1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2011 Marvell International Ltd. All rights reserved.
4 * Author: Chao Xie <chao.xie@marvell.com>
5 * Neil Zhang <zhangwm@marvell.com>
6 */
7
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmapool.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/ioport.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/timer.h>
20 #include <linux/list.h>
21 #include <linux/interrupt.h>
22 #include <linux/moduleparam.h>
23 #include <linux/device.h>
24 #include <linux/usb/ch9.h>
25 #include <linux/usb/gadget.h>
26 #include <linux/usb/otg.h>
27 #include <linux/pm.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/platform_device.h>
31 #include <linux/clk.h>
32 #include <linux/platform_data/mv_usb.h>
33 #include <asm/unaligned.h>
34
35 #include "mv_udc.h"
36
37 #define DRIVER_DESC "Marvell PXA USB Device Controller driver"
38
39 #define ep_dir(ep) (((ep)->ep_num == 0) ? \
40 ((ep)->udc->ep0_dir) : ((ep)->direction))
41
42 /* timeout value -- usec */
43 #define RESET_TIMEOUT 10000
44 #define FLUSH_TIMEOUT 10000
45 #define EPSTATUS_TIMEOUT 10000
46 #define PRIME_TIMEOUT 10000
47 #define READSAFE_TIMEOUT 1000
48
49 #define LOOPS_USEC_SHIFT 1
50 #define LOOPS_USEC (1 << LOOPS_USEC_SHIFT)
51 #define LOOPS(timeout) ((timeout) >> LOOPS_USEC_SHIFT)
52
53 static DECLARE_COMPLETION(release_done);
54
55 static const char driver_name[] = "mv_udc";
56 static const char driver_desc[] = DRIVER_DESC;
57
58 static void nuke(struct mv_ep *ep, int status);
59 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver);
60
61 /* for endpoint 0 operations */
62 static const struct usb_endpoint_descriptor mv_ep0_desc = {
63 .bLength = USB_DT_ENDPOINT_SIZE,
64 .bDescriptorType = USB_DT_ENDPOINT,
65 .bEndpointAddress = 0,
66 .bmAttributes = USB_ENDPOINT_XFER_CONTROL,
67 .wMaxPacketSize = EP0_MAX_PKT_SIZE,
68 };
69
ep0_reset(struct mv_udc * udc)70 static void ep0_reset(struct mv_udc *udc)
71 {
72 struct mv_ep *ep;
73 u32 epctrlx;
74 int i = 0;
75
76 /* ep0 in and out */
77 for (i = 0; i < 2; i++) {
78 ep = &udc->eps[i];
79 ep->udc = udc;
80
81 /* ep0 dQH */
82 ep->dqh = &udc->ep_dqh[i];
83
84 /* configure ep0 endpoint capabilities in dQH */
85 ep->dqh->max_packet_length =
86 (EP0_MAX_PKT_SIZE << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
87 | EP_QUEUE_HEAD_IOS;
88
89 ep->dqh->next_dtd_ptr = EP_QUEUE_HEAD_NEXT_TERMINATE;
90
91 epctrlx = readl(&udc->op_regs->epctrlx[0]);
92 if (i) { /* TX */
93 epctrlx |= EPCTRL_TX_ENABLE
94 | (USB_ENDPOINT_XFER_CONTROL
95 << EPCTRL_TX_EP_TYPE_SHIFT);
96
97 } else { /* RX */
98 epctrlx |= EPCTRL_RX_ENABLE
99 | (USB_ENDPOINT_XFER_CONTROL
100 << EPCTRL_RX_EP_TYPE_SHIFT);
101 }
102
103 writel(epctrlx, &udc->op_regs->epctrlx[0]);
104 }
105 }
106
107 /* protocol ep0 stall, will automatically be cleared on new transaction */
ep0_stall(struct mv_udc * udc)108 static void ep0_stall(struct mv_udc *udc)
109 {
110 u32 epctrlx;
111
112 /* set TX and RX to stall */
113 epctrlx = readl(&udc->op_regs->epctrlx[0]);
114 epctrlx |= EPCTRL_RX_EP_STALL | EPCTRL_TX_EP_STALL;
115 writel(epctrlx, &udc->op_regs->epctrlx[0]);
116
117 /* update ep0 state */
118 udc->ep0_state = WAIT_FOR_SETUP;
119 udc->ep0_dir = EP_DIR_OUT;
120 }
121
process_ep_req(struct mv_udc * udc,int index,struct mv_req * curr_req)122 static int process_ep_req(struct mv_udc *udc, int index,
123 struct mv_req *curr_req)
124 {
125 struct mv_dtd *curr_dtd;
126 struct mv_dqh *curr_dqh;
127 int actual, remaining_length;
128 int i, direction;
129 int retval = 0;
130 u32 errors;
131 u32 bit_pos;
132
133 curr_dqh = &udc->ep_dqh[index];
134 direction = index % 2;
135
136 curr_dtd = curr_req->head;
137 actual = curr_req->req.length;
138
139 for (i = 0; i < curr_req->dtd_count; i++) {
140 if (curr_dtd->size_ioc_sts & DTD_STATUS_ACTIVE) {
141 dev_dbg(&udc->dev->dev, "%s, dTD not completed\n",
142 udc->eps[index].name);
143 return 1;
144 }
145
146 errors = curr_dtd->size_ioc_sts & DTD_ERROR_MASK;
147 if (!errors) {
148 remaining_length =
149 (curr_dtd->size_ioc_sts & DTD_PACKET_SIZE)
150 >> DTD_LENGTH_BIT_POS;
151 actual -= remaining_length;
152
153 if (remaining_length) {
154 if (direction) {
155 dev_dbg(&udc->dev->dev,
156 "TX dTD remains data\n");
157 retval = -EPROTO;
158 break;
159 } else
160 break;
161 }
162 } else {
163 dev_info(&udc->dev->dev,
164 "complete_tr error: ep=%d %s: error = 0x%x\n",
165 index >> 1, direction ? "SEND" : "RECV",
166 errors);
167 if (errors & DTD_STATUS_HALTED) {
168 /* Clear the errors and Halt condition */
169 curr_dqh->size_ioc_int_sts &= ~errors;
170 retval = -EPIPE;
171 } else if (errors & DTD_STATUS_DATA_BUFF_ERR) {
172 retval = -EPROTO;
173 } else if (errors & DTD_STATUS_TRANSACTION_ERR) {
174 retval = -EILSEQ;
175 }
176 }
177 if (i != curr_req->dtd_count - 1)
178 curr_dtd = (struct mv_dtd *)curr_dtd->next_dtd_virt;
179 }
180 if (retval)
181 return retval;
182
183 if (direction == EP_DIR_OUT)
184 bit_pos = 1 << curr_req->ep->ep_num;
185 else
186 bit_pos = 1 << (16 + curr_req->ep->ep_num);
187
188 while ((curr_dqh->curr_dtd_ptr == curr_dtd->td_dma)) {
189 if (curr_dtd->dtd_next == EP_QUEUE_HEAD_NEXT_TERMINATE) {
190 while (readl(&udc->op_regs->epstatus) & bit_pos)
191 udelay(1);
192 break;
193 }
194 udelay(1);
195 }
196
197 curr_req->req.actual = actual;
198
199 return 0;
200 }
201
202 /*
203 * done() - retire a request; caller blocked irqs
204 * @status : request status to be set, only works when
205 * request is still in progress.
206 */
done(struct mv_ep * ep,struct mv_req * req,int status)207 static void done(struct mv_ep *ep, struct mv_req *req, int status)
208 __releases(&ep->udc->lock)
209 __acquires(&ep->udc->lock)
210 {
211 struct mv_udc *udc = NULL;
212 unsigned char stopped = ep->stopped;
213 struct mv_dtd *curr_td, *next_td;
214 int j;
215
216 udc = (struct mv_udc *)ep->udc;
217 /* Removed the req from fsl_ep->queue */
218 list_del_init(&req->queue);
219
220 /* req.status should be set as -EINPROGRESS in ep_queue() */
221 if (req->req.status == -EINPROGRESS)
222 req->req.status = status;
223 else
224 status = req->req.status;
225
226 /* Free dtd for the request */
227 next_td = req->head;
228 for (j = 0; j < req->dtd_count; j++) {
229 curr_td = next_td;
230 if (j != req->dtd_count - 1)
231 next_td = curr_td->next_dtd_virt;
232 dma_pool_free(udc->dtd_pool, curr_td, curr_td->td_dma);
233 }
234
235 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
236
237 if (status && (status != -ESHUTDOWN))
238 dev_info(&udc->dev->dev, "complete %s req %p stat %d len %u/%u",
239 ep->ep.name, &req->req, status,
240 req->req.actual, req->req.length);
241
242 ep->stopped = 1;
243
244 spin_unlock(&ep->udc->lock);
245
246 usb_gadget_giveback_request(&ep->ep, &req->req);
247
248 spin_lock(&ep->udc->lock);
249 ep->stopped = stopped;
250 }
251
queue_dtd(struct mv_ep * ep,struct mv_req * req)252 static int queue_dtd(struct mv_ep *ep, struct mv_req *req)
253 {
254 struct mv_udc *udc;
255 struct mv_dqh *dqh;
256 u32 bit_pos, direction;
257 u32 usbcmd, epstatus;
258 unsigned int loops;
259 int retval = 0;
260
261 udc = ep->udc;
262 direction = ep_dir(ep);
263 dqh = &(udc->ep_dqh[ep->ep_num * 2 + direction]);
264 bit_pos = 1 << (((direction == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
265
266 /* check if the pipe is empty */
267 if (!(list_empty(&ep->queue))) {
268 struct mv_req *lastreq;
269 lastreq = list_entry(ep->queue.prev, struct mv_req, queue);
270 lastreq->tail->dtd_next =
271 req->head->td_dma & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
272
273 wmb();
274
275 if (readl(&udc->op_regs->epprime) & bit_pos)
276 goto done;
277
278 loops = LOOPS(READSAFE_TIMEOUT);
279 while (1) {
280 /* start with setting the semaphores */
281 usbcmd = readl(&udc->op_regs->usbcmd);
282 usbcmd |= USBCMD_ATDTW_TRIPWIRE_SET;
283 writel(usbcmd, &udc->op_regs->usbcmd);
284
285 /* read the endpoint status */
286 epstatus = readl(&udc->op_regs->epstatus) & bit_pos;
287
288 /*
289 * Reread the ATDTW semaphore bit to check if it is
290 * cleared. When hardware see a hazard, it will clear
291 * the bit or else we remain set to 1 and we can
292 * proceed with priming of endpoint if not already
293 * primed.
294 */
295 if (readl(&udc->op_regs->usbcmd)
296 & USBCMD_ATDTW_TRIPWIRE_SET)
297 break;
298
299 loops--;
300 if (loops == 0) {
301 dev_err(&udc->dev->dev,
302 "Timeout for ATDTW_TRIPWIRE...\n");
303 retval = -ETIME;
304 goto done;
305 }
306 udelay(LOOPS_USEC);
307 }
308
309 /* Clear the semaphore */
310 usbcmd = readl(&udc->op_regs->usbcmd);
311 usbcmd &= USBCMD_ATDTW_TRIPWIRE_CLEAR;
312 writel(usbcmd, &udc->op_regs->usbcmd);
313
314 if (epstatus)
315 goto done;
316 }
317
318 /* Write dQH next pointer and terminate bit to 0 */
319 dqh->next_dtd_ptr = req->head->td_dma
320 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
321
322 /* clear active and halt bit, in case set from a previous error */
323 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
324
325 /* Ensure that updates to the QH will occur before priming. */
326 wmb();
327
328 /* Prime the Endpoint */
329 writel(bit_pos, &udc->op_regs->epprime);
330
331 done:
332 return retval;
333 }
334
build_dtd(struct mv_req * req,unsigned * length,dma_addr_t * dma,int * is_last)335 static struct mv_dtd *build_dtd(struct mv_req *req, unsigned *length,
336 dma_addr_t *dma, int *is_last)
337 {
338 struct mv_dtd *dtd;
339 struct mv_udc *udc;
340 struct mv_dqh *dqh;
341 u32 temp, mult = 0;
342
343 /* how big will this transfer be? */
344 if (usb_endpoint_xfer_isoc(req->ep->ep.desc)) {
345 dqh = req->ep->dqh;
346 mult = (dqh->max_packet_length >> EP_QUEUE_HEAD_MULT_POS)
347 & 0x3;
348 *length = min(req->req.length - req->req.actual,
349 (unsigned)(mult * req->ep->ep.maxpacket));
350 } else
351 *length = min(req->req.length - req->req.actual,
352 (unsigned)EP_MAX_LENGTH_TRANSFER);
353
354 udc = req->ep->udc;
355
356 /*
357 * Be careful that no _GFP_HIGHMEM is set,
358 * or we can not use dma_to_virt
359 */
360 dtd = dma_pool_alloc(udc->dtd_pool, GFP_ATOMIC, dma);
361 if (dtd == NULL)
362 return dtd;
363
364 dtd->td_dma = *dma;
365 /* initialize buffer page pointers */
366 temp = (u32)(req->req.dma + req->req.actual);
367 dtd->buff_ptr0 = cpu_to_le32(temp);
368 temp &= ~0xFFF;
369 dtd->buff_ptr1 = cpu_to_le32(temp + 0x1000);
370 dtd->buff_ptr2 = cpu_to_le32(temp + 0x2000);
371 dtd->buff_ptr3 = cpu_to_le32(temp + 0x3000);
372 dtd->buff_ptr4 = cpu_to_le32(temp + 0x4000);
373
374 req->req.actual += *length;
375
376 /* zlp is needed if req->req.zero is set */
377 if (req->req.zero) {
378 if (*length == 0 || (*length % req->ep->ep.maxpacket) != 0)
379 *is_last = 1;
380 else
381 *is_last = 0;
382 } else if (req->req.length == req->req.actual)
383 *is_last = 1;
384 else
385 *is_last = 0;
386
387 /* Fill in the transfer size; set active bit */
388 temp = ((*length << DTD_LENGTH_BIT_POS) | DTD_STATUS_ACTIVE);
389
390 /* Enable interrupt for the last dtd of a request */
391 if (*is_last && !req->req.no_interrupt)
392 temp |= DTD_IOC;
393
394 temp |= mult << 10;
395
396 dtd->size_ioc_sts = temp;
397
398 mb();
399
400 return dtd;
401 }
402
403 /* generate dTD linked list for a request */
req_to_dtd(struct mv_req * req)404 static int req_to_dtd(struct mv_req *req)
405 {
406 unsigned count;
407 int is_last, is_first = 1;
408 struct mv_dtd *dtd, *last_dtd = NULL;
409 dma_addr_t dma;
410
411 do {
412 dtd = build_dtd(req, &count, &dma, &is_last);
413 if (dtd == NULL)
414 return -ENOMEM;
415
416 if (is_first) {
417 is_first = 0;
418 req->head = dtd;
419 } else {
420 last_dtd->dtd_next = dma;
421 last_dtd->next_dtd_virt = dtd;
422 }
423 last_dtd = dtd;
424 req->dtd_count++;
425 } while (!is_last);
426
427 /* set terminate bit to 1 for the last dTD */
428 dtd->dtd_next = DTD_NEXT_TERMINATE;
429
430 req->tail = dtd;
431
432 return 0;
433 }
434
mv_ep_enable(struct usb_ep * _ep,const struct usb_endpoint_descriptor * desc)435 static int mv_ep_enable(struct usb_ep *_ep,
436 const struct usb_endpoint_descriptor *desc)
437 {
438 struct mv_udc *udc;
439 struct mv_ep *ep;
440 struct mv_dqh *dqh;
441 u16 max = 0;
442 u32 bit_pos, epctrlx, direction;
443 const unsigned char zlt = 1;
444 unsigned char ios, mult;
445 unsigned long flags;
446
447 ep = container_of(_ep, struct mv_ep, ep);
448 udc = ep->udc;
449
450 if (!_ep || !desc
451 || desc->bDescriptorType != USB_DT_ENDPOINT)
452 return -EINVAL;
453
454 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
455 return -ESHUTDOWN;
456
457 direction = ep_dir(ep);
458 max = usb_endpoint_maxp(desc);
459
460 /*
461 * disable HW zero length termination select
462 * driver handles zero length packet through req->req.zero
463 */
464 bit_pos = 1 << ((direction == EP_DIR_OUT ? 0 : 16) + ep->ep_num);
465
466 /* Check if the Endpoint is Primed */
467 if ((readl(&udc->op_regs->epprime) & bit_pos)
468 || (readl(&udc->op_regs->epstatus) & bit_pos)) {
469 dev_info(&udc->dev->dev,
470 "ep=%d %s: Init ERROR: ENDPTPRIME=0x%x,"
471 " ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
472 (unsigned)ep->ep_num, direction ? "SEND" : "RECV",
473 (unsigned)readl(&udc->op_regs->epprime),
474 (unsigned)readl(&udc->op_regs->epstatus),
475 (unsigned)bit_pos);
476 goto en_done;
477 }
478
479 /* Set the max packet length, interrupt on Setup and Mult fields */
480 ios = 0;
481 mult = 0;
482 switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
483 case USB_ENDPOINT_XFER_BULK:
484 case USB_ENDPOINT_XFER_INT:
485 break;
486 case USB_ENDPOINT_XFER_CONTROL:
487 ios = 1;
488 break;
489 case USB_ENDPOINT_XFER_ISOC:
490 /* Calculate transactions needed for high bandwidth iso */
491 mult = usb_endpoint_maxp_mult(desc);
492 /* 3 transactions at most */
493 if (mult > 3)
494 goto en_done;
495 break;
496 default:
497 goto en_done;
498 }
499
500 spin_lock_irqsave(&udc->lock, flags);
501 /* Get the endpoint queue head address */
502 dqh = ep->dqh;
503 dqh->max_packet_length = (max << EP_QUEUE_HEAD_MAX_PKT_LEN_POS)
504 | (mult << EP_QUEUE_HEAD_MULT_POS)
505 | (zlt ? EP_QUEUE_HEAD_ZLT_SEL : 0)
506 | (ios ? EP_QUEUE_HEAD_IOS : 0);
507 dqh->next_dtd_ptr = 1;
508 dqh->size_ioc_int_sts = 0;
509
510 ep->ep.maxpacket = max;
511 ep->ep.desc = desc;
512 ep->stopped = 0;
513
514 /* Enable the endpoint for Rx or Tx and set the endpoint type */
515 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
516 if (direction == EP_DIR_IN) {
517 epctrlx &= ~EPCTRL_TX_ALL_MASK;
518 epctrlx |= EPCTRL_TX_ENABLE | EPCTRL_TX_DATA_TOGGLE_RST
519 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
520 << EPCTRL_TX_EP_TYPE_SHIFT);
521 } else {
522 epctrlx &= ~EPCTRL_RX_ALL_MASK;
523 epctrlx |= EPCTRL_RX_ENABLE | EPCTRL_RX_DATA_TOGGLE_RST
524 | ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK)
525 << EPCTRL_RX_EP_TYPE_SHIFT);
526 }
527 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
528
529 /*
530 * Implement Guideline (GL# USB-7) The unused endpoint type must
531 * be programmed to bulk.
532 */
533 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
534 if ((epctrlx & EPCTRL_RX_ENABLE) == 0) {
535 epctrlx |= (USB_ENDPOINT_XFER_BULK
536 << EPCTRL_RX_EP_TYPE_SHIFT);
537 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
538 }
539
540 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
541 if ((epctrlx & EPCTRL_TX_ENABLE) == 0) {
542 epctrlx |= (USB_ENDPOINT_XFER_BULK
543 << EPCTRL_TX_EP_TYPE_SHIFT);
544 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
545 }
546
547 spin_unlock_irqrestore(&udc->lock, flags);
548
549 return 0;
550 en_done:
551 return -EINVAL;
552 }
553
mv_ep_disable(struct usb_ep * _ep)554 static int mv_ep_disable(struct usb_ep *_ep)
555 {
556 struct mv_udc *udc;
557 struct mv_ep *ep;
558 struct mv_dqh *dqh;
559 u32 epctrlx, direction;
560 unsigned long flags;
561
562 ep = container_of(_ep, struct mv_ep, ep);
563 if ((_ep == NULL) || !ep->ep.desc)
564 return -EINVAL;
565
566 udc = ep->udc;
567
568 /* Get the endpoint queue head address */
569 dqh = ep->dqh;
570
571 spin_lock_irqsave(&udc->lock, flags);
572
573 direction = ep_dir(ep);
574
575 /* Reset the max packet length and the interrupt on Setup */
576 dqh->max_packet_length = 0;
577
578 /* Disable the endpoint for Rx or Tx and reset the endpoint type */
579 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
580 epctrlx &= ~((direction == EP_DIR_IN)
581 ? (EPCTRL_TX_ENABLE | EPCTRL_TX_TYPE)
582 : (EPCTRL_RX_ENABLE | EPCTRL_RX_TYPE));
583 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
584
585 /* nuke all pending requests (does flush) */
586 nuke(ep, -ESHUTDOWN);
587
588 ep->ep.desc = NULL;
589 ep->stopped = 1;
590
591 spin_unlock_irqrestore(&udc->lock, flags);
592
593 return 0;
594 }
595
596 static struct usb_request *
mv_alloc_request(struct usb_ep * _ep,gfp_t gfp_flags)597 mv_alloc_request(struct usb_ep *_ep, gfp_t gfp_flags)
598 {
599 struct mv_req *req = NULL;
600
601 req = kzalloc(sizeof *req, gfp_flags);
602 if (!req)
603 return NULL;
604
605 req->req.dma = DMA_ADDR_INVALID;
606 INIT_LIST_HEAD(&req->queue);
607
608 return &req->req;
609 }
610
mv_free_request(struct usb_ep * _ep,struct usb_request * _req)611 static void mv_free_request(struct usb_ep *_ep, struct usb_request *_req)
612 {
613 struct mv_req *req = NULL;
614
615 req = container_of(_req, struct mv_req, req);
616
617 if (_req)
618 kfree(req);
619 }
620
mv_ep_fifo_flush(struct usb_ep * _ep)621 static void mv_ep_fifo_flush(struct usb_ep *_ep)
622 {
623 struct mv_udc *udc;
624 u32 bit_pos, direction;
625 struct mv_ep *ep;
626 unsigned int loops;
627
628 if (!_ep)
629 return;
630
631 ep = container_of(_ep, struct mv_ep, ep);
632 if (!ep->ep.desc)
633 return;
634
635 udc = ep->udc;
636 direction = ep_dir(ep);
637
638 if (ep->ep_num == 0)
639 bit_pos = (1 << 16) | 1;
640 else if (direction == EP_DIR_OUT)
641 bit_pos = 1 << ep->ep_num;
642 else
643 bit_pos = 1 << (16 + ep->ep_num);
644
645 loops = LOOPS(EPSTATUS_TIMEOUT);
646 do {
647 unsigned int inter_loops;
648
649 if (loops == 0) {
650 dev_err(&udc->dev->dev,
651 "TIMEOUT for ENDPTSTATUS=0x%x, bit_pos=0x%x\n",
652 (unsigned)readl(&udc->op_regs->epstatus),
653 (unsigned)bit_pos);
654 return;
655 }
656 /* Write 1 to the Flush register */
657 writel(bit_pos, &udc->op_regs->epflush);
658
659 /* Wait until flushing completed */
660 inter_loops = LOOPS(FLUSH_TIMEOUT);
661 while (readl(&udc->op_regs->epflush)) {
662 /*
663 * ENDPTFLUSH bit should be cleared to indicate this
664 * operation is complete
665 */
666 if (inter_loops == 0) {
667 dev_err(&udc->dev->dev,
668 "TIMEOUT for ENDPTFLUSH=0x%x,"
669 "bit_pos=0x%x\n",
670 (unsigned)readl(&udc->op_regs->epflush),
671 (unsigned)bit_pos);
672 return;
673 }
674 inter_loops--;
675 udelay(LOOPS_USEC);
676 }
677 loops--;
678 } while (readl(&udc->op_regs->epstatus) & bit_pos);
679 }
680
681 /* queues (submits) an I/O request to an endpoint */
682 static int
mv_ep_queue(struct usb_ep * _ep,struct usb_request * _req,gfp_t gfp_flags)683 mv_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags)
684 {
685 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
686 struct mv_req *req = container_of(_req, struct mv_req, req);
687 struct mv_udc *udc = ep->udc;
688 unsigned long flags;
689 int retval;
690
691 /* catch various bogus parameters */
692 if (!_req || !req->req.complete || !req->req.buf
693 || !list_empty(&req->queue)) {
694 dev_err(&udc->dev->dev, "%s, bad params", __func__);
695 return -EINVAL;
696 }
697 if (unlikely(!_ep || !ep->ep.desc)) {
698 dev_err(&udc->dev->dev, "%s, bad ep", __func__);
699 return -EINVAL;
700 }
701
702 udc = ep->udc;
703 if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN)
704 return -ESHUTDOWN;
705
706 req->ep = ep;
707
708 /* map virtual address to hardware */
709 retval = usb_gadget_map_request(&udc->gadget, _req, ep_dir(ep));
710 if (retval)
711 return retval;
712
713 req->req.status = -EINPROGRESS;
714 req->req.actual = 0;
715 req->dtd_count = 0;
716
717 spin_lock_irqsave(&udc->lock, flags);
718
719 /* build dtds and push them to device queue */
720 if (!req_to_dtd(req)) {
721 retval = queue_dtd(ep, req);
722 if (retval) {
723 spin_unlock_irqrestore(&udc->lock, flags);
724 dev_err(&udc->dev->dev, "Failed to queue dtd\n");
725 goto err_unmap_dma;
726 }
727 } else {
728 spin_unlock_irqrestore(&udc->lock, flags);
729 dev_err(&udc->dev->dev, "Failed to dma_pool_alloc\n");
730 retval = -ENOMEM;
731 goto err_unmap_dma;
732 }
733
734 /* Update ep0 state */
735 if (ep->ep_num == 0)
736 udc->ep0_state = DATA_STATE_XMIT;
737
738 /* irq handler advances the queue */
739 list_add_tail(&req->queue, &ep->queue);
740 spin_unlock_irqrestore(&udc->lock, flags);
741
742 return 0;
743
744 err_unmap_dma:
745 usb_gadget_unmap_request(&udc->gadget, _req, ep_dir(ep));
746
747 return retval;
748 }
749
mv_prime_ep(struct mv_ep * ep,struct mv_req * req)750 static void mv_prime_ep(struct mv_ep *ep, struct mv_req *req)
751 {
752 struct mv_dqh *dqh = ep->dqh;
753 u32 bit_pos;
754
755 /* Write dQH next pointer and terminate bit to 0 */
756 dqh->next_dtd_ptr = req->head->td_dma
757 & EP_QUEUE_HEAD_NEXT_POINTER_MASK;
758
759 /* clear active and halt bit, in case set from a previous error */
760 dqh->size_ioc_int_sts &= ~(DTD_STATUS_ACTIVE | DTD_STATUS_HALTED);
761
762 /* Ensure that updates to the QH will occure before priming. */
763 wmb();
764
765 bit_pos = 1 << (((ep_dir(ep) == EP_DIR_OUT) ? 0 : 16) + ep->ep_num);
766
767 /* Prime the Endpoint */
768 writel(bit_pos, &ep->udc->op_regs->epprime);
769 }
770
771 /* dequeues (cancels, unlinks) an I/O request from an endpoint */
mv_ep_dequeue(struct usb_ep * _ep,struct usb_request * _req)772 static int mv_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
773 {
774 struct mv_ep *ep = container_of(_ep, struct mv_ep, ep);
775 struct mv_req *req;
776 struct mv_udc *udc = ep->udc;
777 unsigned long flags;
778 int stopped, ret = 0;
779 u32 epctrlx;
780
781 if (!_ep || !_req)
782 return -EINVAL;
783
784 spin_lock_irqsave(&ep->udc->lock, flags);
785 stopped = ep->stopped;
786
787 /* Stop the ep before we deal with the queue */
788 ep->stopped = 1;
789 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
790 if (ep_dir(ep) == EP_DIR_IN)
791 epctrlx &= ~EPCTRL_TX_ENABLE;
792 else
793 epctrlx &= ~EPCTRL_RX_ENABLE;
794 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
795
796 /* make sure it's actually queued on this endpoint */
797 list_for_each_entry(req, &ep->queue, queue) {
798 if (&req->req == _req)
799 break;
800 }
801 if (&req->req != _req) {
802 ret = -EINVAL;
803 goto out;
804 }
805
806 /* The request is in progress, or completed but not dequeued */
807 if (ep->queue.next == &req->queue) {
808 _req->status = -ECONNRESET;
809 mv_ep_fifo_flush(_ep); /* flush current transfer */
810
811 /* The request isn't the last request in this ep queue */
812 if (req->queue.next != &ep->queue) {
813 struct mv_req *next_req;
814
815 next_req = list_entry(req->queue.next,
816 struct mv_req, queue);
817
818 /* Point the QH to the first TD of next request */
819 mv_prime_ep(ep, next_req);
820 } else {
821 struct mv_dqh *qh;
822
823 qh = ep->dqh;
824 qh->next_dtd_ptr = 1;
825 qh->size_ioc_int_sts = 0;
826 }
827
828 /* The request hasn't been processed, patch up the TD chain */
829 } else {
830 struct mv_req *prev_req;
831
832 prev_req = list_entry(req->queue.prev, struct mv_req, queue);
833 writel(readl(&req->tail->dtd_next),
834 &prev_req->tail->dtd_next);
835
836 }
837
838 done(ep, req, -ECONNRESET);
839
840 /* Enable EP */
841 out:
842 epctrlx = readl(&udc->op_regs->epctrlx[ep->ep_num]);
843 if (ep_dir(ep) == EP_DIR_IN)
844 epctrlx |= EPCTRL_TX_ENABLE;
845 else
846 epctrlx |= EPCTRL_RX_ENABLE;
847 writel(epctrlx, &udc->op_regs->epctrlx[ep->ep_num]);
848 ep->stopped = stopped;
849
850 spin_unlock_irqrestore(&ep->udc->lock, flags);
851 return ret;
852 }
853
ep_set_stall(struct mv_udc * udc,u8 ep_num,u8 direction,int stall)854 static void ep_set_stall(struct mv_udc *udc, u8 ep_num, u8 direction, int stall)
855 {
856 u32 epctrlx;
857
858 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
859
860 if (stall) {
861 if (direction == EP_DIR_IN)
862 epctrlx |= EPCTRL_TX_EP_STALL;
863 else
864 epctrlx |= EPCTRL_RX_EP_STALL;
865 } else {
866 if (direction == EP_DIR_IN) {
867 epctrlx &= ~EPCTRL_TX_EP_STALL;
868 epctrlx |= EPCTRL_TX_DATA_TOGGLE_RST;
869 } else {
870 epctrlx &= ~EPCTRL_RX_EP_STALL;
871 epctrlx |= EPCTRL_RX_DATA_TOGGLE_RST;
872 }
873 }
874 writel(epctrlx, &udc->op_regs->epctrlx[ep_num]);
875 }
876
ep_is_stall(struct mv_udc * udc,u8 ep_num,u8 direction)877 static int ep_is_stall(struct mv_udc *udc, u8 ep_num, u8 direction)
878 {
879 u32 epctrlx;
880
881 epctrlx = readl(&udc->op_regs->epctrlx[ep_num]);
882
883 if (direction == EP_DIR_OUT)
884 return (epctrlx & EPCTRL_RX_EP_STALL) ? 1 : 0;
885 else
886 return (epctrlx & EPCTRL_TX_EP_STALL) ? 1 : 0;
887 }
888
mv_ep_set_halt_wedge(struct usb_ep * _ep,int halt,int wedge)889 static int mv_ep_set_halt_wedge(struct usb_ep *_ep, int halt, int wedge)
890 {
891 struct mv_ep *ep;
892 unsigned long flags = 0;
893 int status = 0;
894 struct mv_udc *udc;
895
896 ep = container_of(_ep, struct mv_ep, ep);
897 udc = ep->udc;
898 if (!_ep || !ep->ep.desc) {
899 status = -EINVAL;
900 goto out;
901 }
902
903 if (ep->ep.desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
904 status = -EOPNOTSUPP;
905 goto out;
906 }
907
908 /*
909 * Attempt to halt IN ep will fail if any transfer requests
910 * are still queue
911 */
912 if (halt && (ep_dir(ep) == EP_DIR_IN) && !list_empty(&ep->queue)) {
913 status = -EAGAIN;
914 goto out;
915 }
916
917 spin_lock_irqsave(&ep->udc->lock, flags);
918 ep_set_stall(udc, ep->ep_num, ep_dir(ep), halt);
919 if (halt && wedge)
920 ep->wedge = 1;
921 else if (!halt)
922 ep->wedge = 0;
923 spin_unlock_irqrestore(&ep->udc->lock, flags);
924
925 if (ep->ep_num == 0) {
926 udc->ep0_state = WAIT_FOR_SETUP;
927 udc->ep0_dir = EP_DIR_OUT;
928 }
929 out:
930 return status;
931 }
932
mv_ep_set_halt(struct usb_ep * _ep,int halt)933 static int mv_ep_set_halt(struct usb_ep *_ep, int halt)
934 {
935 return mv_ep_set_halt_wedge(_ep, halt, 0);
936 }
937
mv_ep_set_wedge(struct usb_ep * _ep)938 static int mv_ep_set_wedge(struct usb_ep *_ep)
939 {
940 return mv_ep_set_halt_wedge(_ep, 1, 1);
941 }
942
943 static const struct usb_ep_ops mv_ep_ops = {
944 .enable = mv_ep_enable,
945 .disable = mv_ep_disable,
946
947 .alloc_request = mv_alloc_request,
948 .free_request = mv_free_request,
949
950 .queue = mv_ep_queue,
951 .dequeue = mv_ep_dequeue,
952
953 .set_wedge = mv_ep_set_wedge,
954 .set_halt = mv_ep_set_halt,
955 .fifo_flush = mv_ep_fifo_flush, /* flush fifo */
956 };
957
udc_clock_enable(struct mv_udc * udc)958 static int udc_clock_enable(struct mv_udc *udc)
959 {
960 return clk_prepare_enable(udc->clk);
961 }
962
udc_clock_disable(struct mv_udc * udc)963 static void udc_clock_disable(struct mv_udc *udc)
964 {
965 clk_disable_unprepare(udc->clk);
966 }
967
udc_stop(struct mv_udc * udc)968 static void udc_stop(struct mv_udc *udc)
969 {
970 u32 tmp;
971
972 /* Disable interrupts */
973 tmp = readl(&udc->op_regs->usbintr);
974 tmp &= ~(USBINTR_INT_EN | USBINTR_ERR_INT_EN |
975 USBINTR_PORT_CHANGE_DETECT_EN | USBINTR_RESET_EN);
976 writel(tmp, &udc->op_regs->usbintr);
977
978 udc->stopped = 1;
979
980 /* Reset the Run the bit in the command register to stop VUSB */
981 tmp = readl(&udc->op_regs->usbcmd);
982 tmp &= ~USBCMD_RUN_STOP;
983 writel(tmp, &udc->op_regs->usbcmd);
984 }
985
udc_start(struct mv_udc * udc)986 static void udc_start(struct mv_udc *udc)
987 {
988 u32 usbintr;
989
990 usbintr = USBINTR_INT_EN | USBINTR_ERR_INT_EN
991 | USBINTR_PORT_CHANGE_DETECT_EN
992 | USBINTR_RESET_EN | USBINTR_DEVICE_SUSPEND;
993 /* Enable interrupts */
994 writel(usbintr, &udc->op_regs->usbintr);
995
996 udc->stopped = 0;
997
998 /* Set the Run bit in the command register */
999 writel(USBCMD_RUN_STOP, &udc->op_regs->usbcmd);
1000 }
1001
udc_reset(struct mv_udc * udc)1002 static int udc_reset(struct mv_udc *udc)
1003 {
1004 unsigned int loops;
1005 u32 tmp, portsc;
1006
1007 /* Stop the controller */
1008 tmp = readl(&udc->op_regs->usbcmd);
1009 tmp &= ~USBCMD_RUN_STOP;
1010 writel(tmp, &udc->op_regs->usbcmd);
1011
1012 /* Reset the controller to get default values */
1013 writel(USBCMD_CTRL_RESET, &udc->op_regs->usbcmd);
1014
1015 /* wait for reset to complete */
1016 loops = LOOPS(RESET_TIMEOUT);
1017 while (readl(&udc->op_regs->usbcmd) & USBCMD_CTRL_RESET) {
1018 if (loops == 0) {
1019 dev_err(&udc->dev->dev,
1020 "Wait for RESET completed TIMEOUT\n");
1021 return -ETIMEDOUT;
1022 }
1023 loops--;
1024 udelay(LOOPS_USEC);
1025 }
1026
1027 /* set controller to device mode */
1028 tmp = readl(&udc->op_regs->usbmode);
1029 tmp |= USBMODE_CTRL_MODE_DEVICE;
1030
1031 /* turn setup lockout off, require setup tripwire in usbcmd */
1032 tmp |= USBMODE_SETUP_LOCK_OFF;
1033
1034 writel(tmp, &udc->op_regs->usbmode);
1035
1036 writel(0x0, &udc->op_regs->epsetupstat);
1037
1038 /* Configure the Endpoint List Address */
1039 writel(udc->ep_dqh_dma & USB_EP_LIST_ADDRESS_MASK,
1040 &udc->op_regs->eplistaddr);
1041
1042 portsc = readl(&udc->op_regs->portsc[0]);
1043 if (readl(&udc->cap_regs->hcsparams) & HCSPARAMS_PPC)
1044 portsc &= (~PORTSCX_W1C_BITS | ~PORTSCX_PORT_POWER);
1045
1046 if (udc->force_fs)
1047 portsc |= PORTSCX_FORCE_FULL_SPEED_CONNECT;
1048 else
1049 portsc &= (~PORTSCX_FORCE_FULL_SPEED_CONNECT);
1050
1051 writel(portsc, &udc->op_regs->portsc[0]);
1052
1053 tmp = readl(&udc->op_regs->epctrlx[0]);
1054 tmp &= ~(EPCTRL_TX_EP_STALL | EPCTRL_RX_EP_STALL);
1055 writel(tmp, &udc->op_regs->epctrlx[0]);
1056
1057 return 0;
1058 }
1059
mv_udc_enable_internal(struct mv_udc * udc)1060 static int mv_udc_enable_internal(struct mv_udc *udc)
1061 {
1062 int retval;
1063
1064 if (udc->active)
1065 return 0;
1066
1067 dev_dbg(&udc->dev->dev, "enable udc\n");
1068 retval = udc_clock_enable(udc);
1069 if (retval)
1070 return retval;
1071
1072 if (udc->pdata->phy_init) {
1073 retval = udc->pdata->phy_init(udc->phy_regs);
1074 if (retval) {
1075 dev_err(&udc->dev->dev,
1076 "init phy error %d\n", retval);
1077 udc_clock_disable(udc);
1078 return retval;
1079 }
1080 }
1081 udc->active = 1;
1082
1083 return 0;
1084 }
1085
mv_udc_enable(struct mv_udc * udc)1086 static int mv_udc_enable(struct mv_udc *udc)
1087 {
1088 if (udc->clock_gating)
1089 return mv_udc_enable_internal(udc);
1090
1091 return 0;
1092 }
1093
mv_udc_disable_internal(struct mv_udc * udc)1094 static void mv_udc_disable_internal(struct mv_udc *udc)
1095 {
1096 if (udc->active) {
1097 dev_dbg(&udc->dev->dev, "disable udc\n");
1098 if (udc->pdata->phy_deinit)
1099 udc->pdata->phy_deinit(udc->phy_regs);
1100 udc_clock_disable(udc);
1101 udc->active = 0;
1102 }
1103 }
1104
mv_udc_disable(struct mv_udc * udc)1105 static void mv_udc_disable(struct mv_udc *udc)
1106 {
1107 if (udc->clock_gating)
1108 mv_udc_disable_internal(udc);
1109 }
1110
mv_udc_get_frame(struct usb_gadget * gadget)1111 static int mv_udc_get_frame(struct usb_gadget *gadget)
1112 {
1113 struct mv_udc *udc;
1114 u16 retval;
1115
1116 if (!gadget)
1117 return -ENODEV;
1118
1119 udc = container_of(gadget, struct mv_udc, gadget);
1120
1121 retval = readl(&udc->op_regs->frindex) & USB_FRINDEX_MASKS;
1122
1123 return retval;
1124 }
1125
1126 /* Tries to wake up the host connected to this gadget */
mv_udc_wakeup(struct usb_gadget * gadget)1127 static int mv_udc_wakeup(struct usb_gadget *gadget)
1128 {
1129 struct mv_udc *udc = container_of(gadget, struct mv_udc, gadget);
1130 u32 portsc;
1131
1132 /* Remote wakeup feature not enabled by host */
1133 if (!udc->remote_wakeup)
1134 return -ENOTSUPP;
1135
1136 portsc = readl(&udc->op_regs->portsc);
1137 /* not suspended? */
1138 if (!(portsc & PORTSCX_PORT_SUSPEND))
1139 return 0;
1140 /* trigger force resume */
1141 portsc |= PORTSCX_PORT_FORCE_RESUME;
1142 writel(portsc, &udc->op_regs->portsc[0]);
1143 return 0;
1144 }
1145
mv_udc_vbus_session(struct usb_gadget * gadget,int is_active)1146 static int mv_udc_vbus_session(struct usb_gadget *gadget, int is_active)
1147 {
1148 struct mv_udc *udc;
1149 unsigned long flags;
1150 int retval = 0;
1151
1152 udc = container_of(gadget, struct mv_udc, gadget);
1153 spin_lock_irqsave(&udc->lock, flags);
1154
1155 udc->vbus_active = (is_active != 0);
1156
1157 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1158 __func__, udc->softconnect, udc->vbus_active);
1159
1160 if (udc->driver && udc->softconnect && udc->vbus_active) {
1161 retval = mv_udc_enable(udc);
1162 if (retval == 0) {
1163 /* Clock is disabled, need re-init registers */
1164 udc_reset(udc);
1165 ep0_reset(udc);
1166 udc_start(udc);
1167 }
1168 } else if (udc->driver && udc->softconnect) {
1169 if (!udc->active)
1170 goto out;
1171
1172 /* stop all the transfer in queue*/
1173 stop_activity(udc, udc->driver);
1174 udc_stop(udc);
1175 mv_udc_disable(udc);
1176 }
1177
1178 out:
1179 spin_unlock_irqrestore(&udc->lock, flags);
1180 return retval;
1181 }
1182
mv_udc_pullup(struct usb_gadget * gadget,int is_on)1183 static int mv_udc_pullup(struct usb_gadget *gadget, int is_on)
1184 {
1185 struct mv_udc *udc;
1186 unsigned long flags;
1187 int retval = 0;
1188
1189 udc = container_of(gadget, struct mv_udc, gadget);
1190 spin_lock_irqsave(&udc->lock, flags);
1191
1192 udc->softconnect = (is_on != 0);
1193
1194 dev_dbg(&udc->dev->dev, "%s: softconnect %d, vbus_active %d\n",
1195 __func__, udc->softconnect, udc->vbus_active);
1196
1197 if (udc->driver && udc->softconnect && udc->vbus_active) {
1198 retval = mv_udc_enable(udc);
1199 if (retval == 0) {
1200 /* Clock is disabled, need re-init registers */
1201 udc_reset(udc);
1202 ep0_reset(udc);
1203 udc_start(udc);
1204 }
1205 } else if (udc->driver && udc->vbus_active) {
1206 /* stop all the transfer in queue*/
1207 stop_activity(udc, udc->driver);
1208 udc_stop(udc);
1209 mv_udc_disable(udc);
1210 }
1211
1212 spin_unlock_irqrestore(&udc->lock, flags);
1213 return retval;
1214 }
1215
1216 static int mv_udc_start(struct usb_gadget *, struct usb_gadget_driver *);
1217 static int mv_udc_stop(struct usb_gadget *);
1218 /* device controller usb_gadget_ops structure */
1219 static const struct usb_gadget_ops mv_ops = {
1220
1221 /* returns the current frame number */
1222 .get_frame = mv_udc_get_frame,
1223
1224 /* tries to wake up the host connected to this gadget */
1225 .wakeup = mv_udc_wakeup,
1226
1227 /* notify controller that VBUS is powered or not */
1228 .vbus_session = mv_udc_vbus_session,
1229
1230 /* D+ pullup, software-controlled connect/disconnect to USB host */
1231 .pullup = mv_udc_pullup,
1232 .udc_start = mv_udc_start,
1233 .udc_stop = mv_udc_stop,
1234 };
1235
eps_init(struct mv_udc * udc)1236 static int eps_init(struct mv_udc *udc)
1237 {
1238 struct mv_ep *ep;
1239 char name[14];
1240 int i;
1241
1242 /* initialize ep0 */
1243 ep = &udc->eps[0];
1244 ep->udc = udc;
1245 strncpy(ep->name, "ep0", sizeof(ep->name));
1246 ep->ep.name = ep->name;
1247 ep->ep.ops = &mv_ep_ops;
1248 ep->wedge = 0;
1249 ep->stopped = 0;
1250 usb_ep_set_maxpacket_limit(&ep->ep, EP0_MAX_PKT_SIZE);
1251 ep->ep.caps.type_control = true;
1252 ep->ep.caps.dir_in = true;
1253 ep->ep.caps.dir_out = true;
1254 ep->ep_num = 0;
1255 ep->ep.desc = &mv_ep0_desc;
1256 INIT_LIST_HEAD(&ep->queue);
1257
1258 ep->ep_type = USB_ENDPOINT_XFER_CONTROL;
1259
1260 /* initialize other endpoints */
1261 for (i = 2; i < udc->max_eps * 2; i++) {
1262 ep = &udc->eps[i];
1263 if (i % 2) {
1264 snprintf(name, sizeof(name), "ep%din", i / 2);
1265 ep->direction = EP_DIR_IN;
1266 ep->ep.caps.dir_in = true;
1267 } else {
1268 snprintf(name, sizeof(name), "ep%dout", i / 2);
1269 ep->direction = EP_DIR_OUT;
1270 ep->ep.caps.dir_out = true;
1271 }
1272 ep->udc = udc;
1273 strncpy(ep->name, name, sizeof(ep->name));
1274 ep->ep.name = ep->name;
1275
1276 ep->ep.caps.type_iso = true;
1277 ep->ep.caps.type_bulk = true;
1278 ep->ep.caps.type_int = true;
1279
1280 ep->ep.ops = &mv_ep_ops;
1281 ep->stopped = 0;
1282 usb_ep_set_maxpacket_limit(&ep->ep, (unsigned short) ~0);
1283 ep->ep_num = i / 2;
1284
1285 INIT_LIST_HEAD(&ep->queue);
1286 list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1287
1288 ep->dqh = &udc->ep_dqh[i];
1289 }
1290
1291 return 0;
1292 }
1293
1294 /* delete all endpoint requests, called with spinlock held */
nuke(struct mv_ep * ep,int status)1295 static void nuke(struct mv_ep *ep, int status)
1296 {
1297 /* called with spinlock held */
1298 ep->stopped = 1;
1299
1300 /* endpoint fifo flush */
1301 mv_ep_fifo_flush(&ep->ep);
1302
1303 while (!list_empty(&ep->queue)) {
1304 struct mv_req *req = NULL;
1305 req = list_entry(ep->queue.next, struct mv_req, queue);
1306 done(ep, req, status);
1307 }
1308 }
1309
gadget_reset(struct mv_udc * udc,struct usb_gadget_driver * driver)1310 static void gadget_reset(struct mv_udc *udc, struct usb_gadget_driver *driver)
1311 {
1312 struct mv_ep *ep;
1313
1314 nuke(&udc->eps[0], -ESHUTDOWN);
1315
1316 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1317 nuke(ep, -ESHUTDOWN);
1318 }
1319
1320 /* report reset; the driver is already quiesced */
1321 if (driver) {
1322 spin_unlock(&udc->lock);
1323 usb_gadget_udc_reset(&udc->gadget, driver);
1324 spin_lock(&udc->lock);
1325 }
1326 }
1327 /* stop all USB activities */
stop_activity(struct mv_udc * udc,struct usb_gadget_driver * driver)1328 static void stop_activity(struct mv_udc *udc, struct usb_gadget_driver *driver)
1329 {
1330 struct mv_ep *ep;
1331
1332 nuke(&udc->eps[0], -ESHUTDOWN);
1333
1334 list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) {
1335 nuke(ep, -ESHUTDOWN);
1336 }
1337
1338 /* report disconnect; the driver is already quiesced */
1339 if (driver) {
1340 spin_unlock(&udc->lock);
1341 driver->disconnect(&udc->gadget);
1342 spin_lock(&udc->lock);
1343 }
1344 }
1345
mv_udc_start(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1346 static int mv_udc_start(struct usb_gadget *gadget,
1347 struct usb_gadget_driver *driver)
1348 {
1349 struct mv_udc *udc;
1350 int retval = 0;
1351 unsigned long flags;
1352
1353 udc = container_of(gadget, struct mv_udc, gadget);
1354
1355 if (udc->driver)
1356 return -EBUSY;
1357
1358 spin_lock_irqsave(&udc->lock, flags);
1359
1360 /* hook up the driver ... */
1361 driver->driver.bus = NULL;
1362 udc->driver = driver;
1363
1364 udc->usb_state = USB_STATE_ATTACHED;
1365 udc->ep0_state = WAIT_FOR_SETUP;
1366 udc->ep0_dir = EP_DIR_OUT;
1367
1368 spin_unlock_irqrestore(&udc->lock, flags);
1369
1370 if (udc->transceiver) {
1371 retval = otg_set_peripheral(udc->transceiver->otg,
1372 &udc->gadget);
1373 if (retval) {
1374 dev_err(&udc->dev->dev,
1375 "unable to register peripheral to otg\n");
1376 udc->driver = NULL;
1377 return retval;
1378 }
1379 }
1380
1381 /* When boot with cable attached, there will be no vbus irq occurred */
1382 if (udc->qwork)
1383 queue_work(udc->qwork, &udc->vbus_work);
1384
1385 return 0;
1386 }
1387
mv_udc_stop(struct usb_gadget * gadget)1388 static int mv_udc_stop(struct usb_gadget *gadget)
1389 {
1390 struct mv_udc *udc;
1391 unsigned long flags;
1392
1393 udc = container_of(gadget, struct mv_udc, gadget);
1394
1395 spin_lock_irqsave(&udc->lock, flags);
1396
1397 mv_udc_enable(udc);
1398 udc_stop(udc);
1399
1400 /* stop all usb activities */
1401 udc->gadget.speed = USB_SPEED_UNKNOWN;
1402 stop_activity(udc, NULL);
1403 mv_udc_disable(udc);
1404
1405 spin_unlock_irqrestore(&udc->lock, flags);
1406
1407 /* unbind gadget driver */
1408 udc->driver = NULL;
1409
1410 return 0;
1411 }
1412
mv_set_ptc(struct mv_udc * udc,u32 mode)1413 static void mv_set_ptc(struct mv_udc *udc, u32 mode)
1414 {
1415 u32 portsc;
1416
1417 portsc = readl(&udc->op_regs->portsc[0]);
1418 portsc |= mode << 16;
1419 writel(portsc, &udc->op_regs->portsc[0]);
1420 }
1421
prime_status_complete(struct usb_ep * ep,struct usb_request * _req)1422 static void prime_status_complete(struct usb_ep *ep, struct usb_request *_req)
1423 {
1424 struct mv_ep *mvep = container_of(ep, struct mv_ep, ep);
1425 struct mv_req *req = container_of(_req, struct mv_req, req);
1426 struct mv_udc *udc;
1427 unsigned long flags;
1428
1429 udc = mvep->udc;
1430
1431 dev_info(&udc->dev->dev, "switch to test mode %d\n", req->test_mode);
1432
1433 spin_lock_irqsave(&udc->lock, flags);
1434 if (req->test_mode) {
1435 mv_set_ptc(udc, req->test_mode);
1436 req->test_mode = 0;
1437 }
1438 spin_unlock_irqrestore(&udc->lock, flags);
1439 }
1440
1441 static int
udc_prime_status(struct mv_udc * udc,u8 direction,u16 status,bool empty)1442 udc_prime_status(struct mv_udc *udc, u8 direction, u16 status, bool empty)
1443 {
1444 int retval = 0;
1445 struct mv_req *req;
1446 struct mv_ep *ep;
1447
1448 ep = &udc->eps[0];
1449 udc->ep0_dir = direction;
1450 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1451
1452 req = udc->status_req;
1453
1454 /* fill in the reqest structure */
1455 if (empty == false) {
1456 *((u16 *) req->req.buf) = cpu_to_le16(status);
1457 req->req.length = 2;
1458 } else
1459 req->req.length = 0;
1460
1461 req->ep = ep;
1462 req->req.status = -EINPROGRESS;
1463 req->req.actual = 0;
1464 if (udc->test_mode) {
1465 req->req.complete = prime_status_complete;
1466 req->test_mode = udc->test_mode;
1467 udc->test_mode = 0;
1468 } else
1469 req->req.complete = NULL;
1470 req->dtd_count = 0;
1471
1472 if (req->req.dma == DMA_ADDR_INVALID) {
1473 req->req.dma = dma_map_single(ep->udc->gadget.dev.parent,
1474 req->req.buf, req->req.length,
1475 ep_dir(ep) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1476 req->mapped = 1;
1477 }
1478
1479 /* prime the data phase */
1480 if (!req_to_dtd(req)) {
1481 retval = queue_dtd(ep, req);
1482 if (retval) {
1483 dev_err(&udc->dev->dev,
1484 "Failed to queue dtd when prime status\n");
1485 goto out;
1486 }
1487 } else{ /* no mem */
1488 retval = -ENOMEM;
1489 dev_err(&udc->dev->dev,
1490 "Failed to dma_pool_alloc when prime status\n");
1491 goto out;
1492 }
1493
1494 list_add_tail(&req->queue, &ep->queue);
1495
1496 return 0;
1497 out:
1498 usb_gadget_unmap_request(&udc->gadget, &req->req, ep_dir(ep));
1499
1500 return retval;
1501 }
1502
mv_udc_testmode(struct mv_udc * udc,u16 index)1503 static void mv_udc_testmode(struct mv_udc *udc, u16 index)
1504 {
1505 if (index <= TEST_FORCE_EN) {
1506 udc->test_mode = index;
1507 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1508 ep0_stall(udc);
1509 } else
1510 dev_err(&udc->dev->dev,
1511 "This test mode(%d) is not supported\n", index);
1512 }
1513
ch9setaddress(struct mv_udc * udc,struct usb_ctrlrequest * setup)1514 static void ch9setaddress(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1515 {
1516 udc->dev_addr = (u8)setup->wValue;
1517
1518 /* update usb state */
1519 udc->usb_state = USB_STATE_ADDRESS;
1520
1521 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1522 ep0_stall(udc);
1523 }
1524
ch9getstatus(struct mv_udc * udc,u8 ep_num,struct usb_ctrlrequest * setup)1525 static void ch9getstatus(struct mv_udc *udc, u8 ep_num,
1526 struct usb_ctrlrequest *setup)
1527 {
1528 u16 status = 0;
1529 int retval;
1530
1531 if ((setup->bRequestType & (USB_DIR_IN | USB_TYPE_MASK))
1532 != (USB_DIR_IN | USB_TYPE_STANDARD))
1533 return;
1534
1535 if ((setup->bRequestType & USB_RECIP_MASK) == USB_RECIP_DEVICE) {
1536 status = 1 << USB_DEVICE_SELF_POWERED;
1537 status |= udc->remote_wakeup << USB_DEVICE_REMOTE_WAKEUP;
1538 } else if ((setup->bRequestType & USB_RECIP_MASK)
1539 == USB_RECIP_INTERFACE) {
1540 /* get interface status */
1541 status = 0;
1542 } else if ((setup->bRequestType & USB_RECIP_MASK)
1543 == USB_RECIP_ENDPOINT) {
1544 u8 ep_num, direction;
1545
1546 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1547 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1548 ? EP_DIR_IN : EP_DIR_OUT;
1549 status = ep_is_stall(udc, ep_num, direction)
1550 << USB_ENDPOINT_HALT;
1551 }
1552
1553 retval = udc_prime_status(udc, EP_DIR_IN, status, false);
1554 if (retval)
1555 ep0_stall(udc);
1556 else
1557 udc->ep0_state = DATA_STATE_XMIT;
1558 }
1559
ch9clearfeature(struct mv_udc * udc,struct usb_ctrlrequest * setup)1560 static void ch9clearfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1561 {
1562 u8 ep_num;
1563 u8 direction;
1564 struct mv_ep *ep;
1565
1566 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1567 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1568 switch (setup->wValue) {
1569 case USB_DEVICE_REMOTE_WAKEUP:
1570 udc->remote_wakeup = 0;
1571 break;
1572 default:
1573 goto out;
1574 }
1575 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1576 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1577 switch (setup->wValue) {
1578 case USB_ENDPOINT_HALT:
1579 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1580 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1581 ? EP_DIR_IN : EP_DIR_OUT;
1582 if (setup->wValue != 0 || setup->wLength != 0
1583 || ep_num > udc->max_eps)
1584 goto out;
1585 ep = &udc->eps[ep_num * 2 + direction];
1586 if (ep->wedge == 1)
1587 break;
1588 spin_unlock(&udc->lock);
1589 ep_set_stall(udc, ep_num, direction, 0);
1590 spin_lock(&udc->lock);
1591 break;
1592 default:
1593 goto out;
1594 }
1595 } else
1596 goto out;
1597
1598 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1599 ep0_stall(udc);
1600 out:
1601 return;
1602 }
1603
ch9setfeature(struct mv_udc * udc,struct usb_ctrlrequest * setup)1604 static void ch9setfeature(struct mv_udc *udc, struct usb_ctrlrequest *setup)
1605 {
1606 u8 ep_num;
1607 u8 direction;
1608
1609 if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1610 == ((USB_TYPE_STANDARD | USB_RECIP_DEVICE))) {
1611 switch (setup->wValue) {
1612 case USB_DEVICE_REMOTE_WAKEUP:
1613 udc->remote_wakeup = 1;
1614 break;
1615 case USB_DEVICE_TEST_MODE:
1616 if (setup->wIndex & 0xFF
1617 || udc->gadget.speed != USB_SPEED_HIGH)
1618 ep0_stall(udc);
1619
1620 if (udc->usb_state != USB_STATE_CONFIGURED
1621 && udc->usb_state != USB_STATE_ADDRESS
1622 && udc->usb_state != USB_STATE_DEFAULT)
1623 ep0_stall(udc);
1624
1625 mv_udc_testmode(udc, (setup->wIndex >> 8));
1626 goto out;
1627 default:
1628 goto out;
1629 }
1630 } else if ((setup->bRequestType & (USB_TYPE_MASK | USB_RECIP_MASK))
1631 == ((USB_TYPE_STANDARD | USB_RECIP_ENDPOINT))) {
1632 switch (setup->wValue) {
1633 case USB_ENDPOINT_HALT:
1634 ep_num = setup->wIndex & USB_ENDPOINT_NUMBER_MASK;
1635 direction = (setup->wIndex & USB_ENDPOINT_DIR_MASK)
1636 ? EP_DIR_IN : EP_DIR_OUT;
1637 if (setup->wValue != 0 || setup->wLength != 0
1638 || ep_num > udc->max_eps)
1639 goto out;
1640 spin_unlock(&udc->lock);
1641 ep_set_stall(udc, ep_num, direction, 1);
1642 spin_lock(&udc->lock);
1643 break;
1644 default:
1645 goto out;
1646 }
1647 } else
1648 goto out;
1649
1650 if (udc_prime_status(udc, EP_DIR_IN, 0, true))
1651 ep0_stall(udc);
1652 out:
1653 return;
1654 }
1655
handle_setup_packet(struct mv_udc * udc,u8 ep_num,struct usb_ctrlrequest * setup)1656 static void handle_setup_packet(struct mv_udc *udc, u8 ep_num,
1657 struct usb_ctrlrequest *setup)
1658 __releases(&ep->udc->lock)
1659 __acquires(&ep->udc->lock)
1660 {
1661 bool delegate = false;
1662
1663 nuke(&udc->eps[ep_num * 2 + EP_DIR_OUT], -ESHUTDOWN);
1664
1665 dev_dbg(&udc->dev->dev, "SETUP %02x.%02x v%04x i%04x l%04x\n",
1666 setup->bRequestType, setup->bRequest,
1667 setup->wValue, setup->wIndex, setup->wLength);
1668 /* We process some standard setup requests here */
1669 if ((setup->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1670 switch (setup->bRequest) {
1671 case USB_REQ_GET_STATUS:
1672 ch9getstatus(udc, ep_num, setup);
1673 break;
1674
1675 case USB_REQ_SET_ADDRESS:
1676 ch9setaddress(udc, setup);
1677 break;
1678
1679 case USB_REQ_CLEAR_FEATURE:
1680 ch9clearfeature(udc, setup);
1681 break;
1682
1683 case USB_REQ_SET_FEATURE:
1684 ch9setfeature(udc, setup);
1685 break;
1686
1687 default:
1688 delegate = true;
1689 }
1690 } else
1691 delegate = true;
1692
1693 /* delegate USB standard requests to the gadget driver */
1694 if (delegate == true) {
1695 /* USB requests handled by gadget */
1696 if (setup->wLength) {
1697 /* DATA phase from gadget, STATUS phase from udc */
1698 udc->ep0_dir = (setup->bRequestType & USB_DIR_IN)
1699 ? EP_DIR_IN : EP_DIR_OUT;
1700 spin_unlock(&udc->lock);
1701 if (udc->driver->setup(&udc->gadget,
1702 &udc->local_setup_buff) < 0)
1703 ep0_stall(udc);
1704 spin_lock(&udc->lock);
1705 udc->ep0_state = (setup->bRequestType & USB_DIR_IN)
1706 ? DATA_STATE_XMIT : DATA_STATE_RECV;
1707 } else {
1708 /* no DATA phase, IN STATUS phase from gadget */
1709 udc->ep0_dir = EP_DIR_IN;
1710 spin_unlock(&udc->lock);
1711 if (udc->driver->setup(&udc->gadget,
1712 &udc->local_setup_buff) < 0)
1713 ep0_stall(udc);
1714 spin_lock(&udc->lock);
1715 udc->ep0_state = WAIT_FOR_OUT_STATUS;
1716 }
1717 }
1718 }
1719
1720 /* complete DATA or STATUS phase of ep0 prime status phase if needed */
ep0_req_complete(struct mv_udc * udc,struct mv_ep * ep0,struct mv_req * req)1721 static void ep0_req_complete(struct mv_udc *udc,
1722 struct mv_ep *ep0, struct mv_req *req)
1723 {
1724 u32 new_addr;
1725
1726 if (udc->usb_state == USB_STATE_ADDRESS) {
1727 /* set the new address */
1728 new_addr = (u32)udc->dev_addr;
1729 writel(new_addr << USB_DEVICE_ADDRESS_BIT_SHIFT,
1730 &udc->op_regs->deviceaddr);
1731 }
1732
1733 done(ep0, req, 0);
1734
1735 switch (udc->ep0_state) {
1736 case DATA_STATE_XMIT:
1737 /* receive status phase */
1738 if (udc_prime_status(udc, EP_DIR_OUT, 0, true))
1739 ep0_stall(udc);
1740 break;
1741 case DATA_STATE_RECV:
1742 /* send status phase */
1743 if (udc_prime_status(udc, EP_DIR_IN, 0 , true))
1744 ep0_stall(udc);
1745 break;
1746 case WAIT_FOR_OUT_STATUS:
1747 udc->ep0_state = WAIT_FOR_SETUP;
1748 break;
1749 case WAIT_FOR_SETUP:
1750 dev_err(&udc->dev->dev, "unexpect ep0 packets\n");
1751 break;
1752 default:
1753 ep0_stall(udc);
1754 break;
1755 }
1756 }
1757
get_setup_data(struct mv_udc * udc,u8 ep_num,u8 * buffer_ptr)1758 static void get_setup_data(struct mv_udc *udc, u8 ep_num, u8 *buffer_ptr)
1759 {
1760 u32 temp;
1761 struct mv_dqh *dqh;
1762
1763 dqh = &udc->ep_dqh[ep_num * 2 + EP_DIR_OUT];
1764
1765 /* Clear bit in ENDPTSETUPSTAT */
1766 writel((1 << ep_num), &udc->op_regs->epsetupstat);
1767
1768 /* while a hazard exists when setup package arrives */
1769 do {
1770 /* Set Setup Tripwire */
1771 temp = readl(&udc->op_regs->usbcmd);
1772 writel(temp | USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1773
1774 /* Copy the setup packet to local buffer */
1775 memcpy(buffer_ptr, (u8 *) dqh->setup_buffer, 8);
1776 } while (!(readl(&udc->op_regs->usbcmd) & USBCMD_SETUP_TRIPWIRE_SET));
1777
1778 /* Clear Setup Tripwire */
1779 temp = readl(&udc->op_regs->usbcmd);
1780 writel(temp & ~USBCMD_SETUP_TRIPWIRE_SET, &udc->op_regs->usbcmd);
1781 }
1782
irq_process_tr_complete(struct mv_udc * udc)1783 static void irq_process_tr_complete(struct mv_udc *udc)
1784 {
1785 u32 tmp, bit_pos;
1786 int i, ep_num = 0, direction = 0;
1787 struct mv_ep *curr_ep;
1788 struct mv_req *curr_req, *temp_req;
1789 int status;
1790
1791 /*
1792 * We use separate loops for ENDPTSETUPSTAT and ENDPTCOMPLETE
1793 * because the setup packets are to be read ASAP
1794 */
1795
1796 /* Process all Setup packet received interrupts */
1797 tmp = readl(&udc->op_regs->epsetupstat);
1798
1799 if (tmp) {
1800 for (i = 0; i < udc->max_eps; i++) {
1801 if (tmp & (1 << i)) {
1802 get_setup_data(udc, i,
1803 (u8 *)(&udc->local_setup_buff));
1804 handle_setup_packet(udc, i,
1805 &udc->local_setup_buff);
1806 }
1807 }
1808 }
1809
1810 /* Don't clear the endpoint setup status register here.
1811 * It is cleared as a setup packet is read out of the buffer
1812 */
1813
1814 /* Process non-setup transaction complete interrupts */
1815 tmp = readl(&udc->op_regs->epcomplete);
1816
1817 if (!tmp)
1818 return;
1819
1820 writel(tmp, &udc->op_regs->epcomplete);
1821
1822 for (i = 0; i < udc->max_eps * 2; i++) {
1823 ep_num = i >> 1;
1824 direction = i % 2;
1825
1826 bit_pos = 1 << (ep_num + 16 * direction);
1827
1828 if (!(bit_pos & tmp))
1829 continue;
1830
1831 if (i == 1)
1832 curr_ep = &udc->eps[0];
1833 else
1834 curr_ep = &udc->eps[i];
1835 /* process the req queue until an uncomplete request */
1836 list_for_each_entry_safe(curr_req, temp_req,
1837 &curr_ep->queue, queue) {
1838 status = process_ep_req(udc, i, curr_req);
1839 if (status)
1840 break;
1841
1842 /* write back status to req */
1843 curr_req->req.status = status;
1844
1845 /* ep0 request completion */
1846 if (ep_num == 0) {
1847 ep0_req_complete(udc, curr_ep, curr_req);
1848 break;
1849 } else {
1850 done(curr_ep, curr_req, status);
1851 }
1852 }
1853 }
1854 }
1855
irq_process_reset(struct mv_udc * udc)1856 static void irq_process_reset(struct mv_udc *udc)
1857 {
1858 u32 tmp;
1859 unsigned int loops;
1860
1861 udc->ep0_dir = EP_DIR_OUT;
1862 udc->ep0_state = WAIT_FOR_SETUP;
1863 udc->remote_wakeup = 0; /* default to 0 on reset */
1864
1865 /* The address bits are past bit 25-31. Set the address */
1866 tmp = readl(&udc->op_regs->deviceaddr);
1867 tmp &= ~(USB_DEVICE_ADDRESS_MASK);
1868 writel(tmp, &udc->op_regs->deviceaddr);
1869
1870 /* Clear all the setup token semaphores */
1871 tmp = readl(&udc->op_regs->epsetupstat);
1872 writel(tmp, &udc->op_regs->epsetupstat);
1873
1874 /* Clear all the endpoint complete status bits */
1875 tmp = readl(&udc->op_regs->epcomplete);
1876 writel(tmp, &udc->op_regs->epcomplete);
1877
1878 /* wait until all endptprime bits cleared */
1879 loops = LOOPS(PRIME_TIMEOUT);
1880 while (readl(&udc->op_regs->epprime) & 0xFFFFFFFF) {
1881 if (loops == 0) {
1882 dev_err(&udc->dev->dev,
1883 "Timeout for ENDPTPRIME = 0x%x\n",
1884 readl(&udc->op_regs->epprime));
1885 break;
1886 }
1887 loops--;
1888 udelay(LOOPS_USEC);
1889 }
1890
1891 /* Write 1s to the Flush register */
1892 writel((u32)~0, &udc->op_regs->epflush);
1893
1894 if (readl(&udc->op_regs->portsc[0]) & PORTSCX_PORT_RESET) {
1895 dev_info(&udc->dev->dev, "usb bus reset\n");
1896 udc->usb_state = USB_STATE_DEFAULT;
1897 /* reset all the queues, stop all USB activities */
1898 gadget_reset(udc, udc->driver);
1899 } else {
1900 dev_info(&udc->dev->dev, "USB reset portsc 0x%x\n",
1901 readl(&udc->op_regs->portsc));
1902
1903 /*
1904 * re-initialize
1905 * controller reset
1906 */
1907 udc_reset(udc);
1908
1909 /* reset all the queues, stop all USB activities */
1910 stop_activity(udc, udc->driver);
1911
1912 /* reset ep0 dQH and endptctrl */
1913 ep0_reset(udc);
1914
1915 /* enable interrupt and set controller to run state */
1916 udc_start(udc);
1917
1918 udc->usb_state = USB_STATE_ATTACHED;
1919 }
1920 }
1921
handle_bus_resume(struct mv_udc * udc)1922 static void handle_bus_resume(struct mv_udc *udc)
1923 {
1924 udc->usb_state = udc->resume_state;
1925 udc->resume_state = 0;
1926
1927 /* report resume to the driver */
1928 if (udc->driver) {
1929 if (udc->driver->resume) {
1930 spin_unlock(&udc->lock);
1931 udc->driver->resume(&udc->gadget);
1932 spin_lock(&udc->lock);
1933 }
1934 }
1935 }
1936
irq_process_suspend(struct mv_udc * udc)1937 static void irq_process_suspend(struct mv_udc *udc)
1938 {
1939 udc->resume_state = udc->usb_state;
1940 udc->usb_state = USB_STATE_SUSPENDED;
1941
1942 if (udc->driver->suspend) {
1943 spin_unlock(&udc->lock);
1944 udc->driver->suspend(&udc->gadget);
1945 spin_lock(&udc->lock);
1946 }
1947 }
1948
irq_process_port_change(struct mv_udc * udc)1949 static void irq_process_port_change(struct mv_udc *udc)
1950 {
1951 u32 portsc;
1952
1953 portsc = readl(&udc->op_regs->portsc[0]);
1954 if (!(portsc & PORTSCX_PORT_RESET)) {
1955 /* Get the speed */
1956 u32 speed = portsc & PORTSCX_PORT_SPEED_MASK;
1957 switch (speed) {
1958 case PORTSCX_PORT_SPEED_HIGH:
1959 udc->gadget.speed = USB_SPEED_HIGH;
1960 break;
1961 case PORTSCX_PORT_SPEED_FULL:
1962 udc->gadget.speed = USB_SPEED_FULL;
1963 break;
1964 case PORTSCX_PORT_SPEED_LOW:
1965 udc->gadget.speed = USB_SPEED_LOW;
1966 break;
1967 default:
1968 udc->gadget.speed = USB_SPEED_UNKNOWN;
1969 break;
1970 }
1971 }
1972
1973 if (portsc & PORTSCX_PORT_SUSPEND) {
1974 udc->resume_state = udc->usb_state;
1975 udc->usb_state = USB_STATE_SUSPENDED;
1976 if (udc->driver->suspend) {
1977 spin_unlock(&udc->lock);
1978 udc->driver->suspend(&udc->gadget);
1979 spin_lock(&udc->lock);
1980 }
1981 }
1982
1983 if (!(portsc & PORTSCX_PORT_SUSPEND)
1984 && udc->usb_state == USB_STATE_SUSPENDED) {
1985 handle_bus_resume(udc);
1986 }
1987
1988 if (!udc->resume_state)
1989 udc->usb_state = USB_STATE_DEFAULT;
1990 }
1991
irq_process_error(struct mv_udc * udc)1992 static void irq_process_error(struct mv_udc *udc)
1993 {
1994 /* Increment the error count */
1995 udc->errors++;
1996 }
1997
mv_udc_irq(int irq,void * dev)1998 static irqreturn_t mv_udc_irq(int irq, void *dev)
1999 {
2000 struct mv_udc *udc = (struct mv_udc *)dev;
2001 u32 status, intr;
2002
2003 /* Disable ISR when stopped bit is set */
2004 if (udc->stopped)
2005 return IRQ_NONE;
2006
2007 spin_lock(&udc->lock);
2008
2009 status = readl(&udc->op_regs->usbsts);
2010 intr = readl(&udc->op_regs->usbintr);
2011 status &= intr;
2012
2013 if (status == 0) {
2014 spin_unlock(&udc->lock);
2015 return IRQ_NONE;
2016 }
2017
2018 /* Clear all the interrupts occurred */
2019 writel(status, &udc->op_regs->usbsts);
2020
2021 if (status & USBSTS_ERR)
2022 irq_process_error(udc);
2023
2024 if (status & USBSTS_RESET)
2025 irq_process_reset(udc);
2026
2027 if (status & USBSTS_PORT_CHANGE)
2028 irq_process_port_change(udc);
2029
2030 if (status & USBSTS_INT)
2031 irq_process_tr_complete(udc);
2032
2033 if (status & USBSTS_SUSPEND)
2034 irq_process_suspend(udc);
2035
2036 spin_unlock(&udc->lock);
2037
2038 return IRQ_HANDLED;
2039 }
2040
mv_udc_vbus_irq(int irq,void * dev)2041 static irqreturn_t mv_udc_vbus_irq(int irq, void *dev)
2042 {
2043 struct mv_udc *udc = (struct mv_udc *)dev;
2044
2045 /* polling VBUS and init phy may cause too much time*/
2046 if (udc->qwork)
2047 queue_work(udc->qwork, &udc->vbus_work);
2048
2049 return IRQ_HANDLED;
2050 }
2051
mv_udc_vbus_work(struct work_struct * work)2052 static void mv_udc_vbus_work(struct work_struct *work)
2053 {
2054 struct mv_udc *udc;
2055 unsigned int vbus;
2056
2057 udc = container_of(work, struct mv_udc, vbus_work);
2058 if (!udc->pdata->vbus)
2059 return;
2060
2061 vbus = udc->pdata->vbus->poll();
2062 dev_info(&udc->dev->dev, "vbus is %d\n", vbus);
2063
2064 if (vbus == VBUS_HIGH)
2065 mv_udc_vbus_session(&udc->gadget, 1);
2066 else if (vbus == VBUS_LOW)
2067 mv_udc_vbus_session(&udc->gadget, 0);
2068 }
2069
2070 /* release device structure */
gadget_release(struct device * _dev)2071 static void gadget_release(struct device *_dev)
2072 {
2073 struct mv_udc *udc;
2074
2075 udc = dev_get_drvdata(_dev);
2076
2077 complete(udc->done);
2078 }
2079
mv_udc_remove(struct platform_device * pdev)2080 static int mv_udc_remove(struct platform_device *pdev)
2081 {
2082 struct mv_udc *udc;
2083
2084 udc = platform_get_drvdata(pdev);
2085
2086 usb_del_gadget_udc(&udc->gadget);
2087
2088 if (udc->qwork) {
2089 flush_workqueue(udc->qwork);
2090 destroy_workqueue(udc->qwork);
2091 }
2092
2093 /* free memory allocated in probe */
2094 dma_pool_destroy(udc->dtd_pool);
2095
2096 if (udc->ep_dqh)
2097 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2098 udc->ep_dqh, udc->ep_dqh_dma);
2099
2100 mv_udc_disable(udc);
2101
2102 /* free dev, wait for the release() finished */
2103 wait_for_completion(udc->done);
2104
2105 return 0;
2106 }
2107
mv_udc_probe(struct platform_device * pdev)2108 static int mv_udc_probe(struct platform_device *pdev)
2109 {
2110 struct mv_usb_platform_data *pdata = dev_get_platdata(&pdev->dev);
2111 struct mv_udc *udc;
2112 int retval = 0;
2113 struct resource *r;
2114 size_t size;
2115
2116 if (pdata == NULL) {
2117 dev_err(&pdev->dev, "missing platform_data\n");
2118 return -ENODEV;
2119 }
2120
2121 udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2122 if (udc == NULL)
2123 return -ENOMEM;
2124
2125 udc->done = &release_done;
2126 udc->pdata = dev_get_platdata(&pdev->dev);
2127 spin_lock_init(&udc->lock);
2128
2129 udc->dev = pdev;
2130
2131 if (pdata->mode == MV_USB_MODE_OTG) {
2132 udc->transceiver = devm_usb_get_phy(&pdev->dev,
2133 USB_PHY_TYPE_USB2);
2134 if (IS_ERR(udc->transceiver)) {
2135 retval = PTR_ERR(udc->transceiver);
2136
2137 if (retval == -ENXIO)
2138 return retval;
2139
2140 udc->transceiver = NULL;
2141 return -EPROBE_DEFER;
2142 }
2143 }
2144
2145 /* udc only have one sysclk. */
2146 udc->clk = devm_clk_get(&pdev->dev, NULL);
2147 if (IS_ERR(udc->clk))
2148 return PTR_ERR(udc->clk);
2149
2150 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "capregs");
2151 if (r == NULL) {
2152 dev_err(&pdev->dev, "no I/O memory resource defined\n");
2153 return -ENODEV;
2154 }
2155
2156 udc->cap_regs = (struct mv_cap_regs __iomem *)
2157 devm_ioremap(&pdev->dev, r->start, resource_size(r));
2158 if (udc->cap_regs == NULL) {
2159 dev_err(&pdev->dev, "failed to map I/O memory\n");
2160 return -EBUSY;
2161 }
2162
2163 r = platform_get_resource_byname(udc->dev, IORESOURCE_MEM, "phyregs");
2164 if (r == NULL) {
2165 dev_err(&pdev->dev, "no phy I/O memory resource defined\n");
2166 return -ENODEV;
2167 }
2168
2169 udc->phy_regs = devm_ioremap(&pdev->dev, r->start, resource_size(r));
2170 if (udc->phy_regs == NULL) {
2171 dev_err(&pdev->dev, "failed to map phy I/O memory\n");
2172 return -EBUSY;
2173 }
2174
2175 /* we will acces controller register, so enable the clk */
2176 retval = mv_udc_enable_internal(udc);
2177 if (retval)
2178 return retval;
2179
2180 udc->op_regs =
2181 (struct mv_op_regs __iomem *)((unsigned long)udc->cap_regs
2182 + (readl(&udc->cap_regs->caplength_hciversion)
2183 & CAPLENGTH_MASK));
2184 udc->max_eps = readl(&udc->cap_regs->dccparams) & DCCPARAMS_DEN_MASK;
2185
2186 /*
2187 * some platform will use usb to download image, it may not disconnect
2188 * usb gadget before loading kernel. So first stop udc here.
2189 */
2190 udc_stop(udc);
2191 writel(0xFFFFFFFF, &udc->op_regs->usbsts);
2192
2193 size = udc->max_eps * sizeof(struct mv_dqh) *2;
2194 size = (size + DQH_ALIGNMENT - 1) & ~(DQH_ALIGNMENT - 1);
2195 udc->ep_dqh = dma_alloc_coherent(&pdev->dev, size,
2196 &udc->ep_dqh_dma, GFP_KERNEL);
2197
2198 if (udc->ep_dqh == NULL) {
2199 dev_err(&pdev->dev, "allocate dQH memory failed\n");
2200 retval = -ENOMEM;
2201 goto err_disable_clock;
2202 }
2203 udc->ep_dqh_size = size;
2204
2205 /* create dTD dma_pool resource */
2206 udc->dtd_pool = dma_pool_create("mv_dtd",
2207 &pdev->dev,
2208 sizeof(struct mv_dtd),
2209 DTD_ALIGNMENT,
2210 DMA_BOUNDARY);
2211
2212 if (!udc->dtd_pool) {
2213 retval = -ENOMEM;
2214 goto err_free_dma;
2215 }
2216
2217 size = udc->max_eps * sizeof(struct mv_ep) *2;
2218 udc->eps = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
2219 if (udc->eps == NULL) {
2220 retval = -ENOMEM;
2221 goto err_destroy_dma;
2222 }
2223
2224 /* initialize ep0 status request structure */
2225 udc->status_req = devm_kzalloc(&pdev->dev, sizeof(struct mv_req),
2226 GFP_KERNEL);
2227 if (!udc->status_req) {
2228 retval = -ENOMEM;
2229 goto err_destroy_dma;
2230 }
2231 INIT_LIST_HEAD(&udc->status_req->queue);
2232
2233 /* allocate a small amount of memory to get valid address */
2234 udc->status_req->req.buf = kzalloc(8, GFP_KERNEL);
2235 udc->status_req->req.dma = DMA_ADDR_INVALID;
2236
2237 udc->resume_state = USB_STATE_NOTATTACHED;
2238 udc->usb_state = USB_STATE_POWERED;
2239 udc->ep0_dir = EP_DIR_OUT;
2240 udc->remote_wakeup = 0;
2241
2242 r = platform_get_resource(udc->dev, IORESOURCE_IRQ, 0);
2243 if (r == NULL) {
2244 dev_err(&pdev->dev, "no IRQ resource defined\n");
2245 retval = -ENODEV;
2246 goto err_destroy_dma;
2247 }
2248 udc->irq = r->start;
2249 if (devm_request_irq(&pdev->dev, udc->irq, mv_udc_irq,
2250 IRQF_SHARED, driver_name, udc)) {
2251 dev_err(&pdev->dev, "Request irq %d for UDC failed\n",
2252 udc->irq);
2253 retval = -ENODEV;
2254 goto err_destroy_dma;
2255 }
2256
2257 /* initialize gadget structure */
2258 udc->gadget.ops = &mv_ops; /* usb_gadget_ops */
2259 udc->gadget.ep0 = &udc->eps[0].ep; /* gadget ep0 */
2260 INIT_LIST_HEAD(&udc->gadget.ep_list); /* ep_list */
2261 udc->gadget.speed = USB_SPEED_UNKNOWN; /* speed */
2262 udc->gadget.max_speed = USB_SPEED_HIGH; /* support dual speed */
2263
2264 /* the "gadget" abstracts/virtualizes the controller */
2265 udc->gadget.name = driver_name; /* gadget name */
2266
2267 eps_init(udc);
2268
2269 /* VBUS detect: we can disable/enable clock on demand.*/
2270 if (udc->transceiver)
2271 udc->clock_gating = 1;
2272 else if (pdata->vbus) {
2273 udc->clock_gating = 1;
2274 retval = devm_request_threaded_irq(&pdev->dev,
2275 pdata->vbus->irq, NULL,
2276 mv_udc_vbus_irq, IRQF_ONESHOT, "vbus", udc);
2277 if (retval) {
2278 dev_info(&pdev->dev,
2279 "Can not request irq for VBUS, "
2280 "disable clock gating\n");
2281 udc->clock_gating = 0;
2282 }
2283
2284 udc->qwork = create_singlethread_workqueue("mv_udc_queue");
2285 if (!udc->qwork) {
2286 dev_err(&pdev->dev, "cannot create workqueue\n");
2287 retval = -ENOMEM;
2288 goto err_destroy_dma;
2289 }
2290
2291 INIT_WORK(&udc->vbus_work, mv_udc_vbus_work);
2292 }
2293
2294 /*
2295 * When clock gating is supported, we can disable clk and phy.
2296 * If not, it means that VBUS detection is not supported, we
2297 * have to enable vbus active all the time to let controller work.
2298 */
2299 if (udc->clock_gating)
2300 mv_udc_disable_internal(udc);
2301 else
2302 udc->vbus_active = 1;
2303
2304 retval = usb_add_gadget_udc_release(&pdev->dev, &udc->gadget,
2305 gadget_release);
2306 if (retval)
2307 goto err_create_workqueue;
2308
2309 platform_set_drvdata(pdev, udc);
2310 dev_info(&pdev->dev, "successful probe UDC device %s clock gating.\n",
2311 udc->clock_gating ? "with" : "without");
2312
2313 return 0;
2314
2315 err_create_workqueue:
2316 destroy_workqueue(udc->qwork);
2317 err_destroy_dma:
2318 dma_pool_destroy(udc->dtd_pool);
2319 err_free_dma:
2320 dma_free_coherent(&pdev->dev, udc->ep_dqh_size,
2321 udc->ep_dqh, udc->ep_dqh_dma);
2322 err_disable_clock:
2323 mv_udc_disable_internal(udc);
2324
2325 return retval;
2326 }
2327
2328 #ifdef CONFIG_PM
mv_udc_suspend(struct device * dev)2329 static int mv_udc_suspend(struct device *dev)
2330 {
2331 struct mv_udc *udc;
2332
2333 udc = dev_get_drvdata(dev);
2334
2335 /* if OTG is enabled, the following will be done in OTG driver*/
2336 if (udc->transceiver)
2337 return 0;
2338
2339 if (udc->pdata->vbus && udc->pdata->vbus->poll)
2340 if (udc->pdata->vbus->poll() == VBUS_HIGH) {
2341 dev_info(&udc->dev->dev, "USB cable is connected!\n");
2342 return -EAGAIN;
2343 }
2344
2345 /*
2346 * only cable is unplugged, udc can suspend.
2347 * So do not care about clock_gating == 1.
2348 */
2349 if (!udc->clock_gating) {
2350 udc_stop(udc);
2351
2352 spin_lock_irq(&udc->lock);
2353 /* stop all usb activities */
2354 stop_activity(udc, udc->driver);
2355 spin_unlock_irq(&udc->lock);
2356
2357 mv_udc_disable_internal(udc);
2358 }
2359
2360 return 0;
2361 }
2362
mv_udc_resume(struct device * dev)2363 static int mv_udc_resume(struct device *dev)
2364 {
2365 struct mv_udc *udc;
2366 int retval;
2367
2368 udc = dev_get_drvdata(dev);
2369
2370 /* if OTG is enabled, the following will be done in OTG driver*/
2371 if (udc->transceiver)
2372 return 0;
2373
2374 if (!udc->clock_gating) {
2375 retval = mv_udc_enable_internal(udc);
2376 if (retval)
2377 return retval;
2378
2379 if (udc->driver && udc->softconnect) {
2380 udc_reset(udc);
2381 ep0_reset(udc);
2382 udc_start(udc);
2383 }
2384 }
2385
2386 return 0;
2387 }
2388
2389 static const struct dev_pm_ops mv_udc_pm_ops = {
2390 .suspend = mv_udc_suspend,
2391 .resume = mv_udc_resume,
2392 };
2393 #endif
2394
mv_udc_shutdown(struct platform_device * pdev)2395 static void mv_udc_shutdown(struct platform_device *pdev)
2396 {
2397 struct mv_udc *udc;
2398 u32 mode;
2399
2400 udc = platform_get_drvdata(pdev);
2401 /* reset controller mode to IDLE */
2402 mv_udc_enable(udc);
2403 mode = readl(&udc->op_regs->usbmode);
2404 mode &= ~3;
2405 writel(mode, &udc->op_regs->usbmode);
2406 mv_udc_disable(udc);
2407 }
2408
2409 static struct platform_driver udc_driver = {
2410 .probe = mv_udc_probe,
2411 .remove = mv_udc_remove,
2412 .shutdown = mv_udc_shutdown,
2413 .driver = {
2414 .name = "mv-udc",
2415 #ifdef CONFIG_PM
2416 .pm = &mv_udc_pm_ops,
2417 #endif
2418 },
2419 };
2420
2421 module_platform_driver(udc_driver);
2422 MODULE_ALIAS("platform:mv-udc");
2423 MODULE_DESCRIPTION(DRIVER_DESC);
2424 MODULE_AUTHOR("Chao Xie <chao.xie@marvell.com>");
2425 MODULE_LICENSE("GPL");
2426