1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2001-2004 by David Brownell
4 */
5
6 /* this file is part of ehci-hcd.c */
7
8 /*-------------------------------------------------------------------------*/
9
10 /*
11 * EHCI hardware queue manipulation ... the core. QH/QTD manipulation.
12 *
13 * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd"
14 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
15 * buffers needed for the larger number). We use one QH per endpoint, queue
16 * multiple urbs (all three types) per endpoint. URBs may need several qtds.
17 *
18 * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with
19 * interrupts) needs careful scheduling. Performance improvements can be
20 * an ongoing challenge. That's in "ehci-sched.c".
21 *
22 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
23 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
24 * (b) special fields in qh entries or (c) split iso entries. TTs will
25 * buffer low/full speed data so the host collects it at high speed.
26 */
27
28 /*-------------------------------------------------------------------------*/
29
30 /* fill a qtd, returning how much of the buffer we were able to queue up */
31
32 static int
qtd_fill(struct ehci_hcd * ehci,struct ehci_qtd * qtd,dma_addr_t buf,size_t len,int token,int maxpacket)33 qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf,
34 size_t len, int token, int maxpacket)
35 {
36 int i, count;
37 u64 addr = buf;
38
39 /* one buffer entry per 4K ... first might be short or unaligned */
40 qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr);
41 qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32));
42 count = 0x1000 - (buf & 0x0fff); /* rest of that page */
43 if (likely (len < count)) /* ... iff needed */
44 count = len;
45 else {
46 buf += 0x1000;
47 buf &= ~0x0fff;
48
49 /* per-qtd limit: from 16K to 20K (best alignment) */
50 for (i = 1; count < len && i < 5; i++) {
51 addr = buf;
52 qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr);
53 qtd->hw_buf_hi[i] = cpu_to_hc32(ehci,
54 (u32)(addr >> 32));
55 buf += 0x1000;
56 if ((count + 0x1000) < len)
57 count += 0x1000;
58 else
59 count = len;
60 }
61
62 /* short packets may only terminate transfers */
63 if (count != len)
64 count -= (count % maxpacket);
65 }
66 qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token);
67 qtd->length = count;
68
69 return count;
70 }
71
72 /*-------------------------------------------------------------------------*/
73
74 static inline void
qh_update(struct ehci_hcd * ehci,struct ehci_qh * qh,struct ehci_qtd * qtd)75 qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd)
76 {
77 struct ehci_qh_hw *hw = qh->hw;
78
79 /* writes to an active overlay are unsafe */
80 WARN_ON(qh->qh_state != QH_STATE_IDLE);
81
82 hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma);
83 hw->hw_alt_next = EHCI_LIST_END(ehci);
84
85 /* Except for control endpoints, we make hardware maintain data
86 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
87 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
88 * ever clear it.
89 */
90 if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) {
91 unsigned is_out, epnum;
92
93 is_out = qh->is_out;
94 epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f;
95 if (unlikely(!usb_gettoggle(qh->ps.udev, epnum, is_out))) {
96 hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE);
97 usb_settoggle(qh->ps.udev, epnum, is_out, 1);
98 }
99 }
100
101 hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING);
102 }
103
104 /* if it weren't for a common silicon quirk (writing the dummy into the qh
105 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
106 * recovery (including urb dequeue) would need software changes to a QH...
107 */
108 static void
qh_refresh(struct ehci_hcd * ehci,struct ehci_qh * qh)109 qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh)
110 {
111 struct ehci_qtd *qtd;
112
113 qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list);
114
115 /*
116 * first qtd may already be partially processed.
117 * If we come here during unlink, the QH overlay region
118 * might have reference to the just unlinked qtd. The
119 * qtd is updated in qh_completions(). Update the QH
120 * overlay here.
121 */
122 if (qh->hw->hw_token & ACTIVE_BIT(ehci)) {
123 qh->hw->hw_qtd_next = qtd->hw_next;
124 if (qh->should_be_inactive)
125 ehci_warn(ehci, "qh %p should be inactive!\n", qh);
126 } else {
127 qh_update(ehci, qh, qtd);
128 }
129 qh->should_be_inactive = 0;
130 }
131
132 /*-------------------------------------------------------------------------*/
133
134 static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
135
ehci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)136 static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd,
137 struct usb_host_endpoint *ep)
138 {
139 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
140 struct ehci_qh *qh = ep->hcpriv;
141 unsigned long flags;
142
143 spin_lock_irqsave(&ehci->lock, flags);
144 qh->clearing_tt = 0;
145 if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
146 && ehci->rh_state == EHCI_RH_RUNNING)
147 qh_link_async(ehci, qh);
148 spin_unlock_irqrestore(&ehci->lock, flags);
149 }
150
ehci_clear_tt_buffer(struct ehci_hcd * ehci,struct ehci_qh * qh,struct urb * urb,u32 token)151 static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh,
152 struct urb *urb, u32 token)
153 {
154
155 /* If an async split transaction gets an error or is unlinked,
156 * the TT buffer may be left in an indeterminate state. We
157 * have to clear the TT buffer.
158 *
159 * Note: this routine is never called for Isochronous transfers.
160 */
161 if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
162 #ifdef CONFIG_DYNAMIC_DEBUG
163 struct usb_device *tt = urb->dev->tt->hub;
164 dev_dbg(&tt->dev,
165 "clear tt buffer port %d, a%d ep%d t%08x\n",
166 urb->dev->ttport, urb->dev->devnum,
167 usb_pipeendpoint(urb->pipe), token);
168 #endif /* CONFIG_DYNAMIC_DEBUG */
169 if (!ehci_is_TDI(ehci)
170 || urb->dev->tt->hub !=
171 ehci_to_hcd(ehci)->self.root_hub) {
172 if (usb_hub_clear_tt_buffer(urb) == 0)
173 qh->clearing_tt = 1;
174 } else {
175
176 /* REVISIT ARC-derived cores don't clear the root
177 * hub TT buffer in this way...
178 */
179 }
180 }
181 }
182
qtd_copy_status(struct ehci_hcd * ehci,struct urb * urb,size_t length,u32 token)183 static int qtd_copy_status (
184 struct ehci_hcd *ehci,
185 struct urb *urb,
186 size_t length,
187 u32 token
188 )
189 {
190 int status = -EINPROGRESS;
191
192 /* count IN/OUT bytes, not SETUP (even short packets) */
193 if (likely (QTD_PID (token) != 2))
194 urb->actual_length += length - QTD_LENGTH (token);
195
196 /* don't modify error codes */
197 if (unlikely(urb->unlinked))
198 return status;
199
200 /* force cleanup after short read; not always an error */
201 if (unlikely (IS_SHORT_READ (token)))
202 status = -EREMOTEIO;
203
204 /* serious "can't proceed" faults reported by the hardware */
205 if (token & QTD_STS_HALT) {
206 if (token & QTD_STS_BABBLE) {
207 /* FIXME "must" disable babbling device's port too */
208 status = -EOVERFLOW;
209 /* CERR nonzero + halt --> stall */
210 } else if (QTD_CERR(token)) {
211 status = -EPIPE;
212
213 /* In theory, more than one of the following bits can be set
214 * since they are sticky and the transaction is retried.
215 * Which to test first is rather arbitrary.
216 */
217 } else if (token & QTD_STS_MMF) {
218 /* fs/ls interrupt xfer missed the complete-split */
219 status = -EPROTO;
220 } else if (token & QTD_STS_DBE) {
221 status = (QTD_PID (token) == 1) /* IN ? */
222 ? -ENOSR /* hc couldn't read data */
223 : -ECOMM; /* hc couldn't write data */
224 } else if (token & QTD_STS_XACT) {
225 /* timeout, bad CRC, wrong PID, etc */
226 ehci_dbg(ehci, "devpath %s ep%d%s 3strikes\n",
227 urb->dev->devpath,
228 usb_pipeendpoint(urb->pipe),
229 usb_pipein(urb->pipe) ? "in" : "out");
230 status = -EPROTO;
231 } else { /* unknown */
232 status = -EPROTO;
233 }
234 }
235
236 return status;
237 }
238
239 static void
ehci_urb_done(struct ehci_hcd * ehci,struct urb * urb,int status)240 ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status)
241 {
242 if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
243 /* ... update hc-wide periodic stats */
244 ehci_to_hcd(ehci)->self.bandwidth_int_reqs--;
245 }
246
247 if (unlikely(urb->unlinked)) {
248 COUNT(ehci->stats.unlink);
249 } else {
250 /* report non-error and short read status as zero */
251 if (status == -EINPROGRESS || status == -EREMOTEIO)
252 status = 0;
253 COUNT(ehci->stats.complete);
254 }
255
256 #ifdef EHCI_URB_TRACE
257 ehci_dbg (ehci,
258 "%s %s urb %p ep%d%s status %d len %d/%d\n",
259 __func__, urb->dev->devpath, urb,
260 usb_pipeendpoint (urb->pipe),
261 usb_pipein (urb->pipe) ? "in" : "out",
262 status,
263 urb->actual_length, urb->transfer_buffer_length);
264 #endif
265
266 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
267 usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status);
268 }
269
270 static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh);
271
272 /*
273 * Process and free completed qtds for a qh, returning URBs to drivers.
274 * Chases up to qh->hw_current. Returns nonzero if the caller should
275 * unlink qh.
276 */
277 static unsigned
qh_completions(struct ehci_hcd * ehci,struct ehci_qh * qh)278 qh_completions (struct ehci_hcd *ehci, struct ehci_qh *qh)
279 {
280 struct ehci_qtd *last, *end = qh->dummy;
281 struct list_head *entry, *tmp;
282 int last_status;
283 int stopped;
284 u8 state;
285 struct ehci_qh_hw *hw = qh->hw;
286
287 /* completions (or tasks on other cpus) must never clobber HALT
288 * till we've gone through and cleaned everything up, even when
289 * they add urbs to this qh's queue or mark them for unlinking.
290 *
291 * NOTE: unlinking expects to be done in queue order.
292 *
293 * It's a bug for qh->qh_state to be anything other than
294 * QH_STATE_IDLE, unless our caller is scan_async() or
295 * scan_intr().
296 */
297 state = qh->qh_state;
298 qh->qh_state = QH_STATE_COMPLETING;
299 stopped = (state == QH_STATE_IDLE);
300
301 rescan:
302 last = NULL;
303 last_status = -EINPROGRESS;
304 qh->dequeue_during_giveback = 0;
305
306 /* remove de-activated QTDs from front of queue.
307 * after faults (including short reads), cleanup this urb
308 * then let the queue advance.
309 * if queue is stopped, handles unlinks.
310 */
311 list_for_each_safe (entry, tmp, &qh->qtd_list) {
312 struct ehci_qtd *qtd;
313 struct urb *urb;
314 u32 token = 0;
315
316 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
317 urb = qtd->urb;
318
319 /* clean up any state from previous QTD ...*/
320 if (last) {
321 if (likely (last->urb != urb)) {
322 ehci_urb_done(ehci, last->urb, last_status);
323 last_status = -EINPROGRESS;
324 }
325 ehci_qtd_free (ehci, last);
326 last = NULL;
327 }
328
329 /* ignore urbs submitted during completions we reported */
330 if (qtd == end)
331 break;
332
333 /* hardware copies qtd out of qh overlay */
334 rmb ();
335 token = hc32_to_cpu(ehci, qtd->hw_token);
336
337 /* always clean up qtds the hc de-activated */
338 retry_xacterr:
339 if ((token & QTD_STS_ACTIVE) == 0) {
340
341 /* Report Data Buffer Error: non-fatal but useful */
342 if (token & QTD_STS_DBE)
343 ehci_dbg(ehci,
344 "detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
345 urb,
346 usb_endpoint_num(&urb->ep->desc),
347 usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out",
348 urb->transfer_buffer_length,
349 qtd,
350 qh);
351
352 /* on STALL, error, and short reads this urb must
353 * complete and all its qtds must be recycled.
354 */
355 if ((token & QTD_STS_HALT) != 0) {
356
357 /* retry transaction errors until we
358 * reach the software xacterr limit
359 */
360 if ((token & QTD_STS_XACT) &&
361 QTD_CERR(token) == 0 &&
362 ++qh->xacterrs < QH_XACTERR_MAX &&
363 !urb->unlinked) {
364 ehci_dbg(ehci,
365 "detected XactErr len %zu/%zu retry %d\n",
366 qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs);
367
368 /* reset the token in the qtd and the
369 * qh overlay (which still contains
370 * the qtd) so that we pick up from
371 * where we left off
372 */
373 token &= ~QTD_STS_HALT;
374 token |= QTD_STS_ACTIVE |
375 (EHCI_TUNE_CERR << 10);
376 qtd->hw_token = cpu_to_hc32(ehci,
377 token);
378 wmb();
379 hw->hw_token = cpu_to_hc32(ehci,
380 token);
381 goto retry_xacterr;
382 }
383 stopped = 1;
384 qh->unlink_reason |= QH_UNLINK_HALTED;
385
386 /* magic dummy for some short reads; qh won't advance.
387 * that silicon quirk can kick in with this dummy too.
388 *
389 * other short reads won't stop the queue, including
390 * control transfers (status stage handles that) or
391 * most other single-qtd reads ... the queue stops if
392 * URB_SHORT_NOT_OK was set so the driver submitting
393 * the urbs could clean it up.
394 */
395 } else if (IS_SHORT_READ (token)
396 && !(qtd->hw_alt_next
397 & EHCI_LIST_END(ehci))) {
398 stopped = 1;
399 qh->unlink_reason |= QH_UNLINK_SHORT_READ;
400 }
401
402 /* stop scanning when we reach qtds the hc is using */
403 } else if (likely (!stopped
404 && ehci->rh_state >= EHCI_RH_RUNNING)) {
405 break;
406
407 /* scan the whole queue for unlinks whenever it stops */
408 } else {
409 stopped = 1;
410
411 /* cancel everything if we halt, suspend, etc */
412 if (ehci->rh_state < EHCI_RH_RUNNING) {
413 last_status = -ESHUTDOWN;
414 qh->unlink_reason |= QH_UNLINK_SHUTDOWN;
415 }
416
417 /* this qtd is active; skip it unless a previous qtd
418 * for its urb faulted, or its urb was canceled.
419 */
420 else if (last_status == -EINPROGRESS && !urb->unlinked)
421 continue;
422
423 /*
424 * If this was the active qtd when the qh was unlinked
425 * and the overlay's token is active, then the overlay
426 * hasn't been written back to the qtd yet so use its
427 * token instead of the qtd's. After the qtd is
428 * processed and removed, the overlay won't be valid
429 * any more.
430 */
431 if (state == QH_STATE_IDLE &&
432 qh->qtd_list.next == &qtd->qtd_list &&
433 (hw->hw_token & ACTIVE_BIT(ehci))) {
434 token = hc32_to_cpu(ehci, hw->hw_token);
435 hw->hw_token &= ~ACTIVE_BIT(ehci);
436 qh->should_be_inactive = 1;
437
438 /* An unlink may leave an incomplete
439 * async transaction in the TT buffer.
440 * We have to clear it.
441 */
442 ehci_clear_tt_buffer(ehci, qh, urb, token);
443 }
444 }
445
446 /* unless we already know the urb's status, collect qtd status
447 * and update count of bytes transferred. in common short read
448 * cases with only one data qtd (including control transfers),
449 * queue processing won't halt. but with two or more qtds (for
450 * example, with a 32 KB transfer), when the first qtd gets a
451 * short read the second must be removed by hand.
452 */
453 if (last_status == -EINPROGRESS) {
454 last_status = qtd_copy_status(ehci, urb,
455 qtd->length, token);
456 if (last_status == -EREMOTEIO
457 && (qtd->hw_alt_next
458 & EHCI_LIST_END(ehci)))
459 last_status = -EINPROGRESS;
460
461 /* As part of low/full-speed endpoint-halt processing
462 * we must clear the TT buffer (11.17.5).
463 */
464 if (unlikely(last_status != -EINPROGRESS &&
465 last_status != -EREMOTEIO)) {
466 /* The TT's in some hubs malfunction when they
467 * receive this request following a STALL (they
468 * stop sending isochronous packets). Since a
469 * STALL can't leave the TT buffer in a busy
470 * state (if you believe Figures 11-48 - 11-51
471 * in the USB 2.0 spec), we won't clear the TT
472 * buffer in this case. Strictly speaking this
473 * is a violation of the spec.
474 */
475 if (last_status != -EPIPE)
476 ehci_clear_tt_buffer(ehci, qh, urb,
477 token);
478 }
479 }
480
481 /* if we're removing something not at the queue head,
482 * patch the hardware queue pointer.
483 */
484 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
485 last = list_entry (qtd->qtd_list.prev,
486 struct ehci_qtd, qtd_list);
487 last->hw_next = qtd->hw_next;
488 }
489
490 /* remove qtd; it's recycled after possible urb completion */
491 list_del (&qtd->qtd_list);
492 last = qtd;
493
494 /* reinit the xacterr counter for the next qtd */
495 qh->xacterrs = 0;
496 }
497
498 /* last urb's completion might still need calling */
499 if (likely (last != NULL)) {
500 ehci_urb_done(ehci, last->urb, last_status);
501 ehci_qtd_free (ehci, last);
502 }
503
504 /* Do we need to rescan for URBs dequeued during a giveback? */
505 if (unlikely(qh->dequeue_during_giveback)) {
506 /* If the QH is already unlinked, do the rescan now. */
507 if (state == QH_STATE_IDLE)
508 goto rescan;
509
510 /* Otherwise the caller must unlink the QH. */
511 }
512
513 /* restore original state; caller must unlink or relink */
514 qh->qh_state = state;
515
516 /* be sure the hardware's done with the qh before refreshing
517 * it after fault cleanup, or recovering from silicon wrongly
518 * overlaying the dummy qtd (which reduces DMA chatter).
519 *
520 * We won't refresh a QH that's linked (after the HC
521 * stopped the queue). That avoids a race:
522 * - HC reads first part of QH;
523 * - CPU updates that first part and the token;
524 * - HC reads rest of that QH, including token
525 * Result: HC gets an inconsistent image, and then
526 * DMAs to/from the wrong memory (corrupting it).
527 *
528 * That should be rare for interrupt transfers,
529 * except maybe high bandwidth ...
530 */
531 if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci))
532 qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY;
533
534 /* Let the caller know if the QH needs to be unlinked. */
535 return qh->unlink_reason;
536 }
537
538 /*-------------------------------------------------------------------------*/
539
540 /*
541 * reverse of qh_urb_transaction: free a list of TDs.
542 * used for cleanup after errors, before HC sees an URB's TDs.
543 */
qtd_list_free(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list)544 static void qtd_list_free (
545 struct ehci_hcd *ehci,
546 struct urb *urb,
547 struct list_head *qtd_list
548 ) {
549 struct list_head *entry, *temp;
550
551 list_for_each_safe (entry, temp, qtd_list) {
552 struct ehci_qtd *qtd;
553
554 qtd = list_entry (entry, struct ehci_qtd, qtd_list);
555 list_del (&qtd->qtd_list);
556 ehci_qtd_free (ehci, qtd);
557 }
558 }
559
560 /*
561 * create a list of filled qtds for this URB; won't link into qh.
562 */
563 static struct list_head *
qh_urb_transaction(struct ehci_hcd * ehci,struct urb * urb,struct list_head * head,gfp_t flags)564 qh_urb_transaction (
565 struct ehci_hcd *ehci,
566 struct urb *urb,
567 struct list_head *head,
568 gfp_t flags
569 ) {
570 struct ehci_qtd *qtd, *qtd_prev;
571 dma_addr_t buf;
572 int len, this_sg_len, maxpacket;
573 int is_input;
574 u32 token;
575 int i;
576 struct scatterlist *sg;
577
578 /*
579 * URBs map to sequences of QTDs: one logical transaction
580 */
581 qtd = ehci_qtd_alloc (ehci, flags);
582 if (unlikely (!qtd))
583 return NULL;
584 list_add_tail (&qtd->qtd_list, head);
585 qtd->urb = urb;
586
587 token = QTD_STS_ACTIVE;
588 token |= (EHCI_TUNE_CERR << 10);
589 /* for split transactions, SplitXState initialized to zero */
590
591 len = urb->transfer_buffer_length;
592 is_input = usb_pipein (urb->pipe);
593 if (usb_pipecontrol (urb->pipe)) {
594 /* SETUP pid */
595 qtd_fill(ehci, qtd, urb->setup_dma,
596 sizeof (struct usb_ctrlrequest),
597 token | (2 /* "setup" */ << 8), 8);
598
599 /* ... and always at least one more pid */
600 token ^= QTD_TOGGLE;
601 qtd_prev = qtd;
602 qtd = ehci_qtd_alloc (ehci, flags);
603 if (unlikely (!qtd))
604 goto cleanup;
605 qtd->urb = urb;
606 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
607 list_add_tail (&qtd->qtd_list, head);
608
609 /* for zero length DATA stages, STATUS is always IN */
610 if (len == 0)
611 token |= (1 /* "in" */ << 8);
612 }
613
614 /*
615 * data transfer stage: buffer setup
616 */
617 i = urb->num_mapped_sgs;
618 if (len > 0 && i > 0) {
619 sg = urb->sg;
620 buf = sg_dma_address(sg);
621
622 /* urb->transfer_buffer_length may be smaller than the
623 * size of the scatterlist (or vice versa)
624 */
625 this_sg_len = min_t(int, sg_dma_len(sg), len);
626 } else {
627 sg = NULL;
628 buf = urb->transfer_dma;
629 this_sg_len = len;
630 }
631
632 if (is_input)
633 token |= (1 /* "in" */ << 8);
634 /* else it's already initted to "out" pid (0 << 8) */
635
636 maxpacket = usb_maxpacket(urb->dev, urb->pipe, !is_input);
637
638 /*
639 * buffer gets wrapped in one or more qtds;
640 * last one may be "short" (including zero len)
641 * and may serve as a control status ack
642 */
643 for (;;) {
644 int this_qtd_len;
645
646 this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token,
647 maxpacket);
648 this_sg_len -= this_qtd_len;
649 len -= this_qtd_len;
650 buf += this_qtd_len;
651
652 /*
653 * short reads advance to a "magic" dummy instead of the next
654 * qtd ... that forces the queue to stop, for manual cleanup.
655 * (this will usually be overridden later.)
656 */
657 if (is_input)
658 qtd->hw_alt_next = ehci->async->hw->hw_alt_next;
659
660 /* qh makes control packets use qtd toggle; maybe switch it */
661 if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
662 token ^= QTD_TOGGLE;
663
664 if (likely(this_sg_len <= 0)) {
665 if (--i <= 0 || len <= 0)
666 break;
667 sg = sg_next(sg);
668 buf = sg_dma_address(sg);
669 this_sg_len = min_t(int, sg_dma_len(sg), len);
670 }
671
672 qtd_prev = qtd;
673 qtd = ehci_qtd_alloc (ehci, flags);
674 if (unlikely (!qtd))
675 goto cleanup;
676 qtd->urb = urb;
677 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
678 list_add_tail (&qtd->qtd_list, head);
679 }
680
681 /*
682 * unless the caller requires manual cleanup after short reads,
683 * have the alt_next mechanism keep the queue running after the
684 * last data qtd (the only one, for control and most other cases).
685 */
686 if (likely ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0
687 || usb_pipecontrol (urb->pipe)))
688 qtd->hw_alt_next = EHCI_LIST_END(ehci);
689
690 /*
691 * control requests may need a terminating data "status" ack;
692 * other OUT ones may need a terminating short packet
693 * (zero length).
694 */
695 if (likely (urb->transfer_buffer_length != 0)) {
696 int one_more = 0;
697
698 if (usb_pipecontrol (urb->pipe)) {
699 one_more = 1;
700 token ^= 0x0100; /* "in" <--> "out" */
701 token |= QTD_TOGGLE; /* force DATA1 */
702 } else if (usb_pipeout(urb->pipe)
703 && (urb->transfer_flags & URB_ZERO_PACKET)
704 && !(urb->transfer_buffer_length % maxpacket)) {
705 one_more = 1;
706 }
707 if (one_more) {
708 qtd_prev = qtd;
709 qtd = ehci_qtd_alloc (ehci, flags);
710 if (unlikely (!qtd))
711 goto cleanup;
712 qtd->urb = urb;
713 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
714 list_add_tail (&qtd->qtd_list, head);
715
716 /* never any data in such packets */
717 qtd_fill(ehci, qtd, 0, 0, token, 0);
718 }
719 }
720
721 /* by default, enable interrupt on urb completion */
722 if (likely (!(urb->transfer_flags & URB_NO_INTERRUPT)))
723 qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC);
724 return head;
725
726 cleanup:
727 qtd_list_free (ehci, urb, head);
728 return NULL;
729 }
730
731 /*-------------------------------------------------------------------------*/
732
733 // Would be best to create all qh's from config descriptors,
734 // when each interface/altsetting is established. Unlink
735 // any previous qh and cancel its urbs first; endpoints are
736 // implicitly reset then (data toggle too).
737 // That'd mean updating how usbcore talks to HCDs. (2.7?)
738
739
740 /*
741 * Each QH holds a qtd list; a QH is used for everything except iso.
742 *
743 * For interrupt urbs, the scheduler must set the microframe scheduling
744 * mask(s) each time the QH gets scheduled. For highspeed, that's
745 * just one microframe in the s-mask. For split interrupt transactions
746 * there are additional complications: c-mask, maybe FSTNs.
747 */
748 static struct ehci_qh *
qh_make(struct ehci_hcd * ehci,struct urb * urb,gfp_t flags)749 qh_make (
750 struct ehci_hcd *ehci,
751 struct urb *urb,
752 gfp_t flags
753 ) {
754 struct ehci_qh *qh = ehci_qh_alloc (ehci, flags);
755 struct usb_host_endpoint *ep;
756 u32 info1 = 0, info2 = 0;
757 int is_input, type;
758 int maxp = 0;
759 int mult;
760 struct usb_tt *tt = urb->dev->tt;
761 struct ehci_qh_hw *hw;
762
763 if (!qh)
764 return qh;
765
766 /*
767 * init endpoint/device data for this QH
768 */
769 info1 |= usb_pipeendpoint (urb->pipe) << 8;
770 info1 |= usb_pipedevice (urb->pipe) << 0;
771
772 is_input = usb_pipein (urb->pipe);
773 type = usb_pipetype (urb->pipe);
774 ep = usb_pipe_endpoint (urb->dev, urb->pipe);
775 maxp = usb_endpoint_maxp (&ep->desc);
776 mult = usb_endpoint_maxp_mult (&ep->desc);
777
778 /* 1024 byte maxpacket is a hardware ceiling. High bandwidth
779 * acts like up to 3KB, but is built from smaller packets.
780 */
781 if (maxp > 1024) {
782 ehci_dbg(ehci, "bogus qh maxpacket %d\n", maxp);
783 goto done;
784 }
785
786 /* Compute interrupt scheduling parameters just once, and save.
787 * - allowing for high bandwidth, how many nsec/uframe are used?
788 * - split transactions need a second CSPLIT uframe; same question
789 * - splits also need a schedule gap (for full/low speed I/O)
790 * - qh has a polling interval
791 *
792 * For control/bulk requests, the HC or TT handles these.
793 */
794 if (type == PIPE_INTERRUPT) {
795 unsigned tmp;
796
797 qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
798 is_input, 0, mult * maxp));
799 qh->ps.phase = NO_FRAME;
800
801 if (urb->dev->speed == USB_SPEED_HIGH) {
802 qh->ps.c_usecs = 0;
803 qh->gap_uf = 0;
804
805 if (urb->interval > 1 && urb->interval < 8) {
806 /* NOTE interval 2 or 4 uframes could work.
807 * But interval 1 scheduling is simpler, and
808 * includes high bandwidth.
809 */
810 urb->interval = 1;
811 } else if (urb->interval > ehci->periodic_size << 3) {
812 urb->interval = ehci->periodic_size << 3;
813 }
814 qh->ps.period = urb->interval >> 3;
815
816 /* period for bandwidth allocation */
817 tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
818 1 << (urb->ep->desc.bInterval - 1));
819
820 /* Allow urb->interval to override */
821 qh->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
822 qh->ps.bw_period = qh->ps.bw_uperiod >> 3;
823 } else {
824 int think_time;
825
826 /* gap is f(FS/LS transfer times) */
827 qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed,
828 is_input, 0, maxp) / (125 * 1000);
829
830 /* FIXME this just approximates SPLIT/CSPLIT times */
831 if (is_input) { // SPLIT, gap, CSPLIT+DATA
832 qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0);
833 qh->ps.usecs = HS_USECS(1);
834 } else { // SPLIT+DATA, gap, CSPLIT
835 qh->ps.usecs += HS_USECS(1);
836 qh->ps.c_usecs = HS_USECS(0);
837 }
838
839 think_time = tt ? tt->think_time : 0;
840 qh->ps.tt_usecs = NS_TO_US(think_time +
841 usb_calc_bus_time (urb->dev->speed,
842 is_input, 0, maxp));
843 if (urb->interval > ehci->periodic_size)
844 urb->interval = ehci->periodic_size;
845 qh->ps.period = urb->interval;
846
847 /* period for bandwidth allocation */
848 tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
849 urb->ep->desc.bInterval);
850 tmp = rounddown_pow_of_two(tmp);
851
852 /* Allow urb->interval to override */
853 qh->ps.bw_period = min_t(unsigned, tmp, urb->interval);
854 qh->ps.bw_uperiod = qh->ps.bw_period << 3;
855 }
856 }
857
858 /* support for tt scheduling, and access to toggles */
859 qh->ps.udev = urb->dev;
860 qh->ps.ep = urb->ep;
861
862 /* using TT? */
863 switch (urb->dev->speed) {
864 case USB_SPEED_LOW:
865 info1 |= QH_LOW_SPEED;
866 /* FALL THROUGH */
867
868 case USB_SPEED_FULL:
869 /* EPS 0 means "full" */
870 if (type != PIPE_INTERRUPT)
871 info1 |= (EHCI_TUNE_RL_TT << 28);
872 if (type == PIPE_CONTROL) {
873 info1 |= QH_CONTROL_EP; /* for TT */
874 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
875 }
876 info1 |= maxp << 16;
877
878 info2 |= (EHCI_TUNE_MULT_TT << 30);
879
880 /* Some Freescale processors have an erratum in which the
881 * port number in the queue head was 0..N-1 instead of 1..N.
882 */
883 if (ehci_has_fsl_portno_bug(ehci))
884 info2 |= (urb->dev->ttport-1) << 23;
885 else
886 info2 |= urb->dev->ttport << 23;
887
888 /* set the address of the TT; for TDI's integrated
889 * root hub tt, leave it zeroed.
890 */
891 if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub)
892 info2 |= tt->hub->devnum << 16;
893
894 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */
895
896 break;
897
898 case USB_SPEED_HIGH: /* no TT involved */
899 info1 |= QH_HIGH_SPEED;
900 if (type == PIPE_CONTROL) {
901 info1 |= (EHCI_TUNE_RL_HS << 28);
902 info1 |= 64 << 16; /* usb2 fixed maxpacket */
903 info1 |= QH_TOGGLE_CTL; /* toggle from qtd */
904 info2 |= (EHCI_TUNE_MULT_HS << 30);
905 } else if (type == PIPE_BULK) {
906 info1 |= (EHCI_TUNE_RL_HS << 28);
907 /* The USB spec says that high speed bulk endpoints
908 * always use 512 byte maxpacket. But some device
909 * vendors decided to ignore that, and MSFT is happy
910 * to help them do so. So now people expect to use
911 * such nonconformant devices with Linux too; sigh.
912 */
913 info1 |= maxp << 16;
914 info2 |= (EHCI_TUNE_MULT_HS << 30);
915 } else { /* PIPE_INTERRUPT */
916 info1 |= maxp << 16;
917 info2 |= mult << 30;
918 }
919 break;
920 default:
921 ehci_dbg(ehci, "bogus dev %p speed %d\n", urb->dev,
922 urb->dev->speed);
923 done:
924 qh_destroy(ehci, qh);
925 return NULL;
926 }
927
928 /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */
929
930 /* init as live, toggle clear */
931 qh->qh_state = QH_STATE_IDLE;
932 hw = qh->hw;
933 hw->hw_info1 = cpu_to_hc32(ehci, info1);
934 hw->hw_info2 = cpu_to_hc32(ehci, info2);
935 qh->is_out = !is_input;
936 usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1);
937 return qh;
938 }
939
940 /*-------------------------------------------------------------------------*/
941
enable_async(struct ehci_hcd * ehci)942 static void enable_async(struct ehci_hcd *ehci)
943 {
944 if (ehci->async_count++)
945 return;
946
947 /* Stop waiting to turn off the async schedule */
948 ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC);
949
950 /* Don't start the schedule until ASS is 0 */
951 ehci_poll_ASS(ehci);
952 turn_on_io_watchdog(ehci);
953 }
954
disable_async(struct ehci_hcd * ehci)955 static void disable_async(struct ehci_hcd *ehci)
956 {
957 if (--ehci->async_count)
958 return;
959
960 /* The async schedule and unlink lists are supposed to be empty */
961 WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) ||
962 !list_empty(&ehci->async_idle));
963
964 /* Don't turn off the schedule until ASS is 1 */
965 ehci_poll_ASS(ehci);
966 }
967
968 /* move qh (and its qtds) onto async queue; maybe enable queue. */
969
qh_link_async(struct ehci_hcd * ehci,struct ehci_qh * qh)970 static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh)
971 {
972 __hc32 dma = QH_NEXT(ehci, qh->qh_dma);
973 struct ehci_qh *head;
974
975 /* Don't link a QH if there's a Clear-TT-Buffer pending */
976 if (unlikely(qh->clearing_tt))
977 return;
978
979 WARN_ON(qh->qh_state != QH_STATE_IDLE);
980
981 /* clear halt and/or toggle; and maybe recover from silicon quirk */
982 qh_refresh(ehci, qh);
983
984 /* splice right after start */
985 head = ehci->async;
986 qh->qh_next = head->qh_next;
987 qh->hw->hw_next = head->hw->hw_next;
988 wmb ();
989
990 head->qh_next.qh = qh;
991 head->hw->hw_next = dma;
992
993 qh->qh_state = QH_STATE_LINKED;
994 qh->xacterrs = 0;
995 qh->unlink_reason = 0;
996 /* qtd completions reported later by interrupt */
997
998 enable_async(ehci);
999 }
1000
1001 /*-------------------------------------------------------------------------*/
1002
1003 /*
1004 * For control/bulk/interrupt, return QH with these TDs appended.
1005 * Allocates and initializes the QH if necessary.
1006 * Returns null if it can't allocate a QH it needs to.
1007 * If the QH has TDs (urbs) already, that's great.
1008 */
qh_append_tds(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list,int epnum,void ** ptr)1009 static struct ehci_qh *qh_append_tds (
1010 struct ehci_hcd *ehci,
1011 struct urb *urb,
1012 struct list_head *qtd_list,
1013 int epnum,
1014 void **ptr
1015 )
1016 {
1017 struct ehci_qh *qh = NULL;
1018 __hc32 qh_addr_mask = cpu_to_hc32(ehci, 0x7f);
1019
1020 qh = (struct ehci_qh *) *ptr;
1021 if (unlikely (qh == NULL)) {
1022 /* can't sleep here, we have ehci->lock... */
1023 qh = qh_make (ehci, urb, GFP_ATOMIC);
1024 *ptr = qh;
1025 }
1026 if (likely (qh != NULL)) {
1027 struct ehci_qtd *qtd;
1028
1029 if (unlikely (list_empty (qtd_list)))
1030 qtd = NULL;
1031 else
1032 qtd = list_entry (qtd_list->next, struct ehci_qtd,
1033 qtd_list);
1034
1035 /* control qh may need patching ... */
1036 if (unlikely (epnum == 0)) {
1037
1038 /* usb_reset_device() briefly reverts to address 0 */
1039 if (usb_pipedevice (urb->pipe) == 0)
1040 qh->hw->hw_info1 &= ~qh_addr_mask;
1041 }
1042
1043 /* just one way to queue requests: swap with the dummy qtd.
1044 * only hc or qh_refresh() ever modify the overlay.
1045 */
1046 if (likely (qtd != NULL)) {
1047 struct ehci_qtd *dummy;
1048 dma_addr_t dma;
1049 __hc32 token;
1050
1051 /* to avoid racing the HC, use the dummy td instead of
1052 * the first td of our list (becomes new dummy). both
1053 * tds stay deactivated until we're done, when the
1054 * HC is allowed to fetch the old dummy (4.10.2).
1055 */
1056 token = qtd->hw_token;
1057 qtd->hw_token = HALT_BIT(ehci);
1058
1059 dummy = qh->dummy;
1060
1061 dma = dummy->qtd_dma;
1062 *dummy = *qtd;
1063 dummy->qtd_dma = dma;
1064
1065 list_del (&qtd->qtd_list);
1066 list_add (&dummy->qtd_list, qtd_list);
1067 list_splice_tail(qtd_list, &qh->qtd_list);
1068
1069 ehci_qtd_init(ehci, qtd, qtd->qtd_dma);
1070 qh->dummy = qtd;
1071
1072 /* hc must see the new dummy at list end */
1073 dma = qtd->qtd_dma;
1074 qtd = list_entry (qh->qtd_list.prev,
1075 struct ehci_qtd, qtd_list);
1076 qtd->hw_next = QTD_NEXT(ehci, dma);
1077
1078 /* let the hc process these next qtds */
1079 wmb ();
1080 dummy->hw_token = token;
1081
1082 urb->hcpriv = qh;
1083 }
1084 }
1085 return qh;
1086 }
1087
1088 /*-------------------------------------------------------------------------*/
1089
1090 static int
submit_async(struct ehci_hcd * ehci,struct urb * urb,struct list_head * qtd_list,gfp_t mem_flags)1091 submit_async (
1092 struct ehci_hcd *ehci,
1093 struct urb *urb,
1094 struct list_head *qtd_list,
1095 gfp_t mem_flags
1096 ) {
1097 int epnum;
1098 unsigned long flags;
1099 struct ehci_qh *qh = NULL;
1100 int rc;
1101
1102 epnum = urb->ep->desc.bEndpointAddress;
1103
1104 #ifdef EHCI_URB_TRACE
1105 {
1106 struct ehci_qtd *qtd;
1107 qtd = list_entry(qtd_list->next, struct ehci_qtd, qtd_list);
1108 ehci_dbg(ehci,
1109 "%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
1110 __func__, urb->dev->devpath, urb,
1111 epnum & 0x0f, (epnum & USB_DIR_IN) ? "in" : "out",
1112 urb->transfer_buffer_length,
1113 qtd, urb->ep->hcpriv);
1114 }
1115 #endif
1116
1117 spin_lock_irqsave (&ehci->lock, flags);
1118 if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
1119 rc = -ESHUTDOWN;
1120 goto done;
1121 }
1122 rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
1123 if (unlikely(rc))
1124 goto done;
1125
1126 qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
1127 if (unlikely(qh == NULL)) {
1128 usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
1129 rc = -ENOMEM;
1130 goto done;
1131 }
1132
1133 /* Control/bulk operations through TTs don't need scheduling,
1134 * the HC and TT handle it when the TT has a buffer ready.
1135 */
1136 if (likely (qh->qh_state == QH_STATE_IDLE))
1137 qh_link_async(ehci, qh);
1138 done:
1139 spin_unlock_irqrestore (&ehci->lock, flags);
1140 if (unlikely (qh == NULL))
1141 qtd_list_free (ehci, urb, qtd_list);
1142 return rc;
1143 }
1144
1145 /*-------------------------------------------------------------------------*/
1146 #ifdef CONFIG_USB_HCD_TEST_MODE
1147 /*
1148 * This function creates the qtds and submits them for the
1149 * SINGLE_STEP_SET_FEATURE Test.
1150 * This is done in two parts: first SETUP req for GetDesc is sent then
1151 * 15 seconds later, the IN stage for GetDesc starts to req data from dev
1152 *
1153 * is_setup : i/p arguement decides which of the two stage needs to be
1154 * performed; TRUE - SETUP and FALSE - IN+STATUS
1155 * Returns 0 if success
1156 */
submit_single_step_set_feature(struct usb_hcd * hcd,struct urb * urb,int is_setup)1157 static int submit_single_step_set_feature(
1158 struct usb_hcd *hcd,
1159 struct urb *urb,
1160 int is_setup
1161 ) {
1162 struct ehci_hcd *ehci = hcd_to_ehci(hcd);
1163 struct list_head qtd_list;
1164 struct list_head *head;
1165
1166 struct ehci_qtd *qtd, *qtd_prev;
1167 dma_addr_t buf;
1168 int len, maxpacket;
1169 u32 token;
1170
1171 INIT_LIST_HEAD(&qtd_list);
1172 head = &qtd_list;
1173
1174 /* URBs map to sequences of QTDs: one logical transaction */
1175 qtd = ehci_qtd_alloc(ehci, GFP_KERNEL);
1176 if (unlikely(!qtd))
1177 return -1;
1178 list_add_tail(&qtd->qtd_list, head);
1179 qtd->urb = urb;
1180
1181 token = QTD_STS_ACTIVE;
1182 token |= (EHCI_TUNE_CERR << 10);
1183
1184 len = urb->transfer_buffer_length;
1185 /*
1186 * Check if the request is to perform just the SETUP stage (getDesc)
1187 * as in SINGLE_STEP_SET_FEATURE test, DATA stage (IN) happens
1188 * 15 secs after the setup
1189 */
1190 if (is_setup) {
1191 /* SETUP pid, and interrupt after SETUP completion */
1192 qtd_fill(ehci, qtd, urb->setup_dma,
1193 sizeof(struct usb_ctrlrequest),
1194 QTD_IOC | token | (2 /* "setup" */ << 8), 8);
1195
1196 submit_async(ehci, urb, &qtd_list, GFP_ATOMIC);
1197 return 0; /*Return now; we shall come back after 15 seconds*/
1198 }
1199
1200 /*
1201 * IN: data transfer stage: buffer setup : start the IN txn phase for
1202 * the get_Desc SETUP which was sent 15seconds back
1203 */
1204 token ^= QTD_TOGGLE; /*We need to start IN with DATA-1 Pid-sequence*/
1205 buf = urb->transfer_dma;
1206
1207 token |= (1 /* "in" */ << 8); /*This is IN stage*/
1208
1209 maxpacket = usb_maxpacket(urb->dev, urb->pipe, 0);
1210
1211 qtd_fill(ehci, qtd, buf, len, token, maxpacket);
1212
1213 /*
1214 * Our IN phase shall always be a short read; so keep the queue running
1215 * and let it advance to the next qtd which zero length OUT status
1216 */
1217 qtd->hw_alt_next = EHCI_LIST_END(ehci);
1218
1219 /* STATUS stage for GetDesc control request */
1220 token ^= 0x0100; /* "in" <--> "out" */
1221 token |= QTD_TOGGLE; /* force DATA1 */
1222
1223 qtd_prev = qtd;
1224 qtd = ehci_qtd_alloc(ehci, GFP_ATOMIC);
1225 if (unlikely(!qtd))
1226 goto cleanup;
1227 qtd->urb = urb;
1228 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma);
1229 list_add_tail(&qtd->qtd_list, head);
1230
1231 /* Interrupt after STATUS completion */
1232 qtd_fill(ehci, qtd, 0, 0, token | QTD_IOC, 0);
1233
1234 submit_async(ehci, urb, &qtd_list, GFP_KERNEL);
1235
1236 return 0;
1237
1238 cleanup:
1239 qtd_list_free(ehci, urb, head);
1240 return -1;
1241 }
1242 #endif /* CONFIG_USB_HCD_TEST_MODE */
1243
1244 /*-------------------------------------------------------------------------*/
1245
single_unlink_async(struct ehci_hcd * ehci,struct ehci_qh * qh)1246 static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1247 {
1248 struct ehci_qh *prev;
1249
1250 /* Add to the end of the list of QHs waiting for the next IAAD */
1251 qh->qh_state = QH_STATE_UNLINK_WAIT;
1252 list_add_tail(&qh->unlink_node, &ehci->async_unlink);
1253
1254 /* Unlink it from the schedule */
1255 prev = ehci->async;
1256 while (prev->qh_next.qh != qh)
1257 prev = prev->qh_next.qh;
1258
1259 prev->hw->hw_next = qh->hw->hw_next;
1260 prev->qh_next = qh->qh_next;
1261 if (ehci->qh_scan_next == qh)
1262 ehci->qh_scan_next = qh->qh_next.qh;
1263 }
1264
start_iaa_cycle(struct ehci_hcd * ehci)1265 static void start_iaa_cycle(struct ehci_hcd *ehci)
1266 {
1267 /* If the controller isn't running, we don't have to wait for it */
1268 if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) {
1269 end_unlink_async(ehci);
1270
1271 /* Otherwise start a new IAA cycle if one isn't already running */
1272 } else if (ehci->rh_state == EHCI_RH_RUNNING &&
1273 !ehci->iaa_in_progress) {
1274
1275 /* Make sure the unlinks are all visible to the hardware */
1276 wmb();
1277
1278 ehci_writel(ehci, ehci->command | CMD_IAAD,
1279 &ehci->regs->command);
1280 ehci_readl(ehci, &ehci->regs->command);
1281 ehci->iaa_in_progress = true;
1282 ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true);
1283 }
1284 }
1285
end_iaa_cycle(struct ehci_hcd * ehci)1286 static void end_iaa_cycle(struct ehci_hcd *ehci)
1287 {
1288 if (ehci->has_synopsys_hc_bug)
1289 ehci_writel(ehci, (u32) ehci->async->qh_dma,
1290 &ehci->regs->async_next);
1291
1292 /* The current IAA cycle has ended */
1293 ehci->iaa_in_progress = false;
1294
1295 end_unlink_async(ehci);
1296 }
1297
1298 /* See if the async qh for the qtds being unlinked are now gone from the HC */
1299
end_unlink_async(struct ehci_hcd * ehci)1300 static void end_unlink_async(struct ehci_hcd *ehci)
1301 {
1302 struct ehci_qh *qh;
1303 bool early_exit;
1304
1305 if (list_empty(&ehci->async_unlink))
1306 return;
1307 qh = list_first_entry(&ehci->async_unlink, struct ehci_qh,
1308 unlink_node); /* QH whose IAA cycle just ended */
1309
1310 /*
1311 * If async_unlinking is set then this routine is already running,
1312 * either on the stack or on another CPU.
1313 */
1314 early_exit = ehci->async_unlinking;
1315
1316 /* If the controller isn't running, process all the waiting QHs */
1317 if (ehci->rh_state < EHCI_RH_RUNNING)
1318 list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle);
1319
1320 /*
1321 * Intel (?) bug: The HC can write back the overlay region even
1322 * after the IAA interrupt occurs. In self-defense, always go
1323 * through two IAA cycles for each QH.
1324 */
1325 else if (qh->qh_state == QH_STATE_UNLINK) {
1326 /*
1327 * Second IAA cycle has finished. Process only the first
1328 * waiting QH (NVIDIA (?) bug).
1329 */
1330 list_move_tail(&qh->unlink_node, &ehci->async_idle);
1331 }
1332
1333 /*
1334 * AMD/ATI (?) bug: The HC can continue to use an active QH long
1335 * after the IAA interrupt occurs. To prevent problems, QHs that
1336 * may still be active will wait until 2 ms have passed with no
1337 * change to the hw_current and hw_token fields (this delay occurs
1338 * between the two IAA cycles).
1339 *
1340 * The EHCI spec (4.8.2) says that active QHs must not be removed
1341 * from the async schedule and recommends waiting until the QH
1342 * goes inactive. This is ridiculous because the QH will _never_
1343 * become inactive if the endpoint NAKs indefinitely.
1344 */
1345
1346 /* Some reasons for unlinking guarantee the QH can't be active */
1347 else if (qh->unlink_reason & (QH_UNLINK_HALTED |
1348 QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY))
1349 goto DelayDone;
1350
1351 /* The QH can't be active if the queue was and still is empty... */
1352 else if ((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) &&
1353 list_empty(&qh->qtd_list))
1354 goto DelayDone;
1355
1356 /* ... or if the QH has halted */
1357 else if (qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT))
1358 goto DelayDone;
1359
1360 /* Otherwise we have to wait until the QH stops changing */
1361 else {
1362 __hc32 qh_current, qh_token;
1363
1364 qh_current = qh->hw->hw_current;
1365 qh_token = qh->hw->hw_token;
1366 if (qh_current != ehci->old_current ||
1367 qh_token != ehci->old_token) {
1368 ehci->old_current = qh_current;
1369 ehci->old_token = qh_token;
1370 ehci_enable_event(ehci,
1371 EHCI_HRTIMER_ACTIVE_UNLINK, true);
1372 return;
1373 }
1374 DelayDone:
1375 qh->qh_state = QH_STATE_UNLINK;
1376 early_exit = true;
1377 }
1378 ehci->old_current = ~0; /* Prepare for next QH */
1379
1380 /* Start a new IAA cycle if any QHs are waiting for it */
1381 if (!list_empty(&ehci->async_unlink))
1382 start_iaa_cycle(ehci);
1383
1384 /*
1385 * Don't allow nesting or concurrent calls,
1386 * or wait for the second IAA cycle for the next QH.
1387 */
1388 if (early_exit)
1389 return;
1390
1391 /* Process the idle QHs */
1392 ehci->async_unlinking = true;
1393 while (!list_empty(&ehci->async_idle)) {
1394 qh = list_first_entry(&ehci->async_idle, struct ehci_qh,
1395 unlink_node);
1396 list_del(&qh->unlink_node);
1397
1398 qh->qh_state = QH_STATE_IDLE;
1399 qh->qh_next.qh = NULL;
1400
1401 if (!list_empty(&qh->qtd_list))
1402 qh_completions(ehci, qh);
1403 if (!list_empty(&qh->qtd_list) &&
1404 ehci->rh_state == EHCI_RH_RUNNING)
1405 qh_link_async(ehci, qh);
1406 disable_async(ehci);
1407 }
1408 ehci->async_unlinking = false;
1409 }
1410
1411 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh);
1412
unlink_empty_async(struct ehci_hcd * ehci)1413 static void unlink_empty_async(struct ehci_hcd *ehci)
1414 {
1415 struct ehci_qh *qh;
1416 struct ehci_qh *qh_to_unlink = NULL;
1417 int count = 0;
1418
1419 /* Find the last async QH which has been empty for a timer cycle */
1420 for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) {
1421 if (list_empty(&qh->qtd_list) &&
1422 qh->qh_state == QH_STATE_LINKED) {
1423 ++count;
1424 if (qh->unlink_cycle != ehci->async_unlink_cycle)
1425 qh_to_unlink = qh;
1426 }
1427 }
1428
1429 /* If nothing else is being unlinked, unlink the last empty QH */
1430 if (list_empty(&ehci->async_unlink) && qh_to_unlink) {
1431 qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY;
1432 start_unlink_async(ehci, qh_to_unlink);
1433 --count;
1434 }
1435
1436 /* Other QHs will be handled later */
1437 if (count > 0) {
1438 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1439 ++ehci->async_unlink_cycle;
1440 }
1441 }
1442
1443 #ifdef CONFIG_PM
1444
1445 /* The root hub is suspended; unlink all the async QHs */
unlink_empty_async_suspended(struct ehci_hcd * ehci)1446 static void unlink_empty_async_suspended(struct ehci_hcd *ehci)
1447 {
1448 struct ehci_qh *qh;
1449
1450 while (ehci->async->qh_next.qh) {
1451 qh = ehci->async->qh_next.qh;
1452 WARN_ON(!list_empty(&qh->qtd_list));
1453 single_unlink_async(ehci, qh);
1454 }
1455 }
1456
1457 #endif
1458
1459 /* makes sure the async qh will become idle */
1460 /* caller must own ehci->lock */
1461
start_unlink_async(struct ehci_hcd * ehci,struct ehci_qh * qh)1462 static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh)
1463 {
1464 /* If the QH isn't linked then there's nothing we can do. */
1465 if (qh->qh_state != QH_STATE_LINKED)
1466 return;
1467
1468 single_unlink_async(ehci, qh);
1469 start_iaa_cycle(ehci);
1470 }
1471
1472 /*-------------------------------------------------------------------------*/
1473
scan_async(struct ehci_hcd * ehci)1474 static void scan_async (struct ehci_hcd *ehci)
1475 {
1476 struct ehci_qh *qh;
1477 bool check_unlinks_later = false;
1478
1479 ehci->qh_scan_next = ehci->async->qh_next.qh;
1480 while (ehci->qh_scan_next) {
1481 qh = ehci->qh_scan_next;
1482 ehci->qh_scan_next = qh->qh_next.qh;
1483
1484 /* clean any finished work for this qh */
1485 if (!list_empty(&qh->qtd_list)) {
1486 int temp;
1487
1488 /*
1489 * Unlinks could happen here; completion reporting
1490 * drops the lock. That's why ehci->qh_scan_next
1491 * always holds the next qh to scan; if the next qh
1492 * gets unlinked then ehci->qh_scan_next is adjusted
1493 * in single_unlink_async().
1494 */
1495 temp = qh_completions(ehci, qh);
1496 if (unlikely(temp)) {
1497 start_unlink_async(ehci, qh);
1498 } else if (list_empty(&qh->qtd_list)
1499 && qh->qh_state == QH_STATE_LINKED) {
1500 qh->unlink_cycle = ehci->async_unlink_cycle;
1501 check_unlinks_later = true;
1502 }
1503 }
1504 }
1505
1506 /*
1507 * Unlink empty entries, reducing DMA usage as well
1508 * as HCD schedule-scanning costs. Delay for any qh
1509 * we just scanned, there's a not-unusual case that it
1510 * doesn't stay idle for long.
1511 */
1512 if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING &&
1513 !(ehci->enabled_hrtimer_events &
1514 BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) {
1515 ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true);
1516 ++ehci->async_unlink_cycle;
1517 }
1518 }
1519