hcd * fotg210,struct urb * urb)3969 static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3970 		struct urb *urb)
3971 {
3972 	unsigned epnum;
3973 	struct fotg210_iso_stream *stream;
3974 	struct usb_host_endpoint *ep;
3975 	unsigned long flags;
3976 
3977 	epnum = usb_pipeendpoint(urb->pipe);
3978 	if (usb_pipein(urb->pipe))
3979 		ep = urb->dev->ep_in[epnum];
3980 	else
3981 		ep = urb->dev->ep_out[epnum];
3982 
3983 	spin_lock_irqsave(&fotg210->lock, flags);
3984 	stream = ep->hcpriv;
3985 
3986 	if (unlikely(stream == NULL)) {
3987 		stream = iso_stream_alloc(GFP_ATOMIC);
3988 		if (likely(stream != NULL)) {
3989 			ep->hcpriv = stream;
3990 			stream->ep = ep;
3991 			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
3992 					urb->interval);
3993 		}
3994 
3995 	/* if dev->ep[epnum] is a QH, hw is set */
3996 	} else if (unlikely(stream->hw != NULL)) {
3997 		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
3998 				urb->dev->devpath, epnum,
3999 				usb_pipein(urb->pipe) ? "in" : "out");
4000 		stream = NULL;
4001 	}
4002 
4003 	spin_unlock_irqrestore(&fotg210->lock, flags);
4004 	return stream;
4005 }
4006 
4007 /* fotg210_iso_sched ops can be ITD-only or SITD-only */
4008 
iso_sched_alloc(unsigned packets,gfp_t mem_flags)4009 static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4010 		gfp_t mem_flags)
4011 {
4012 	struct fotg210_iso_sched *iso_sched;
4013 	int size = sizeof(*iso_sched);
4014 
4015 	size += packets * sizeof(struct fotg210_iso_packet);
4016 	iso_sched = kzalloc(size, mem_flags);
4017 	if (likely(iso_sched != NULL))
4018 		INIT_LIST_HEAD(&iso_sched->td_list);
4019 
4020 	return iso_sched;
4021 }
4022 
itd_sched_init(struct fotg210_hcd * fotg210,struct fotg210_iso_sched * iso_sched,struct fotg210_iso_stream * stream,struct urb * urb)4023 static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4024 		struct fotg210_iso_sched *iso_sched,
4025 		struct fotg210_iso_stream *stream, struct urb *urb)
4026 {
4027 	unsigned i;
4028 	dma_addr_t dma = urb->transfer_dma;
4029 
4030 	/* how many uframes are needed for these transfers */
4031 	iso_sched->span = urb->number_of_packets * stream->interval;
4032 
4033 	/* figure out per-uframe itd fields that we'll need later
4034 	 * when we fit new itds into the schedule.
4035 	 */
4036 	for (i = 0; i < urb->number_of_packets; i++) {
4037 		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4038 		unsigned length;
4039 		dma_addr_t buf;
4040 		u32 trans;
4041 
4042 		length = urb->iso_frame_desc[i].length;
4043 		buf = dma + urb->iso_frame_desc[i].offset;
4044 
4045 		trans = FOTG210_ISOC_ACTIVE;
4046 		trans |= buf & 0x0fff;
4047 		if (unlikely(((i + 1) == urb->number_of_packets))
4048 				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4049 			trans |= FOTG210_ITD_IOC;
4050 		trans |= length << 16;
4051 		uframe->transaction = cpu_to_hc32(fotg210, trans);
4052 
4053 		/* might need to cross a buffer page within a uframe */
4054 		uframe->bufp = (buf & ~(u64)0x0fff);
4055 		buf += length;
4056 		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4057 			uframe->cross = 1;
4058 	}
4059 }
4060 
iso_sched_free(struct fotg210_iso_stream * stream,struct fotg210_iso_sched * iso_sched)4061 static void iso_sched_free(struct fotg210_iso_stream *stream,
4062 		struct fotg210_iso_sched *iso_sched)
4063 {
4064 	if (!iso_sched)
4065 		return;
4066 	/* caller must hold fotg210->lock!*/
4067 	list_splice(&iso_sched->td_list, &stream->free_list);
4068 	kfree(iso_sched);
4069 }
4070 
itd_urb_transaction(struct fotg210_iso_stream * stream,struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4071 static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4072 		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4073 {
4074 	struct fotg210_itd *itd;
4075 	dma_addr_t itd_dma;
4076 	int i;
4077 	unsigned num_itds;
4078 	struct fotg210_iso_sched *sched;
4079 	unsigned long flags;
4080 
4081 	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4082 	if (unlikely(sched == NULL))
4083 		return -ENOMEM;
4084 
4085 	itd_sched_init(fotg210, sched, stream, urb);
4086 
4087 	if (urb->interval < 8)
4088 		num_itds = 1 + (sched->span + 7) / 8;
4089 	else
4090 		num_itds = urb->number_of_packets;
4091 
4092 	/* allocate/init ITDs */
4093 	spin_lock_irqsave(&fotg210->lock, flags);
4094 	for (i = 0; i < num_itds; i++) {
4095 
4096 		/*
4097 		 * Use iTDs from the free list, but not iTDs that may
4098 		 * still be in use by the hardware.
4099 		 */
4100 		if (likely(!list_empty(&stream->free_list))) {
4101 			itd = list_first_entry(&stream->free_list,
4102 					struct fotg210_itd, itd_list);
4103 			if (itd->frame == fotg210->now_frame)
4104 				goto alloc_itd;
4105 			list_del(&itd->itd_list);
4106 			itd_dma = itd->itd_dma;
4107 		} else {
4108 alloc_itd:
4109 			spin_unlock_irqrestore(&fotg210->lock, flags);
4110 			itd = dma_pool_zalloc(fotg210->itd_pool, mem_flags,
4111 					&itd_dma);
4112 			spin_lock_irqsave(&fotg210->lock, flags);
4113 			if (!itd) {
4114 				iso_sched_free(stream, sched);
4115 				spin_unlock_irqrestore(&fotg210->lock, flags);
4116 				return -ENOMEM;
4117 			}
4118 		}
4119 
4120 		itd->itd_dma = itd_dma;
4121 		list_add(&itd->itd_list, &sched->td_list);
4122 	}
4123 	spin_unlock_irqrestore(&fotg210->lock, flags);
4124 
4125 	/* temporarily store schedule info in hcpriv */
4126 	urb->hcpriv = sched;
4127 	urb->error_count = 0;
4128 	return 0;
4129 }
4130 
itd_slot_ok(struct fotg210_hcd * fotg210,u32 mod,u32 uframe,u8 usecs,u32 period)4131 static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4132 		u8 usecs, u32 period)
4133 {
4134 	uframe %= period;
4135 	do {
4136 		/* can't commit more than uframe_periodic_max usec */
4137 		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4138 				> (fotg210->uframe_periodic_max - usecs))
4139 			return 0;
4140 
4141 		/* we know urb->interval is 2^N uframes */
4142 		uframe += period;
4143 	} while (uframe < mod);
4144 	return 1;
4145 }
4146 
4147 /* This scheduler plans almost as far into the future as it has actual
4148  * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4149  * "as small as possible" to be cache-friendlier.)  That limits the size
4150  * transfers you can stream reliably; avoid more than 64 msec per urb.
4151  * Also avoid queue depths of less than fotg210's worst irq latency (affected
4152  * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4153  * and other factors); or more than about 230 msec total (for portability,
4154  * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4155  */
4156 
4157 #define SCHEDULE_SLOP 80 /* microframes */
4158 
iso_stream_schedule(struct fotg210_hcd * fotg210,struct urb * urb,struct fotg210_iso_stream * stream)4159 static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4160 		struct fotg210_iso_stream *stream)
4161 {
4162 	u32 now, next, start, period, span;
4163 	int status;
4164 	unsigned mod = fotg210->periodic_size << 3;
4165 	struct fotg210_iso_sched *sched = urb->hcpriv;
4166 
4167 	period = urb->interval;
4168 	span = sched->span;
4169 
4170 	if (span > mod - SCHEDULE_SLOP) {
4171 		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4172 		status = -EFBIG;
4173 		goto fail;
4174 	}
4175 
4176 	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4177 
4178 	/* Typical case: reuse current schedule, stream is still active.
4179 	 * Hopefully there are no gaps from the host falling behind
4180 	 * (irq delays etc), but if there are we'll take the next
4181 	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4182 	 */
4183 	if (likely(!list_empty(&stream->td_list))) {
4184 		u32 excess;
4185 
4186 		/* For high speed devices, allow scheduling within the
4187 		 * isochronous scheduling threshold.  For full speed devices
4188 		 * and Intel PCI-based controllers, don't (work around for
4189 		 * Intel ICH9 bug).
4190 		 */
4191 		if (!stream->highspeed && fotg210->fs_i_thresh)
4192 			next = now + fotg210->i_thresh;
4193 		else
4194 			next = now;
4195 
4196 		/* Fell behind (by up to twice the slop amount)?
4197 		 * We decide based on the time of the last currently-scheduled
4198 		 * slot, not the time of the next available slot.
4199 		 */
4200 		excess = (stream->next_uframe - period - next) & (mod - 1);
4201 		if (excess >= mod - 2 * SCHEDULE_SLOP)
4202 			start = next + excess - mod + period *
4203 					DIV_ROUND_UP(mod - excess, period);
4204 		else
4205 			start = next + excess + period;
4206 		if (start - now >= mod) {
4207 			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4208 					urb, start - now - period, period,
4209 					mod);
4210 			status = -EFBIG;
4211 			goto fail;
4212 		}
4213 	}
4214 
4215 	/* need to schedule; when's the next (u)frame we could start?
4216 	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4217 	 * isn't free, the slop should handle reasonably slow cpus.  it
4218 	 * can also help high bandwidth if the dma and irq loads don't
4219 	 * jump until after the queue is primed.
4220 	 */
4221 	else {
4222 		int done = 0;
4223 
4224 		start = SCHEDULE_SLOP + (now & ~0x07);
4225 
4226 		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4227 
4228 		/* find a uframe slot with enough bandwidth.
4229 		 * Early uframes are more precious because full-speed
4230 		 * iso IN transfers can't use late uframes,
4231 		 * and therefore they should be allocated last.
4232 		 */
4233 		next = start;
4234 		start += period;
4235 		do {
4236 			start--;
4237 			/* check schedule: enough space? */
4238 			if (itd_slot_ok(fotg210, mod, start,
4239 					stream->usecs, period))
4240 				done = 1;
4241 		} while (start > next && !done);
4242 
4243 		/* no room in the schedule */
4244 		if (!done) {
4245 			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4246 					urb, now, now + mod);
4247 			status = -ENOSPC;
4248 			goto fail;
4249 		}
4250 	}
4251 
4252 	/* Tried to schedule too far into the future? */
4253 	if (unlikely(start - now + span - period >=
4254 			mod - 2 * SCHEDULE_SLOP)) {
4255 		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4256 				urb, start - now, span - period,
4257 				mod - 2 * SCHEDULE_SLOP);
4258 		status = -EFBIG;
4259 		goto fail;
4260 	}
4261 
4262 	stream->next_uframe = start & (mod - 1);
4263 
4264 	/* report high speed start in uframes; full speed, in frames */
4265 	urb->start_frame = stream->next_uframe;
4266 	if (!stream->highspeed)
4267 		urb->start_frame >>= 3;
4268 
4269 	/* Make sure scan_isoc() sees these */
4270 	if (fotg210->isoc_count == 0)
4271 		fotg210->next_frame = now >> 3;
4272 	return 0;
4273 
4274 fail:
4275 	iso_sched_free(stream, sched);
4276 	urb->hcpriv = NULL;
4277 	return status;
4278 }
4279 
itd_init(struct fotg210_hcd * fotg210,struct fotg210_iso_stream * stream,struct fotg210_itd * itd)4280 static inline void itd_init(struct fotg210_hcd *fotg210,
4281 		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4282 {
4283 	int i;
4284 
4285 	/* it's been recently zeroed */
4286 	itd->hw_next = FOTG210_LIST_END(fotg210);
4287 	itd->hw_bufp[0] = stream->buf0;
4288 	itd->hw_bufp[1] = stream->buf1;
4289 	itd->hw_bufp[2] = stream->buf2;
4290 
4291 	for (i = 0; i < 8; i++)
4292 		itd->index[i] = -1;
4293 
4294 	/* All other fields are filled when scheduling */
4295 }
4296 
itd_patch(struct fotg210_hcd * fotg210,struct fotg210_itd * itd,struct fotg210_iso_sched * iso_sched,unsigned index,u16 uframe)4297 static inline void itd_patch(struct fotg210_hcd *fotg210,
4298 		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4299 		unsigned index, u16 uframe)
4300 {
4301 	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4302 	unsigned pg = itd->pg;
4303 
4304 	uframe &= 0x07;
4305 	itd->index[uframe] = index;
4306 
4307 	itd->hw_transaction[uframe] = uf->transaction;
4308 	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4309 	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4310 	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4311 
4312 	/* iso_frame_desc[].offset must be strictly increasing */
4313 	if (unlikely(uf->cross)) {
4314 		u64 bufp = uf->bufp + 4096;
4315 
4316 		itd->pg = ++pg;
4317 		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4318 		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4319 	}
4320 }
4321 
itd_link(struct fotg210_hcd * fotg210,unsigned frame,struct fotg210_itd * itd)4322 static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4323 		struct fotg210_itd *itd)
4324 {
4325 	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4326 	__hc32 *hw_p = &fotg210->periodic[frame];
4327 	union fotg210_shadow here = *prev;
4328 	__hc32 type = 0;
4329 
4330 	/* skip any iso nodes which might belong to previous microframes */
4331 	while (here.ptr) {
4332 		type = Q_NEXT_TYPE(fotg210, *hw_p);
4333 		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4334 			break;
4335 		prev = periodic_next_shadow(fotg210, prev, type);
4336 		hw_p = shadow_next_periodic(fotg210, &here, type);
4337 		here = *prev;
4338 	}
4339 
4340 	itd->itd_next = here;
4341 	itd->hw_next = *hw_p;
4342 	prev->itd = itd;
4343 	itd->frame = frame;
4344 	wmb();
4345 	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4346 }
4347 
4348 /* fit urb's itds into the selected schedule slot; activate as needed */
itd_link_urb(struct fotg210_hcd * fotg210,struct urb * urb,unsigned mod,struct fotg210_iso_stream * stream)4349 static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4350 		unsigned mod, struct fotg210_iso_stream *stream)
4351 {
4352 	int packet;
4353 	unsigned next_uframe, uframe, frame;
4354 	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4355 	struct fotg210_itd *itd;
4356 
4357 	next_uframe = stream->next_uframe & (mod - 1);
4358 
4359 	if (unlikely(list_empty(&stream->td_list))) {
4360 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4361 				+= stream->bandwidth;
4362 		fotg210_dbg(fotg210,
4363 			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4364 			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4365 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4366 			urb->interval,
4367 			next_uframe >> 3, next_uframe & 0x7);
4368 	}
4369 
4370 	/* fill iTDs uframe by uframe */
4371 	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4372 		if (itd == NULL) {
4373 			/* ASSERT:  we have all necessary itds */
4374 
4375 			/* ASSERT:  no itds for this endpoint in this uframe */
4376 
4377 			itd = list_entry(iso_sched->td_list.next,
4378 					struct fotg210_itd, itd_list);
4379 			list_move_tail(&itd->itd_list, &stream->td_list);
4380 			itd->stream = stream;
4381 			itd->urb = urb;
4382 			itd_init(fotg210, stream, itd);
4383 		}
4384 
4385 		uframe = next_uframe & 0x07;
4386 		frame = next_uframe >> 3;
4387 
4388 		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4389 
4390 		next_uframe += stream->interval;
4391 		next_uframe &= mod - 1;
4392 		packet++;
4393 
4394 		/* link completed itds into the schedule */
4395 		if (((next_uframe >> 3) != frame)
4396 				|| packet == urb->number_of_packets) {
4397 			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4398 					itd);
4399 			itd = NULL;
4400 		}
4401 	}
4402 	stream->next_uframe = next_uframe;
4403 
4404 	/* don't need that schedule data any more */
4405 	iso_sched_free(stream, iso_sched);
4406 	urb->hcpriv = NULL;
4407 
4408 	++fotg210->isoc_count;
4409 	enable_periodic(fotg210);
4410 }
4411 
4412 #define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4413 		FOTG210_ISOC_XACTERR)
4414 
4415 /* Process and recycle a completed ITD.  Return true iff its urb completed,
4416  * and hence its completion callback probably added things to the hardware
4417  * schedule.
4418  *
4419  * Note that we carefully avoid recycling this descriptor until after any
4420  * completion callback runs, so that it won't be reused quickly.  That is,
4421  * assuming (a) no more than two urbs per frame on this endpoint, and also
4422  * (b) only this endpoint's completions submit URBs.  It seems some silicon
4423  * corrupts things if you reuse completed descriptors very quickly...
4424  */
itd_complete(struct fotg210_hcd * fotg210,struct fotg210_itd * itd)4425 static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4426 {
4427 	struct urb *urb = itd->urb;
4428 	struct usb_iso_packet_descriptor *desc;
4429 	u32 t;
4430 	unsigned uframe;
4431 	int urb_index = -1;
4432 	struct fotg210_iso_stream *stream = itd->stream;
4433 	struct usb_device *dev;
4434 	bool retval = false;
4435 
4436 	/* for each uframe with a packet */
4437 	for (uframe = 0; uframe < 8; uframe++) {
4438 		if (likely(itd->index[uframe] == -1))
4439 			continue;
4440 		urb_index = itd->index[uframe];
4441 		desc = &urb->iso_frame_desc[urb_index];
4442 
4443 		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4444 		itd->hw_transaction[uframe] = 0;
4445 
4446 		/* report transfer status */
4447 		if (unlikely(t & ISO_ERRS)) {
4448 			urb->error_count++;
4449 			if (t & FOTG210_ISOC_BUF_ERR)
4450 				desc->status = usb_pipein(urb->pipe)
4451 					? -ENOSR  /* hc couldn't read */
4452 					: -ECOMM; /* hc couldn't write */
4453 			else if (t & FOTG210_ISOC_BABBLE)
4454 				desc->status = -EOVERFLOW;
4455 			else /* (t & FOTG210_ISOC_XACTERR) */
4456 				desc->status = -EPROTO;
4457 
4458 			/* HC need not update length with this error */
4459 			if (!(t & FOTG210_ISOC_BABBLE)) {
4460 				desc->actual_length =
4461 					fotg210_itdlen(urb, desc, t);
4462 				urb->actual_length += desc->actual_length;
4463 			}
4464 		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4465 			desc->status = 0;
4466 			desc->actual_length = fotg210_itdlen(urb, desc, t);
4467 			urb->actual_length += desc->actual_length;
4468 		} else {
4469 			/* URB was too late */
4470 			desc->status = -EXDEV;
4471 		}
4472 	}
4473 
4474 	/* handle completion now? */
4475 	if (likely((urb_index + 1) != urb->number_of_packets))
4476 		goto done;
4477 
4478 	/* ASSERT: it's really the last itd for this urb
4479 	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4480 	 *	BUG_ON (itd->urb == urb);
4481 	 */
4482 
4483 	/* give urb back to the driver; completion often (re)submits */
4484 	dev = urb->dev;
4485 	fotg210_urb_done(fotg210, urb, 0);
4486 	retval = true;
4487 	urb = NULL;
4488 
4489 	--fotg210->isoc_count;
4490 	disable_periodic(fotg210);
4491 
4492 	if (unlikely(list_is_singular(&stream->td_list))) {
4493 		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4494 				-= stream->bandwidth;
4495 		fotg210_dbg(fotg210,
4496 			"deschedule devp %s ep%d%s-iso\n",
4497 			dev->devpath, stream->bEndpointAddress & 0x0f,
4498 			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4499 	}
4500 
4501 done:
4502 	itd->urb = NULL;
4503 
4504 	/* Add to the end of the free list for later reuse */
4505 	list_move_tail(&itd->itd_list, &stream->free_list);
4506 
4507 	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4508 	if (list_empty(&stream->td_list)) {
4509 		list_splice_tail_init(&stream->free_list,
4510 				&fotg210->cached_itd_list);
4511 		start_free_itds(fotg210);
4512 	}
4513 
4514 	return retval;
4515 }
4516 
itd_submit(struct fotg210_hcd * fotg210,struct urb * urb,gfp_t mem_flags)4517 static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4518 		gfp_t mem_flags)
4519 {
4520 	int status = -EINVAL;
4521 	unsigned long flags;
4522 	struct fotg210_iso_stream *stream;
4523 
4524 	/* Get iso_stream head */
4525 	stream = iso_stream_find(fotg210, urb);
4526 	if (unlikely(stream == NULL)) {
4527 		fotg210_dbg(fotg210, "can't get iso stream\n");
4528 		return -ENOMEM;
4529 	}
4530 	if (unlikely(urb->interval != stream->interval &&
4531 			fotg210_port_speed(fotg210, 0) ==
4532 			USB_PORT_STAT_HIGH_SPEED)) {
4533 		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4534 				stream->interval, urb->interval);
4535 		goto done;
4536 	}
4537 
4538 #ifdef FOTG210_URB_TRACE
4539 	fotg210_dbg(fotg210,
4540 			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4541 			__func__, urb->dev->devpath, urb,
4542 			usb_pipeendpoint(urb->pipe),
4543 			usb_pipein(urb->pipe) ? "in" : "out",
4544 			urb->transfer_buffer_length,
4545 			urb->number_of_packets, urb->interval,
4546 			stream);
4547 #endif
4548 
4549 	/* allocate ITDs w/o locking anything */
4550 	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4551 	if (unlikely(status < 0)) {
4552 		fotg210_dbg(fotg210, "can't init itds\n");
4553 		goto done;
4554 	}
4555 
4556 	/* schedule ... need to lock */
4557 	spin_lock_irqsave(&fotg210->lock, flags);
4558 	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4559 		status = -ESHUTDOWN;
4560 		goto done_not_linked;
4561 	}
4562 	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4563 	if (unlikely(status))
4564 		goto done_not_linked;
4565 	status = iso_stream_schedule(fotg210, urb, stream);
4566 	if (likely(status == 0))
4567 		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4568 	else
4569 		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4570 done_not_linked:
4571 	spin_unlock_irqrestore(&fotg210->lock, flags);
4572 done:
4573 	return status;
4574 }
4575 
scan_frame_queue(struct fotg210_hcd * fotg210,unsigned frame,unsigned now_frame,bool live)4576 static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4577 		unsigned now_frame, bool live)
4578 {
4579 	unsigned uf;
4580 	bool modified;
4581 	union fotg210_shadow q, *q_p;
4582 	__hc32 type, *hw_p;
4583 
4584 	/* scan each element in frame's queue for completions */
4585 	q_p = &fotg210->pshadow[frame];
4586 	hw_p = &fotg210->periodic[frame];
4587 	q.ptr = q_p->ptr;
4588 	type = Q_NEXT_TYPE(fotg210, *hw_p);
4589 	modified = false;
4590 
4591 	while (q.ptr) {
4592 		switch (hc32_to_cpu(fotg210, type)) {
4593 		case Q_TYPE_ITD:
4594 			/* If this ITD is still active, leave it for
4595 			 * later processing ... check the next entry.
4596 			 * No need to check for activity unless the
4597 			 * frame is current.
4598 			 */
4599 			if (frame == now_frame && live) {
4600 				rmb();
4601 				for (uf = 0; uf < 8; uf++) {
4602 					if (q.itd->hw_transaction[uf] &
4603 							ITD_ACTIVE(fotg210))
4604 						break;
4605 				}
4606 				if (uf < 8) {
4607 					q_p = &q.itd->itd_next;
4608 					hw_p = &q.itd->hw_next;
4609 					type = Q_NEXT_TYPE(fotg210,
4610 							q.itd->hw_next);
4611 					q = *q_p;
4612 					break;
4613 				}
4614 			}
4615 
4616 			/* Take finished ITDs out of the schedule
4617 			 * and process them:  recycle, maybe report
4618 			 * URB completion.  HC won't cache the
4619 			 * pointer for much longer, if at all.
4620 			 */
4621 			*q_p = q.itd->itd_next;
4622 			*hw_p = q.itd->hw_next;
4623 			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4624 			wmb();
4625 			modified = itd_complete(fotg210, q.itd);
4626 			q = *q_p;
4627 			break;
4628 		default:
4629 			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4630 					type, frame, q.ptr);
4631 			/* FALL THROUGH */
4632 		case Q_TYPE_QH:
4633 		case Q_TYPE_FSTN:
4634 			/* End of the iTDs and siTDs */
4635 			q.ptr = NULL;
4636 			break;
4637 		}
4638 
4639 		/* assume completion callbacks modify the queue */
4640 		if (unlikely(modified && fotg210->isoc_count > 0))
4641 			return -EINVAL;
4642 	}
4643 	return 0;
4644 }
4645 
scan_isoc(struct fotg210_hcd * fotg210)4646 static void scan_isoc(struct fotg210_hcd *fotg210)
4647 {
4648 	unsigned uf, now_frame, frame, ret;
4649 	unsigned fmask = fotg210->periodic_size - 1;
4650 	bool live;
4651 
4652 	/*
4653 	 * When running, scan from last scan point up to "now"
4654 	 * else clean up by scanning everything that's left.
4655 	 * Touches as few pages as possible:  cache-friendly.
4656 	 */
4657 	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4658 		uf = fotg210_read_frame_index(fotg210);
4659 		now_frame = (uf >> 3) & fmask;
4660 		live = true;
4661 	} else  {
4662 		now_frame = (fotg210->next_frame - 1) & fmask;
4663 		live = false;
4664 	}
4665 	fotg210->now_frame = now_frame;
4666 
4667 	frame = fotg210->next_frame;
4668 	for (;;) {
4669 		ret = 1;
4670 		while (ret != 0)
4671 			ret = scan_frame_queue(fotg210, frame,
4672 					now_frame, live);
4673 
4674 		/* Stop when we have reached the current frame */
4675 		if (frame == now_frame)
4676 			break;
4677 		frame = (frame + 1) & fmask;
4678 	}
4679 	fotg210->next_frame = now_frame;
4680 }
4681 
4682 /* Display / Set uframe_periodic_max
4683  */
uframe_periodic_max_show(struct device * dev,struct device_attribute * attr,char * buf)4684 static ssize_t uframe_periodic_max_show(struct device *dev,
4685 		struct device_attribute *attr, char *buf)
4686 {
4687 	struct fotg210_hcd *fotg210;
4688 	int n;
4689 
4690 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4691 	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4692 	return n;
4693 }
4694 
4695 
uframe_periodic_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)4696 static ssize_t uframe_periodic_max_store(struct device *dev,
4697 		struct device_attribute *attr, const char *buf, size_t count)
4698 {
4699 	struct fotg210_hcd *fotg210;
4700 	unsigned uframe_periodic_max;
4701 	unsigned frame, uframe;
4702 	unsigned short allocated_max;
4703 	unsigned long flags;
4704 	ssize_t ret;
4705 
4706 	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4707 	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4708 		return -EINVAL;
4709 
4710 	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4711 		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4712 				uframe_periodic_max);
4713 		return -EINVAL;
4714 	}
4715 
4716 	ret = -EINVAL;
4717 
4718 	/*
4719 	 * lock, so that our checking does not race with possible periodic
4720 	 * bandwidth allocation through submitting new urbs.
4721 	 */
4722 	spin_lock_irqsave(&fotg210->lock, flags);
4723 
4724 	/*
4725 	 * for request to decrease max periodic bandwidth, we have to check
4726 	 * every microframe in the schedule to see whether the decrease is
4727 	 * possible.
4728 	 */
4729 	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4730 		allocated_max = 0;
4731 
4732 		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4733 			for (uframe = 0; uframe < 7; ++uframe)
4734 				allocated_max = max(allocated_max,
4735 						periodic_usecs(fotg210, frame,
4736 						uframe));
4737 
4738 		if (allocated_max > uframe_periodic_max) {
4739 			fotg210_info(fotg210,
4740 					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4741 					allocated_max, uframe_periodic_max);
4742 			goto out_unlock;
4743 		}
4744 	}
4745 
4746 	/* increasing is always ok */
4747 
4748 	fotg210_info(fotg210,
4749 			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4750 			100 * uframe_periodic_max/125, uframe_periodic_max);
4751 
4752 	if (uframe_periodic_max != 100)
4753 		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4754 
4755 	fotg210->uframe_periodic_max = uframe_periodic_max;
4756 	ret = count;
4757 
4758 out_unlock:
4759 	spin_unlock_irqrestore(&fotg210->lock, flags);
4760 	return ret;
4761 }
4762 
4763 static DEVICE_ATTR_RW(uframe_periodic_max);
4764 
create_sysfs_files(struct fotg210_hcd * fotg210)4765 static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4766 {
4767 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4768 
4769 	return device_create_file(controller, &dev_attr_uframe_periodic_max);
4770 }
4771 
remove_sysfs_files(struct fotg210_hcd * fotg210)4772 static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4773 {
4774 	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4775 
4776 	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4777 }
4778 /* On some systems, leaving remote wakeup enabled prevents system shutdown.
4779  * The firmware seems to think that powering off is a wakeup event!
4780  * This routine turns off remote wakeup and everything else, on all ports.
4781  */
fotg210_turn_off_all_ports(struct fotg210_hcd * fotg210)4782 static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4783 {
4784 	u32 __iomem *status_reg = &fotg210->regs->port_status;
4785 
4786 	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4787 }
4788 
4789 /* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4790  * Must be called with interrupts enabled and the lock not held.
4791  */
fotg210_silence_controller(struct fotg210_hcd * fotg210)4792 static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4793 {
4794 	fotg210_halt(fotg210);
4795 
4796 	spin_lock_irq(&fotg210->lock);
4797 	fotg210->rh_state = FOTG210_RH_HALTED;
4798 	fotg210_turn_off_all_ports(fotg210);
4799 	spin_unlock_irq(&fotg210->lock);
4800 }
4801 
4802 /* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4803  * This forcibly disables dma and IRQs, helping kexec and other cases
4804  * where the next system software may expect clean state.
4805  */
fotg210_shutdown(struct usb_hcd * hcd)4806 static void fotg210_shutdown(struct usb_hcd *hcd)
4807 {
4808 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4809 
4810 	spin_lock_irq(&fotg210->lock);
4811 	fotg210->shutdown = true;
4812 	fotg210->rh_state = FOTG210_RH_STOPPING;
4813 	fotg210->enabled_hrtimer_events = 0;
4814 	spin_unlock_irq(&fotg210->lock);
4815 
4816 	fotg210_silence_controller(fotg210);
4817 
4818 	hrtimer_cancel(&fotg210->hrtimer);
4819 }
4820 
4821 /* fotg210_work is called from some interrupts, timers, and so on.
4822  * it calls driver completion functions, after dropping fotg210->lock.
4823  */
fotg210_work(struct fotg210_hcd * fotg210)4824 static void fotg210_work(struct fotg210_hcd *fotg210)
4825 {
4826 	/* another CPU may drop fotg210->lock during a schedule scan while
4827 	 * it reports urb completions.  this flag guards against bogus
4828 	 * attempts at re-entrant schedule scanning.
4829 	 */
4830 	if (fotg210->scanning) {
4831 		fotg210->need_rescan = true;
4832 		return;
4833 	}
4834 	fotg210->scanning = true;
4835 
4836 rescan:
4837 	fotg210->need_rescan = false;
4838 	if (fotg210->async_count)
4839 		scan_async(fotg210);
4840 	if (fotg210->intr_count > 0)
4841 		scan_intr(fotg210);
4842 	if (fotg210->isoc_count > 0)
4843 		scan_isoc(fotg210);
4844 	if (fotg210->need_rescan)
4845 		goto rescan;
4846 	fotg210->scanning = false;
4847 
4848 	/* the IO watchdog guards against hardware or driver bugs that
4849 	 * misplace IRQs, and should let us run completely without IRQs.
4850 	 * such lossage has been observed on both VT6202 and VT8235.
4851 	 */
4852 	turn_on_io_watchdog(fotg210);
4853 }
4854 
4855 /* Called when the fotg210_hcd module is removed.
4856  */
fotg210_stop(struct usb_hcd * hcd)4857 static void fotg210_stop(struct usb_hcd *hcd)
4858 {
4859 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4860 
4861 	fotg210_dbg(fotg210, "stop\n");
4862 
4863 	/* no more interrupts ... */
4864 
4865 	spin_lock_irq(&fotg210->lock);
4866 	fotg210->enabled_hrtimer_events = 0;
4867 	spin_unlock_irq(&fotg210->lock);
4868 
4869 	fotg210_quiesce(fotg210);
4870 	fotg210_silence_controller(fotg210);
4871 	fotg210_reset(fotg210);
4872 
4873 	hrtimer_cancel(&fotg210->hrtimer);
4874 	remove_sysfs_files(fotg210);
4875 	remove_debug_files(fotg210);
4876 
4877 	/* root hub is shut down separately (first, when possible) */
4878 	spin_lock_irq(&fotg210->lock);
4879 	end_free_itds(fotg210);
4880 	spin_unlock_irq(&fotg210->lock);
4881 	fotg210_mem_cleanup(fotg210);
4882 
4883 #ifdef FOTG210_STATS
4884 	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4885 			fotg210->stats.normal, fotg210->stats.error,
4886 			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4887 	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4888 			fotg210->stats.complete, fotg210->stats.unlink);
4889 #endif
4890 
4891 	dbg_status(fotg210, "fotg210_stop completed",
4892 			fotg210_readl(fotg210, &fotg210->regs->status));
4893 }
4894 
4895 /* one-time init, only for memory state */
hcd_fotg210_init(struct usb_hcd * hcd)4896 static int hcd_fotg210_init(struct usb_hcd *hcd)
4897 {
4898 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4899 	u32 temp;
4900 	int retval;
4901 	u32 hcc_params;
4902 	struct fotg210_qh_hw *hw;
4903 
4904 	spin_lock_init(&fotg210->lock);
4905 
4906 	/*
4907 	 * keep io watchdog by default, those good HCDs could turn off it later
4908 	 */
4909 	fotg210->need_io_watchdog = 1;
4910 
4911 	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4912 	fotg210->hrtimer.function = fotg210_hrtimer_func;
4913 	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4914 
4915 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4916 
4917 	/*
4918 	 * by default set standard 80% (== 100 usec/uframe) max periodic
4919 	 * bandwidth as required by USB 2.0
4920 	 */
4921 	fotg210->uframe_periodic_max = 100;
4922 
4923 	/*
4924 	 * hw default: 1K periodic list heads, one per frame.
4925 	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4926 	 */
4927 	fotg210->periodic_size = DEFAULT_I_TDPS;
4928 	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4929 	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4930 
4931 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4932 		/* periodic schedule size can be smaller than default */
4933 		switch (FOTG210_TUNE_FLS) {
4934 		case 0:
4935 			fotg210->periodic_size = 1024;
4936 			break;
4937 		case 1:
4938 			fotg210->periodic_size = 512;
4939 			break;
4940 		case 2:
4941 			fotg210->periodic_size = 256;
4942 			break;
4943 		default:
4944 			BUG();
4945 		}
4946 	}
4947 	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4948 	if (retval < 0)
4949 		return retval;
4950 
4951 	/* controllers may cache some of the periodic schedule ... */
4952 	fotg210->i_thresh = 2;
4953 
4954 	/*
4955 	 * dedicate a qh for the async ring head, since we couldn't unlink
4956 	 * a 'real' qh without stopping the async schedule [4.8].  use it
4957 	 * as the 'reclamation list head' too.
4958 	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4959 	 * from automatically advancing to the next td after short reads.
4960 	 */
4961 	fotg210->async->qh_next.qh = NULL;
4962 	hw = fotg210->async->hw;
4963 	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4964 	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4965 	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4966 	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4967 	fotg210->async->qh_state = QH_STATE_LINKED;
4968 	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4969 
4970 	/* clear interrupt enables, set irq latency */
4971 	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
4972 		log2_irq_thresh = 0;
4973 	temp = 1 << (16 + log2_irq_thresh);
4974 	if (HCC_CANPARK(hcc_params)) {
4975 		/* HW default park == 3, on hardware that supports it (like
4976 		 * NVidia and ALI silicon), maximizes throughput on the async
4977 		 * schedule by avoiding QH fetches between transfers.
4978 		 *
4979 		 * With fast usb storage devices and NForce2, "park" seems to
4980 		 * make problems:  throughput reduction (!), data errors...
4981 		 */
4982 		if (park) {
4983 			park = min_t(unsigned, park, 3);
4984 			temp |= CMD_PARK;
4985 			temp |= park << 8;
4986 		}
4987 		fotg210_dbg(fotg210, "park %d\n", park);
4988 	}
4989 	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4990 		/* periodic schedule size can be smaller than default */
4991 		temp &= ~(3 << 2);
4992 		temp |= (FOTG210_TUNE_FLS << 2);
4993 	}
4994 	fotg210->command = temp;
4995 
4996 	/* Accept arbitrarily long scatter-gather lists */
4997 	if (!(hcd->driver->flags & HCD_LOCAL_MEM))
4998 		hcd->self.sg_tablesize = ~0;
4999 	return 0;
5000 }
5001 
5002 /* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
fotg210_run(struct usb_hcd * hcd)5003 static int fotg210_run(struct usb_hcd *hcd)
5004 {
5005 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5006 	u32 temp;
5007 	u32 hcc_params;
5008 
5009 	hcd->uses_new_polling = 1;
5010 
5011 	/* EHCI spec section 4.1 */
5012 
5013 	fotg210_writel(fotg210, fotg210->periodic_dma,
5014 			&fotg210->regs->frame_list);
5015 	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5016 			&fotg210->regs->async_next);
5017 
5018 	/*
5019 	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5020 	 * be used; it constrains QH/ITD/SITD and QTD locations.
5021 	 * dma_pool consistent memory always uses segment zero.
5022 	 * streaming mappings for I/O buffers, like pci_map_single(),
5023 	 * can return segments above 4GB, if the device allows.
5024 	 *
5025 	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5026 	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5027 	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5028 	 * host side drivers though.
5029 	 */
5030 	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5031 
5032 	/*
5033 	 * Philips, Intel, and maybe others need CMD_RUN before the
5034 	 * root hub will detect new devices (why?); NEC doesn't
5035 	 */
5036 	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5037 	fotg210->command |= CMD_RUN;
5038 	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5039 	dbg_cmd(fotg210, "init", fotg210->command);
5040 
5041 	/*
5042 	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5043 	 * are explicitly handed to companion controller(s), so no TT is
5044 	 * involved with the root hub.  (Except where one is integrated,
5045 	 * and there's no companion controller unless maybe for USB OTG.)
5046 	 *
5047 	 * Turning on the CF flag will transfer ownership of all ports
5048 	 * from the companions to the EHCI controller.  If any of the
5049 	 * companions are in the middle of a port reset at the time, it
5050 	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5051 	 * guarantees that no resets are in progress.  After we set CF,
5052 	 * a short delay lets the hardware catch up; new resets shouldn't
5053 	 * be started before the port switching actions could complete.
5054 	 */
5055 	down_write(&ehci_cf_port_reset_rwsem);
5056 	fotg210->rh_state = FOTG210_RH_RUNNING;
5057 	/* unblock posted writes */
5058 	fotg210_readl(fotg210, &fotg210->regs->command);
5059 	usleep_range(5000, 10000);
5060 	up_write(&ehci_cf_port_reset_rwsem);
5061 	fotg210->last_periodic_enable = ktime_get_real();
5062 
5063 	temp = HC_VERSION(fotg210,
5064 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5065 	fotg210_info(fotg210,
5066 			"USB %x.%x started, EHCI %x.%02x\n",
5067 			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5068 			temp >> 8, temp & 0xff);
5069 
5070 	fotg210_writel(fotg210, INTR_MASK,
5071 			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5072 
5073 	/* GRR this is run-once init(), being done every time the HC starts.
5074 	 * So long as they're part of class devices, we can't do it init()
5075 	 * since the class device isn't created that early.
5076 	 */
5077 	create_debug_files(fotg210);
5078 	create_sysfs_files(fotg210);
5079 
5080 	return 0;
5081 }
5082 
fotg210_setup(struct usb_hcd * hcd)5083 static int fotg210_setup(struct usb_hcd *hcd)
5084 {
5085 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5086 	int retval;
5087 
5088 	fotg210->regs = (void __iomem *)fotg210->caps +
5089 			HC_LENGTH(fotg210,
5090 			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5091 	dbg_hcs_params(fotg210, "reset");
5092 	dbg_hcc_params(fotg210, "reset");
5093 
5094 	/* cache this readonly data; minimize chip reads */
5095 	fotg210->hcs_params = fotg210_readl(fotg210,
5096 			&fotg210->caps->hcs_params);
5097 
5098 	fotg210->sbrn = HCD_USB2;
5099 
5100 	/* data structure init */
5101 	retval = hcd_fotg210_init(hcd);
5102 	if (retval)
5103 		return retval;
5104 
5105 	retval = fotg210_halt(fotg210);
5106 	if (retval)
5107 		return retval;
5108 
5109 	fotg210_reset(fotg210);
5110 
5111 	return 0;
5112 }
5113 
fotg210_irq(struct usb_hcd * hcd)5114 static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5115 {
5116 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5117 	u32 status, masked_status, pcd_status = 0, cmd;
5118 	int bh;
5119 
5120 	spin_lock(&fotg210->lock);
5121 
5122 	status = fotg210_readl(fotg210, &fotg210->regs->status);
5123 
5124 	/* e.g. cardbus physical eject */
5125 	if (status == ~(u32) 0) {
5126 		fotg210_dbg(fotg210, "device removed\n");
5127 		goto dead;
5128 	}
5129 
5130 	/*
5131 	 * We don't use STS_FLR, but some controllers don't like it to
5132 	 * remain on, so mask it out along with the other status bits.
5133 	 */
5134 	masked_status = status & (INTR_MASK | STS_FLR);
5135 
5136 	/* Shared IRQ? */
5137 	if (!masked_status ||
5138 			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5139 		spin_unlock(&fotg210->lock);
5140 		return IRQ_NONE;
5141 	}
5142 
5143 	/* clear (just) interrupts */
5144 	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5145 	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5146 	bh = 0;
5147 
5148 	/* unrequested/ignored: Frame List Rollover */
5149 	dbg_status(fotg210, "irq", status);
5150 
5151 	/* INT, ERR, and IAA interrupt rates can be throttled */
5152 
5153 	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5154 	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5155 		if (likely((status & STS_ERR) == 0))
5156 			COUNT(fotg210->stats.normal);
5157 		else
5158 			COUNT(fotg210->stats.error);
5159 		bh = 1;
5160 	}
5161 
5162 	/* complete the unlinking of some qh [4.15.2.3] */
5163 	if (status & STS_IAA) {
5164 
5165 		/* Turn off the IAA watchdog */
5166 		fotg210->enabled_hrtimer_events &=
5167 			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5168 
5169 		/*
5170 		 * Mild optimization: Allow another IAAD to reset the
5171 		 * hrtimer, if one occurs before the next expiration.
5172 		 * In theory we could always cancel the hrtimer, but
5173 		 * tests show that about half the time it will be reset
5174 		 * for some other event anyway.
5175 		 */
5176 		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5177 			++fotg210->next_hrtimer_event;
5178 
5179 		/* guard against (alleged) silicon errata */
5180 		if (cmd & CMD_IAAD)
5181 			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5182 		if (fotg210->async_iaa) {
5183 			COUNT(fotg210->stats.iaa);
5184 			end_unlink_async(fotg210);
5185 		} else
5186 			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5187 	}
5188 
5189 	/* remote wakeup [4.3.1] */
5190 	if (status & STS_PCD) {
5191 		int pstatus;
5192 		u32 __iomem *status_reg = &fotg210->regs->port_status;
5193 
5194 		/* kick root hub later */
5195 		pcd_status = status;
5196 
5197 		/* resume root hub? */
5198 		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5199 			usb_hcd_resume_root_hub(hcd);
5200 
5201 		pstatus = fotg210_readl(fotg210, status_reg);
5202 
5203 		if (test_bit(0, &fotg210->suspended_ports) &&
5204 				((pstatus & PORT_RESUME) ||
5205 				!(pstatus & PORT_SUSPEND)) &&
5206 				(pstatus & PORT_PE) &&
5207 				fotg210->reset_done[0] == 0) {
5208 
5209 			/* start 20 msec resume signaling from this port,
5210 			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5211 			 * stop that signaling.  Use 5 ms extra for safety,
5212 			 * like usb_port_resume() does.
5213 			 */
5214 			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5215 			set_bit(0, &fotg210->resuming_ports);
5216 			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5217 			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5218 		}
5219 	}
5220 
5221 	/* PCI errors [4.15.2.4] */
5222 	if (unlikely((status & STS_FATAL) != 0)) {
5223 		fotg210_err(fotg210, "fatal error\n");
5224 		dbg_cmd(fotg210, "fatal", cmd);
5225 		dbg_status(fotg210, "fatal", status);
5226 dead:
5227 		usb_hc_died(hcd);
5228 
5229 		/* Don't let the controller do anything more */
5230 		fotg210->shutdown = true;
5231 		fotg210->rh_state = FOTG210_RH_STOPPING;
5232 		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5233 		fotg210_writel(fotg210, fotg210->command,
5234 				&fotg210->regs->command);
5235 		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5236 		fotg210_handle_controller_death(fotg210);
5237 
5238 		/* Handle completions when the controller stops */
5239 		bh = 0;
5240 	}
5241 
5242 	if (bh)
5243 		fotg210_work(fotg210);
5244 	spin_unlock(&fotg210->lock);
5245 	if (pcd_status)
5246 		usb_hcd_poll_rh_status(hcd);
5247 	return IRQ_HANDLED;
5248 }
5249 
5250 /* non-error returns are a promise to giveback() the urb later
5251  * we drop ownership so next owner (or urb unlink) can get it
5252  *
5253  * urb + dev is in hcd.self.controller.urb_list
5254  * we're queueing TDs onto software and hardware lists
5255  *
5256  * hcd-specific init for hcpriv hasn't been done yet
5257  *
5258  * NOTE:  control, bulk, and interrupt share the same code to append TDs
5259  * to a (possibly active) QH, and the same QH scanning code.
5260  */
fotg210_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)5261 static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5262 		gfp_t mem_flags)
5263 {
5264 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5265 	struct list_head qtd_list;
5266 
5267 	INIT_LIST_HEAD(&qtd_list);
5268 
5269 	switch (usb_pipetype(urb->pipe)) {
5270 	case PIPE_CONTROL:
5271 		/* qh_completions() code doesn't handle all the fault cases
5272 		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5273 		 */
5274 		if (urb->transfer_buffer_length > (16 * 1024))
5275 			return -EMSGSIZE;
5276 		/* FALLTHROUGH */
5277 	/* case PIPE_BULK: */
5278 	default:
5279 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5280 			return -ENOMEM;
5281 		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5282 
5283 	case PIPE_INTERRUPT:
5284 		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5285 			return -ENOMEM;
5286 		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5287 
5288 	case PIPE_ISOCHRONOUS:
5289 		return itd_submit(fotg210, urb, mem_flags);
5290 	}
5291 }
5292 
5293 /* remove from hardware lists
5294  * completions normally happen asynchronously
5295  */
5296 
fotg210_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)5297 static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5298 {
5299 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5300 	struct fotg210_qh *qh;
5301 	unsigned long flags;
5302 	int rc;
5303 
5304 	spin_lock_irqsave(&fotg210->lock, flags);
5305 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5306 	if (rc)
5307 		goto done;
5308 
5309 	switch (usb_pipetype(urb->pipe)) {
5310 	/* case PIPE_CONTROL: */
5311 	/* case PIPE_BULK:*/
5312 	default:
5313 		qh = (struct fotg210_qh *) urb->hcpriv;
5314 		if (!qh)
5315 			break;
5316 		switch (qh->qh_state) {
5317 		case QH_STATE_LINKED:
5318 		case QH_STATE_COMPLETING:
5319 			start_unlink_async(fotg210, qh);
5320 			break;
5321 		case QH_STATE_UNLINK:
5322 		case QH_STATE_UNLINK_WAIT:
5323 			/* already started */
5324 			break;
5325 		case QH_STATE_IDLE:
5326 			/* QH might be waiting for a Clear-TT-Buffer */
5327 			qh_completions(fotg210, qh);
5328 			break;
5329 		}
5330 		break;
5331 
5332 	case PIPE_INTERRUPT:
5333 		qh = (struct fotg210_qh *) urb->hcpriv;
5334 		if (!qh)
5335 			break;
5336 		switch (qh->qh_state) {
5337 		case QH_STATE_LINKED:
5338 		case QH_STATE_COMPLETING:
5339 			start_unlink_intr(fotg210, qh);
5340 			break;
5341 		case QH_STATE_IDLE:
5342 			qh_completions(fotg210, qh);
5343 			break;
5344 		default:
5345 			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5346 					qh, qh->qh_state);
5347 			goto done;
5348 		}
5349 		break;
5350 
5351 	case PIPE_ISOCHRONOUS:
5352 		/* itd... */
5353 
5354 		/* wait till next completion, do it then. */
5355 		/* completion irqs can wait up to 1024 msec, */
5356 		break;
5357 	}
5358 done:
5359 	spin_unlock_irqrestore(&fotg210->lock, flags);
5360 	return rc;
5361 }
5362 
5363 /* bulk qh holds the data toggle */
5364 
fotg210_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5365 static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5366 		struct usb_host_endpoint *ep)
5367 {
5368 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5369 	unsigned long flags;
5370 	struct fotg210_qh *qh, *tmp;
5371 
5372 	/* ASSERT:  any requests/urbs are being unlinked */
5373 	/* ASSERT:  nobody can be submitting urbs for this any more */
5374 
5375 rescan:
5376 	spin_lock_irqsave(&fotg210->lock, flags);
5377 	qh = ep->hcpriv;
5378 	if (!qh)
5379 		goto done;
5380 
5381 	/* endpoints can be iso streams.  for now, we don't
5382 	 * accelerate iso completions ... so spin a while.
5383 	 */
5384 	if (qh->hw == NULL) {
5385 		struct fotg210_iso_stream *stream = ep->hcpriv;
5386 
5387 		if (!list_empty(&stream->td_list))
5388 			goto idle_timeout;
5389 
5390 		/* BUG_ON(!list_empty(&stream->free_list)); */
5391 		kfree(stream);
5392 		goto done;
5393 	}
5394 
5395 	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5396 		qh->qh_state = QH_STATE_IDLE;
5397 	switch (qh->qh_state) {
5398 	case QH_STATE_LINKED:
5399 	case QH_STATE_COMPLETING:
5400 		for (tmp = fotg210->async->qh_next.qh;
5401 				tmp && tmp != qh;
5402 				tmp = tmp->qh_next.qh)
5403 			continue;
5404 		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5405 		 * may already be unlinked.
5406 		 */
5407 		if (tmp)
5408 			start_unlink_async(fotg210, qh);
5409 		/* FALL THROUGH */
5410 	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5411 	case QH_STATE_UNLINK_WAIT:
5412 idle_timeout:
5413 		spin_unlock_irqrestore(&fotg210->lock, flags);
5414 		schedule_timeout_uninterruptible(1);
5415 		goto rescan;
5416 	case QH_STATE_IDLE:		/* fully unlinked */
5417 		if (qh->clearing_tt)
5418 			goto idle_timeout;
5419 		if (list_empty(&qh->qtd_list)) {
5420 			qh_destroy(fotg210, qh);
5421 			break;
5422 		}
5423 		/* fall through */
5424 	default:
5425 		/* caller was supposed to have unlinked any requests;
5426 		 * that's not our job.  just leak this memory.
5427 		 */
5428 		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5429 				qh, ep->desc.bEndpointAddress, qh->qh_state,
5430 				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5431 		break;
5432 	}
5433 done:
5434 	ep->hcpriv = NULL;
5435 	spin_unlock_irqrestore(&fotg210->lock, flags);
5436 }
5437 
fotg210_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5438 static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5439 		struct usb_host_endpoint *ep)
5440 {
5441 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5442 	struct fotg210_qh *qh;
5443 	int eptype = usb_endpoint_type(&ep->desc);
5444 	int epnum = usb_endpoint_num(&ep->desc);
5445 	int is_out = usb_endpoint_dir_out(&ep->desc);
5446 	unsigned long flags;
5447 
5448 	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5449 		return;
5450 
5451 	spin_lock_irqsave(&fotg210->lock, flags);
5452 	qh = ep->hcpriv;
5453 
5454 	/* For Bulk and Interrupt endpoints we maintain the toggle state
5455 	 * in the hardware; the toggle bits in udev aren't used at all.
5456 	 * When an endpoint is reset by usb_clear_halt() we must reset
5457 	 * the toggle bit in the QH.
5458 	 */
5459 	if (qh) {
5460 		usb_settoggle(qh->dev, epnum, is_out, 0);
5461 		if (!list_empty(&qh->qtd_list)) {
5462 			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5463 		} else if (qh->qh_state == QH_STATE_LINKED ||
5464 				qh->qh_state == QH_STATE_COMPLETING) {
5465 
5466 			/* The toggle value in the QH can't be updated
5467 			 * while the QH is active.  Unlink it now;
5468 			 * re-linking will call qh_refresh().
5469 			 */
5470 			if (eptype == USB_ENDPOINT_XFER_BULK)
5471 				start_unlink_async(fotg210, qh);
5472 			else
5473 				start_unlink_intr(fotg210, qh);
5474 		}
5475 	}
5476 	spin_unlock_irqrestore(&fotg210->lock, flags);
5477 }
5478 
fotg210_get_frame(struct usb_hcd * hcd)5479 static int fotg210_get_frame(struct usb_hcd *hcd)
5480 {
5481 	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5482 
5483 	return (fotg210_read_frame_index(fotg210) >> 3) %
5484 		fotg210->periodic_size;
5485 }
5486 
5487 /* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5488  * because its registers (and irq) are shared between host/gadget/otg
5489  * functions  and in order to facilitate role switching we cannot
5490  * give the fotg210 driver exclusive access to those.
5491  */
5492 MODULE_DESCRIPTION(DRIVER_DESC);
5493 MODULE_AUTHOR(DRIVER_AUTHOR);
5494 MODULE_LICENSE("GPL");
5495 
5496 static const struct hc_driver fotg210_fotg210_hc_driver = {
5497 	.description		= hcd_name,
5498 	.product_desc		= "Faraday USB2.0 Host Controller",
5499 	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5500 
5501 	/*
5502 	 * generic hardware linkage
5503 	 */
5504 	.irq			= fotg210_irq,
5505 	.flags			= HCD_MEMORY | HCD_USB2,
5506 
5507 	/*
5508 	 * basic lifecycle operations
5509 	 */
5510 	.reset			= hcd_fotg210_init,
5511 	.start			= fotg210_run,
5512 	.stop			= fotg210_stop,
5513 	.shutdown		= fotg210_shutdown,
5514 
5515 	/*
5516 	 * managing i/o requests and associated device resources
5517 	 */
5518 	.urb_enqueue		= fotg210_urb_enqueue,
5519 	.urb_dequeue		= fotg210_urb_dequeue,
5520 	.endpoint_disable	= fotg210_endpoint_disable,
5521 	.endpoint_reset		= fotg210_endpoint_reset,
5522 
5523 	/*
5524 	 * scheduling support
5525 	 */
5526 	.get_frame_number	= fotg210_get_frame,
5527 
5528 	/*
5529 	 * root hub support
5530 	 */
5531 	.hub_status_data	= fotg210_hub_status_data,
5532 	.hub_control		= fotg210_hub_control,
5533 	.bus_suspend		= fotg210_bus_suspend,
5534 	.bus_resume		= fotg210_bus_resume,
5535 
5536 	.relinquish_port	= fotg210_relinquish_port,
5537 	.port_handed_over	= fotg210_port_handed_over,
5538 
5539 	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5540 };
5541 
fotg210_init(struct fotg210_hcd * fotg210)5542 static void fotg210_init(struct fotg210_hcd *fotg210)
5543 {
5544 	u32 value;
5545 
5546 	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5547 			&fotg210->regs->gmir);
5548 
5549 	value = ioread32(&fotg210->regs->otgcsr);
5550 	value &= ~OTGCSR_A_BUS_DROP;
5551 	value |= OTGCSR_A_BUS_REQ;
5552 	iowrite32(value, &fotg210->regs->otgcsr);
5553 }
5554 
5555 /**
5556  * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5557  *
5558  * Allocates basic resources for this USB host controller, and
5559  * then invokes the start() method for the HCD associated with it
5560  * through the hotplug entry's driver_data.
5561  */
fotg210_hcd_probe(struct platform_device * pdev)5562 static int fotg210_hcd_probe(struct platform_device *pdev)
5563 {
5564 	struct device *dev = &pdev->dev;
5565 	struct usb_hcd *hcd;
5566 	struct resource *res;
5567 	int irq;
5568 	int retval = -ENODEV;
5569 	struct fotg210_hcd *fotg210;
5570 
5571 	if (usb_disabled())
5572 		return -ENODEV;
5573 
5574 	pdev->dev.power.power_state = PMSG_ON;
5575 
5576 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5577 	if (!res) {
5578 		dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5579 				dev_name(dev));
5580 		return -ENODEV;
5581 	}
5582 
5583 	irq = res->start;
5584 
5585 	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5586 			dev_name(dev));
5587 	if (!hcd) {
5588 		dev_err(dev, "failed to create hcd with err %d\n", retval);
5589 		retval = -ENOMEM;
5590 		goto fail_create_hcd;
5591 	}
5592 
5593 	hcd->has_tt = 1;
5594 
5595 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5596 	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5597 	if (IS_ERR(hcd->regs)) {
5598 		retval = PTR_ERR(hcd->regs);
5599 		goto failed;
5600 	}
5601 
5602 	hcd->rsrc_start = res->start;
5603 	hcd->rsrc_len = resource_size(res);
5604 
5605 	fotg210 = hcd_to_fotg210(hcd);
5606 
5607 	fotg210->caps = hcd->regs;
5608 
5609 	retval = fotg210_setup(hcd);
5610 	if (retval)
5611 		goto failed;
5612 
5613 	fotg210_init(fotg210);
5614 
5615 	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5616 	if (retval) {
5617 		dev_err(dev, "failed to add hcd with err %d\n", retval);
5618 		goto failed;
5619 	}
5620 	device_wakeup_enable(hcd->self.controller);
5621 
5622 	return retval;
5623 
5624 failed:
5625 	usb_put_hcd(hcd);
5626 fail_create_hcd:
5627 	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5628 	return retval;
5629 }
5630 
5631 /**
5632  * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5633  * @dev: USB Host Controller being removed
5634  *
5635  */
fotg210_hcd_remove(struct platform_device * pdev)5636 static int fotg210_hcd_remove(struct platform_device *pdev)
5637 {
5638 	struct device *dev = &pdev->dev;
5639 	struct usb_hcd *hcd = dev_get_drvdata(dev);
5640 
5641 	if (!hcd)
5642 		return 0;
5643 
5644 	usb_remove_hcd(hcd);
5645 	usb_put_hcd(hcd);
5646 
5647 	return 0;
5648 }
5649 
5650 static struct platform_driver fotg210_hcd_driver = {
5651 	.driver = {
5652 		.name   = "fotg210-hcd",
5653 	},
5654 	.probe  = fotg210_hcd_probe,
5655 	.remove = fotg210_hcd_remove,
5656 };
5657 
fotg210_hcd_init(void)5658 static int __init fotg210_hcd_init(void)
5659 {
5660 	int retval = 0;
5661 
5662 	if (usb_disabled())
5663 		return -ENODEV;
5664 
5665 	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5666 	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5667 	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5668 			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5669 		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5670 
5671 	pr_debug("%s: block sizes: qh %zd qtd %zd itd %zd\n",
5672 			hcd_name, sizeof(struct fotg210_qh),
5673 			sizeof(struct fotg210_qtd),
5674 			sizeof(struct fotg210_itd));
5675 
5676 	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5677 
5678 	retval = platform_driver_register(&fotg210_hcd_driver);
5679 	if (retval < 0)
5680 		goto clean;
5681 	return retval;
5682 
5683 clean:
5684 	debugfs_remove(fotg210_debug_root);
5685 	fotg210_debug_root = NULL;
5686 
5687 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5688 	return retval;
5689 }
5690 module_init(fotg210_hcd_init);
5691 
fotg210_hcd_cleanup(void)5692 static void __exit fotg210_hcd_cleanup(void)
5693 {
5694 	platform_driver_unregister(&fotg210_hcd_driver);
5695 	debugfs_remove(fotg210_debug_root);
5696 	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5697 }
5698 module_exit(fotg210_hcd_cleanup);
5699